UNIVERSAL COVERING SPACES OF CERTAIN QUASI-PROJECTIVE ALGEBRAIC SURFACES

Yoichi IMAYOSHI

(Received October 23, 1981)

Introduction. In this paper we investigate some function-theoretic properties of universal covering spaces of certain quasi-projective algebraic surfaces.

Let \hat{X} be a two-dimensional complex manifold and let C be a one-dimensional analytic subset of \hat{X} or an empty set. Let R be a Riemann surface. We assume that a proper holomorphic mapping $\hat{\pi}: \hat{X} \rightarrow R$ satisfies the following two conditions: (i) $\hat{\pi}$ is of maximal rank at every point of \hat{X}, and (ii) by setting $X=\hat{X}-C$ and $\pi=\hat{\pi} \mid X$, the fiber $S_{p}=\pi^{-1}(p)$ over each point p of R is an non-singular irreducible analytic subset of X and is of fixed finite type (g, n) with $2 g-2+n>0$ as a Riemann surface, where g is the genus of S_{p} and n is the number of punctures of S_{p}. We call such a triple (X, π, R) a holomorphic family of Riemann surfaces of type (,$g n$) over R. We also say that X has a holomorphic fibration (X, π, R) of type (g, n).

We assume throughout this paper R is a non-compact Riemann surface of finite type and its universal covering space is the unit disc $D=(|t|<1)$ in the complex t-plane.
P.A. Griffiths [2] got the following uniformization theorem of quasi-projective algebraic surfaces. Let \hat{X} be a two-dimensional, irreducible, smooth, quasi-projective algebraic varitey over the complex numbers. Then for every point x in \hat{X}, there exists a Zariski neighborhood X of x in \hat{X} such that X has a holomorphic fibration (X, π, R) as above. Then the universal covering space \tilde{X} of X is topologically a cell. Griffiths proved that \tilde{X} is biholomorphically equivalent to a bounded domain of holomorphy in \boldsymbol{C}^{2} using the theory of simultaneous uniformization of Riemann surfaces due to Bers. (cf. Bers [1].) The function-theoretic properties of such interesting domains \tilde{X} are little studied. (cf. Shabat [10].)

At the begining, in $\S 1$, we recall some notations and results of [3], [4] and [5] which will be used later. Let \mathscr{M} be the homotopic monodromy group of (X, π, R), which will be defined in $\S 1$. Then we get the following theorems in § $2, \S 3, \S 4$ and $\S 5$.

Theorem 1. The universal covering space \tilde{X} of X is not biholomorphically equivalent to the two-dimensional unit ball $B_{2}=\left(|z|^{2}+|w|^{2}<1\right)$.

Corollary. The universal covering space \tilde{X} of X is not biholomorphically equivalent to any two-dimensional strongly pseudoconvex domains.

Theorem 2. The homotopic monodromy group \mathscr{M} is a finite group if and only if all the fibers S_{p} are confurmally equivalent.

Theorem 3. The homotopic monodromy group \mathscr{M} is a finite group if and only if \tilde{X} is biholomorphically equivalent to the two-dimensional polydisc $D^{2}=$ $(|z|<1) \times(|w|<1)$.

Theorem 4. If (X, π, R) is of type $(g, 0)$ with $g>1$, then \tilde{X} is biholomorphic to the polydisc D^{2} if and only if the analytic automrophism group $\operatorname{Aut}(\tilde{X})$ of \tilde{X} is not a discrete group.

In the last $\S 6$, we give some examples of these quasi-projective algebraic surfaces X and some related problems.

1. Preliminaries. We shall briefly explain some notations and results in [3], [4] and [5] which will be used later.

Let G be a finitely generated Fuchsian group of the first kind with no elliptic elements acting on the upper half-plane U such that the quotient space $S=U / G$ is a finite Riemann surface of type (g, n). Let $Q_{\text {norm }}(G)$ be the set of all quasi-conformal automoıphisms w of U leaving $0,1, \infty$ fixed and satisfying $w G w^{-1} \subset S L^{\prime}(2 ; R)$, where $S L^{\prime}(2 ; R)$ is the set of all real Möbius transformations. Two elements w_{1} and w_{2} of $Q_{\text {norm }}(G)$ are equivalent if $w_{1}=w_{2}$ on the real axis \boldsymbol{R}. The Teichmüller space $T(G)$ of G is the set of all equivalence classes [w] obtained by classifying $Q_{\text {norm }}(G)$ by the above equivalence relation.

Let w_{μ} be the element of $Q_{\text {norm }}(G)$ with a Beltrami coefficient $\mu \in L^{\infty}(U, G)_{1}$ and let W^{μ} be a quasiconformal automorphism of the Riemann sphere $\hat{\boldsymbol{C}}$ such that W^{μ} has the Beltrami coefficient μ on the upper half-plane U, and is conformal on the lower half-plane L, and

$$
W^{\mu}(z)=\frac{1}{z+i}+O(|z+i|)
$$

as z tends to $-i$. This mapping W^{μ} is uniquely determined by [w_{μ}] up to the equivalence relation, that is, $w_{\mu}=w_{\nu}$ on \boldsymbol{R} if and only if $W^{\mu}=W^{\nu}$ on L. Let ϕ_{μ} be the Schwarzian derivative of W^{μ}. Then ϕ_{μ} is an element of the space $B_{2}(L, G)$ of bounded holomorphic quadratic differentials for G on L. Bers proved that the mapping sending $\left[w_{\mu}\right]$ into ϕ_{μ} is a biholomorphic mapping of $T(G)$ onto a holomorphically convex bounded domain of $B_{2}(L, G)$, which
is denoted by the same notation $T(G)$. The space $B_{2}(L, G)$ is a $(3 g-3+n)$ dimensional complex vector space. We associate with each ϕ of $B_{2}(I, G)$ a uniquely determined solution $W_{\phi}=w_{1} / w_{2}$ of the Schwarzian differential equation on L

$$
\left(w^{\prime \prime} \mid w^{\prime}\right)^{\prime}-\frac{1}{2}\left(w^{\prime \prime} \mid w^{\prime}\right)^{2}=\phi
$$

where x_{1} and w_{2} are the solutions of the linear differential equation on L

$$
2 w^{\prime \prime}+\phi w=0
$$

normalized by the conditions $w_{1}=w_{2}^{\prime}=1$ and $w_{1}^{\prime}=w_{2}=0$ at $z=-i$. The homomorphism $G \rightarrow S L^{\prime}(2, \boldsymbol{C})$ induced by ϕ, which carries g into \hat{g} in such a way that $W_{\phi} \circ g=\hat{g} \circ W_{\phi}$, is denoted by χ_{ϕ}. Since each point ϕ of $T(G)$ is a Schwarzian derivative of some W^{μ} with $\mu \in L^{\infty}(U, G)_{1}$, we have $W_{\phi}=W^{\mu}$ on L. Hence W_{ϕ} is conformal on L and has a quasiconformal extension of $\hat{\boldsymbol{C}}$ onto itself, which is denoted by the same notation. If we set $G_{\phi}=\chi_{\phi}(G)=$ $W_{\phi} \circ G \circ W_{\phi}^{-1}$ and $D_{\phi}=W_{\phi}(U)$, then G_{ϕ} is a quasi-Fuchsian group and the definitions are legitimate since D_{ϕ} is the complement of the closure of $W_{\phi}(L)$ and since $W_{\phi} \mid L$ depends only on ϕ. The Koebe's one-quarter theorem implies that $D_{\phi} \subset(|w|<2)$ for every ϕ of $T(G)$.

Let (X, π, R) be a holomorphic family of Riemann surfaces of type (g, n) with $2 g-2+n>0$ and let $\rho: D \rightarrow R$ be the universal covering with the covering transformation group Γ. Then there exists a holomorphic mapping $\Phi: D \rightarrow$ $T(G)$ such that the quotient space $D_{\Phi(t)} / G_{\Phi(t)}$ is conformally equivalent to $S_{\mathrm{\rho}(t)}$ for every $t \in D$. We abbreviate $G_{\Phi(t)}$ to G_{t} and $D_{\Phi(t)}$ to D_{t}. We set

$$
\tilde{X}=\left\{(t, w) \mid t \in D, w \in D_{t}\right\}
$$

This set \tilde{X} is topologically equivalent to the two-dimensional polydisc D^{2}. Since $D_{t} \subset(|w|<2)$ for every $t \in D$, the set \tilde{X} is a bounded domain in \boldsymbol{C}^{2}. We can also show that \tilde{X} is a domain of holomorphy. Let F_{t} be the conformal mapping of D_{t} / G_{t} onto $S_{\rho(t)}$ induced by $\Phi(t)$ for every $t \in D$ and let Π be the holomorphic mapping of \tilde{X} onto X sending (t, w) into $F_{t}(w)$. Then $\Pi: \tilde{X} \rightarrow X$ is the universal covering of X constructed by Griffiths [2].

Let \mathcal{G} be the covering transformation group of the universal covering $\Pi: \widetilde{X} \rightarrow X$. We can explicitly express the elements of \mathcal{G} as follows. For each element $\gamma \in \Gamma$, the homotopic monodromy M_{γ} of γ is the element of the Teichmüller modular group $\operatorname{Mod}(G)$ of G with the property $\Phi \circ \gamma=M_{\gamma} \circ \Phi$. The subgroup $\mathscr{M}=\left\{M_{\gamma} \mid \gamma \in \Gamma\right\}$ of $\operatorname{Mod}(G)$ is called the homotopic monodromy group of (X, π, R). Denote by $N(G)$ the set of all quasiconformal automorphisms ω of U with $\omega^{\circ} G \circ \omega^{-1}=G$. Take an element ω_{γ} of $N(G)$ which induces M_{γ}, that is, $\left\langle\omega_{\gamma}\right\rangle=M_{\gamma}$. We may assume that $\omega_{\gamma \delta \delta}=\omega_{\gamma}{ }^{\circ} \omega_{\delta}$ for all $\gamma, \delta \in \Gamma$.

