Hiramine, Y. Osaka J. Math. 20 (1983), 645-658

ON SEMI-FIELD PLANES OF EVEN ORDER

YUTAKA HIRAMINE

(Received June 30, 1981)

1. Introduction

Let π be a non-Desarguesian semi-field plane with an autotopism group G and let $u(\pi)$ denote the number of the orbits of G on the points not incident with any side of the autotopism triangles.

In their paper [9], M.J. Kallaher and R.A. Liebler have conjectured that $u(\pi) \ge 5$ and they have proved that the conjecture is true if G is solvable and the order of π is not 2^6 .

In this paper we treat semi-field planes of even order whose autotopism groups are not necessarily solvable and prove the following.

Theorem 1. Let π be a non-Desarguesian semi-field plane of order 2^r. If r is not divisible by 4, then $u(\pi) \ge 5$.

The proof requires the use of the Kallaher-Liebler's theorem mentioned above and the following lemma which we prove in section 3.

Lemma 2. Let π be a non-Desarguesian semi-field plane of order 2^6 with a solvable autotopism group. Then $u(\pi) \ge 5$.

2. Notations and preliminaries

Our notation is largely standard and taken from [3] and [6]. Let G be a permutation group on Ω . For $X \leq G$ and $\Delta \subset \Omega$, we define $F(X) = \{\alpha \in \Omega \mid \alpha^* = \alpha \text{ for all } x \in X\}$, $X(\Delta) = \{x \in X \mid \Delta^* = \Delta\}$, $X_{\Delta} = \{x \in X \mid \alpha^* = \alpha \text{ for all } \alpha \in \Delta\}$ and $X^{\Delta} = X(\Delta)/X_{\Delta}$, the restriction of X on Δ . When X is a collineation group of a projective plane, we denote by F(X) the set of fixed points and fixed lines of X.

Lemma 2.1. Let G be a transitive permutation group on a finite set Ω , H a stabilizer of a point of Ω and M a nonempty subset of G. Then $|F(M)| = |N_G(M)| \times |ccl_G(M) \cap H|/|H|$. Here $ccl_G(M) \cap H = \{g^{-1}Mg|g^{-1}Mg \subset H, g \in G\}$.

Proof. Set $W = \{(L, \alpha) | L \in ccl_G(M), \alpha \in F(L)\}$ and $W_{\alpha} = \{L | L \in ccl_G(M), \alpha \in F(L)\}$

 $\alpha \in F(L)$. By the transitivity of G, $|W_{\alpha}| = |W_{\beta}|$ holds for every $\alpha, \beta \in \Omega$. Counting the number of elements of W in two ways, we obtain $|G: N_G(M)| \times |F(M)| = |G: H| \times |ccl_G(M) \cap H|$. Thus we have the lemma.

Lemma 2.2. Let PG(2,q) denote the Desarguesian projective plane of order q where $q=2^n$ and $n\equiv 1 \pmod{2}$. Set Y=PSL(3,q) and $X=\langle f \rangle Y$, where f is a field automorphism of Y of order n. Set $G=X_{P,Q,R}$ and $N=G \cap Y$, where P=[1, 0, 0], Q=[0, 1, 0] and R=[0, 0, 1].

(i) Let A be a noncyclic abelian p-subgroup of G of order p^2 for a prime p. Then A is not semi-regular on the set of points contained in PG(2, q)-F(A).

(ii) Let C be a cyclic subgroup of G of order q-1. Then $C \subset N$.

Proof. Since $A \cap N \neq 1$ and $N \simeq Z_{q-1} \times Z_{q-1}$, p is an odd prime. Let T be the translation group with respect to the line g joining [1, 0, 0] and [0, 1, 0]. Deny (i) and let Ω denote the set of points in F(A). Then, by Theorem 5.3.6 of [3], $T = \langle C_T(x) | 1 \neq x \in A \rangle$. By the semi-regularity of A, $C_T(x)$ acts on Ω for each $x \in A - \{1\}$. Hence T acts on Ω .

Let Δ denote the set of points not incident with the line g. Clearly [0, 0, 1] $\in \Delta \cap \Omega$. Since T is transitive on Δ , we have (i).

Set $D=C\cap N$ and let $\begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix}$ be a generator of D. Then $C \triangleright D$ and $C|D \simeq CN|N \leq G|N \simeq Z_n$ and so $|D| \geq (q-1)/n$. Set $\langle h \rangle = C_{\langle f \rangle}(D)$ and $s = |\langle h \rangle|$. Then $n=r \times s$ for an integer r. It follows that ba^{-1} , $ca^{-1} \in GF(2^r)^{\times}$. Hence $|D| \leq 2^r - 1$. From this, $2^r - 1 \geq |D| \geq (q-1)/n$. We can easily verify that s=1. Therefore $C_{\langle f \rangle}(D)=1$, whence $C \leq C_G(D)=NC_{\langle f \rangle}(D)=N$. Thus $C \leq N$.

In the rest of the paper we assume the following.

Hypothesis 2.3. Let π be a non-Desarguesian semi-field plane of order 2' coordinatized by a semi-field D with respect to the points $U_1=(0, 0), U_2=(0), U_3=(\infty)$ and let G be the autotopism group of π with respect to U_1, U_2, U_3 . Let l_i be the line joining U_j and U_k for i, j, k with $\{i, j, k\} = \{1, 2, 3\}$ and let $\Phi(\pi)$ be the set of points of π not incident with l_1, l_2 or l_3 . Let $u(\pi)$ denote the number of G-orbits on $\Phi(\pi)$. Set $K_i = G_{(U_i, l_i)}$ for $1 \le i \le 3$ and let N_1, N_2 or N_3 be the right, middle or left nucleus, respectively.

D may be considered as a right vector space over N_1 or N_2 and as a left vector space over N_2 or N_3 . The multiplicative group N_i^{\times} is isomorphic to K_i for each *i* with $1 \le i \le 3$ (Chapter 8 of [6]). Set $\bar{l}_i = l_i - \{U_j, U_k\}$ for *i*, *j*, with $\{i, j, k\} = \{1, 2, 3\}$.

3. The proof of Lemma 2.

Throughout this section π is a projective plane satisfying the hypothesis 2.3 and the following.

Hypothesis 3.1. (i) The order of π is 2^6 .

(ii) Set $u=u(\pi)$. Then $u \leq 4$.

(iii) The autotopism group G is solvable.

Lemma 3.2. $|K_t| = 1$, 3 or 7 for every $t \in \{1, 2, 3\}$ and u = 3 or 4.

Proof. Since π is non-Desarguesian, D is not a field. Hence, N_t is isomorphic to GF(2), GF(4) or GF(8) for $t \in \{1, 2, 3\}$. By Theorem 8.2 of [6], $|K_t|=1, 3$ or 7.

By Corollary 4.1.1 of [9] and Hypothesis 3.1 (ii), u=3 or 4.

