ON SEMI-FIELD PLANES OF EVEN ORDER

Yutaka HIRAMINE

(Received June 30, 1981)

1. Introduction

Let π be a non-Desarguesian semi-field plane with an autotopism group G and let $u(\pi)$ denote the number of the orbits of G on the points not incident with any side of the autotopism triangles.

In their paper [9], M.J. Kallaher and R.A. Liebler have conjectured that $u(\pi) \geq 5$ and they have proved that the conjecture is true if G is solvable and the order of π is not 2^{6}.

In this paper we treat semi-field planes of even order whose autotopism groups are not necessarily solvable and prove the following.

Theorem 1. Let π be a non-Desarguesian semi-field plane of order 2^{r}. If r is not divisible by 4 , then $u(\pi) \geq 5$.

The proof requires the use of the Kallaher-Liebler's theorem mentioned above and the following lemma which we prove in section 3.

Lemma 2. Let π be a non-Desarguesian semi-field plane of order 2^{6} with a solvable autotopism group. Then $u(\pi) \geq 5$.

2. Notations and preliminaries

Our notation is largely standard and taken from [3] and [6]. Let G be a permutation group on Ω. For $X \leq G$ and $\Delta \subset \Omega$, we define $F(X)=\left\{\alpha \in \Omega \mid \alpha^{x}\right.$ $=\alpha$ for all $x \in X\}, X(\Delta)=\left\{x \in X \mid \Delta^{x}=\Delta\right\}, X_{\Delta}=\left\{x \in X \mid \alpha^{x}=\alpha\right.$ for all $\left.\alpha \in \Delta\right\}$ and $X^{\Delta}=X(\Delta) / X_{\Delta}$, the restriction of X on Δ. When X is a collineation group of a projective plane, we denote by $F(X)$ the set of fixed points and fixed lines of X.

Lemma 2.1. Let G be a transitive permutation group on a finite set Ω, H a stabilizer of a point of Ω and M a nonempty subset of G. Then $|F(M)|$ $=\left|N_{G}(M)\right| \times\left|c c l_{G}(M) \cap H\right| /|H| . \quad$ Here $c c l_{G}(M) \cap H=\left\{g^{-1} M g \mid g^{-1} M g \subset H\right.$, $g \in G\}$.

Proof. Set $W=\left\{(L, \alpha) \mid L \in c c l_{G}(M), \alpha \in F(L)\right\}$ and $W_{\alpha}=\left\{L \mid L \in c c l_{G}(M)\right.$,
$\alpha \in F(L)\}$. By the transitivity of $G,\left|W_{\alpha}\right|=\left|W_{\beta}\right|$ holds for every $\alpha, \beta \in \Omega$. Counting the number of elements of W in two ways, we obtain $\left|G: N_{G}(M)\right|$ $\times|F(M)|=|G: H| \times\left|c c l_{G}(M) \cap H\right|$. Thus we have the lemma.

Lemma 2.2. Let $P G(2, q)$ denote the Desarguesian projective plane of order q where $q=2^{n}$ and $n \equiv 1(\bmod 2) . \quad$ Set $Y=P S L(3, q)$ and $X=\langle f\rangle Y$, where f is a field automorphism of Y of order n. Set $G=X_{P, Q, R}$ and $N=G \cap Y$, where $P=[1,0,0], Q=[0,1,0]$ and $R=[0,0,1]$.
(i) Let A be a noncyclic abelian p-subgroup of G of order p^{2} for a prime p. Then A is not semi-regular on the set of points contained in $P G(2, q)-F(A)$.
(ii) Let C be a cyclic subgroup of G of order $q-1$. Then $C \subset N$.

Proof. Since $A \cap N \neq 1$ and $N \simeq Z_{q-1} \times Z_{q-1}, p$ is an odd prime. Let T be the translation group with respect to the line g joining $[1,0,0]$ and $[0,1,0]$. Deny (i) and let Ω denote the set of points in $F(A)$. Then, by Theorem 5.3.6 of [3], $T=\left\langle C_{T}(x) \mid 1 \neq x \in A\right\rangle$. By the semi-regularity of $A, C_{T}(x)$ acts on Ω for each $x \in A-\{1\}$. Hence T acts on Ω.

Let Δ denote the set of points not incident with the line g. Clearly [0 , $0,1] \in \Delta \cap \Omega$. Since T is transitive on Δ, we have (i).

Set $D=C \cap N$ and let $\left(\begin{array}{lll}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right)$ be a generator of D. Then $C \triangleright D$ and $C / D \simeq C N / N \leq G / N \simeq Z_{n}$ and so $|D| \geq(q-1) / n . \quad$ Set $\langle h\rangle=C_{\langle f\rangle}(D)$ and $s=$ $|\langle h\rangle|$. Then $n=r \times s$ for an integer r. It follows that $b a^{-1}, c a^{-1} \in G F\left(2^{r}\right)^{\times}$. Hence $|D| \leq 2^{r}-1$. From this, $2^{r}-1 \geq|D| \geq(q-1) / n$. We can easily verify that $s=1$. Therefore $C_{\langle f\rangle}(D)=1$, whence $C \leq C_{G}(D)=N C_{\langle f\rangle}(D)=N$. Thus $C \leq N$.

In the rest of the paper we assume the following.
Hypothesis 2.3. Let π be a non-Desarguesian semi-field plane of order 2^{r} coordinatized by a semi-field D with respect to the points $U_{1}=(0,0), U_{2}=$ $(0), U_{3}=(\infty)$ and let G be the autotopism group of π with respect to U_{1}, U_{2}, U_{3}. Let l_{i} be the line joining U_{j} and U_{k} for i, j, k with $\{i, j, k\}=\{1,2,3\}$ and let $\Phi(\pi)$ be the set of points of π not incident with l_{1}, l_{2} or l_{3}. Let $u(\pi)$ denote the number of G-orbits on $\Phi(\pi)$. Set $K_{i}=G_{\left(U_{i}, l_{i}\right)}$ for $1 \leq i \leq 3$ and let N_{1}, N_{2} or N_{3} be the right, middle or left nucleus, respectively.
D may be considered as a right vector space over N_{1} or N_{2} and as a left vector space over N_{2} or N_{3}. The multiplicative group $N_{i}{ }^{\times}$is isomorphic to K_{i} for each i with $1 \leq i \leq 3$ (Chapter 8 of [6]). Set $\bar{l}_{i}=l_{i}-\left\{U_{j}, U_{k}\right\}$ for i, j, with $\{i, j, k\}=\{1,2,3\}$.

3. The proof of Lemma 2.

Throughout this section π is a projective plane satisfying the hypothesis 2.3 and the following.

Hypothesis 3.1. (i) The order of π is 2^{6}.
(ii) Set $u=u(\pi)$. Then $u \leq 4$.
(iii) The autotopism group G is solvable.

Lemma 3.2. $\left|K_{t}\right|=1,3$ or 7 for every $t \in\{1,2,3\}$ and $u=3$ or 4 .
Proof. Since π is non-Desarguesian, D is not a field. Hence, N_{t} is isomorphic to $G F(2), G F(4)$ or $G F(8)$ for $t \in\{1,2,3\}$. By Theorem 8.2 of [6], $\left|K_{t}\right|=1,3$ or 7 .