For each $t \in D$, let [$w_{\mu_{t}}$] be the point of $T(G)$ with a Beltrami coefficient μ_{t} corresponding to the holomorphic quadratic differential $\Phi(t)$ in $B_{2}(L, G)$. For each $g \in G$, we set $w_{\nu_{t}}=\lambda \circ w_{\mu_{t}} \circ\left(\omega_{\gamma} \circ g\right)^{-1} \in Q_{\text {norm }}(G)$, where λ is a real Möbius transformation. If we set

$$
(\gamma, g)(t, w)=\left(\gamma(t), W^{\nu_{t} \circ}\left(\omega_{\gamma} \circ g\right) \circ\left(W_{t}^{\mu}\right)^{-1}(w)\right),
$$

then the mapping (γ, g) is an analytic automorphism of \tilde{X} for all $\gamma \in \Gamma, g \in G$. Now the covering transformation group \mathcal{G} is identical with the set $\Gamma \times G$. By definition, we have the relation

$$
\begin{equation*}
(\gamma, g) \circ(\delta, h)=\left(\gamma \circ \delta, \omega_{\delta}^{-1} \circ g \circ \omega_{\delta} \circ h\right) \tag{1}
\end{equation*}
$$

for all $\gamma, \delta \in \Gamma$ and $g, h \in G$, that is, \mathcal{G} is a semi-direct product of Γ by G. It is noted that $(\gamma, g)=(\delta, h)$ if and only if $\gamma=\delta$ and $g=h$.

Now, we have the following fundamental theorem. (See [3] and [4].)
Theorem. Let (X, π, R) be a holomorphic family of Riemann surfaces of type (g, n) with $2 g-2+n>0$. Take a puncture p_{0} of R. Let t_{0} be a parabolic fixed point with $\rho\left(t_{0}\right)=p_{0}$ and let γ_{0} be a generator of the stabilizer of t_{0} in Γ. Then there exists an element ϕ_{0} in the closure of $T(G)$ in $B_{2}(L, G)$ such that the holomorphic mapping $\Phi(t): D \rightarrow T(G)$ converges to ϕ_{0} uniformly as t tends to t_{0} through any cusped region at t_{0} in D. The homotopic monodromy $M_{\gamma_{0}}$ is of finite order if and only if $\phi_{0} \in T(G)$, and is of infinite order if and only if $\phi_{0} \in \partial T(G)$, where $\partial T(G)$ is the boundary of $T(G)$ in $B_{2}(L, G)$. In the latter case, the boundary group $G_{\phi_{0}}$ correspending to $\phi_{0} \in \partial T(G)$ is a regular b-group.
2. Proof of Theorem 1. Assume that there exists a biholomorphic mapping $F: \widetilde{X} \rightarrow B_{2}$. Let p_{0} be a puncture of R and let t_{0} be a parabolic fixed point with $\rho\left(t_{0}\right)=p_{0}$. By the above Theorem, there is an element ϕ_{0} of the closure of $T(G)$ such that holomorphic mapping $\Phi(t)$ converges to ϕ_{0} uniformly as t tends to t_{0} through any cusped region Δ at t_{0} in D. Let $G_{\phi_{0}}$ be the Kleinian group corresponding to ϕ_{0}, which is a quasi-Fuchsian group or a regular b-group. Take a component Ω of $G_{\phi_{0}}$ which is not equal to the invariant component of $G_{\phi_{0}}$ corresponding to the lower half-plane L.

Let K be an arbitrary compact subset of Ω. Then $K \subset D_{t}=D_{\Phi(t)}$ for any $\Delta \in t$ sufficiently near t_{0}. Hence, by the diagonal method, we can take a sequence $\left\{t_{n}\right\}_{n=1}^{\infty}$ in Δ such that $t_{n} \rightarrow t_{0}$ as $n \rightarrow \infty$ and such that $F\left(t_{n}, w\right)=$ $\left(F_{1}\left(t_{n}, w\right), F_{2}\left(t_{n}, w\right)\right)$ converges tc a holomorphic mapping $f(w)=\left(f_{1}(w), f_{2}(w)\right)$: $\Omega \rightarrow \partial B_{2}$ uniformly on any compact subset of Ω as $n \rightarrow \infty$. Since

$$
\left|f_{1}(z)\right|^{2}+\left|f_{2}(z)\right|^{2}=1,
$$

we have

$$
\frac{\partial^{2}}{\partial z \partial \bar{z}}\left(\left|f_{1}(z)\right|^{2}+\left|f_{2}(z)\right|^{2}\right)=\left|\frac{\partial f_{1}}{\partial z}(z)\right|^{2}+\left|\frac{\partial f_{2}}{\partial z}(z)\right|^{2}=0
$$

which implies that $\frac{\partial f_{1}}{\partial z}=\frac{\partial f_{2}}{\partial z}=0$ on Ω. Hence $f=\left(f_{1}, f_{2}\right)$ is a constant mapping. We may assume that f is a constant mapping with the value $(1,0) \in \partial B_{2}$.

Denote by G_{Ω} the stabilizer of Ω in $G_{\phi_{0}}$. Let $G_{0}=\chi_{\phi_{0}}^{-1}\left(G_{\Omega}\right), g_{t}=\chi_{\Phi(t)}(g)$ for $g \in G, t \in D$, and $g_{t_{0}}=\chi_{\phi_{0}}(g)$ for $g \in G$. Set $A_{g}=F \circ(1, g) \circ F^{-1} \in \operatorname{Aut}\left(B_{2}\right)$ for each $g \in G$, where 1 is the identity element of Γ. Since $g_{t} \rightarrow g$ as $t \rightarrow t_{0}$ through Δ for all $g \in G$, and since $g_{t_{0}}(\Omega)=\Omega$ for all $g \in G_{0}$, the boundary point $(1,0)$ of B_{2} is a fixed point of A_{g} for all $g \in G_{0}$.

We set

$$
S=\left\{(u, v) \in \boldsymbol{C}^{2}\left|\operatorname{Im}(u)>|v|^{2}\right\}\right.
$$

where $\operatorname{Im}(u)$ is the imaginary part of u. This set S is a Siegel domain of the second kind. We put

$$
z_{1}=\frac{u-i}{u+i}, \quad z_{2}=\frac{2 v}{u+i}
$$

Then the mapping $T: S \rightarrow B_{2}$ sending (u, v) into $\left(z_{1}, z_{2}\right)$ is biholomorphic and it carries the boundary point $(\infty, 0)$ of S into the boundary point $(1,0)$ of B_{2}. It is known that an analytic automorphism $\Psi \in \operatorname{Aut}(S)$ of S has a fixed point $(\infty, 0)$ if and only if

$$
\Psi(u, v)=\left(|a|^{2} u+2 i a \bar{b} v+c+i|b|^{2}, a v+b\right),
$$

where a is a non-zero complex number, b is a complex number and c is a real number. (See Pyatetskii-Shapiro [8, Chap. 1, § 2, Thm. 1].)

Let $A_{g}^{*}=T^{-1} \circ A_{g} \circ T \in \operatorname{Aut}(S)$ for each $g \in G$. Then the point $(\infty, 0)$ is a fixed point of A_{g}^{*} for all $g \in G_{0}$. Hence,

$$
A_{g}^{*}(u, v)=\left(\left|a_{g}\right|^{2} u+2 i a_{g} \bar{b}_{g} v+c_{g}+i\left|b_{g}\right|^{2}, a_{g} v+b_{g}\right)
$$

for all $g \in G_{0}$.
i) If $\left|a_{g_{0}}\right| \neq 1$ for some $g_{0} \in G_{0}$, there exists an element $\Psi \in \operatorname{Aut}(S)$ with $\Psi(\infty, 0)=(\infty, 0)$ such that $\Psi \circ A_{8_{0}}^{*} \circ \Psi^{-1}(u, v)=\left(\left|a_{0}\right|^{2} u, a_{0} v\right)$, where a_{0} is a nonzero complex number with $\left|a_{0}\right| \neq 1$. Take an element $h \in G_{0}$ such that $g_{0} \circ h \neq$ $h \circ g_{0}$. We set

$$
\begin{aligned}
& U(u, v)=\Psi \circ A_{\delta_{0}}^{*} \circ \Psi^{-1}(u, v)=\left(\left|a_{0}\right|^{2} u, a_{0} v\right) \\
& V(u, v)=\Psi \circ A_{b}^{*} \circ \Psi^{-1}(u, v)=\left(|a|^{2} u+2 i a \bar{b} v+c+i|b|^{2}, a v+b\right) .
\end{aligned}
$$