Lemma 3.3. If G is transitive on \overline{l}_t for some $t \in \{1, 2, 3\}$, then the following hold.

(i) $G/K_t \leq \Gamma L(1, 2^6)$ and G/K_t contains an element of order 9.

(ii) Let m be an arbitrary line through U_t such that $m \neq l_j$, l_k for $\{t, j, k\} = \{1, 2, 3\}$. Set $A = m \cap l_t$. Then $G_m = G_A$, $|G: G_A| = 3^2 \cdot 7$ and the number of G_A -orbits on $m - \{U_t, A\}$ is equal to u.

(iii) Let $\Delta_1, \Delta_2, \dots, \Delta_u$ be the orbits stated in (ii). Set $x_s = |\Delta_s|, 1 \le s \le u$, and assume that $x_1 \le x_2 \le \dots \le x_u$. Then $|G_A|$ is divisible by x_s for every s and $6 \times |K_t|$ is divisible by $|G_A|$. Furthermore $\sum_{s=1}^{u} x_s = 63$.

Proof. By Lemma 2.1 of [9], G is a transitive linear group on D. Hence it follows from a Huppert's theorem ([7]) that $G/K_t \leq \Gamma L(1, 2^6)$. If G/K_t contains no element of order 9, then its Sylow 3-subgroup is an elementary abelian 3-subgroup of order at most 9. By the structure of $\Gamma L(1, 2^6)$, G/K_t is not a transitive linear group, a contradiction. Thus G/K_t contains an element of order 9 and (i) holds.

Let m, A be as in (ii). Since G fixes U_t and l_t , we have $G_m = G_A$. Clearly $|G: G_A| = |A^G| = |\overline{l_t}| = 2^6 - 1 = 3^2 \cdot 7$. As any point of $\Phi(\pi)$ lies on a line of $[U_t] - \{l_j, l_k\}, \Phi(\pi) \cap m (= m - \{U_t, A\})$ is a union of $u \ G_A$ -orbits, hence (ii) holds.

Since $G/K_t \le \Gamma L(1, 2^6)$, $G_A/K_t \le Z_6$. Hence $6 \times |K_t|$ is divisible by $|G_A|$. Clearly $x_s = |\Delta_s|$ divides $|G_A|$ and $\sum_{s=1}^{u} x_s = |\Delta_1 \cup \Delta_2 \cup \cdots \cup \Delta_u| = |\overline{l}_t| = 2^6 - 1$ = $3^2 \cdot 7$. Thus (iii) holds.

Lemma 3.4. Suppose u=4. Then there exists $i \in \{1, 2, 3\}$ having the following properties:

(i) G is transitive on \overline{l}_i ,

(ii) K_i is isomorphic to Z_7 and G has a normal Sylow 7-subgroup and

(iii) $|G: G_A| = 63$, G_A/K_i is isomorphic to Z_6 and $C_{G_A}(K_i) = K_i$ for each $A \in \overline{l}_i$.

Proof. By Lemma 6.1 of [9], there exists $i \in \{1, 2, 3\}$ such that G is transitive on \overline{l}_i . Assume that $K_i \neq Z_7$. Then $K_i \leq Z_3$ by Lemma 3.2. Let m, A, x_s be as in Lemma 3.3. We have $x_s |6|K_i|=6$ or 18 and $x_1+x_2+x_3+x_4=63$, hence $|K_i|=3$, $|G_A|=18$ and $(x_1, x_2, x_3, x_4)=(9, 18, 18, 18)$.

Let z be an involution in G_A . Then z is a Baer involution and so $|F(z) \cap (m - \{U_i, A\})| = 7$ because $m \in F(z)$. If $F(z) \cap \Delta_s \neq \phi$, then $|\Delta_s| \leq \frac{1}{2} |G_A|$. In particular $F(z) \cap \Delta_s = \phi$ for $s \geq 2$ and so $|F(z) \cap \Delta_1| = 7$. Since $G_A/K_i \simeq Z_6$ and $z \notin K_i$, $C_{G_A}(z) \neq \langle z \rangle$. Hence an element of $C_{G_A}(z)$ of order 3 acts on $F(z) \cap \Delta_1$ and fixes at least one point on it. It follows that $|\Delta_1| \leq \frac{1}{6} |G_A| = 3$, a contradiction. Therefore we have $K_i \simeq Z_7$ and so G has a normal Sylow 7-subgroup by Lemma 3.3. Thus (ii) holds.

Let $m (=U_iA)$, Δ_s , x_i for t=i be as in Lemma 3.3 (ii). Since $G_A \ge K_i \simeq Z_7$ and K_i acts semi-regularly on m- $\{U_i, A\}$, $7 \mid |\Delta_s| = x_s$ for all $s \in \{1, 2, 3, 4\}$. Moreover, by Lemma 3.3, $x_1+x_2+x_3+x_4=63$. Hence $(x_1, x_2, x_3, x_4)=(7, 7, 7, 42)$ (7, 14, 21, 21) or (14, 14, 14, 21) and so $|G_A|=42$. Thus $G_A/K_i \simeq Z_6$ by the similar argument as in the proof of Lemma 3.3 (iii). Let y be an element of $C_{G_A}(K_i)$ and assume that the order of y is 2 or 3. Since $G_A/K_i \simeq Z_6$ and $K_i \simeq Z_7$, y is contained in the center of G_A . Hence G_A acts on F(y) and therefore Δ_s is contained in F(y) for each s with $|\langle y \rangle| \not| x_s$. As above, $(x_1, x_2, x_3, x_4) = (7, 7, 7, 42)$, (7, 14, 21, 21) or (14, 14, 14, 21) and hence $|F(y) \cap m| \ge 21+2=23$. Since $F(y) \cap \Phi(\pi) = \phi$, y is a planar collineation, Therefore y=1, a contradiction. Thus $C_{G_A}(K_i) = K_i$.

Lemma 3.5. Suppose u=4 and let notations be as in Lemma 3.4. Then, for some $s \in \{1, 2, 3\} - \{i\}$ O(G) has no orbit of length 7 on l_s .

Proof. Suppose false. Let P be a Sylow 7-subgroup of G. By Lemma 3.4 (ii), $|P| = 7^2$ and P is a normal subgroup of G. Let $s \in \{1, 2, 3\} - \{i\}$ and let Ω_1 be a P-orbit of length 7 on l_s . Then there exists another P-orbit of length 7, say Ω_2 , on l_s because $7^2 \swarrow |\bar{l}_s - \Omega_1|$.

Let Q be a Sylow 3-subgroup of O(G). By Lemmas 3.3 and 3.4, $K_i \simeq Z_7$ and a Sylow 3-subgroup of G/K_i is isomorphic to that of a Sylow 3-subgroup of $\Gamma L(1, 2^6)$. Hence $Q = \langle a, b | a^9 = b^3 = 1, b^{-1}ab = a^4 \rangle$ for suitable a, b in Q. We note that $Q' = [Q, Q] = \langle a^3 \rangle$.