By Corollary 4.1.1 of [9] and Hypothesis 3.1 (ii), $u=3$ or 4.
Lemma 3.3. If G is transitive on \bar{l}_{t} for some $t \in\{1,2,3\}$, then the following hold.
(i) $G / K_{t} \leq \Gamma L\left(1,2^{6}\right)$ and G / K_{t} contains an element of order 9.
(ii) Let m be an arbitrary line through U_{t} such that $m \neq l_{j}, l_{k}$ for $\{t, j, k\}=$ $\{1,2,3\}$. Set $A=m \cap l_{t}$. Then $G_{m}=G_{A},\left|G: G_{A}\right|=3^{2} \cdot 7$ and the number of G_{A}-orbits on $m-\left\{U_{t}, A\right\}$ is equal to u.
(iii) Let $\Delta_{1}, \Delta_{2}, \cdots, \Delta_{u}$ be the orbits stated in (ii). Set $x_{s}=\left|\Delta_{s}\right|, 1 \leq s \leq u$, and assume that $x_{1} \leq x_{2} \leq \cdots \leq x_{u}$. Then $\left|G_{A}\right|$ is divisible by x_{s} for every s and $6 \times\left|K_{t}\right|$ is divisible by $\left|G_{A}\right|$. Furthermore $\sum_{s=1}^{u} x_{s}=63$.

Proof. By Lemma 2.1 of [9], G is a transitive linear group on D. Hence it follows from a Huppert's theorem ([7]) that $G / K_{t} \leq \Gamma L\left(1,2^{6}\right)$. If G / K_{t} contains no element of order 9, then its Sylow 3-subgroup is an elementary abelian 3 -subgroup of order at most 9 . By the structure of $\Gamma L\left(1,2^{6}\right), G / K_{t}$ is not a transitive linear group, a contradiction. Thus G / K_{t} contains an element of order 9 and (i) holds.

Let m, A be as in (ii). Since G fixes U_{t} and l_{t}, we have $G_{m}=G_{A}$. Clearly $\left|G: G_{A}\right|=\left|A^{G}\right|=\left|\bar{l}_{t}\right|=2^{6}-1=3^{2} \cdot 7$. As any point of $\Phi(\pi)$ lies on a line of $\left[U_{t}\right]-\left\{l_{j}, l_{k}\right\}, \Phi(\pi) \cap m\left(=m-\left\{U_{t}, A\right\}\right)$ is a union of $u G_{A^{\prime}}$-orbits, hence (ii) holds.

Since $G / K_{t} \leq \Gamma L\left(1,2^{6}\right), G_{A} / K_{t} \leq Z_{6}$. Hence $6 \times\left|K_{t}\right|$ is divisible by $\left|G_{A}\right|$. Clearly $x_{s}=\left|\Delta_{s}\right|$ divides $\left|G_{A}\right|$ and $\sum_{s=1}^{u} x_{s}=\left|\Delta_{1} \cup \Delta_{2} \cup \cdots \cup \Delta_{u}\right|=\left|\bar{l}_{t}\right|=2^{6}-1$ $=3^{2} \cdot 7$.Thus (iii) holds.

Lemma 3.4. Suppose $u=4$. Then there exists $i \in\{1,2,3\}$ having the following properties:
(i) G is transitive on \bar{l}_{i},
(ii) K_{i} is isomorphic to Z_{7} and G has a normal Sylow 7-subgroup and
(iii) $\left|G: G_{A}\right|=63, G_{A} / K_{i}$ is isomorphic to Z_{6} and $C_{G_{A}}\left(K_{i}\right)=K_{i}$ for each $A \in \bar{l}_{i}$.

Proof. By Lemma 6.1 of [9], there exists $i \in\{1,2,3\}$ such that G is transitive on \bar{l}_{i}. Assume that $K_{i} \neq Z_{7}$. Then $K_{i} \leq Z_{3}$ by Lemma 3.2. Let m, A, x_{s} be as in Lemma 3.3. We have $x_{s}|6| K_{i} \mid=6$ or 18 and $x_{1}+x_{2}+x_{3}+x_{4}=63$, hence $\left|K_{i}\right|=3,\left|G_{A}\right|=18$ and $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(9,18,18,18)$.

Let z be an involution in G_{A}. Then z is a Baer involution and so $\mid F(z)$ $\cap\left(m-\left\{U_{i}, A\right\}\right) \mid=7$ because $m \in F(z)$. If $F(z) \cap \Delta_{s} \neq \phi$, then $\left|\Delta_{s}\right| \leqq \frac{1}{2}\left|G_{A}\right|$. In particular $F(z) \cap \Delta_{s}=\phi$ for $s \geq 2$ and so $\left|F(z) \cap \Delta_{1}\right|=7$. Since $G_{A} / K_{i} \simeq Z_{6}$ and $z \notin K_{i}, C_{G_{A}}(z) \neq\langle z\rangle$. Hence an element of $C_{G_{A}}(z)$ of order 3 acts on $F(z)$ $\cap \Delta_{1}$ and fixes at least one point on it. It follows that $\left|\Delta_{1}\right| \leq \frac{1}{6}\left|G_{A}\right|=3$, a contradiction. Therefore we have $K_{i} \simeq Z_{7}$ and so G has a normal Sylow 7subgroup by Lemma 3.3. Thus (ii) holds.

Let $m\left(=U_{i} A\right), \Delta_{s}, x_{i}$ for $t=i$ be as in Lemma 3.3 (ii). Since $G_{A} \geq K_{i}$ $\simeq Z_{7}$ and K_{i} acts semi-regularly on $m-\left\{U_{i}, A\right\}, 7| | \Delta_{s} \mid=x_{s}$ for all $s \in\{1,2,3$, 4\}. Moreover, by Lemma 3.3, $x_{1}+x_{2}+x_{3}+x_{4}=63$. Hence $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=$ $(7,7,7,42)(7,14,21,21)$ or $(14,14,14,21)$ and so $\left|G_{A}\right|=42$. Thus G_{A} / K_{i} $\simeq Z_{6}$ by the similar argument as in the proof of Lemma 3.3 (iii). Let y be an element of $C_{G_{A}}\left(K_{i}\right)$ and assume that the order of y is 2 or 3 . Since $G_{A} / K_{i} \simeq$ Z_{6} and $K_{i} \simeq Z_{7}, y$ is contained in the center of G_{A}. Hence G_{A} acts on $F(y)$ and therefore Δ_{s} is contained in $F(y)$ for each s with $|\langle y\rangle| X x_{s}$. As above, $\left(x_{1}\right.$, $\left.x_{2}, x_{3}, x_{4}\right)=(7,7,7,42),(7,14,21,21)$ or $(14,14,14,21)$ and hence $\mid F(y) \cap$ $m \mid \geq 21+2=23$. Since $F(y) \cap \Phi(\pi) \neq \phi, y$ is a planar collineation, Therefore $y=1$, a contradiction. Thus $C_{G_{A}}\left(K_{i}\right)=K_{i}$.

Lemma 3.5. Suppose $u=4$ and let notations be as in Lemma 3.4. Then, for some $s \in\{1,2,3\}-\{i\} O(G)$ has no orbit of length 7 on l_{s}.

Proof. Suppose false. Let P be a Sylow 7 -subgroup of G. By Lemma 3.4 (ii), $|P|=7^{2}$ and P is a normal subgroup of G. Let $s \in\{1,2,3\}-\{i\}$ and let Ω_{1} be a P-orbit of length 7 on l_{s}. Then there exists another P-orbit of length 7 , say Ω_{2}, on l_{s} because $7^{2} X\left|\bar{l}_{s}-\Omega_{1}\right|$.

Let Q be a Sylow 3-subgroup of $O(G)$. By Lemmas 3.3 and 3.4, $K_{i} \simeq$ Z_{7} and a Sylow 3-subgroup of G / K_{i} is isomorphic to that of a Sylow 3-subgroup of $\Gamma L\left(1,2^{6}\right)$. Hence $Q=\left\langle a, b \mid a^{9}=b^{3}=1, b^{-1} a b=a^{4}\right\rangle$ for suitable a, b in Q. We note that $Q^{\prime}=[Q, Q]=\left\langle a^{3}\right\rangle$.