Since $g_{0} \circ h \neq h \circ g_{0}$, we have $U \circ V \neq V \circ U$, which implies that $b \neq 0$ or $c \neq 0$. By direct computation, we have

$$
\begin{aligned}
& W_{n}(u, v)=V \circ U^{n} \circ V^{-1} \circ U^{-n}(u, v) \\
& =\left(u+2 i\left(1-\bar{a}_{0}^{n}\right) \vec{b} v+\left(1-\left|a_{0}\right|^{2 n}\right) c+2|b|^{2} \operatorname{Im}\left(a_{0}^{n}\right)+i\left|\left(1-a_{0}^{n}\right) b\right|^{2}, v+\left(1-a_{0}^{n}\right) b\right)
\end{aligned}
$$

for any integer n. Since $\left|a_{0}\right| \neq 1$, we have

$$
W_{n}(u, v) \rightarrow W(u, v)=\left(u+2 i \bar{b} v+c+i|b|^{2}, v+b\right)
$$

as $n \rightarrow \infty$ or $-\infty$, which implies that $\left(F^{-1} \circ T \circ \Psi^{-1}\right)^{-1} \circ \mathcal{G}_{\circ}\left(F^{-1} \circ T \circ \Psi^{-1}\right)$ is not discrete. Hence, \mathcal{G} is not discrete and we have a contradiction.
ii) If $\left|a_{g}\right|=1$ for all $g \in G_{0}$ and if $a_{g_{0}} \neq 1$ for some $g_{0} \in G_{0}$, there exists an element $\Psi \in \operatorname{Aut}(S)$ with $\Psi(\infty, 0)=(\infty, 0)$ such that $\Psi \circ A_{\delta_{0}}^{*} \circ \Psi^{-1}(u, v)=$ $\left(u+c_{0}, a_{0} v\right)$, where a_{0} is a complex number with $\left|a_{0}\right|=1$ and $a_{0} \neq 1$, and c_{0} is a real number. Take an element $h \in G_{0}$ such that $g_{0} \circ h \neq h \circ g_{0}$. We set

$$
\begin{aligned}
& U(u, v)=\Psi \circ A_{8_{0}}^{*} \circ \Psi^{-1}(u, v)=\left(u+c_{0}, a_{0} v\right), \\
& V(u, v)=\Psi \circ A_{h}^{*} \circ \Psi^{-1}(u, v)=\left(u+2 i a \bar{b} v+c+i|b|^{2}, a v+b\right),
\end{aligned}
$$

where a is a complex number with $|a|=1, b$ is a complex number, and c is a real number. Since $h \circ g_{0}^{n} \neq g_{0}^{n} \circ h$ for all integer n, we have $V \circ U^{n} \neq U^{n} \circ V$ which implies that $b \neq 0$ and $a_{0}^{n} \neq 1$. If we set $a_{0}=e^{i \pi \theta}$, then θ is an irrational number. By direct calculation, we have

$$
\begin{aligned}
& W_{n}(u, v)=V \circ U^{n} \circ V^{-1} \circ U^{-n}(u, v) \\
& =\left(u+2 i \bar{b}\left(1-\bar{a}_{0}^{n}\right) v+2|b|^{2} \operatorname{Im}\left(a_{0}^{n}\right)+i\left|b\left(1-a_{0}^{n}\right)\right|^{2}, v+b\left(1-a_{n}^{0}\right)\right)
\end{aligned}
$$

for any integer n. Since θ is an irrational number, there exists a sequence $\left\{n_{j}\right\}$ of integers such that $\left(a_{0}\right)^{n_{j} \rightarrow 1}$ as $j \rightarrow \infty$. Therefore, $W_{n_{j}}(u, v) \rightarrow W(u, v)=$ (u, v) as $j \rightarrow \infty$, which implies that $\left(F^{-1} \circ T \circ \Psi^{-1}\right)^{-1} \circ \mathcal{G} \circ\left(F^{-1} \circ T \circ \Psi^{-1}\right)$ is not discrete. Hence, \mathcal{G} is not discrete and we have a contradiction.
iii) If $a_{g}=1$ for all $g \in G_{0}$, we have

$$
A_{g}^{*}(u, v)=\left(u+2 i \bar{b}_{g} v+c_{g}+i\left|b_{g}\right|^{2}, v+b_{g}\right) .
$$

Therefore,

$$
A_{g}^{*} \circ A_{h}^{*} \circ\left(A_{g}^{*}\right)^{-1} \circ\left(A_{h}^{*}\right)^{-1}(u, v)=\left(u-4 \operatorname{Im}\left(\bar{b}_{g} b_{h}\right), v\right) .
$$

Hence, the commutator subgroup of the group $\left\{A_{g}^{*} \mid g \in G_{0}\right\}$ is commutative, which implies that the commutator subgroup $\left[G_{0}, G_{0}\right.$] of G_{0} is commutative. Hence we have a contradiction. This completes the proof of Theorem 1.

Now, let us assume that there exists a strongly pseudoconvex domain Ω in \boldsymbol{C}^{2} which is biholomorphically equivalent to \tilde{X}. Let $F: \tilde{X} \rightarrow \Omega$ be a biholomorphic mapping. Since $\mathcal{G}^{*}=F \circ \mathcal{G} \circ F^{-1}$ is an infinite subgroup of $\operatorname{Aut}(\Omega)$ and acts on Ω properly discontinuously, for any point ζ of Ω, there exists an infinite sequence $\left\{T_{n}\right\}$ of \mathcal{G}^{*} such that $T_{n}(\zeta)$ tends to a boundary point ζ_{0} of Ω
as $n \rightarrow \infty$. Therefore, the Proposition in Rosay [9] implies that Ω is biholomorphically equivalent to the unit ball B_{2}. Hence, we have a contradiction and this completes the proof of Corollary.
3. Proof of Theorem 2. If all the fibers S_{p} are conformally equivalent, then the mapping $\Phi: D \rightarrow T(G)$ is a constant mapping with a value $q_{0} \in T(G)$. By the relation $M_{\gamma} \circ \Phi=\Phi \circ \gamma$, the point q_{0} is a fixed point of all $M_{\gamma} \in \mathscr{M}$. Since the modular group $\operatorname{Mod}(G)$ of G acts on $T(G)$ properly discontinuously, the subgroup \mathscr{M} of $\operatorname{Mod}(G)$ also acts on $T(G)$ properly discontinuously. Hence, \mathscr{M} is a finite group.

Conversely, assume that \mathscr{M} is finite, and let Γ_{0} be the kernel of the monodromy map $\gamma \mapsto M_{\gamma}$. Then Γ_{0} has finite index in Γ, so $R_{0}=D / \Gamma_{0}$ is a Riemann surface of finite type. Since $\Phi \circ \gamma=\Phi$ for all γ in Γ_{0}, the holomorphic map $\Phi: D \rightarrow T(G)$ factors through R_{0}. Since $T(G)$ is bounded, every holomorphic map from R_{0} to $T(G)$ is constant, so Φ is a constant map. Hence, all the fibers S_{p} are conformally equivalent and this completes the proof of Theorem 2.
4. Proof of Theorem 3. Assume that there exists a biholomorphic mapping $F=\left(F_{1}, F_{2}\right): \tilde{X} \rightarrow D^{2}$. If we set $\mathcal{G}^{*}=F^{*}(\mathcal{G})=F \circ \mathcal{G} \circ F^{-1}$, then \mathcal{G}^{*} is a properly discontinuous subgroup of the analytic automorphism group $\operatorname{Aut}\left(D^{2}\right)$.

We recall that any analytic automorphism of $D^{2}=\left(\left|z_{1}\right|<1\right) \times\left(\left|z_{2}\right|<1\right)$ is either one of the following two types:

$$
\begin{align*}
& (A, B)\left(z_{1}, z_{2}\right)=\left(A\left(z_{1}\right), B\left(z_{2}\right)\right) \tag{I}\\
& (A, B)\left(z_{1}, z_{2}\right)=\left(A\left(z_{2}\right), B\left(z_{1}\right)\right) \tag{II}
\end{align*}
$$

where $A, B \in \operatorname{Aut}(D)$. (See Narasimhan [7, Chap. 5, Prop. 3].) Note that $(A, B)^{2}$ is of type (I) for all $(A, B) \in \operatorname{Aut}\left(D^{2}\right)$.

We also recall the following results, which will be used frequently in this section. (See Lehner [6, Chap. 2, §9, Thm. 1 and Thm. 2, and Chap. 3, Thm. 2E].)

Two Möbius transformations are commutative if and only if they have the same set of fixed points provided that neither is the identity and provided that neither is a transformation of order two.

Let A be a hyperbolic or loxodromic transformation and let B be a Möbius transformation which has one and only one fixed point in common with A. Then the sequence $\left\{B \circ A^{n} \circ B^{-1} \circ A^{-n}\right\}$ of Möbius transformations converges to a Möbius transformation as $n \rightarrow \infty$ or $-\infty$.