Since $|\Omega_1| = |\Omega_2| = 7 < 9$, a^3 acts trivially on $\Omega_1 \cup \Omega_2$, hence $|F(a^3) \cap l_s \ge 2 + |\Omega_1| + |\Omega_2| = 16$. As $s \ (\in \{1, 2, 3\} - \{i\})$ is arbitrary, a^3 is planar and moreover we have $F(a^3) = \pi$, by Theorem 3.7 of [6], which implies that $a^3 = 1$. This

is a contradiction. Thus we have the lemma.

Lemma 3.6. u=3.

Proof. Assume that $u \neq 3$. Then, by Lemma 3.2, u=4 and we can apply Lemmas 3.4 and 3.5. Let notations be as in them.

Let P be a Sylow 7-subgroup of G and Γ the set of P-orbits on \bar{l}_s . Set H=O(G). Since P is a normal subgroup of H by Lemma 3.4 (ii), H induces a permutation group on Γ . Since $P \ge K_i$ and K_i is semi-regular on \bar{l}_s , every P-orbit in Γ has length 7 or 7². If an orbit in Γ has length 7², Γ contains exactly two P-orbits of length 7, which are also H-orbits of length 7, contrary to Lemma 3.5. Therefore each P-orbit in Γ has length 7 and so $|\Gamma|=9$.

If H acts transitively on Γ , G is transitive on \overline{l}_s and therefore $G/K_s \leq \Gamma L(1, 2^6)$ by Lemma 3.3 (i). It follows that $\Gamma L(1, 2^6) \geq G_A K_s/K_s \simeq G_A/G_A \cap K_s \simeq G_A$. Therefore an involution in G_A centralizes a Sylow 7-subgroup of G_A by the structure of $\Gamma L(1, 2^6)$, contrary to Lemma 3.4 (iii). Hence H is not transitive on Γ .

Let Q be a Sylow 3-subgroup of H. Then |Q|=27 and $[Q, Q]=Q'\simeq Z_3$ as in the proof of Lemma 3.5. Since H=PQ, $\Gamma^H=\Gamma^Q$. On the other hand His not transitive on Γ . Hence Q^{Γ} is abelian and therefore Q' acts trivially on Γ . We note that $G/C_G(P)\leq Z_6$ or $G/C_G(P)\leq GL(2, 7)$ according as $P\simeq Z_{49}$ or $Z_7\times Z_7$, respectively. Hence Q' is contained in $C_G(P)$. Since Q' acts trivially on Γ and each orbit $\Delta \in \Gamma$ is of length 7, $F(Q') \cap \Delta \neq \phi$. Therefore $Q' \leq$ K_s because [P, Q']=1. In particular Q' is semi-regular on \overline{l}_j , where $\{j\}=$ $\{1, 2, 3\} - \{i, s\}$. Hence QK_i is transitive on \overline{l}_j . By Lemma 3.3 (i), G/K_j $\simeq \Gamma L(1, 2^6)$ and $K_j \simeq Z_7$. Let z be an involution in G_A . Then $[z, P] \leq K_i$ $\cap K_j=1$ and so $z \in C_{G_A}(K_i)$, contrary to Lemma 3.4 (iii). This we have u=3.

Lemma 3.7. Assume that there exists a line l through U_i with $l \neq l_j$, l_k , where $\{i, j, k\} = \{1, 2, 3\}$, such that G_l acts transitively on $l - \{U_i, l \cap l_i\}$. Then the following hold.

- (i) G_l is transitive on \overline{l}_t for t=j, k.
- (ii) G has two or three orbits on \bar{l}_i .

Proof. Let $A_1, A_2 \in \overline{l}_j$ and set $B_1 = U_j A_1 \cap l$ and $B_2 = U_j A_2 \cap l$. By assumption, there exists an element $x \in G_l$ such that $B_1^x = B_2$. Since $U_j A_2 \cap l = B_2$ $= B_1^x = U_j A_1^x \cap l$ and $A_2, A_1^x \in \overline{l}_j$, it follows that $A_1^x = A_2$. Hence G_l is transitive on \overline{l}_j . Similarly G_l is transitive on \overline{l}_k . Thus (i) holds.

Let d be the number of G-orbits on \overline{l}_i . Clearly d is at most 3. If d=1, G acts transitively on $\Phi(\pi)$, contrary to u=3. Thus (ii) holds.

Lemma 3.8. Let *l* be the line satisfying the assumption in Lemma 3.7. If $7^2 | |G|$ and $7^3 \not\upharpoonright |G|$, then $K_i \simeq Z_3$ and $|G| | 2 \cdot 3^2 \cdot 7^2$.

Proof. By Lemmas 3.2, 3.3 (i) and 3.7 (i), K_j and K_k are isomorphic to Z_7 ; otherwise $7^2 \not/ |G|$. Set $A = l \cap l_i$. Then $G_i = G_A$ and so $G_i/K_i = G_A/K_i$. Since $G/K_i \leq GL(6,2)$, G_i/K_i is isomorphic to a subgroup of L, where

$$L = \left\{ \begin{bmatrix} 1 & a_2 \cdots & a_6 \\ 0 & \\ \vdots & M \\ 0 & \end{bmatrix} \middle| a_2, \cdots, a_6 \in GF(2), M \in GL(5, 2) \right\}.$$

Since $L/O_2(L) \simeq GL(5, 2)$, a Sylow 3-subgroup of L is an elementary abelian group of order 9. On the other hand, by Lemmas 3.3 and 3.7 (i), G_i contains an element of order 9. Therefore $K_i \simeq Z_3$.

For a subgroup X of G, \bar{X} denotes the homomorphic image of X in G/K_i . Since $\bar{K}_j \neq \bar{K}_k$ and $\bar{G} \leq GL(6, 2)$, $\bar{K}_j \times \bar{K}_k$ is a Sylow 7-subgroup of \bar{G} and so $\bar{K}_j \times \bar{K}_k$ has two subgroups $\langle a \rangle$ and $\langle \bar{b} \rangle$ of order 7 which fix nonzero vectors on \bar{l}_i . Set H=O(G). By Lemmas 3.3 (i) and 3.7 (i), $G/K_i \leq \Gamma L(1, 2^6)$ for $t \in \{j, k\}$, so that $|G: H| \leq 2$. Since $\bar{G} \triangleleft \bar{K}_t$ for $t \in \{j, k\}$, \bar{H} normalizes \bar{K}_j , $\bar{K}_k, \langle a \rangle$ and $\langle \bar{b} \rangle$. As K_i acts semi-regularly on \bar{l}_i , we have $\bar{K}_i \neq \langle a \rangle$, $\langle \bar{b} \rangle$ for $t \in \{j, k\}$. Without loss of generality, we can assume that $\langle a \bar{b} \rangle = \bar{K}_j$. Let $g \in \bar{H}$. Then $g^{-1}ag = a^p$ and $g^{-1}\bar{b}g = \bar{b}^q$ for some p, q with $1 \leq p, q \leq 6$, so we have $g^{-1}a\bar{b}g = a^p\bar{b}^q \in \bar{K}_j = \langle a\bar{b} \rangle$. Hence p=q. From this, $\bar{H}/C_{\bar{H}}(\langle a \rangle \times \langle \bar{b} \rangle)$ $\leq O(\operatorname{Aut}(Z_7)) \simeq Z_3$. Since $C_{GL(6,2)}(\langle a \rangle \times \langle \bar{b} \rangle) = \langle \bar{a} \rangle \times \langle \bar{b} \rangle$, we have $|\bar{H}| |3| \langle a \rangle \times \langle \bar{b} \rangle| = 3 \cdot 7^2$ and therefore $|H| |3^2 \cdot 7^2$. Thus we obtain $|G| |2 \cdot 3^2 \cdot 7^2$.