Since $\left|\Omega_{1}\right|=\left|\Omega_{2}\right|=7<9, a^{3}$ acts trivially on $\Omega_{1} \cup \Omega_{2}$, hence $\mid F\left(a^{3}\right) \cap l_{s} \geq$ $2+\left|\Omega_{1}\right|+\left|\Omega_{2}\right|=16$. As $s(\in\{1,2,3\}-\{i\})$ is arbitrary, a^{3} is planar and moreover we have $F\left(a^{3}\right)=\pi$, by Theorem 3.7 of [6], which implies that $a^{3}=1$. This
is a contradiction. Thus we have the lemma.
Lemma 3.6. $u=3$.
Proof. Assume that $u \neq 3$. Then, by Lemma 3.2, $u=4$ and we can apply Lemmas 3.4 and 3.5. Let notations be as in them.

Let P be a Sylow 7 -subgroup of G and Γ the set of P-orbits on \bar{l}_{s}. Set $H=O(G)$. Since P is a normal subgroup of H by Lemma 3.4 (ii), H induces a permutation group on Γ. Since $P \geq K_{i}$ and K_{i} is semi-regular on \bar{l}_{s}, every P-orbit in Γ has length 7 or 7^{2}. If an orbit in Γ has length $7^{2}, \Gamma$ contains exactly two P-orbits of length 7 , which are also H-orbits of length 7 , contrary to Lemma 3.5. Therefore each P-orbit in Γ has length 7 and so $|\Gamma|=9$.

If H acts transitively on Γ, G is transitive on \bar{l}_{s} and therefore $G / K_{s} \leq$ $\Gamma L\left(1,2^{6}\right)$ by Lemma 3.3 (i). It follows that $\Gamma L\left(1,2^{6}\right) \geq G_{A} K_{s} / K_{s} \simeq G_{A} / G_{A}$ $\cap K_{s} \simeq G_{A}$. Therefore an involution in G_{A} centralizes a Sylow 7 -subgroup of G_{A} by the structure of $\Gamma L\left(1,2^{6}\right)$, contrary to Lemma 3.4 (iii). Hence H is not transitive on Γ.

Let Q be a Sylow 3-subgroup of H. Then $|Q|=27$ and $[Q, Q]=Q^{\prime} \simeq Z_{3}$ as in the proof of Lemma 3.5. Since $H=P Q, \Gamma^{H}=\Gamma^{Q}$. On the other hand H is not transitive on Γ. Hence Q^{Γ} is abelian and therefore Q^{\prime} acts trivially on Γ. We note that $G / C_{G}(P) \leq Z_{6}$ or $G / C_{G}(P) \leq G L(2,7)$ according as $P \simeq Z_{49}$ or $Z_{7} \times Z_{7}$, respectively. Hence Q^{\prime} is contained in $C_{G}(P)$. Since Q^{\prime} acts trivially on Γ and each orbit $\Delta \in \Gamma$ is of length $7, F\left(Q^{\prime}\right) \cap \Delta \neq \phi$. Therefore $Q^{\prime} \leq$ K_{s} because $\left[P, Q^{\prime}\right]=1$. In particular Q^{\prime} is semi-regular on \bar{l}_{j}, where $\{j\}=$ $\{1,2,3\}-\{i, s\}$. Hence $Q K_{i}$ is transitive on \bar{l}_{j}. By Lemma 3.3 (i), G / K_{j} $\simeq \Gamma L\left(1,2^{6}\right)$ and $K_{j} \simeq Z_{7}$. Let z be an involution in G_{A}. Then $[z, P] \leq K_{i}$ $\cap K_{j}=1$ and so $z \in C_{G_{A}}\left(K_{i}\right)$, contrary to Lemma 3.4 (iii). This we have $u=3$.

Lemma 3.7. Assume that there exists a line l through U_{i} with $l \neq l_{j}, l_{k}$, where $\{i, j, k\}=\{1,2,3\}$, such that G_{l} acts transitively on $l-\left\{U_{i}, l \cap l_{i}\right\}$. Then the following hold.
(i) G_{l} is transitive on \bar{l}_{t} for $t=j, k$.
(ii) G has two or three orbits on \bar{l}_{i}.

Proof. Let $A_{1}, A_{2} \in \bar{l}_{j}$ and set $B_{1}=U_{j} A_{1} \cap l$ and $B_{2}=U_{j} A_{2} \cap l$. By assumption, there exists an element $x \in G_{l}$ such that $B_{1}{ }^{x}=B_{2}$. Since $U_{j} A_{2} \cap l=B_{2}$ $=B_{1}{ }^{x}=U_{j} A_{1}{ }^{x} \cap l$ and $A_{2}, A_{1}{ }^{x} \in \bar{l}_{j}$, it follows that $A_{1}{ }^{x}=A_{2}$. Hence G_{l} is transitive on \bar{l}_{j}. Similarly G_{l} is transitive on \bar{l}_{k}. Thus (i) holds.

Let d be the number of G-orbits on \bar{l}_{i}. Clearly d is at most 3. If $d=1$, G acts transitively on $\Phi(\pi)$, contrary to $u=3$. Thus (ii) holds.

Lemma 3.8. Let l be the line satisfying the assumption in Lemma 3.7. If $7^{2}| | G \mid$ and $7^{3} X|G|$, then $K_{i} \simeq Z_{3}$ and $|G| \mid 2 \cdot 3^{2} \cdot 7^{2}$.

Proof. By Lemmas 3.2, 3.3 (i) and 3.7 (i), K_{j} and K_{k} are isomorphic to Z_{7}; otherwise $7^{2} \times|G|$. Set $A=l \cap l_{i}$. Then $G_{l}=G_{A}$ and so $G_{l} / K_{i}=G_{A} / K_{i}$. Since $G / K_{i} \leq G L(6,2), G_{l} / K_{i}$ is isomorphic to a subgroup of L, where

$$
L=\left\{\left.\left[\begin{array}{cc}
1 & a_{2} \cdots a_{6} \\
0 & \\
\vdots & M \\
0 &
\end{array}\right] \right\rvert\, a_{2}, \cdots, a_{6} \in G F(2), M \in G L(5,2)\right\}
$$

Since $L / O_{2}(L) \simeq G L(5,2)$, a Sylow 3-subgroup of L is an elementary abelian group of order 9 . On the other hand, by Lemmas 3.3 and 3.7 (i), G_{l} contains an element of order 9 . Therefore $K_{i} \simeq Z_{3}$.

For a subgroup X of G, \bar{X} denotes the homomorphic image of X in G / K_{i}. Since $\bar{K}_{j} \neq \bar{K}_{k}$ and $\bar{G} \leq G L(6,2), \bar{K}_{j} \times \bar{K}_{k}$ is a Sylow 7 -subgroup of \bar{G} ans so $\bar{K}_{j} \times \bar{K}_{k}$ has two subgroups $\langle\bar{a}\rangle$ and $\langle\bar{b}\rangle$ of order 7 which fix nonzero vectors on \bar{l}_{i}. Set $H=O(G)$. By Lemmas 3.3 (i) and 3.7(i), $G / K_{t} \leq \Gamma L\left(1,2^{6}\right)$ for $t \in\{j, k\}$, so that $|G: H| \leq 2$. Since $\bar{G} \triangleleft \bar{K}_{t}$ for $t \in\{j, k\}, \bar{H}$ normalizes \bar{K}_{j}, $\bar{K}_{k},\langle\bar{a}\rangle$ and $\langle\bar{b}\rangle$. As K_{t} acts semi-regularly on \bar{l}_{i}, we have $\bar{K}_{t} \neq\langle\bar{a}\rangle,\langle\bar{b}\rangle$ for $t \in\{j, k\}$. Without loss of generality, we can assume that $\langle a \bar{b}\rangle=\bar{K}_{j}$. Let $g \in \bar{H}$. Then $\bar{g}^{-1} \bar{a} \bar{g}=\bar{a}^{p}$ and $\bar{g}^{-1} \bar{b} \bar{g}=\bar{b}^{q}$ for some p, q with $1 \leq p, q \leq 6$, so we have $g^{-1} \bar{a} \bar{b} \bar{g}=\bar{a}^{\triangleright} \bar{b}^{q} \in \bar{K}_{j}=\langle\bar{a} \bar{b}\rangle$. Hence $p=q$. From this, $\bar{H} / C_{\bar{H}}(\langle\bar{a}\rangle \times\langle\bar{b}\rangle)$ $\leq O\left(\operatorname{Aut}\left(Z_{7}\right)\right) \simeq Z_{3}$. Since $C_{G L(6,2)}(\langle\bar{a}\rangle \times\langle\bar{b}\rangle)=\langle\bar{a}\rangle \times\langle\bar{b}\rangle$, we have $|\bar{H}||3|\langle\bar{a}\rangle$ $\times\langle\bar{b}\rangle \mid=3 \cdot 7^{2}$ and therefore $|H| \mid 3^{2} \cdot 7^{2}$. Thus we obtain $|G| \mid 2 \cdot 3^{2} \cdot 7^{2}$.