By these results, we have the following assertion.
Let A, B be two Möbius transformations of infinite order with $A \circ B \neq$ $B \circ A$ such that they have a common fixed point. Then the group generated
by A, B is not discrete.
Let p_{0} be a puncture of R, t_{0} be a parabolic fixed point with $\rho\left(t_{0}\right)=p_{0}$ and let γ_{0} be a generator of the stabilizer of t_{0} in Γ. Then Theorem of $\S 1 \mathrm{im}$ plies that there exists an element ϕ_{0} in the closure of $T(G)$ in $B_{2}(L, G)$ such that the mapping $\Phi(t): D \rightarrow T(G)$ converges to ϕ_{0} uniformly as $t \rightarrow t_{0}$ through any cusped region Δ at t_{0} in D and such that the Kleinian group $G_{\phi_{0}}$ corresponding to ϕ_{0} is a quasi-Fuchsian group or a regular b-group. Let $D_{0}=$ $\Omega\left(G_{\phi_{0}}\right)-\Delta\left(G_{\phi_{0}}\right)$, where $\Omega\left(G_{\phi_{0}}\right)$ is the region of discontinuity of $G_{\phi_{0}}$ and $\Delta\left(G_{\phi_{0}}\right)$ is the invariant component of $G_{\phi_{0}}$ corresponding to the lower half-plane L. Then the quotient space

$$
S_{0}=\left(D_{0} \cup\left\{\text { accidental parabolic fixed points of } G_{\phi_{0}}\right\}\right) / G_{\phi_{0}}
$$

is a Riemann surface of type (g, n) with or without nodes. Let $\left\{p_{1}, \cdots, p_{k}\right\}$ be the set of nodes of S_{0}, which may be empty. If $\pi_{0}: U \rightarrow S=U / G$ is the canonical projection and if $\alpha: S \rightarrow S_{0}$ is the deformation as in $\S 3$ of [4], then there exists a family $\left\{W_{t}\right\}_{t \in \Delta}$ of quasiconformal automorphisms on $\hat{\boldsymbol{C}}$ such that W_{t} is conformal on L and has a Schwarzian derivative $\Phi(t)$ for all $t \in \Delta$ and such that W_{t} converges uniformly on any compact subset of $U_{0}=U$ -$\pi_{0}^{-1} \circ \alpha^{-1}\left(\left\{p_{1}, \cdots, p_{k}\right\}\right)$ to a locally quasiconformal mapping $W_{0}: U_{0} \rightarrow D_{0}$ as $t \rightarrow t_{0}$ through Δ. (See § 4 in [4].) Then the locally quasiconformal mapping W_{0} induces the above deformation $\alpha: S \rightarrow S_{0}$.

Figure 1

Let $\Sigma_{1}^{0}, \cdots, \Sigma_{r}^{0}$ be the parts of S_{0}, that is, the connected components of $S_{0}-\left\{p_{1}, \cdots, p_{k}\right\}$ and let $\Sigma_{i}=\alpha^{-1}\left(\Sigma_{i}^{0}\right)$ for each $i=1, \cdots, r$. Take a sufficiently small neighborhood $\delta_{j}=\left\{\left(z_{1}, z_{2}\right) \in \boldsymbol{C}^{2}\left|z_{1} z_{2}=0,\left|z_{1}\right|<\varepsilon\right.\right.$ and $\left.| z_{2} \mid<\varepsilon\right\}$ of a node p_{j} in S_{0} for each $j=1, \cdots, k$ and set $\delta_{0}=\delta_{1} \cup \cdots \cup \delta_{k}$. If we set $C_{j}^{\prime}=\alpha^{-1}\left(\left(\left|z_{1}\right|\right.\right.$ $\left.=\varepsilon) \times\left(z_{2}=0\right)\right)$ and $C_{j}^{\prime \prime}=\alpha^{-1}\left(\left(z_{1}=0\right) \times\left(\left|z_{2}\right|=\varepsilon\right)\right)$ for each $j=1, \cdots, k$, then the domain bounded by C_{j}^{\prime} and $C_{j}^{\prime \prime}$ is an annulus on S. Let Σ_{i}^{\prime} be the connected component of $S-\alpha^{-1}\left(\delta_{0}\right)$ contained in Σ_{i} for each $i=1, \cdots, r$. Then Σ_{i}^{\prime} is homeomorphic to Σ_{i}. (See Figure 1.)

Take a point q_{0} on S, which is fixed as a base point. Let (C, q) be a pair of a point q on S and a path C from q_{0} to q on S. A pair $\left(C_{1}, q_{1}\right)$ is equivalent to a pair $\left(C_{2}, q_{2}\right)$ if and only if $q_{1}=q_{2}$ and $C_{1} \circ C_{2}^{-1}$ is homotopic to the point q_{0}. Then we can identify the universal covering space U of S with the set of all these equivalence classes $[C, q]$ and the covering transformation group of the universal covering $\pi_{0}: U \rightarrow S$ is identified with the fundamental group $\pi_{1}\left(S, q_{0}\right)$ of S with a base point q_{0}, that is,

$$
G=\left\{\left[C_{0}\right]_{*} \mid\left[C_{0}\right] \in \pi_{1}\left(S, q_{0}\right)\right\}
$$

where $\left[C_{0}\right]_{*}$ is a covering transformation sending $[C, q]$ into $\left[C_{0} \circ C, q\right]$ for $[C, q] \in U$. Suppose that $q_{0} \in C_{1}^{\prime}$ throughout this section and set

$$
\begin{aligned}
& G_{1}=\left\{\left[C_{0}\right]_{*} \mid C_{0} \in \pi_{1}\left(\Sigma_{1}, q_{0}\right)\right\}, \\
& U_{1}=\left\{[C, q] \mid q \in \Sigma_{1} \text { and } C \text { is a path from } q_{0} \text { to } q \text { on } \Sigma_{1}\right\} .
\end{aligned}
$$

Then U_{1} is a connected component of $\pi_{0}^{-1}\left(\Sigma_{1}\right)$, which is invariant under G_{1}. Since Σ_{1}^{\prime} is homeomorphic to Σ_{1}, we have $G_{1}=\left\{\left[C_{0}\right]_{*} \mid C_{0} \in \pi_{1}\left(\Sigma_{1}^{\prime}, q_{0}\right)\right\}$. If we set $\Omega_{1}=W_{0}\left(U_{1}\right)$, then Ω_{1} is a component of $G_{\phi_{0}}$ and the isomorphism $\chi_{\phi_{0}}: G \rightarrow G_{\phi_{0}}$ induces an isomorphism $\chi_{\phi_{0}} \mid G_{1}: G_{1} \rightarrow G_{\Omega_{1}}$, where $G_{\Omega_{1}}$ is the stabilizer of Ω_{1} in $G_{\phi_{0}}$.

Let $\left(f_{\gamma_{0}}\right)_{*}$ be an element of the modular $\operatorname{group} \operatorname{Mod}(S)$ of the Teichmuller space $T(S)$ corresponding to the homotopic monodromy $M_{\gamma_{0}}=\left\langle\omega_{\gamma_{0}}\right\rangle \in \operatorname{Mod}(G)$ of γ_{0}. Since there exists a positive integer m such that $\left(f_{\gamma_{0}}\right)^{m}$ is homotopic to a product d of ν-th powers of Dhen twists on S about Jordan curves mapped by $\alpha: S \rightarrow S_{0}$ into nodes, we may assume that the quasiconformal automorphism ω_{1} of U with $\omega_{1} \circ G \circ \omega_{1}^{-1}=G$ and $\left\langle\omega_{1}\right\rangle=\left(M_{\gamma_{0}}\right)^{m}$ is induced by d. Since $d \mid \Sigma_{1}^{\prime}$ is the identity mapping, $\omega_{1} \mid U_{1}^{\prime}$ is also the identity mapping, where U_{1}^{\prime} is the connected component of $\pi_{0}^{-1}\left(\Sigma_{1}^{\prime}\right)$ which is contained in U_{1}. Note that U_{1}^{\prime} is invariant under G_{1}. Hence, we have $\omega_{1} \circ g \circ \omega_{1}^{-1}=g$ for all $g \in G_{1}$.

Set $(A, B)=F \circ\left(\gamma_{0}^{m}, 1\right) \circ F^{-1},\left(A_{g}, B_{g}\right)=F \circ(1, g) \circ F^{-1}$ for each $g \in G$, where 1 is the identity of Γ or G. We may assume that (A, B) is of type (I).

By the same reasoning as in $\S 2$, we can choose an infinite sequence $\left\{t_{n}\right\}_{n=1}^{\infty}$ of Δ such that $t_{n} \rightarrow t_{0}$ as $n \rightarrow \infty$ and such that $F\left(t_{n}, w\right)=\left(F_{1}\left(t_{n}, w\right), F_{2}\left(t_{n}, w\right)\right)$ converges to a holomorphic mapping $f(w)=\left(f_{3}(w), f_{2}(w)\right): \Omega_{1} \rightarrow \partial D^{2}$ uniformly on
any compact subset of Ω_{1} as $n \rightarrow \infty$. Since $\partial D^{2}=\left\{\left(\left|z_{1}\right|=1\right) \times\left(\left|z_{2}\right| \leqq 1\right)\right\} \cup$ $\left\{\left(\left|z_{1}\right| \leqq 1\right) \times\left(\left|z_{2}\right|=1\right)\right\}$, we have $\left|f_{1}(w)\right|=1$ or $\left|f_{2}(w)\right|=1$ for each $w \in \Omega_{1}$. Hence, $\left|f_{1}\right|=1$ or $\left|f_{2}\right|=1$ on a non-empty open subset of Ω_{1}, which implies that f_{1} or f_{2} is a constant function with a value in ∂D. So we suppose that f_{1} is a constant function with a value $c_{1} \in \partial D$. Now, we have the following lemma.

Lemma 1. The analytic automorphism $(A, B)=F \circ\left(\gamma_{0}^{m}, 1\right) \circ F^{-1}$ of D^{2} is equal to $(A, 1)$ and A is of infinite order. For each $g \in G_{1}$, the analytic automorphism $\left(A_{g}, B_{g}\right)=F \circ(1, g) \circ F^{-1}$ of D^{2} is of type (I) and B_{g} is of infinite order provided that $g \neq 1$. Moreover, the group $\mathcal{A}=\left\{A_{g} \mid g \in G_{1}\right\}$ is commutative.