Lemma 3.9. Let $i \in \{1, 2, 3\}$ and set $\{i, j, k\} = \{1, 2, 3\}$. Then the following hold.

(i) For every line $m \in [U_i] - \{l_i, l_k\}$, G_m has three orbits on $m - \{U_i, m \cap l_i\}$.

(ii) G acts transitively on \overline{l}_i and $G/K_i \leq \Gamma L(1, 2^6)$.

Proof. Deny (i). Then, since $u=u(\pi)=3$, there exists a line $l\in[U_i]$ satisfying the assumption of Lemma 3.7. Let $\{\Omega_1, \Omega_2, \dots, \Omega_p\}$ be the set of *G*-orbits on \bar{l}_i and set $b_s = |\Omega_s|$ for $1 \le s \le p$. By Lemma 3.7 (ii), p=2 or 3.

Assume p=3. Set $b=\max\{b_1, b_2, b_3\}$, $b=|\Omega_v|$ and let $A \in \Omega_v$. Since u=3, G_A is transitive on $m-\{U_i, A\}$, where $m=AU_i$. Therefore 63 | $|G_A|$. Hence $63b \mid |G|$ because $|G|=b|G_A|$. By Lemmas 3.2, 3.3 (i) and 3.7 (i), we have $|G| \mid 2 \cdot 3^4 \cdot 7^2$ and so $b \mid 2 \cdot 3^2 \cdot 7$. Since $3b \ge b_1+b_2+b_3=63$, it follows that $21 \le b < 63$, hence b=21 or 42 and $3^3 \cdot 7^2 \mid |G|$, contrary to Lemma 3.8. Thus p=3.

Assume p=2. Let $A \in \Omega_1$, $B \cup \Omega_2$ and set $g=AU_i$, $h=BU_i$. Since u=3, without loss of generality we may assume that G_A is transitive on $g-\{U_i, A\}$ and that G_B has two orbits on $h-\{U_i, B\}$, say Γ_1 , Γ_2 . Similarly as in the last paragraph we obtain the following:

$$b_1, b_2 \mid |G|, |G| \mid 2 \cdot 3^4 \cdot 7^2, b_1 + b_2 = 63.$$

Hence $\{b_1, b_2\} = \{21, 42\}, \{14, 49\}$ or $\{9, 54\}$. We note that $|G: G_g| = |G: G_A| = b_1, |G: G_h| = |G: G_B| = b_2$ and $63 \mid |G_A|$.

If $\{b_1, b_1\} = \{21, 42\}$, $|G| = |G_A|b_1$ and $21 | b_1$. Hence $3^3 \cdot 7^2 | |G|$, contrary to Lemma 3.8.

If $\{b_1, b_2\} = \{14, 49\}$, $|G: G_A| = 14$ because $7^3 \not/ |G|$. Hence $|G: G_h| = 49$. By Lemma 3.8, $|G| \mid 2 \cdot 3^2 \cdot 7^2$. Therefore $|G_h| \mid 18$. Since $h - \{U_i, B\}$ is a union of G_h -orbits Γ_1 , Γ_2 , we have $|\Gamma_1| + |\Gamma_2| = 63$ and $|\Gamma_1|$, $|\Gamma_2| \mid 18$. This is a contradiction.

If $\{b_1, b_2\} = \{9, 54\}$, we have $|G: G_A| = 9$ as $3^5 \not| |G|$. Hence $3^4 | |G|$ and so $7^2 \not| |G|$ by Lemma 3.8. Therefore $|G| = 2 \cdot 3^4 \cdot 7$. From this, $|G_k| = |G_B| = 21$. Hence $|\Gamma_1|, |\Gamma_2| | 21$. However, $|\Gamma_1| + |\Gamma_2| = 63$, a contradiction. Thus we have (i), and (ii) follows immediately from (i).

By Lemma 3.9, we can apply Lemma 3.3 for every $t \in \{1, 2, 3\}$ and obtain the following.

Lemma 3.10. Let notations be as in Lemma 3.3. Then the following hold. (i) $3^2 \cdot 7 | |G|, |G| | 2 \cdot 3^4 \cdot 7^2$ and $3^4 \cdot 7^2 \not\ge |G|$. (ii) $3^3, 7^2 \not\ge x_s$ for all $s \in \{1, 2, 3\}$.

Proof. By Lemmas 3.2 and 3.3 (i) (ii), we have (i). By Lemma 3.3 (ii) (iii), $|G_A| = |G|/63$ and $x_s | |G_A|$. Hence $x_s | 2 \cdot 3^2 \cdot 7$. Thus we have (ii).

Lemma 3.11. Let notations be as in Lemma 3.3 and assume that $21 \mid x_2$. Then the following hold.

(i) $K_1 \simeq K_2 \simeq K_3 \simeq Z_7$ and G/K_t is isomorphic to a subgroup of $\Gamma L(1, 2^6)$ of index at most 2 for each $t \in \{1, 2, 3\}$.

(ii) Let Q be a Sylow 3-subgroup of G. Then $|Q|=3^3$ and $Q=\langle a, b|$ $a^9=b^3=1$, $b^{-1}ab=a^4\rangle$ for suitable a, b in Q. Moreover, for any element v of order 3 in Q-Z(Q), F(v) is a subplane of order 4.

Proof. By Lemma 3.3, x_3 divides $|G_A|$ and $|G:G_A|=3^2\cdot7$, so that $3^3\cdot7^2|$ |G|. It follows from Lemma 3.10 (i) that $|G|=3^3\cdot7^2$ or $2\cdot3^3\cdot7^2$. Therefore (i) holds.

By (i), the order of a Sylow 3-subgroup Q of G is 3³. Hence Q is of the form stated in (ii) by the structure of $\Gamma L(1, 2^6)$. We note that Q has exactly two conjugacy classes of subgroups of order 3. Let $v \in Q - Z(Q)$ such that $\langle v \rangle \simeq Z_3$. Then, as an element in $\Gamma L(1, 2^6)$, v fixes three nonzero elements, that is, $|F(v) \cap \overline{l}_t| = 3$ for all $t \in \{1, 2, 3\}$. Hence F(v) is a subplane of order 4.