Lemma 3.9. Let $i \in\{1,2,3\}$ and set $\{i, j, k\}=\{1,2,3\}$. Then the following hold.
(i) For every line $m \in\left[U_{i}\right]-\left\{l_{j}, l_{k}\right\}, G_{m}$ has three orbits on $m-\left\{U_{i}, m \cap l_{i}\right\}$.
(ii) G acts transitively on \bar{l}_{i} and $G / K_{i} \leq \Gamma L\left(1,2^{6}\right)$.

Proof. Deny (i). Then, since $u=u(\pi)=3$, there exists a line $l \in\left[U_{i}\right]$ satisfying the assumption of Lemma 3.7. Let $\left\{\Omega_{1}, \Omega_{2}, \cdots, \Omega_{p}\right\}$ be the set of G-orbits on \bar{l}_{i} and set $b_{s}=\left|\Omega_{s}\right|$ for $1 \leq s \leq p$. By Lemma 3.7 (ii), $p=2$ or 3 .

Assume $p=3$. Set $b=\max \left\{b_{1}, b_{2}, b_{3}\right\}, b=\left|\Omega_{v}\right|$ and let $A \in \Omega_{v}$. Since $u=3, G_{A}$ is transitive on $m-\left\{U_{i}, A\right\}$, where $m=A U_{i}$. Therefore $63\left|\left|G_{A}\right|\right.$. Hence $63 b||G|$ because $| G|=b| G_{A} \mid$. By Lemmas 3.2, 3.3 (i) and 3.7 (i), we have $|G| \mid 2 \cdot 3^{4} \cdot 7^{2}$ and so $b \mid 2 \cdot 3^{2} \cdot 7$. Since $3 b \geq b_{1}+b_{2}+b_{3}=63$, it follows that $21 \leq b<63$, hence $b=21$ or 42 and $3^{3} \cdot 7^{2}| | G \mid$, contrary to Lemma 3.8. Thus $p \neq 3$.

Assume $p=2$. Let $A \in \Omega_{1}, B \cup \Omega_{2}$ and set $g=A U_{i}, h=B U_{i}$. Since $u=3$, without loss of generality we may assume that G_{A} is transitive on $g-\left\{U_{i}, A\right\}$ and that G_{B} has two orbits on $h-\left\{U_{i}, B\right\}$, say Γ_{1}, Γ_{2}. Similarly as in the last paragraph we obtain the following:

$$
b_{1}, b_{2}| | G|,|G|| 2 \cdot 3^{4} \cdot 7^{2}, b_{1}+b_{2}=63 .
$$

Hence $\left\{b_{1}, b_{2}\right\}=\{21,42\},\{14,49\}$ or $\{9,54\}$. We note that $\left|G: G_{g}\right|=\mid G$: $G_{A}\left|=b_{1},\left|G: G_{h}\right|=\left|G: G_{B}\right|=b_{2}\right.$ and 63$|\left|G_{A}\right|$.

If $\left\{b_{1}, b_{1}\right\}=\{21,42\},|G|=\left|G_{A}\right| b_{1}$ and $21 \mid b_{1}$. Hence $3^{3} \cdot 7^{2}| | G \mid$, contrary to Lemma 3.8.

If $\left\{b_{1}, b_{2}\right\}=\{14,49\},\left|G: G_{A}\right|=14$ because $7^{3} X|G|$. Hence $\left|G: G_{h}\right|$ =49. By Lemma 3.8, $|G| \mid 2 \cdot 3^{2} \cdot 7^{2}$. Therefore $\left|G_{h}\right| \mid 18$. Since $h-\left\{U_{i}, B\right\}$ is a union of G_{h}-orbits Γ_{1}, Γ_{2}, we have $\left|\Gamma_{1}\right|+\left|\Gamma_{2}\right|=63$ and $\left|\Gamma_{1}\right|,\left|\Gamma_{2}\right| \mid 18$. This is a contradiction.

If $\left\{b_{1}, b_{2}\right\}=\{9,54\}$, we have $\left|G: G_{A}\right|=9$ as $3^{5} X|G|$. Hence $3^{4}| | G \mid$ and so $7^{2} X|G|$ by Lemma 3.8. Therefore $|G|=2 \cdot 3^{4} \cdot 7$. From this, $\left|G_{h}\right|$ $=\left|G_{B}\right|=21$. Hence $\left|\Gamma_{1}\right|,\left|\Gamma_{2}\right| \mid 21$. However, $\left|\Gamma_{1}\right|+\left|\Gamma_{2}\right|=63$, a contradiction. Thus we have (i), and (ii) follows immediately from (i).

By Lemma 3.9, we can apply Lemma 3.3 for every $t \in\{1,2,3\}$ and obtain the following.

Lemma 3.10. Let notations be as in Lemma 3.3. Then the following hold.
(i) $3^{2} \cdot 7| | G|,|G|| 2 \cdot 3^{4} \cdot 7^{2}$ and $3^{4} \cdot 7^{2} \times|G|$.
(ii) $3^{3}, 7^{2} \times x_{s}$ for all $s \in\{1,2,3\}$.

Proof. By Lemmas 3.2 and 3.3 (i) (ii), we have (i). By Lemma 3.3 (ii) (iii), $\left|G_{A}\right|=|G| / 63$ and $x_{s}| | G_{A} \mid$. Hence $x_{s} \mid 2 \cdot 3^{2} \cdot 7$. Thus we have (ii).

Lemma 3.11. Let notations be as in Lemma 3.3 and assume that $21 \mid x_{2}$. Then the following hold.
(i) $K_{1} \simeq K_{2} \simeq K_{3} \simeq Z_{7}$ and G / K_{t} is isomorphic to a subgroup of $\Gamma L\left(1,2^{6}\right)$ of index at most 2 for each $t \in\{1,2,3\}$.
(ii) Let Q be a Sylow 3-subgroup of G. Then $|Q|=3^{3}$ and $Q=\langle a, b|$ $\left.a^{9}=b^{3}=1, b^{-1} a b=a^{4}\right\rangle$ for suitable a, b in Q. Moreover, for any element v of order 3 in $Q-Z(Q), F(v)$ is a subplane of order 4.

Proof. By Lemma 3.3, x_{3} divides $\left|G_{A}\right|$ and $\left|G: G_{A}\right|=3^{2} .7$, so that $3^{3 .} 7^{2} \mid$ $|G|$. It follows from Lemma 3.10 (i) that $|G|=3^{3} \cdot 7^{2}$ or $2 \cdot 3^{3} \cdot 7^{2}$. Therefore (i) holds.