Proof. Since $\omega_{1} \circ g \circ \omega_{1}^{-1}=g$ for each $g \in G_{1}$, the relation (1) of $\S 1$ implies that $(1, g) \circ\left(\gamma_{0}^{m}, 1\right)=\left(\gamma_{0}^{m}, 1\right) \circ(1, g)$ for each $g \in G_{1}$. Hence, we have $\left(A_{g}, B_{g}\right) \circ$ $(A, B)=(A, B) \circ\left(A_{g}, B_{g}\right)$ for each $g \in G_{1}$. If $\left(A_{g}, B_{g}\right), g \in G_{1}$, is of type (I), then $A_{g} \circ A=A \circ A_{g}$ and $B_{g} \circ B=B \circ B_{g}$. In general, denote by $\operatorname{Fix}(T)$ the set of fixed points in $\hat{\boldsymbol{C}}$ of an element $T \in \operatorname{Aut}(D)$. Then, if neither A nor A_{g} is the identity, we have $\operatorname{Fix}(A)=\operatorname{Fix}\left(A_{g}\right)$. Similarly, if neither B nor B_{g} is the identity, then $\operatorname{Fix}(B)=\operatorname{Fix}\left(B_{g}\right)$.

Assume that neither A nor B is the identity. Take two non-commutative elements $g_{0}, h_{0} \in G_{1}$ such that both $\left(A_{g_{0}}, B_{g_{0}}\right)$ and $\left(A_{h_{0}}, B_{h_{0}}\right)$ are of type (I). If at least one of $A_{g_{0}}, A_{k_{0}}$ is the identity, then clearly $A_{g_{0}}$ and $A_{k_{0}}$ are commutative. If $A_{g_{0}} \neq 1$ and $A_{h_{0}} \neq 1$, then $\operatorname{Fix}(A)=\operatorname{Fix}\left(A_{g_{0}}\right)=\operatorname{Fix}\left(A_{h_{0}}\right)$, which implies that $A_{g_{0}}$ and $A_{k_{0}}$ are commutative. Hence, in any case, $A_{g_{0}}$ and $A_{k_{0}}$ are commutatıve. Similarly, it is shown that $B_{g_{0}}$ and $B_{h_{0}}$ are commutative. Hence, $\left(A_{g_{0}}, B_{g_{0}}\right)$ and ($A_{h_{0}}, B_{h_{0}}$) are commutative and so are g_{0} and h_{0}. We have a contradiction. Therefore, at least one of A, B is equal to the identity. Since γ_{0} is of infinite order, either A or B is of infinite order. Hence, we have the two cases: (i) A is of infinite order and $B=1$, (ii) $A=1$ and B is of infinite order. Assume that $A=1$ and B is of infinite order. Then we have $A_{g_{0}} \circ A_{h_{0}} \neq$ $A_{h_{0}} \circ A_{g_{0}}, B_{g_{0}} \circ B_{h_{0}}=B_{h_{0}} \circ B_{g_{0}}$ and we have that $A_{g_{0}}$ and $A_{h_{0}}$ are of infinite order because no powers of g_{0} or h_{0} commute. Set $g_{0, t}=\chi_{\Phi(t)}\left(g_{0}\right)$ for each $t \in D$. Then $\left(1, g_{0}\right)(t, w)=\left(t, g_{0, t}(w)\right)$ for each $(t, w) \in \hat{X}$. The relation $F \circ\left(1, g_{0}\right)=$ $\left(A_{g_{0}}, B_{g_{0}}\right) \circ F$ implies that

$$
\begin{aligned}
& F_{1}\left(t, g_{0, t}(w)\right)=A_{g_{0}} \circ F_{1}(t, w), \\
& F_{2}\left(t, g_{0, t}(w)\right)=B_{g_{0}} \circ F_{2}(t, w)
\end{aligned}
$$

for each $(t, w) \in \tilde{X}$. Let $g_{0, t_{0}}=\chi_{\phi_{0}}\left(g_{0}\right)$. Since $F_{1}\left(t_{n}, w\right), F_{2}\left(t_{n}, w\right)$ and $g_{0, t_{n}}(w)$ converge uniformly on any compact subset of Ω_{1} to $f_{1}(w)=c_{1}, f_{2}(w)$ and $g_{0, t_{0}}(w)$, respectively, as $n \rightarrow \infty$ and since $g_{0, t_{0}}\left(\Omega_{1}\right)=\Omega_{1}$, we have $A_{g_{0}}\left(c_{1}\right)=c_{1}$ and $f_{2} \circ g_{0, t_{0}}$ $=B_{g_{0}} \circ f_{2}$. Similarly, we have $A_{h_{0}}\left(c_{1}\right)=c_{1}$ and $f_{2} \circ h_{0, t_{0}}=B_{h_{0}} \circ f_{2}$. Since $A_{g_{0}}$ and $A_{h_{0}}$ are two non-commutative Möbius transformations of infinite order with a common fixed point c_{1} and since $B_{g_{0}}$ and $B_{h_{0}}$ are commutative, the group
generated by $\left(A_{g_{0}}, B_{g_{0}}\right)$ and $\left(A_{h_{0}}, B_{h_{0}}\right)$ is not discrete. Hence, $F \circ \mathcal{G}_{\circ} F^{-1}$ is not discrete, which implies that \mathcal{G} is not discrete and we have a contradiction. Therefore, A is of infinite order and $B=1$. Moreover, it is shown that both $B_{g_{0}}$ and $B_{h_{0}}$ are of infinite order, $A_{g_{0}}$ and $A_{h_{0}}$ are commutative, and $B_{g_{0}}$ and $B_{h_{0}}$ are non-commutative.

Now, assume that $\left(A_{g}, B_{g}\right)$ is of type (II) for some $g \in G_{1}$. Then we have

$$
\begin{aligned}
& \left(A_{g}, B_{g}\right) \circ(A, 1)\left(z_{1}, z_{2}\right)=\left(A_{g}\left(z_{2}\right), B_{g} \circ A\left(z_{1}\right)\right), \\
& (A, 1) \circ\left(A_{g}, B_{g}\right)\left(z_{1}, z_{2}\right)=\left(A \circ A_{g}\left(z_{2}\right), B_{g}\left(z_{1}\right)\right) .
\end{aligned}
$$

Since $\left(A_{g}, B_{g}\right)$ commutes with $(A, 1)$, we have

$$
\left(A_{g}\left(z_{2}\right), B_{g} \circ A\left(z_{1}\right)\right)=\left(A \circ A_{g}\left(z_{2}\right), B_{g}\left(z_{1}\right)\right)
$$

for each point $\left(z_{1}, z_{2}\right)$ of D^{2}. Hence, $A=1$, which contradicts $A \neq 1$. Therefore, $\left(A_{g}, B_{g}\right)$ is of type (I) for all $g \in G_{1}$.

Since $(A, B)=(A, 1),\left(A_{g}, B_{g}\right)$ is of type (I) and $(A, 1)$ commutes with (A_{g}, B_{g}), we have that $A \circ A_{g}=A_{g} \circ A$ for all $g \in G_{1}$. Hence, the group $\mathcal{A}=$ $\left\{A_{g} \mid g \in G_{1}\right\}$ is commutative.

Moreover, B_{g} is of infinite order for all $g \neq 1$ of G_{1} by the same argument as the one that $A_{g_{0}}$ and $A_{h_{0}}$ are of infinite order. This completes the proof of Lemma 1.

Lemma 2. The yomotopic monodromy $M_{\gamma_{0}}$ of γ_{0} is of finite order.
Proof. We use the notations in the proof of Lemma 1. Assume that $M_{\gamma_{0}}$ is of infinite order. Then S_{0} is a Riemann surface of type (g, n) with nodes p_{1}, \cdots, p_{k}. Denote by C_{j} the Jordan curve $\alpha^{-1}\left(p_{j}\right)$ on S for each $j=1, \cdots, k$.
i) Assume that at least one of C_{1}, \cdots, C_{k}, say C_{1}, is a non-dividing cycle on S. Suppose that $q_{0} \in C_{1}^{\prime}=\alpha^{-1}\left(\left(\left|z_{1}\right|=\varepsilon\right) \times\left(z_{2}=0\right)\right)$ and take a closed path C_{0} starting at q_{0} on Σ_{1}. (See Figure 2.)

Figure 2.
Since the Dehn twist d inducing the homotopic monodromy $\left(M_{\gamma_{0}}\right)^{m}=$ $\left\langle\omega_{1}\right\rangle$ is the identity mapping on $S-\alpha^{-1}\left(\delta_{0}\right)$, we have $\left[d\left(C_{0}\right)\right]=\left[C_{1}^{\prime}\right]^{\nu}{ }^{\circ}\left[C_{0}\right]$ for
 $h_{0} \circ G_{1} \circ h_{0}^{-1}$. Then the relations $\left[d\left(C_{0}\right)\right]=\left[C_{1}^{\prime}\right]^{\nu} \circ \circ\left[C_{0}\right], d \circ \pi_{0}=\pi_{0} \circ \omega_{1}$ and $\omega_{1} \mid U_{1}=1$ imply that $\omega_{1} \circ h_{0}=g_{0} \circ h_{0}$ on U_{1}. Hence, we have $\omega_{1}=g_{0}$ on U_{2}. If we set $\omega_{2}=g_{0}^{-1} \circ \omega_{1}$, then $\omega_{2} \mid U_{2}=1,\left\langle\omega_{2}\right\rangle=\left\langle\omega_{1}\right\rangle$ in $\operatorname{Mod}(G)$ and $\omega_{2} \circ h \circ \omega_{2}^{-1}=h$ for all $h \in G_{2}$. Moreover, the quasiconformal mapping ω_{2} induces an analytic automorphism $\left(1, g_{0}\right)^{-1} \circ\left(\gamma_{0}^{m}, 1\right)$ of \tilde{X}. Hence, we have an element $\left(A_{g_{0}}^{-1} \circ A, B_{g_{0}}^{-1}\right) \in$ $F \circ G \circ F^{-1}$. Note that, by Lemma $1, B_{g_{0}}$ is of infinite order. By the same reasoning as in the proof of Lemma 1, the relation $\omega_{2} \circ h \circ \omega_{2}^{-1}=h$ for each $h \in G_{2}$ implies that $A_{g_{0}}^{-1} \circ A=1,\left(A_{h}, B_{h}\right)$ is of type (I) for all $h \in G_{2}$ and the group $\left\{B_{h} \mid h \in G_{2}\right\}$ is commutative.