Lemma 3.12. Let notations be as in Lemma 3.3. Then $(x_1, x_2, x_3) = (7, 14, 42), K_i \simeq Z_7$ and $G/K_i \simeq \Gamma L(1, 2^6)$ for each $t \in \{1, 2, 3\}$.

Proof. By Lemmas 3.3 (iii) and 3.10, we have $x_1 \le x_2 \le x_3$, $x_1 + x_2 + x_3 = 63$

and 3³, 7² $\not\downarrow x_s$, $x_s \mid |G| \mid 2 \cdot 3^4 \cdot 7^2$ for $s \in \{1, 2, 3\}$. Hence $(x_1, x_2, x_3) = (21, 21, 21)$ or (7, 14, 42). On the other hand $K_1 \simeq K_2 \simeq K_3 \simeq Z_7$ by Lemma 3.11 (i).

Assume that $(x_1, x_2, x_3) = (21, 21, 21)$. Let Δ_s be as defined in Lemma 3.3. Let $P_s \in \Delta_s$ and let Φ_s be the *G*-orbit containing P_s for $s \in \{-1, 2, 3\}$. Clearly $|\Phi_s| = 63x_s$. Let v be the element as defined in Lemma 3.11 (ii) and let $P \in F(v) \cap \Phi$. Then $P \in \Phi_s$ for some $s \in \{1, 2, 3\}$. Therefore $|G_P| = |G|/|\Phi_s| |2 \cdot 3^3 \cdot 7^2/63 \cdot 21 = 2$, contrary to $v \in G_P$. Thus $(x_1, x_2, x_3) = (7, 14, 42)$ and so $G/K_t \simeq \Gamma L(1, 2^6)$ for all $t \in \{1, 2, 3\}$.

Lemma 3.13. Let Δ_1 be as in Lemma 3.3. Then the following hold. (i) Let $P \in \Delta_1$. Then $G_P = \langle x \rangle \simeq Z_6$ and a Sylow 7-subgroup of G acts on $F(x^3) \cap \overline{l}_t$ for all $t \in \{1, 2, 3\}$.

(ii) $F(x^c)$ is a subplane of π of order 2^c for c=2, 3.

Proof. Similarly as in the proof of Lemma 3.12, we obtain $|G_P| = |G|/|P^G| = 2 \cdot 3^3 \cdot 7^2/63 \cdot 7 = 6$. Since $G_P \leq G_A$, $G_P \cap K_t = 1$ and $G_A/K_t \simeq Z_6$, we have $G_P \simeq G_P K_t/K_t \leq Z_6$. Hence $G_P \simeq Z_6$. Set $\langle x \rangle = G_P$. Clearly x^3 is an involution in G_P and so by the property of $\Gamma L(1, 2^6)$, x^3 centralizes the Sylow 7-subgroup of G/K_t for all $t \in \{1, 2, 3\}$. Let S be the Sylow 7-subgroup of G. Then $[x^3, S] \leq \bigcap_{t=1}^3 K_t = 1$ and therefore S centralizes x^3 . Hence S acts on $F(x^3) \cap \overline{l_t}$ for all $t \in \{1, 2, 3\}$. Thus (i) holds.

By Theorem 4.3 of [6], $F(x^3)$ is a subplane of π of order 2³ and by Lemmas 3.11 (ii) and 3.12, $F(x^2)$ is a subplane of order 2².

If we coordinatize π by choosing (0, 0) as U_1 , (0) as U_2 , (∞) as U_3 , (1, 1) as P which was defined in Lemma 3.13, then we get a semi-field F. In general, F is not always isomorphic to D and since π is non-Desarguesian, F is not a field. Thus π is a semi-field plane coordinatized by F and it also satisfies Hypothesis 2.3.

Lemma 3.14. Set $F_1 = \{d | d \in F, (d, 0) \in F(x^3)\}, F_2 = \{d | d \in F, (0, d) \in F(x^3)\}$ and $F_3 = \{d | d \in F, (d, 0) \in F(x^2)\}$. Then $F_1 = F_2 \simeq GF(8)$ and $F_3 \simeq GF(4)$.

Proof. Since F(x) contains (0, 0), (0), (∞) and (1, 1), it also contains (1). By Lemma 3.13 and the definition of the coordinatization of π , we have the lemma.

Lemma 3.15. Let N_1 , N_2 or N_3 be the right, middle or left nucleus, respectively. Then $N_1 = N_2 = N_3 \simeq GF(8)$.

Proof. By Lemmas 3.12, we have $N_t \simeq GF(8)$ for all $t \in \{1, 2, 3\}$. Furthermore, the multiplicative group $N_t \simeq \{d \mid (d, 0) \in (1, 0)^{\kappa_t}\}$ for t=1, 2 and $N_3 \simeq \{d \mid (0, d) \in (0, 1)^{\kappa_s}\}$ by the proof of Theorems 7.9 and 8.2 of [6]. Since

 K_1 and K_2 are semi-regular on \overline{l}_3 and $(1, 0) \in F(x^3)$, it follows from Lemma 3.13 that $N_1 = N_2 = F_1$. Similarly $N_3 = F_2$. By Lemma 3.14, we have $N_1 = N_2 = N_3 \simeq GF(8)$.

Lemma 3.16. Set $N=N_1=N_2=N_3$ and $F_3^{\times}=\langle\theta\rangle$.

(i) N does not contain θ and F is a right and left vector space over N with a basis $\{1, \theta\}$.

(ii) For any $\xi \in F$, $(\xi \theta)\theta = \xi(\theta^2)$.

Proof. (i) follows immediately from Lemmas 3.14 and 3.15.

Set $\xi = a + b\theta$ for $a, b \in N$. Then $(\xi\theta)\theta = ((a+b\theta)\theta)\theta = (a\theta+(b\theta)\theta)\theta = (a\theta)\theta + ((b\theta)\theta)\theta = a\theta^2 + (b\theta^2)\theta = a\theta^2 + b\theta^3$ because $a, b \in N = N_3$ and $\langle \theta \rangle = F_3^{\times}$. Hence $(\xi\theta)\theta = a\theta^2 + (b\theta)\theta^2 = \xi(\theta^2)$. Thus (ii) holds.

Lemma 3.17. $\theta \in N$.