By (i), the order of a Sylow 3-subgroup Q of G is 3^{3}. Hence Q is of the form stated in (ii) by the structure of $\Gamma L\left(1,2^{6}\right)$. We note that Q has exactly two conjugacy classes of subgroups of order 3. Let $v \in Q-Z(Q)$ such that $\langle v\rangle \simeq Z_{3}$. Then, as an element in $\Gamma L\left(1,2^{6}\right)$, v fixes three nonzero elements, that is, $\left|F(v) \cap \bar{l}_{t}\right|=3$ for all $t \in\{1,2,3\}$. Hence $F(v)$ is a subplane of order 4.

Lemma 3.12. Let notations be as in Lemma 3.3. Then $\left(x_{1}, x_{2}, x_{3}\right)=$ (7, 14, 42), $K_{t} \simeq Z_{7}$ and $G / K_{t} \simeq \Gamma L\left(1,2^{6}\right)$ for each $t \in\{1,2,3\}$.

Proof. By Lemmas 3.3 (iii) and 3.10, we have $x_{1} \leq x_{2} \leq x_{3}, x_{1}+x_{2}+x_{3}=63$
and $3^{3}, 7^{2} X x_{s}, x_{s}| | G| | 2 \cdot 3^{4} \cdot 7^{2}$ for $s \in\{1,2,3\}$. Hence $\left(x_{1}, x_{2}, x_{3}\right)=(21,21$, 21) or (7, 14, 42). On the other hand $K_{1} \simeq K_{2} \simeq K_{3} \simeq Z_{7}$ by Lemma 3.11 (i).

Assume that $\left(x_{1}, x_{2}, x_{3}\right)=(21,21,21)$. Let Δ_{s} be as defined in Lemma 3.3. Let $P_{s} \in \Delta_{s}$ and let Φ_{s} be the G-orbit containing P_{s} for $s \in\{-1,2,3\}$. Clearly $\left|\Phi_{s}\right|=63 x_{s}$. Let v be the element as defined in Lemma 3.11 (ii) and let $P \in F(v) \cap \Phi$. Then $P \in \Phi_{s}$ for some $s \in\{1,2,3\}$. Therefore $\left|G_{P}\right|=$ $|G| /\left|\Phi_{s}\right| \mid 2 \cdot 3^{3} \cdot 7^{2} / 63 \cdot 21=2$, contrary to $v \in G_{P}$. Thus $\left(x_{1}, x_{2}, x_{3}\right)=(7,14,42)$ and so $G / K_{t} \simeq \Gamma L\left(1,2^{6}\right)$ for all $t \in\{1,2,3\}$.

Lemma 3.13. Let Δ_{1} be as in Lemma 3.3. Then the following hold.
(i) Let $P \in \Delta_{1}$. Then $G_{P}=\langle x\rangle \simeq Z_{6}$ and a Sylow 7-subgroup of G acts on $F\left(x^{3}\right) \cap \bar{l}_{t}$ for all $t \in\{1,2,3\}$.
(ii) $F\left(x^{c}\right)$ is a subplane of π of order 2^{c} for $c=2,3$.

Proof. Similarly as in the proof of Lemma 3.12, we obtain $\left|G_{P}\right|=|G| \mid$ $\left|P^{G}\right|=2 \cdot 3^{3} \cdot 7^{2} / 63 \cdot 7=6$. Since $G_{P} \leq G_{A}, G_{P} \cap K_{t}=1$ and $G_{A} / K_{t} \simeq Z_{6}$, we have $G_{P} \simeq G_{P} K_{t} \mid K_{t} \leq Z_{6}$. Hence $G_{P} \simeq Z_{6}$. Set $\langle x\rangle=G_{P}$. Clearly x^{3} is an involution in G_{P} and so by the property of $\Gamma L\left(1,2^{6}\right), x^{3}$ centralizes the Sylow 7 -subgroup of G / K_{t} for all $t \in\{1,2,3\}$. Let S be the Sylow 7 -subgroup of G. Then $\left[x^{3}, S\right] \leq \bigcap_{t=1}^{3} K_{t}=1$ and therefore S centralizes x^{3}. Hence S acts on $F\left(x^{3}\right) \cap \bar{l}_{t}$ for all $t \in\{1,2,3\}$. Thus (i) holds.

By Theorem 4.3 of [6], $F\left(x^{3}\right)$ is a subplane of π of order 2^{3} and by Lemmas 3.11 (ii) and 3.12, $F\left(x^{2}\right)$ is a subplane of order 2^{2}.

If we coordinatize π by choosing $(0,0)$ as $U_{1},(0)$ as $U_{2},(\infty)$ as $U_{3},(1,1)$ as P which was defined in Lemma 3.13, then we get a semi-field F. In general, F is not always isomorphic to D and since π is non-Desarguesian, F is not a field. Thus π is a semi-field plane coordinatized by F and it also satisfies Hypothesis 2.3.

Lemma 3.14. Set $F_{1}=\left\{d \mid d \in F,(d, 0) \in F\left(x^{3}\right)\right\}, F_{2}=\{d \mid d \in F,(0, d) \in$ $\left.F\left(x^{3}\right)\right\}$ and $F_{3}=\left\{d \mid d \in F,(d, 0) \in F\left(x^{2}\right)\right\}$. Then $F_{1}=F_{2} \simeq G F(8)$ and $F_{3} \simeq G F(4)$.

Proof. Since $F(x)$ contains (0,0), (0), (∞) and (1,1), it also contains (1). By Lemma 3.13 and the definition of the coordinatization of π, we have the lemma.

Lemma 3.15. Let N_{1}, N_{2} or N_{3} be the right, middle or left nucleus, respectively. Then $N_{1}=N_{2}=N_{3} \simeq G F(8)$.

Proof. By Lemmas 3.12, we have $N_{t} \simeq G F(8)$ for all $t \in\{1,2,3\}$. Furthermore, the multiplicative group $N_{t}{ }^{\times}=\left\{d \mid(d, 0) \in(1,0)^{K}\right\}$ for $t=1,2$ and $N_{3}{ }^{\times}=\left\{d \mid(0, d) \in(0,1)^{K_{3}}\right\}$ by the proof of Theorems 7.9 and 8.2 of [6]. Since
K_{1} and K_{2} are semi-regular on \bar{l}_{3} and $(1,0) \in F\left(x^{3}\right)$, it follows from Lemma 3.13 that $N_{1}=N_{2}=F_{1}$. Similarly $N_{3}=F_{2}$. By Lemma 3.14, we have $N_{1}=$ $N_{2}=N_{3} \simeq G F(8)$.

Lemma 3.16. Set $N=N_{1}=N_{2}=N_{3}$ and $F_{3}{ }^{\times}=\langle\theta\rangle$.
(i) N does not contain θ and F is a right and left vector space over N with a basis $\{1, \theta\}$.
(ii) For any $\xi \in F,(\xi \theta) \theta=\xi\left(\theta^{2}\right)$.

Proof. (i) follows immediately from Lemmas 3.14 and 3.15.
Set $\xi=a+b \theta$ for $a, b \in N$. Then $(\xi \theta) \theta=((a+b \theta) \theta) \theta=(a \theta+(b \theta) \theta) \theta=(a \theta) \theta$ $+((b \theta) \theta) \theta=a \theta^{2}+\left(b \theta^{2}\right) \theta=a \theta^{2}+b \theta^{3}$ because $a, b \in N=N_{3}$ and $\langle\theta\rangle=F_{3}{ }^{\times}$. Hence $(\xi \theta) \theta=a \theta^{2}+(b \theta) \theta^{2}=\xi\left(\theta^{2}\right)$. Thus (ii) holds.