If $\left(A_{h_{0}}, B_{h_{0}}\right)=F \circ\left(1, h_{0}\right) \circ F^{-1}$ is of type (I), then $\left\{B_{g} \mid g \in G_{1}\right\}$ and $\left\{B_{h} \mid h \in\right.$ $\left.G_{2}\right\}$ are conjugate by $B_{h_{0}}$. Since the group $\left\{B_{h} \mid h \in G_{2}\right\}$ is commutative, the group $\left\{B_{g} \mid g \in G_{1}\right\}$ is also commutative and we have a contradiction.

Now, suppose that $\left(A_{k_{0}}, B_{h_{0}}\right)$ is of type (II). We set $h_{1}=h_{0} \circ g_{1}$ and $U_{3}=$ $h_{1}^{2}\left(U_{1}\right)$ for each $g_{1} \in G_{1}$. The relations $\left[d\left(C_{0}\right)\right]=\left[C_{1}^{\prime}\right]^{\nu} \circ\left[C_{0}\right], d \circ \pi_{0}=\pi_{0} \circ \omega_{1}$ and $\omega_{1} \mid U=1$ imply that $\omega_{1}=g_{0} \circ h_{1} \circ g_{0} \circ h_{1}^{-1}$ on U_{3}. If we set $\omega_{3}=\left(h_{1} \circ g_{0}^{-1} \circ h_{1}^{-1} \circ g_{0}^{-1}\right) \circ \omega_{1}$, then we have $\omega_{3} \mid U_{3}=1,\left\langle\omega_{3}\right\rangle=\left\langle\omega_{1}\right\rangle$ and $\omega_{3} \circ h \circ \omega_{3}^{-1}=h$ for all $h \in h_{1}^{2} \circ G_{1} \circ h_{1}^{-2}$. The elemnt $\omega_{3} \in N(G)$ induces an analytic auotmorphism ($1, h_{1} \circ g_{0}^{-1} \circ h_{1}^{-1} \circ g_{0}^{-1}$)。 $\left(\gamma_{0}^{m}, 1\right)$ of \tilde{X} and we have an element $\left(X_{1}, Y_{1}\right) \in F \circ G \circ F^{-1}$, where $X_{1}=\left(A_{k_{0}} \circ B_{g_{1}}\right) \circ$ $B_{g_{0}}^{-1} \circ\left(A_{h_{0}} \circ B_{g_{1}}\right)^{-1}$ and $Y_{1}=B_{h_{0}} \circ A_{g_{0}}^{-1} \circ B_{h_{0}}^{-1} \circ B_{g_{0}}^{-1} . \quad$ Note that $\left(X_{1}, Y_{1}\right)$ is of type (I). By the same argument as the proof of Lemma 1, we see that $\left(X_{1}, Y_{1}\right)=\left(X_{1}, 1\right)$ with $X_{1} \neq 1$ or $\left(X_{1}, Y_{1}\right)=\left(1, Y_{1}\right)$ with $Y_{1} \neq 1$. Since $B_{g_{0}}$ is of infinite order, we have $X_{1} \neq 1$ and $Y_{1}=1$. We set $h_{2}=h_{0} \circ g_{1}^{2}$. The same reasoning as above implies that the element $\left(h_{2} \circ g_{0}^{-1} \circ h_{2}^{-1} \circ g_{0}^{-1}\right) \circ \omega_{1}$ of $N(G)$ induces an element $\left(X_{2}, 1\right)$ of $F \circ \mathcal{G}_{\circ} F^{-1}$, where $X_{2}=\left(A_{h_{0}} \circ B_{g_{1}}^{2}\right) \circ B_{g_{0}}^{-1} \circ\left(A_{h_{0}} \circ B_{g_{1}}^{2}\right)^{-1}$. Now, we can prove that $\mathcal{A}=\left\{A_{g} \mid g \in G_{1}\right\}$ is a discrete subgroup of $\operatorname{Aut}(D)$ as follows. Assume that \mathcal{A} is not discrete. Then there exists a sequence $\left\{A_{n}\right\}$ of distinct elements of \mathcal{A} such that $A_{n} \rightarrow 1$ as $n \rightarrow \infty$. Take an element $g_{1} \in G_{1}$ with $g_{0} \circ g_{1} \neq g_{1} \circ g_{0}$ and consider the sequences $\left\{\left(A_{n}, B_{n}\right) \circ\left(X_{1}, 1\right) \circ\left(A_{n}, B_{n}\right)^{-1}\right\}=\left\{\left(A_{n} \circ X_{1} \circ A_{n}^{-1}, 1\right)\right\}$ and $\left\{\left(A_{n}, B_{n}\right) \circ\left(X_{2}, 1\right) \circ\left(A_{n}, B_{n}\right)^{-1}\right\}=\left\{\left(A_{n} \circ X_{2} \circ A_{n}^{-1}, 1\right)\right\}$ in G. They converge to $\left(X_{1}, 1\right)$ and $\left(X_{2}, 1\right)$ respectively as $n \rightarrow \infty$. Therefore, the discreteness of \mathcal{G} implies that for any sufficiently large n, A_{n} commutes with X_{1} and X_{2}. Thus, $A_{n} \circ X_{1} \circ A_{n}^{-1}=X_{1}$ and $A_{n} \circ X_{2} \circ A_{n}^{-1}=X_{2}$ for any sufficiently large n, which implies that

$$
\begin{aligned}
& \operatorname{Fix}(A)=\operatorname{Fix}\left(A_{n}\right)=\left(A_{k_{0}} \circ B_{g_{1}}\right)\left(\operatorname{Fix}\left(B_{g_{0}}^{-1}\right)\right), \\
& \operatorname{Fix}(A)=\operatorname{Fix}\left(A_{n}\right)=\left(A_{k_{0}} \circ B_{g_{1}}^{2}\right)\left(\operatorname{Fix}\left(B_{B_{0}}^{-1}\right)\right) .
\end{aligned}
$$

Hence, we have $B_{g_{1}}\left(\operatorname{Fix}\left(B_{g_{0}}\right)\right)=\operatorname{Fix}\left(B_{g_{0}}\right)$, which implies that the group generated by $\left(A_{g_{0}}, B_{g_{0}}\right)$ and $\left(A_{g_{1}}, B_{g_{1}}\right)$ is not discrete and we have a contradiction. Therefore, \mathcal{A} is an Abelian discrete subgroup of $\operatorname{Aut}(D)$. Then \mathcal{A} is generated by an element $A_{g_{*}}$ for some $g_{*} \in G_{1}$ with $g_{*} \neq 1$. Take an element $g_{2} \in G_{1}$ with
$g_{*} \circ g_{2} \neq g_{2} \circ g_{*}$. Let $A_{g_{2}}=\left(A_{8 *}\right)^{n}$ for some integer n and let $g_{3}=g_{2} \circ g_{*}^{-n} \in G_{1}$. Then $g_{3} \neq 1$ and $F \circ\left(1, g_{3}\right) \circ F^{-1}=\left(A_{g_{3}}, B_{g_{3}}\right)=\left(1, B_{g_{3}}\right)$. Since $\left(A_{h_{1}}, B_{h_{1}}\right)$ is of type (II), we have $F \circ\left(1, h_{1} \circ g_{3} \circ h_{1}^{-1}\right) \circ F^{-1}=\left(A_{h_{1}} \circ B_{g_{3}} \circ A_{h_{1}}^{-1}, 1\right)$, which is of type (I). Therefore, $\left(A_{g_{3}}, B_{g_{3}}\right)$ and ($A_{h_{1}} \circ B_{g_{3}} \circ A \circ \circ_{h_{1}}^{-1}, 1$) are commutative, which implies that g_{3} and $h_{1} \circ g_{3} \circ h_{1}^{-1}$ are commutative. Since g_{3} and h_{1} are elements of the discrete subgroup G with no elliptic elements of $\operatorname{Aut}(U)$, it is shown that g_{3} and $h_{1}=h_{0} \circ g_{1}$ are commutative, where g_{1} is an arbitrary element of G_{1}. Take an element $g_{1} \in G_{1}$ with $g_{1} \circ h_{0} \neq h_{0} \circ g_{1}$. Since g_{3} and $h_{0} \circ g_{1}$ are commutative and g_{3} and $h_{0} \circ g_{1}^{2}$ are also commutative, we have that $h_{0} \circ g_{1}$ and $h_{0} \circ g_{1}^{2}$ are commutative. Hence, h_{0} and g_{1} are commutative and we have a contradiction.
ii) Assume that all the Jordan curves C_{1}, \cdots, C_{k} are dividing cycles on S. Take two connected components Σ_{1} and Σ_{2} of $S-\alpha^{-1}\left(\left\{p_{1}, \cdots, p_{k}\right\}\right)$ which have the common boundary curve C_{1}. Let $q_{0} \in C_{1}^{\prime}, q_{0}^{\prime} \in C_{1}^{\prime \prime}$ and let L be a simple path from q_{0} to q_{0}^{\prime} on the annulus bounded by C_{1}^{\prime} and $C_{1}^{\prime \prime}$. (See Figure 3.)