Proof. Let $\xi, \eta \in F$ and set $\xi = a + b\theta, \eta = c + d\theta$ for $a, b, c, d \in N$. Then, $(\xi\eta)\theta = ((a+b\theta)(c+d\theta))\theta = (ac)\theta + ((b\theta)c)\theta + (a(d\theta))\theta + ((b\theta)(d\theta))\theta$. Similarly $\xi(\eta\theta) = a(c\theta) + (b\theta)(c\theta) + a((d\theta)\theta) + (b\theta)((d\theta)\theta)$. Since $a \in N = N_3$ and $c \in N = N_2$, we have $(ac)\theta = a(c\theta), ((b\theta)c)\theta = (b\theta)(c\theta)$ and $(a(d\theta))\theta = a((d\theta)\theta)$. Since $d \in N = N_2, ((b\theta)(d\theta))\theta = (((b\theta)d)\theta)\theta$ and by Lemma 3.16, $((b\theta)d)\theta)\theta = (((b\theta)d)\theta^2$, so that $((b\theta)(d\theta))\theta = (((b\theta)d)\theta^2 = (b\theta)(d\theta^2) = (b\theta)((d\theta)\theta)$ as $d \in N = N_2 = N_3$. Hence $(\xi\eta)\theta = \xi(\eta\theta)$ and so $\theta \in N_3 = N$.

Proof of Lemma 2.

By Lemmas 3.16 (i) and 3.17, we obtain a contradiction and so the lemma holds.

4. The proof of Theorem 1

Throughout this section π is a semi-field plane satisfying Hypothesis 2.3 and the following.

Hypothesis 4.1. $r \equiv 0 \pmod{4}$ and $u(\pi) \leq 4$.

Lemma 4.2. (i) G is not solvable. (ii) $u(\pi)=2$, 3 or 4. (iii) There exists $i \in \{1, 2, 3\}$ such that G is transitive on \overline{l}_i .

Proof. By Theorem of [8], Theorem 6.3 of [9] and the lemma proved in 3, we have (i).

It follows from Kallaher's theorem [8] that $u(\pi) \neq 1$ and so (ii) holds.

If $u(\pi)=2$ or 3, we have (iii) by a similar argument as in the proof of Lemma

3.7. If u=4, we can apply Lemma 6.1 of [9] and (iii) follows.

Lemma 4.3. Let S be a Sylow 2-subgroup of G and set $\pi_0 = F(S)$, $H = G(\pi_0)$, $\bar{G} = G/O(G)$. Then the following hold.

(i) $S \neq 1$ and S is semi-regular on $\pi - \pi_0$.

(ii) π_0 is a Baer subplane of π .

(iii) $\overline{G}' \simeq PSL(2, q)$ for some even q. Moreover $H=O(G)N_G(S)$ and |G:H|=q+1.

Proof. By the Feit-Thompson theorem [2] and Lemma 4.1 (i), the order of G is even and so $S \neq 1$. Let z be an involution in the center of S. Then F(z) is a Bear subplane of order $2^{r/2}$ and $S^{F(z)}$ is a collineation group. By Hypothesis 4.1, $2^{r/4}$ is not an integer. Therefore $S^{F(z)}=1$. Hence (i) and (ii) hold.

By Lemma 4.2 (ii), $G \neq H$ and clearly $H \geq S$. Hence H is a strongly embedded subgroup of G. By a Bender's theorem [1] and by Corollary 3.2 of [4], (iii) holds.

Lemma 4.4. Set $\Delta = \pi_0 \cap \overline{l}_i$ and $\Gamma = \{\Delta^g | g \in G\}$. Then the following hold. (i) $\overline{l}_i = \bigcup_{\Delta^x \in \Gamma} \Delta^x$ and $\Delta^x \cap \Delta^y = \phi$ for distinct Δ^x and Δ^y in Γ .

(ii) Set N=O(G). Then $G(\Delta)=H\geq N=G_{\Gamma}$ and G is doubly transitive on Γ .

Proof. By Lemma 4.3 (iii), $H=N \cdot N_G(S)$. Since $G(\pi_0) \leq G(\Delta)$ and H is a maximal subgroup of G, we have $H=G(\Delta)$. Hence G is doubly transitive on Γ (See [1] §3). Since N is a normal subgroup of G and $N \leq G(\Delta)$, N is contained in G_{Γ} and so $N=G_{\Gamma}$ by Lemma 4.3 (iv). Thus (ii) holds.

Clearly $\Delta^{g} \subset \overline{l}_{i}$ for all $g \in G$, hence $\overline{l}_{i} = \bigcup \Delta^{g}$ by Lemma 4.2 (iii). Suppose $\Delta^{x} \pm \Delta^{y}$ and $\Delta^{x} \cap \Delta^{y} \pm \phi$ and set $g = xy^{-1}$. Then $\Delta^{g} \pm \Delta$ and $\Delta^{g} \cap \Delta \pm \phi$. By Lemma 4.3 (i), S and S^g fix $\Delta^{g} \cap \Delta$ pointwise. By (ii), $G = \langle N, S, S^{g}, G(\Delta) \cap G(\Delta^{g}) \rangle$. Hence G fixes $\Delta^{g} \cap \Delta$ as a set, contrary to Lemma 4.2 (iii). Thus (i) holds.

Lemma 4.5. $q^2 = 2^r$ and $|\Delta| = q-1$, $|\Gamma| = q+1$.

Proof. By Lemmas 4.3 (iii) and 4.4 (ii), $|\Gamma| = |G|$: H| = q+1 and by Lemma 4.4 (i) $|\Gamma| = |\bar{l}_i|/|\Delta| = (2^r - 1)/|\Delta|$. On the other hand $|\Delta| = 2^{r/2} - 1$ since π_0 is a Baer subplane of π . Hence $q^2 = 2^r$ and $|\Delta| = q - 1$.

Lemma 4.6. $\pi_0(=F(S))$ is a Desarguesian projective plane of order q and the number of $N_G(S)$ -orbits on $\Phi(\pi) \cap \pi_0$ is one or three.

Proof. Let Λ be a *G*-orbit on $\Phi(\pi)$ and suppose $\Lambda \cap \pi_0 \neq \phi$. Let $P \in \Lambda \cap \pi_0$. Then $G_P \geq S$. Hence $|\Lambda| = |G: G_P| \equiv 1 \pmod{2}$ and moreover $N_G(S)$ is transitive on $\Lambda \cap \pi_0$ by Theorem 3.5 of [11]. Since $|\Phi| \equiv 1 \pmod{2}$

and $u=u(\pi)\leq 4$, the number of G-orbits Λ on Φ such that $\Lambda \cap \pi_0 \neq \phi$ is one or three. Hence the number of $N_G(S)$ -orbits on $\pi_0 \cap \Phi$ is one or three.

Since the order of π_0 is $2^{r/2}$ and $2^{r/4}$ is not an integer, the autotopism group of π_0 is of odd order. By Theorem 6.3 of [9] and Theorem of [8], π_0 is a Desarguesian plane of order q.

By Lemma 4.3, $|G: G(\pi_0)| = q+1$. We set $\{\pi_0^g | g \in G\} = \{\pi_0, \pi_1, \dots, \pi_q\}$. Then the following lemma holds.