Lemma 3.17. $\theta \in N$.
Proof. Let $\xi, \eta \in F$ and set $\xi=a+b \theta, \eta=c+d \theta$ for $a, b, c, d \in N$. Then, $(\xi \eta) \theta=((a+b \theta)(c+d \theta)) \theta=(a c) \theta+((b \theta) c) \theta+(a(d \theta)) \theta+((b \theta)(d \theta)) \theta$. Similarly $\xi(\eta \theta)=a(c \theta)+(b \theta)(c \theta)+a((d \theta) \theta)+(b \theta)((d \theta) \theta)$. Since $a \in N=N_{3}$ and $c \in N=$ N_{2}, we have $(a c) \theta=a(c \theta),((b \theta) c) \theta=(b \theta)(c \theta)$ and $(a(d \theta)) \theta=a((d \theta) \theta)$. Since $d \in N=N_{2},((b \theta)(d \theta)) \theta=(((b \theta) d) \theta) \theta$ and by Lemma 3.16, $\left.((b \theta) d) \theta\right) \theta=((b \theta) d) \theta^{2}$, so that $((b \theta)(d \theta)) \theta=((b \theta) d) \theta^{2}=(b \theta)\left(d \theta^{2}\right)=(b \theta)((d \theta) \theta)$ as $d \in N=N_{2}=N_{3}$. Hence $(\xi \eta) \theta=\xi(\eta \theta)$ and so $\theta \in N_{3}=N$.

Proof of Lemma 2.

By Lemmas 3.16 (i) and 3.17, we obtain a contradiction and so the lemma holds.

4. The proof of Theorem 1

Throughout this section π is a semi-field plane satisfying Hypothesis 2.3 and the following.

Hypothesis 4.1. $r \equiv 0(\bmod 4)$ and $u(\pi) \leq 4$.
Lemma 4.2. (i) G is not solvable.
(ii) $u(\pi)=2,3$ or 4 .
(iii) There exists $i \in\{1,2,3\}$ such that G is transitive on \bar{l}_{i}.

Proof. By Theorem of [8], Theorem 6.3 of [9] and the lemma proved in §3, we have (i).

It follows from Kallaher's theorem [8] that $u(\pi) \neq 1$ and so (ii) holds.
If $u(\pi)=2$ or 3 , we have (iii) by a similar argument as in the proof of Lemma 3.7. If $u=4$, we can apply Lemma 6.1 of [9] and (iii) follows.

Lemma 4.3. Let S be a Sylow 2-subgroup of G and set $\pi_{0}=F(S), H=$ $G\left(\pi_{0}\right), \bar{G}=G / O(G)$. Then the following hold.
(i) $S \neq 1$ and S is semi-regular on $\pi-\pi_{0}$.
(ii) π_{0} is a Baer subplane of π.
(iii) $\bar{G}^{\prime} \simeq P S L(2, q)$ for some even q. Moreover $H=O(G) N_{G}(S)$ and $\mid G$: $H \mid=q+1$.

Proof. By the Feit-Thompson theorem [2] and Lemma 4.1 (i), the order of G is even and so $S \neq 1$. Let z be an involution in the center of S. Then $F(z)$ is a Bear subplane of order $2^{r / 2}$ and $S^{F(z)}$ is a collineation group. By Hypothesis 4.1, $2^{r / 4}$ is not an integer. Therefore $S^{F(z)}=1$. Hence (i) and (ii) hold.

By Lemma 4.2 (ii), $G \neq H$ and clearly $H \geq S$. Hence H is a strongly embedded subgroup of G. By a Bender's theorem [1] and by Corollary 3.2 of [4], (iii) holds.

Lemma 4.4. Set $\Delta=\pi_{0} \cap \bar{l}_{i}$ and $\Gamma=\left\{\Delta^{g} \mid g \in G\right\}$. Then the following hold. (i) $\bar{l}_{i}=\cup_{\Delta^{x} \in \Gamma} \Delta^{x}$ and $\Delta^{x} \cap \Delta^{y}=\phi$ for distinct Δ^{x} and Δ^{y} in Γ.
(ii) Set $N=O(G)$. Then $G(\Delta)=H \geq N=G_{\Gamma}$ and G is doubly transitive on Γ.

Proof. By Lemma 4.3 (iii), $H=N \cdot N_{G}(S)$. Since $G\left(\pi_{0}\right) \leq G(\Delta)$ and H is a maximal subgroup of G, we have $H=G(\Delta)$. Hence G is doubly transitive on Γ (See [1] §3). Since N is a normal subgroup of G and $N \leq G(\Delta), N$ is contained in G_{Γ} and so $N=G_{\Gamma}$ by Lemma 4.3 (iv). Thus (ii) holds.

Clearly $\Delta^{g} \subset \bar{l}_{i}$ for all $g \in G$, hence $\bar{l}_{i}=\bigcup_{\Delta^{g} \in \Gamma} \Delta^{g}$ by Lemma 4.2 (iii). Suppose $\Delta^{x} \neq \Delta^{y}$ and $\Delta^{x} \cap \Delta^{y} \neq \phi$ and set $g=x y^{-1}$. Then $\Delta^{g} \neq \Delta$ and $\Delta^{g} \cap \Delta \neq \phi$. By Lemma 4.3 (i), S and S^{g} fix $\Delta^{g} \cap \Delta$ pointwise. By (ii), $G=\left\langle N, S, S^{g}, G(\Delta)\right.$ $\left.\cap G\left(\Delta^{g}\right)\right\rangle$. Hence G fixes $\Delta^{g} \cap \Delta$ as a set, contrary to Lemma 4.2 (iii). Thus (i) holds.

Lemma 4.5. $\quad q^{2}=2^{r}$ and $|\Delta|=q-1,|\Gamma|=q+1$.
Proof. By Lemmas 4.3 (iii) and 4.4 (ii), $|\Gamma|=|G: H|=q+1$ and by Lemma 4.4(i) $|\Gamma|=\left|\bar{l}_{i}\right| /|\Delta|=\left(2^{r}-1\right) /|\Delta|$. On the other hand $|\Delta|=2^{r / 2}-1$ since π_{0} is a Baer subplane of π. Hence $q^{2}=2^{r}$ and $|\Delta|=q-1$.

Lemma 4.6. $\pi_{0}(=F(S))$ is a Desarguesian projective plane of order q and the number of $N_{G}(S)$-orbits on $\Phi(\pi) \cap \pi_{0}$ is one or three.

Proof. Let Λ be a G-orbit on $\Phi(\pi)$ and supopse $\Lambda \cap \pi_{0} \neq \phi$. Let $P \in \Lambda \cap \pi_{0}$. Then $G_{P} \geq S$. Hence $|\Lambda|=\left|G: G_{P}\right| \equiv 1(\bmod 2)$ and moreover $N_{G}(S)$ is transitive on $\Lambda \cap \pi_{0}$ by Theorem 3.5 of [11]. Since $|\Phi| \equiv 1(\bmod 2)$
and $u=u(\pi) \leq 4$, the number of G-orbits Λ on Φ such that $\Lambda \cap \pi_{0} \neq \phi$ is one or three. Hence the number of $N_{G}(S)$-orbits on $\pi_{0} \cap \Phi$ is one or three.

Since the order of π_{0} is $2^{r / 2}$ and $2^{r / 4}$ is not an integer, the autotopism group of π_{0} is of odd order. By Theorem 6.3 of [9] and Theorem of [8], π_{0} is a Desarguesian plane of order q.

By Lemma 4.3, $\left|G: G\left(\pi_{0}\right)\right|=q+1$. We set $\left\{\pi_{0}{ }^{g} \mid g \in G\right\}=\left\{\pi_{0}, \pi_{1}, \cdots, \pi_{q}\right\}$. Then the following lemma holds.

Lemma 4.7. Set $N=O(G)$. Then
(i) $N_{\pi_{s}}$ acts faithfully on π_{t} and $\left|N_{\pi_{s}}\right| \mid(q-1)^{2}(r / 2)$ for all $s, t(s \neq t)$ and
(ii) $N_{\pi_{t}}$ is a normal subgroup of N and $\left[N_{\pi_{s}}, N_{\pi_{t}}\right]=1$ for all $s, t(s \neq t)$.