Figure 3.
Now, we set

$$
\begin{aligned}
& U_{1}=\left\{[C, q] \mid q \in \Sigma_{1} \text { and } C \text { is a path from } q_{0} \text { to } q \text { on } \Sigma_{1}\right\}, \\
& U_{2}=\left\{[L \circ C, q] \mid q \in \Sigma_{2} \text { and } C \text { is a path from } q_{0}^{\prime} \text { to } q \text { on } \Sigma_{2}\right\}, \\
& G_{1}=\left\{[C]_{*} \mid[C] \in \pi_{1}\left(\Sigma_{1}, q_{0}\right)\right\}, \\
& G_{2}=\left\{\left[L_{\circ} C \circ L^{-1}\right]_{*} \mid[C] \in \pi_{1}\left(\Sigma_{2}, q_{1}^{\prime}\right)\right\} .
\end{aligned}
$$

Then U_{1} and U_{2} are invariant under G_{1} and G_{2}, respectively. Since the Dehn twist d inducing the homotopic monodromy $\left(M_{\gamma_{0}}\right)^{m}=\left\langle\omega_{1}\right\rangle$ is the identity on $S-\alpha^{-1}\left(\delta_{0}\right)$, it is shown that $d(L)$ is homotopic to $\left(C_{1}^{\prime}\right)^{\nu_{00}} L$ for some integer ν_{0}. Hence, if we set $\left.g_{0}=\left[C_{1}^{\prime}\right]\right]_{*}^{{ }^{0}} \in G_{1}$, then we have $\omega_{1}=g_{0}$ on U_{2} and $\omega_{1} \circ h \circ \omega_{1}^{-1}=$ $g_{0} \circ h \circ g_{0}^{-1}$ for all $h \in G_{2}$. Note that $g_{0} \in G_{1} \cap G_{2}$. If we set $\omega_{2}=g_{0}^{-1} \circ \omega_{1}$, then we have $\omega_{2} \mid U_{2}=1$ and $\omega_{2} \circ h \circ \omega_{2}^{-1}=h$ for all $h \in G_{2}$, and $\left\langle\omega_{2}\right\rangle=\left\langle\omega_{1}\right\rangle$ in $\operatorname{Mod}(G)$. Moreover, the quasiconformal mapping ω_{2} induces an analytic automorphism $\left(1, g_{0}\right)^{-1} \circ\left(\gamma_{0}^{m}, 1\right)$ of \tilde{X} and we have an element $\left(A_{g_{0}}^{-1} \circ A, B_{g_{0}}^{-1}\right) \in F \circ \mathcal{G}_{\circ} \circ F^{-1}$. Note that $B_{g_{0}}$ is of infinite order. By the same reasoning as in the proof of Lemma 1, the relation $\omega_{2} \circ h \circ \omega_{2}^{-1}=h$ for each $h \in G_{2}$ implies that $A_{g_{0}}^{-1} \circ A=1,\left(A_{h}, B_{h}\right)$ is of type (I) for each $h \in G_{2}, A_{h}$ is of infinite order for each $h \neq 1$ of G_{2} and
the group $\left\{B_{h} \mid h \in G_{2}\right\}$ is commutative. Take a closed path C_{0} starting at q_{0}^{\prime} on Σ_{2} and set $\widetilde{C}_{0}=L \circ C_{0} \circ L^{-1}$ and $h_{0}=\left[\widetilde{C}_{0}\right]_{*} \in G_{2}$. (See Figure 3.) Let $\widetilde{U}_{1}=$ $h_{0}\left(U_{1}\right), \tilde{G}_{1}=h_{0}{ }_{1} G_{1} \circ h_{0}^{-1}$ and $\tilde{\omega}_{1}=\left(g_{0} \circ h_{0} \circ g_{0}^{-1} \circ h_{0}^{-1}\right)^{-1} \circ \omega_{1}$. Since $\omega_{1}=g_{0} \circ h_{0} \circ g_{0}^{-1} \circ h_{0}^{-1}$ on \widetilde{U}_{1}, we have $\tilde{\omega}_{1} \mid \widetilde{U}_{1}=1, \tilde{\omega}_{1} \circ g \circ \tilde{\omega}_{1}^{-1}=g$ for all $g \in \widetilde{G}_{1}$, and $\left\langle\tilde{\omega}_{1}\right\rangle=\left\langle\omega_{1}\right\rangle$ in $\operatorname{Mod}(G)$. The quasiconformal mapping $\tilde{\omega}_{1}$ induces an analytic automorphism (1, $\left.g_{0} \circ h_{0} \circ g_{0}^{-1} \circ h_{0}^{-1}\right)^{-1} \circ\left(\gamma_{0}^{m}, 1\right)$ of \tilde{X} and we have an element $\Psi=\left(A_{h_{0}} \circ A_{g_{0}} \circ A_{h_{0}}^{-1} \circ\right.$ $\left.A_{g_{0}}^{-1} \circ A, B_{h_{0}} \circ B_{g_{0}} \circ B_{h_{0}}^{-1} \circ B_{g_{0}}^{-1}\right)$ of $F \circ \mathcal{G}_{\circ} F^{-1}$. Since $A_{g_{0}}^{-1} \circ A=1$ and since $B_{g_{0}}$ and $B_{h_{0}}$ are commutative, we have $\Psi=\left(A_{k_{0}} \circ A_{g_{0}} \circ A_{h_{0}}^{-1}, 1\right)$.

Now, assume that $\mathcal{A}=\left\{A_{g} \mid g \in G_{1}\right\}$ is not discrete. Then there exists a sequence $\left\{A_{n}\right\}$ of distinct elements of \mathcal{A} such that $A_{n} \rightarrow 1$ as $n \rightarrow \infty$. Thus the sequence $\left\{\left(A_{n}, B_{n}\right) \circ\left(A_{h_{0}} \circ A \circ A_{h_{0}}^{-1}, 1\right) \circ\left(A_{n}, B_{n}\right)^{-1}\right\}$ tends to $\left(A_{h_{0}} \circ A \circ A_{h_{0}}^{-1}, 1\right)$ as $n \rightarrow \infty$, which implies that $A_{n} \circ\left(A_{h_{0}} \circ A \circ A_{h_{0}}^{-1}\right) \circ A_{n}^{-1}=A_{h_{0}} \circ A \circ A_{h_{0}}^{-1}$, that is, A_{n} and $A_{k_{0}} \circ A \circ A_{h_{0}}^{-1}$ are commutative for any sufficiently large integer n. Hence, we have $\operatorname{Fix}(A)=\operatorname{Fix}\left(A_{n}\right)=A_{k_{0}}(\operatorname{Fix}(A))$, which implies that $A_{k_{0}}$ fixes every fixed point of A. By the same argument, we can take another element $h_{1} \in G_{2}$ with the same property as h_{0} and $h_{0} \circ h_{1} \neq h_{1} \circ h_{0}$. Since $B_{h_{0}}$ and $B_{h_{1}}$ are commutative, $A_{h_{0}}$ and $A_{h_{1}}$ are non-commutative. Hence, $A_{k_{0}}$ and $A_{h_{1}}$ are two non-commutative Möbius transformations of infinite order with a common fixed c_{0}, which implies that the group generated by $\left(A_{h_{0}}, B_{h_{0}}\right)$ and $\left(A_{h_{1}}, B_{h_{1}}\right)$ is not discrete and we have a contradiction. Therefore, \mathcal{A} is an Abelian discrete subgroup of $\operatorname{Aut}(D)$. Then \mathcal{A} is generated by an element $A_{g_{1}}$ for some $g_{1} \in G_{1}$ with $g_{1} \neq 1$. Take an element $g_{2} \in G_{1}$ with $g_{2} \circ g_{1} \neq g_{1} \circ g_{2}$. Let $A_{g_{2}}=\left(A_{g_{0}}\right)^{n}$ for some integer n and let $g_{3}=g_{2} \circ g_{1}^{-n} \in G_{1}$. Then $g_{3} \neq 1$ and $\left(A_{g_{3}}, B_{g_{3}}\right)=\left(1, B_{g_{2}}{ }^{\circ} B_{g_{1}}^{-n}\right)$. If we set $\tilde{g}=h_{0} \circ g_{3} \circ h_{0}^{-1}$, then we have $\left(A_{\tilde{g}}, B_{\tilde{g}}\right)=\left(1, B_{h_{0}} \circ B_{g_{3}} \circ B_{h_{0}}^{-1}\right)$. Then $(A, 1)$ and $\left(A_{\tilde{g}}, B_{\tilde{g}}\right)$ are commutative and so are $\left(\gamma_{0}^{m}, 1\right)$ and $(1, \tilde{g})$. Then, by the relation (1) of §1, we have $\omega_{1} \circ \tilde{g} \circ \omega_{1}^{-1}=\tilde{g}$. Since $\omega_{1} \circ h_{0} \circ \omega_{1}^{-1}=g_{0} \circ h_{0} \circ g_{0}^{-1}$ and $\omega_{1} \circ g_{3} \circ \omega_{1}^{-1}=g_{3}$, we have $g_{3} \circ\left(g_{0} \circ h_{0}^{-1} \circ g_{0}^{-1} \circ h_{0}\right)=\left(g_{0} \circ h_{0}^{-1} \circ g_{0}^{-1} \circ h_{0}\right) \circ g_{3}$. Similarly, it can be pıoved that g_{3} and $h_{n}=g_{0} \circ h_{0}^{-n} \circ g_{0}^{-1} \circ h_{0}^{n}$ are commutative for any integer n, which implies that $\operatorname{Fix}\left(g_{3}\right)=\operatorname{Fix}\left(h_{n}\right)$ for any non-zero integer n. This is impossible. In fact, by conjugation, we may assume that $h_{0}(z)=k^{2} z$ for some constant $k>1$ and $g_{0}(z)=(a z+b) /(c z+d)$ with $a d-b c=1$. Since G is discrete and since g_{0} and h_{0} are non-commutative, we have $g_{0}(0) \neq 0$ and $g_{0}(\infty) \neq \infty$, which implies that $b \neq 0$ and $\iota \neq 0$. By direct computation, we have

$$
\left(h_{n} z\right)=\frac{\left(a d-k^{2 n} b c\right) z+\left(1-k^{-2 n}\right) a b}{\left(1-k^{2 n}\right) c d z+a d-k^{-2 n} b c} .
$$