Lemma 4.7. Set N=O(G). Then

(i) N_{π_s} acts faithfully on π_t and $|N_{\pi_s}| | (q-1)^2(r/2)$ for all s, t (s + t) and (ii) N_{π_t} is a normal subgroup of N and $[N_{\pi_s}, N_{\pi_t}] = 1$ for all s, t (s + t).

Proof. By Lemma 4.4 (ii), N acts on π_t and so N_{π_t} is a normal subgroup

of N. By Lemma 4.3 (ii), π_s and π_t are Baer subplanes of π , so that $N_{\pi_s} \cap N_{\pi_t} = 1$. =1. Hence N_{π_s} acts faithfully on π_t and $[N_{\pi_s}, N_{\pi_t}] \leq N_{\pi_s} \cap N_{\pi_t} = 1$. Moreover $|N_{\pi_s}| \mid (q-1)^2 (r/2)$ since π_t is a Desarguesian plane of order q.

Lemma 4.8. Assume $N_{\pi_0} \neq 1$ and let P be a minimal normal subgroup of N_{π_0} and let p be a prime dividing the order of P. Then a Sylow p-subgroup of N_{π_0} is cyclic and P is a normal subgroup of N. Moreover P is isomorphic to Z_p .

Proof. Let Q be a Sylow *p*-subgroup of N_{π_0} . Since $F(Q) = \pi_0$, Q is semi-regular on $\pi_t - \pi_0$ for $t \neq 0$. By Lemma 2.2 (i) and Theorem 5.4.10 of [3], Q is cyclic. Hence, by Lemma 4.7 (ii), we have the lemma.

Lemma 4.9. Let P be as in Lemma 4.8. Then the following hold.

(i) Set $L = \langle P^g | g \in G \rangle$. Then L is a normal subgroup of G and is an elementary abelian p-group.

(ii) $p \not\mid r$ and $|L| \leq p^3$.

Proof. (i) follows immediately from Lemma 4.8. Clearly $L \le N$. Set $X=N_{\pi_0}$. Since $X \cap L=P$ and $L/P \simeq LX/X \le N/X \simeq N^{\pi_0}$, |L/P| is at most p^3 . Moreover $|L/P| \le p^2$ if $p \not\prec r$. Therefore it suffices to show $p \not\prec r$. Assume $p \mid r$. Since H normalizes X, P is a normal subgroup of H and so L contains at least q+1 subgroups of order p. Hence $q+1 \le (p^4-1)/(p-1)=p^3+p^2+p$ +1. On the other hand $p \mid r/2$ and $q=2^{r/2}$, so that $(r/2)^3+(r/2)^2+r/2+1\ge 2^{r/2}$ +1. From this r=6 or 10 and p=r/2. But $p \not\prec q-1$ for r=6 or 10. Therefore, $|L/P| \le p$ and so $q+1 \le (p^2-1)/(p-1)=p+1 \le 6$, a contradiction. Thus $p \not\prec r/2$.

Lemma 4.10. $N_{\pi_0} = 1$.

Proof. Assume $N_{\pi_0} \neq 1$ and let P, L be as in Lemma 4.8, 4.9, respectively.

If $|C_{G}(L)|$ is even, all Sylow 2-subgroups of G are contained in $C_{G}(L)$ by Lemma 4.3 (iii). Hence $\langle S^{g} | g \in G \rangle$ acts on F(P) ($=\pi_{0}$), which is contrary to $G(\pi_{0})=H$. Therefore $|C_{G}(L)|$ is odd. In particular S is isomorphic to a subgroup of $G/C_{G}(L)$.

By Lemmas 4.3 and 4.9, $(G/C_c(L))' \leq SL(3, p)$ and $|G/C_c(L): (G/C_c(L))'|$ is odd. Hence S is isomorphic to a subgroup of SL(3, p). Since a Sylow 2-subgroup of SL(3, p) is semi-dihedral or wreathed, S is an elementary abelian group of order 4 and so $q=2^2$. Hence $r=4\equiv 0 \pmod{4}$, a contradiction.

Lemma 4.11. Let $G^{(\infty)}$ denote the last term of the derived series of G. Set $M=G^{(\infty)}$. Then $M\simeq PSL(2, q)$.

Proof. Let X be a subgroup of G generated by all Sylow 2-subgroups of G. By Lemma 4.3 (iii), $X \le M$ and |M/X| is odd. It follows from the Feit-Thompson theorem that $M=M^{(\infty)}\le X$ and hence X=M. By Lemmas 4.4 (ii) and 4.10, $[S, N]\le N\cap G_{\pi_0}=N_{\pi_0}=1$, so that N centralizes X (=M)and $M\cap N=Z(M)$, $M/Z(M)\simeq PSL$ (2, q). By a property of PSL (2, q), $M\simeq$ PSL (2, q).

Lemma 4.12. (i) Let $t \in \{1, 2, 3\}$, $P \in \overline{l}_i$ and let X be a subgroup of G_P . Then $|F(X) \cap l_i| = 2^a + 1$ for an integer $a \ge 1$.

(ii) M is transitive on \overline{l}_i and $|M_P| = q$ for $P \in \overline{l}_i$. Here i is the integer defined in Lemma 4.2 (iii).

Proof. Let A be the full collineation group of π and set $T_1 = A_{(U_3, l_2)}$, $T_2 = A_{(U_3, l_1)}$, $T_3 = A_{(U_2, l_1)}$. Since U_3 is a translation point and l_1 is a translation line, $T_1 \simeq T_2 \simeq T_3 \simeq E_{q^2}$ and XT_t is a transitive linear group on l_t . Since $(XT_t)_P = X$, we have (i) by Lemma 2.1.

Let $\{\Delta_1, \dots, \Delta_m\}$ be the set of *M*-orbits on \overline{l}_i . Since *G* is transitive on \overline{l}_i and $G \triangleright M$, $|\Delta_1| = \dots = |\Delta_m| \equiv 1 \pmod{2}$. Let $P \in \Delta_1$ and set $M_P = CS$ with $C \leq Z_{q-1}$ and $|N_M(S): M_P| = k$. As $M \simeq PSL(2, q)$, $k \mid q-1$ and $F(M_P) \cap \Delta_v \neq \phi$ for each $v \in \{1, \dots, m\}$.

Assume $C \neq 1$. Then $|N_M(C)| = 2(q-1)$ as $M \simeq PSL(2, q)$. By Lemma 2.1, $|F(C) \cap \overline{l}_i| = m \times \frac{2(q-1) \times |S|}{|M_P|} = 2mk$ and applying (i), we have $2mk = 2^a - 1$ for an integer $a \ge 1$, a contradiction. Thus C = 1 and $|M_P| = q$. Therefore $|P^M| = |M: M_P| = q^2 - 1$ and (ii) follows.

Lemma 4.13. Let $j \in \{1, 2, 3\} - \{i\}$ and $P \in \overline{l}_j$. Then $q \mid |M_P|$.