Proof. By Lemma 4.4 (ii), N acts on π_{t} and so $N_{\pi t}$ is a normal subgroup of N. By Lemma 4.3 (ii), π_{s} and π_{t} are Baer subplanes of π, so that $N_{\pi_{s}} \cap N_{\pi_{t}}$ $=1$. Hence $N_{\pi_{s}}$ acts faithfully on π_{t} and $\left[N_{\pi_{s}}, N_{\pi_{t}}\right] \leq N_{\pi_{s}} \cap N_{\pi_{t}}=1$. Moreover $\left|N_{\pi_{s}}\right| \mid(q-1)^{2}(r / 2)$ since π_{t} is a Desarguesian plane of order q.

Lemma 4.8. Assume $N_{\pi_{0}} \neq 1$ and let P be a minimal normal subgroup of $N_{\pi_{0}}$ and let p be a prime dividing the order of P. Then a Sylow p-subgroup of $N_{\pi_{0}}$ is cyclic and P is a normal subgroup of N. Moreover P is isomorphic to Z_{p}.

Proof. Let Q be a Sylow p-subgroup of $N_{\pi_{0}}$. Since $F(Q)=\pi_{0}, Q$ is semi-regular on $\pi_{t}-\pi_{0}$ for $t \neq 0$. By Lemma 2.2(i) and Theorem 5.4.10 of [3], Q is cyclic. Hence, by Lemma 4.7 (ii), we have the lemma.

Lemma 4.9. Let P be as in Lemma 4.8. Then the following hold.
(i) Set $L=\left\langle P^{g} \mid g \in G\right\rangle$. Then L is a normal subgroup of G and is an elementary abelian p-group.
(ii) $p \nmid r$ and $|L| \leq p^{3}$.

Proof. (i) follows immediately from Lemma 4.8. Clearly $L \leq N$. Set $X=N_{\pi_{0}}$. Since $X \cap L=P$ and $L / P \simeq L X / X \leq N / X \simeq N^{\pi_{0}},|L / P|$ is at most p^{3}. Moreover $|L| P \mid \leq p^{2}$ if $p \nmid r$. Therefore it suffices to show $p \nmid r$. Assume $p \mid r$. Since H normalizes X, P is a normal subgroup of H and so L contains at least $q+1$ subgroups of order p. Hence $q+1 \leq\left(p^{4}-1\right) /(p-1)=p^{3}+p^{2}+p$ +1 . On the other hand $p \mid r / 2$ and $q=2^{r / 2}$, so that $(r / 2)^{3}+(r / 2)^{2}+r / 2+1 \geq 2^{r / 2}$ +1 . From this $r=6$ or 10 and $p=r / 2$. But $p \nmid q-1$ for $r=6$ or 10. Therefore, $|L / P| \leq p$ and so $q+1 \leq\left(p^{2}-1\right) /(p-1)=p+1 \leq 6$, a contradiction. Thus $p \nmid r / 2$.

Lemma 4.10. $\quad N_{\pi_{0}}=1$.
Proof. Assume $N_{\pi_{0}} \neq 1$ and let P, L be as in Lemma 4.8, 4.9, respectively.

If $\left|C_{G}(L)\right|$ is even, all Sylow 2-subgroups of G are contained in $C_{G}(L)$ by Lemma 4.3 (iii). Hence $\left\langle S^{g} \mid g \in G\right\rangle$ acts on $F(P)\left(=\pi_{0}\right)$, which is contrary to $G\left(\pi_{0}\right)=H$. Therefore $\left|C_{G}(L)\right|$ is odd. In particular S is isomorphic to a subgroup of $G / C_{G}(L)$.

By Lemmas 4.3 and $4.9,\left(G / C_{G}(L)\right)^{\prime} \leq S L(3, p)$ and $\left|G / C_{G}(L):\left(G / C_{G}(L)\right)^{\prime}\right|$ is odd. Hence S is isomorphic to a subgroup of $S L(3, p)$. Since a Sylow 2-subgroup of $S L(3, p)$ is semi-dihedral or wreathed, S is an elementary abelian group of order 4 and so $q=2^{2}$. Hence $r=4 \equiv 0(\bmod 4)$, a contradiction.

Lemma 4.11. Let $G^{(\infty)}$ denote the last term of the derived series of G. Set $M=G^{(\infty)}$. Then $M \simeq P S L(2, q)$.

Proof. Let X be a subgroup of G generated by all Sylow 2-subgroups of G. By Lemma 4.3 (iii), $X \leq M$ and $|M| X \mid$ is odd. It follows from the Feit-Thompson theorem that $M=M^{(\infty)} \leq X$ and hence $X=M$. By Lemmas 4.4 (ii) and 4.10, $[S, N] \leq N \cap G_{\pi_{0}}=N_{\pi_{0}}=1$, so that N centralizes $X(=M)$ and $M \cap N=Z(M), M / Z(M) \simeq P S L(2, q)$. By a property of $P S L(2, q), M \simeq$ $\operatorname{PSL}(2, q)$.

Lemma 4.12. (i) Let $t \in\{1,2,3\}, P \in \bar{l}_{t}$ and let X be a subgroup of G_{P}. Then $\left|F(X) \cap l_{t}\right|=2^{a}+1$ for an integer $a \geq 1$.
(ii) M is transitive on \bar{l}_{i} and $\left|M_{P}\right|=q$ for $P \in \bar{l}_{i}$. Here i is the integer defined in Lemma 4.2 (iii).

Proof. Let A be the full collineation group of π and set $T_{1}=A_{\left(U_{3}, l_{2}\right)}$, $T_{2}=A_{\left(U_{3}, l_{1}\right)}, T_{3}=A_{\left(U_{2}, l_{1}\right)}$. Since U_{3} is a translation point and l_{1} is a translation line, $T_{1} \simeq T_{2} \simeq T_{3} \simeq E_{q^{2}}$ and $X T_{t}$ is a transitive linear group on l_{t}. Since $\left(X T_{t}\right)_{P}$ $=X$, we have (i) by Lemma 2.1.

Let $\left\{\Delta_{1}, \cdots, \Delta_{m}\right\}$ be the set of M-orbits on \bar{l}_{i}. Since G is transitive on \bar{l}_{i} and $G \triangleright M,\left|\Delta_{1}\right|=\cdots=\left|\Delta_{m}\right| \equiv 1(\bmod 2)$. Let $P \in \Delta_{1}$ and set $M_{P}=C S$ with $C \leq Z_{q-1}$ and $\left|N_{M}(S): M_{P}\right|=k$. As $M \simeq P S L(2, q), k \mid q-1$ and $F\left(M_{P}\right) \cap \Delta_{v}$ $\neq \phi$ for each $v \in\{1, \cdots, m\}$.

Assume $C \neq 1$. Then $\left|N_{M}(C)\right|=2(q-1)$ as $M \simeq P S L(2, q)$. By Lemma 2.1, $\left|F(C) \cap \bar{l}_{i}\right|=m \times \frac{2(q-1) \times|S|}{\left|M_{P}\right|}=2 m k$ and applying (i), we have $2 m k=2^{a}-1$ for an integer $a \geq 1$, a contradiction. Thus $C=1$ and $\left|M_{P}\right|=q$. Therefore $\left|P^{M}\right|=\left|M: M_{P}\right|=q^{2}-1$ and (ii) follows.