Proof. By Lemma 4.3 (i), it suffices to consider the case that $|M_P| \equiv 1 \pmod{2}$. As $M \simeq PSL(2, q), M \leq Z_{q\pm 1}$. Since $|\bar{l}_j| = q^2 - 1 \geq |P^M| = |M: M_P|$ and $P^M \cap F(S) = \phi$, we have $M_P \simeq Z_{q+1}$ and $|l_j - P^M| = |F(S) \cap l_j| = q+1$. Hence $F(S) \cap l_j = F(M) \cap l_j$. Therefore $|F(M_P)| = q+1 + \frac{2(q+1) \times 1}{|M_p|} = q+3$ by Lem-

mma 2.1. Applying Lemma 4.12 (i), $q+3=2^{a}+1$ for an integer $a \ge 1$. This is a contradiction.

Lemma 4.14. M is transitive on \bar{l}_j and M_P is a Sylow 2-subgroup of M for each $j \in \{1, 2, 3\}$ and $P \in \bar{l}_j$.

Proof. By Lemma 4.12 (ii), we may assume $j \in \{1, 2, 3\} - \{i\}$. First we argue that $F(M) \cap \overline{l}_j = \phi$. Set $\Delta = F(M) \cap \overline{l}_j$ and assume $\Delta \neq \phi$. Let π_0 be as defined in Lemma 4.6 and set $N_M(S) = DS$ with $D \simeq Z_{q-1}$. By Lemma 4.12 (ii), $D^{\pi_0} \simeq D$ and $\pi_0 \cap F(D) \supset \Delta$. Since π_0 is a Desarguesian plane of order q, $F(D) \supset \pi_0 \cap l_j$ by Lemma 2.2 (ii). Therefore, by Lemmas 2.1 and 4.13, $|F(D) \cap \overline{l}_j| = |\Delta| + 2(q-1-|\Delta|) = 2(q-1) - |\Delta|$. Applying Lemma 4.12 (i), $|\Delta| = 2^a - 1$ and $2(q-1) - |\Delta| = 2^b - 1$ for integers $a, b \ge 1$, hence $2q = 2^a$ $+2^b$. However, as $|\Delta| < |\pi_0 \cap \overline{l}_j| = q-1 < |F(D) \cap \overline{l}_j| = 2^b - 1$, we have $2^a < q$ $< 2^b$. This is a contradiction. Thus $F(M) \cap \overline{l}_j = \phi$.

Let $\{\Delta_1, \dots, \Delta_m\}$ be the set of *M*-orbits on \bar{l}_j . By Lemma 4.3, $|\Delta_t| | q^2 - 1$ for each *t*. Assume $|M_P| \neq q$ for some $P \in \bar{l}_j$. We may assume $P \in \Delta_1$ and $M_P \triangleright S$. Set $M_P = CS$ with $1 \neq C \leq Z_{q-1}$. By a similar argument as in the last paragraph $F(S) \cap l_j \subset F(C) \cap l_j$ and so $F(C) \cap \Delta_t \neq \phi$ for each *t*. Hence $|F(C) \cap \Delta_t| = 2 \times |F(S) \cap \Delta_t|$ by Lemma 2.1. Hence $|F(C) \cap \bar{l}_j| = 2 \times |F(S) \cap \bar{l}_j| = 2q$, contrary to Lemma 4.12 (i). Thus $|M_P| = q$ and *M* is transitive on \bar{l}_j .

Let X be the full collineation group of π and set $A=X_{(l_1,l_1)}$, $B=X_{(U_3,U_3)}$ and T=AB. Since U_3 is a translation point and l_1 is a translation line, A and B are elementary abelian normal 2-subgroups of X of order q^4 . Hence T is a normal 2-subgroup of X.

Lemma 4.15. (i) T is a nonabelian normal 2-subgroup of X. (ii) $C_T(x)=1$ for any element $x(\pm 1)$ of M of odd order.

Proof. If T is abelian, $T_P=1$ for $P \notin l_1$ because A acts transitively on the set of points not incident with the line l_1 . Hence $|T| = |T: T_P| = q^4 + q^2 + 1 - (q^2+1) = q^4$ and so T=A=B, a contradiction. Thus (i) holds.

Assume $C_T(x) \neq 1$ and let t be an involution in $C_T(x)$. Then, there exist element $t_1 \in A$ and $t_2 \in B$ such that $t=t_1t_2$. By Lemma 4.14, $F(X)=\{U_1, U_2, U_3, l_1, l_2, l_3\}$ and so t acts on $\{U_1, U_2, U_3\}$. Since $F(X)=\{U_3, l_1\}$, it follows that $(U_2)^t \in l_1$ and $(U_3)^t = U_3$. Hence we have $(U_1)^t = U_1$ and $(U_2)^t = U_2$ and so $F(t_2)=F(t_1t) \supset \{U_2, U_3\}$. Therefore $t_2 \in X_{(U_3, l_1)} \leq X_{(l_1, l_2)}$, which implies $t \in X_{(l_1, l_1)}$. However, as $(U_1)^t = U_1$, this is a contradiction. Thus $C_T(x)=1$.

Proof of Theorem 1.

Since $3 \mid |M| = |PSL(2, q)|$, there exists an element $x \in M$ of order 3.

By Lemma 4.15 (ii), $C_T(x)=1$. Applying Theorem 8.2 of [5] to the group MT, T is an abelian 2-group, which is contrary to Lemma 4.15 (i). Thus we have the theorem.

References

- [1] H. Bender: Transitive Gruppen gerader Ordnung, in denen jede Involution genau einen Punkt festlast, J. Algebra 17 (1971), 527–554,
- W. Feit and J. Thompson: Solvability of groups of odd order, Pacific J. Math. 13 (1963), 775-1029.
- [3] D. Gorenstein: Finite groups, Harper and Row, New York, 1968.
- [4] C. Hering: On finite line transitive affine planes, Geom. Dedicata 1 (1973), 387–393.
- [5] G. Higman: Odd characterization of finite simple groups, Lecture Notes, University of Michigan, 1968.
- [6] D.R. Hughes and F.C. Piper: Projective planes, Berlin-Heidelberg-New York, Springer-Verlag, 1973.
- [7] B. Huppert: Zweifach transitive, auflösbare Permutationsgruppen, Math. Z. 68 (1957), 126–150.
- [8] M.J. Kallaher: A conjecture on semi-field planes, Arch. Math. 26 (1975), 436-440.
- [9] M.J. Kallaher and R.A. Liebler: A conjecture on semi-field planes II, Geom. Dedicata 8 (1979), 13-30.
- [10] R. Steinberg: Automorphisms of finite linear groups, Canad. J. Math. 12 (1960), 606-615.
- [11] H. Wielandt: Finite permutation groups, Academic Press, New York, 1964.

Department of Mathematics College of General Education Osaka University Toyonaka, Osaka 560, Japan