Lemma 4.13. Let $j \in\{1,2,3\}-\{i\}$ and $P \in \bar{l}_{j}$. Then $q\left|\left|M_{P}\right|\right.$.
Proof. By Lemma 4.3 (i), it suffices to consider the case that $\left|M_{P}\right| \equiv 1$ $(\bmod 2) . \quad$ As $M \simeq P S L(2, q), M \leq Z_{q \pm 1} . \quad$ Since $\left|\bar{l}_{j}\right|=q^{2}-1 \geq\left|P^{M}\right|=\left|M: M_{P}\right|$ and $P^{M} \cap F(S)=\phi$, we have $M_{P} \simeq Z_{q+1}$ and $\left|l_{j}-P^{M}\right|=\left|F(S) \cap l_{j}\right|=q+1$. Hence $F(S) \cap l_{j}=F(M) \cap l_{j}$. Therefore $\left|F\left(M_{P}\right)\right|=q+1+\frac{2(q+1) \times 1}{\left|M_{p}\right|}=q+3$ by Lem-
mma 2.1. Applying Lemma 4.12 (i), $q+3=2^{a}+1$ for an integer $a \geq 1$. This is a contradiction.

Lemma 4.14. M is transitive on \bar{l}_{j} and M_{P} is a Sylow 2-subgroup of M for each $j \in\{1,2,3\}$ and $P \in \bar{l}_{j}$.

Proof. By Lemma 4.12 (ii), we may assume $j \in\{1,2,3\}-\{i\}$. First we argue that $F(M) \cap \bar{l}_{j}=\phi$. Set $\Delta=F(M) \cap \bar{l}_{j}$ and assume $\Delta \neq \phi$. Let π_{0} be as defined in Lemma 4.6 and set $N_{M}(S)=D S$ with $D \simeq Z_{q-1}$. By Lemma 4.12 (ii), $D^{\pi_{0}} \simeq D$ and $\pi_{0} \cap F(D) \supset \Delta$. Since π_{0} is a Desarguesian plane of order $q, F(D) \supset \pi_{0} \cap l_{j}$ by Lemma 2.2 (ii). Therefore, by Lemmas 2.1 and 4.13, $\left|F(D) \cap \bar{l}_{j}\right|=|\Delta|+2(q-1-|\Delta|)=2(q-1)-|\Delta|$. Applying Lemma 4.12 (i), $|\Delta|=2^{a}-1$ and $2(q-1)-|\Delta|=2^{b}-1$ for integers $a, b \geq 1$, hence $2 q=2^{a}$ $+2^{b}$. However, as $|\Delta|<\left|\pi_{0} \cap \bar{l}_{j}\right|=q-1<\left|F(D) \cap \bar{l}_{j}\right|=2^{b}-1$, we have $2^{a}<q$ $<2^{b}$. This is a contradiction. Thus $F(M) \cap \bar{l}_{j}=\phi$.

Let $\left\{\Delta_{1}, \cdots, \Delta_{m}\right\}$ be the set of M-orbits on \bar{l}_{j}. By Lemma 4.3, $\left|\Delta_{t}\right| \mid q^{2}-1$ for each t. Assume $\left|M_{P}\right| \neq q$ for some $P \in \bar{l}_{j}$. We may assume $P \in \Delta_{1}$ and $M_{P} \triangleright S$. Set $M_{P}=C S$ with $1 \neq C \leq Z_{q-1}$. By a similar argument as in the last paragraph $F(S) \cap l_{j} \subset F(C) \cap l_{j}$ and so $F(C) \cap \Delta_{t} \neq \phi$ for each t. Hence $\mid F(C)$ $\cap \Delta_{t}\left|=2 \times\left|F(S) \cap \Delta_{t}\right|\right.$ by Lemma 2.1. Hence $| F(C) \cap \bar{l}_{j}\left|=2 \times\left|F(S) \cap \bar{l}_{j}\right|\right.$ $=2(q-1)$ and so $\left|F(C) \cap l_{j}\right|=2 q$, contraty to Lemma $4.12(\mathrm{i})$. Thus $\left|M_{P}\right|$ $=q$ and M is transitive on \bar{l}_{j}.

Let X be the full collineation group of π and set $A=X_{\left(t_{1}, l_{1}\right)}, B=X_{\left(U_{3}, U_{3}\right)}$ and $T=A B$. Since U_{3} is a translation point and l_{1} is a translation line, A and B are elementary abelian normal 2 -subgroups of X of order q^{4}. Hence T is a normal 2-subgroup of X.

Lemma 4.15. (i) T is a nonabelian normal 2-subgroup of X.
(ii) $C_{T}(x)=1$ for any element $x(\neq 1)$ of M of odd order.

Proof. If T is abelian, $T_{P}=1$ for $P \notin l_{1}$ because A acts transitively on the set of points not incident with the line l_{1}. Hence $|T|=\left|T: T_{P}\right|=q^{4}+q^{2}$ $+1-\left(q^{2}+1\right)=q^{4}$ and so $T=A=B$, a contradiction. Thus (i) holds.

Assume $C_{T}(x) \neq 1$ and let t be an involution in $C_{T}(x)$. Then, there exist element $t_{1} \in A$ and $t_{2} \in B$ such that $t=t_{1} t_{2}$. By Lemma 4.14, $F(X)=\left\{U_{1}, U_{2}\right.$, $\left.U_{3}, l_{1}, l_{2}, l_{3}\right\}$ and so t acts on $\left\{U_{1}, U_{2}, U_{3}\right\}$. Since $F(X)=\left\{U_{3}, l_{1}\right\}$, it follows that $\left(U_{2}\right)^{t} \in l_{1}$ and $\left(U_{3}\right)^{t}=U_{3}$. Hence we have $\left(U_{1}\right)^{t}=U_{1}$ and $\left(U_{2}\right)^{t}=U_{2}$ and so $F\left(t_{2}\right)=F\left(t_{1} t\right) \supset\left\{U_{2}, U_{3}\right\}$. Therefore $t_{2} \in X_{\left(U_{3}, l_{1}\right)} \leq X_{\left(l_{1}, l_{1}\right)}$, which implies $t \in X_{\left(l_{1}, l_{1}\right)}$. However, as $\left(U_{1}\right)^{t}=U_{1}$, this is a contradiction. Thus $C_{T}(x)=1$.

Proof of Theorem 1.
Since $3||M|=|P S L(2, q)|$, there exists an element $x \in M$ of order 3.

By Lemma 4.15 (ii), $C_{T}(x)=1$. Applying Theorem 8.2 of [5] to the group $M T, T$ is an abelian 2-group, which is contrary to Lemma 4.15 (i). Thus we have the theorem.

References

[1] H. Bender: Transitive Gruppen gerader Ordnung, in denen jede Involution genau einen Punkt festlast, J. Algebra 17 (1971), 527-554,
[2] W. Feit and J. Thompson: Solvability of groups of odd order, Pacific J. Math. 13 (1963), 775-1029.
[3] D. Gorenstein: Finite groups, Harper and Row, New York, 1968.
[4] C. Hering: On finite line transitive affine planes, Geom. Dedicata 1 (1973), 387-393.
[5] G. Higman: Odd characterization of finite simple groups, Lecture Notes, University of Michigan, 1968.
[6] D.R. Hughes and F.C. Piper: Projective planes, Berlin-Heidelberg-New York, Springer-Verlag, 1973.
[7] B. Huppert: Zweifach transitive, auflösbare Permutationsgruppen, Math. Z. 68 (1957), 126-150.
[8] M.J. Kallaher: A conjecture on semi-field plancs, Arch. Math. 26 (1975), 436440.
[9] M.J. Kallaher and R.A. Liebler: A conjecture on semi-field planes II, Geom. Dedicata 8 (1979), 13-30.
[10] R. Steinberg: Automorphisms of finite linear groups, Canad. J. Math. 12 (1960), 606-615.
[11] H. Wielandt: Finite permutation groups, Academic Press, New York, 1964.

> Department of Mathematics
> College of General Education Osaka University
> Toyonaka, Osaka 560, Japan