If $a=0$, then the relation $a d-b c=1$ implies that $b c=-1$ and we have

$$
h_{n}(z)=\frac{k^{2 n} z}{\left(1-k^{2 n}\right) c d z+k^{-2 n}}
$$

Since both h_{0} and h_{n} are Möbius transformations of infinite order with a common fixed point $z=0$ and since G is discrete, we have $\operatorname{Fix}\left(h_{0}\right)=\operatorname{Fix}\left(h_{n}\right)$, that
is, $h_{n}(\infty)=\infty$. Hence, we have $\left(1-k^{2 n}\right) c d=0$. Since $k>1$ and $c \neq 0$, we have $d=0$ and $\operatorname{tr}^{2}\left(g_{0}\right)=0$. Hence, g_{0} is an elliptic element and we have a contradiction. Therefore, we have $a \neq 0$. Similarly, it can be shown that $b \neq 0, c \neq 0$ and $d \neq 0$.

Now, by direct computation, the fixed points z_{n} of h_{n} are given by the formula

$$
z_{n}=\frac{\left(k^{-2 n}-k^{2 n}\right) b c \pm\left\{\left(2 a d-\left(k^{2 n}+k^{-2 n}\right) b c\right)^{2}-4\right\}^{1 / 2}}{2\left(1-k^{2 n}\right) c d}
$$

Then the two fixed points go to 0 and b / d as $n \rightarrow+\infty$ and they go to ∞ and a / c as $n \rightarrow-\infty$. On the other hand, since $\operatorname{Fix}\left(g_{3}\right)=\operatorname{Fix}\left(h_{n}\right)$ for any non-zero integer n, we have a contradiction. This completes the proof of Lemma 2.

Lemma 3. If \tilde{X} is biholomorphic to the polydisc D^{2} and the homotopic monodromy $M_{\gamma_{0}}$ of γ_{0} is of finite order, then the homotopic monodromy group \mathscr{M} of (X, π, R) is a finite group.

Proof. Let $M_{\gamma_{0}}=\left\langle\omega_{\gamma_{0}}\right\rangle$ for some $\omega_{\gamma_{0}} \in N(G)$. Since $\left(M_{\gamma_{0}}\right)^{m}=1$ for some integer m, we may assume that $\left\langle\left(\omega_{\gamma_{0}}\right)^{m}\right\rangle$ is represented by the identity mapping on the upper half-plane U.

We use the notations in the proof of Lemma 1. By Lemma 1, we may assume that $F \circ\left(\gamma_{0}^{m}, 1\right) \circ F^{-1}$ is equal to $(A, 1)$ and is of type (I). Take an element $\delta \in \Gamma$ with $\gamma_{0} \circ \delta \neq \delta \circ \gamma_{0}$. Set $F \circ(\delta, 1) \circ F^{-1}=(X, Y)$. We may assume that (X, Y) is of type (I) and we have $F \circ\left(\delta \circ \gamma_{0}^{m} \circ \delta^{-1}, 1\right) \circ F^{-1}=\left(X \circ A \circ X^{-1}, 1\right)$. If X is of finite order, then $\left(X^{n} \circ A \circ X^{-n}, 1\right)=(A, 1)$ for some integer n. Hence, we have $\left(\gamma_{0}^{m}, 1\right)=\left(\delta^{n} \circ \gamma_{0}^{m} \circ \delta^{-n}, 1\right)$, which implies that $\gamma_{0}^{m}=\delta^{n} \circ \gamma_{0}^{m} \circ \delta^{-n}$. Hence, γ_{0} and δ are commutative and we have a contradiction. Therefore, X is of infinite order. Similarly, it is shown that A and X are non-commutative. Since $\left(\omega_{\gamma_{0}}\right)^{m}=1$, we have $\omega_{\delta \circ \gamma_{0}^{m} \circ \delta_{-1}}=1$ and the relation (1) of $\S 1$ implies that $\left(\delta \circ \gamma_{0}^{m} \circ \delta^{-1}, 1\right)$ and $(1, g)$ are commutative. Hence, we have $\left(X \circ A \circ X^{-1} \circ A_{g}, B_{g}\right)$ $=\left(A_{g} \circ X \circ A \circ X^{-1}, B_{g}\right)$, that is, $\left(X \circ A \circ X^{-1}\right) \circ A_{g}=A_{g} \circ\left(X \circ A \circ X^{-1}\right)$ for all $g \in G$. Assume that $A_{g} \neq 1$ for some $g \in G$ with $g \neq 1$. Since $\operatorname{Fix}(A)=\operatorname{Fix}\left(A_{g}\right)=$ $\operatorname{Fix}\left(X \circ A \circ X^{-1}\right)=X(\operatorname{Fix}(A)), A$ and X have a common fixed point. Hence, A and X are non-commutative Möbius transformations of infinite order with a common fixed point, which implies that the group generated by $(A, 1)$ and (X, Y) is not discrete. Therefore, we have a contradiction. Hence, $A_{g}=1$ for all $g \in G$. Then we have the relations $F_{1} \circ(1, g)=F_{1}, F_{2} \circ(1, g)=B_{g} \circ F_{2}$ and $g_{t} \circ E_{2}=E_{2} \circ B_{g}$ for each $g \in G$, where $F=\left(F_{1}, F_{2}\right)$ is the above biholomorphic mapping, $E=\left(E_{1}, E_{2}\right)=F^{-1}$ and $g_{t}=\chi_{\Phi(t)}(g)$ for each $t \in D$. The relation $F_{1} \circ(1, g)=F_{1}$ for all $g \in G$ implies that F_{1} is a bounded holomorphic automorphic function on $D_{\Phi(t)}$ for $G_{\Phi(t)}$ for each $t \in D$. Since $D_{\Phi(t)} / G_{\Phi(t)}$ is of finite type, the function F_{1} is a constant function with a value $c_{t} \in D$ on $D_{\Phi(t)}$ for
each $t \in D$. Set $D(t)=\left(z_{1}=c_{t}\right) \times\left(\left|z_{2}\right|<1\right)$ for each $t \in D$. Then F_{2} induces an injective holomorphic function $\left(F_{2}\right)_{t}: D_{\Phi(t)} \rightarrow D(t)$ for each $t \in D$. Moreover, E_{1} is a constant function with a value t on $D(t)$ and E_{2} induces an injective holomorphic function $\left(E_{2}\right)_{t}: D(t) \rightarrow D_{\Phi(t)}$ for each $t \in D$. Since $E \circ F=1_{\tilde{X}}$ and $F \circ E=1_{D^{2}}$, we have $\left(E_{2}\right)_{t} \circ\left(F_{2}\right)_{t}=1_{D_{\Phi(t)}}$ and $\left(F_{2}\right)_{t} \circ\left(E_{2}\right)_{t}=1_{D(t)}$. Hence, $\left(F_{2}\right)_{t}$: $D_{\Phi(t)} \rightarrow D(t)$ is conformal and it induces a conformal mapping of $D_{\Phi(t)} / G_{\Phi(t)}$ onto $D(t) \mid \mathscr{B}$ for each $t \in D$, where $\mathscr{B}=\left\{B_{g} \mid g \in G\right\}$ is a finitely generated Fuchsian group with no elliptic elements. Since all the Riemann surfaces $D(t) / \mathscr{B}$, $t \in D$, are conformally equivalent, all the fibers $S_{p}, p \in R$, are also conformally equivalent. Hence, Theorem 2 implies that the homotopic monodromy group \mathscr{M} of (X, π, R) is a finite group. This completes the proof of Lemma 3.

Now, we can prove Theorem 3. If the homotopic monodromy group \mathcal{M} of (X, π, R) is a finite group, then Theorem 2 implies that the mapping $\Phi: D \rightarrow T(G)$ is a constant mapping with a value ϕ_{0}. Hence, the universal covering space \tilde{X} of X is equal to $D \times D_{\phi_{0}}$, which is biholomorphic to the polydisc D^{2}.

Conversely, if \tilde{X} is biholomorphic to D^{2}, then Lemmas 2 and 3 imply that \mathcal{M} is a finite group. This completes the proof of Theorem 3.
5. Proof of Theorem 4. If \tilde{X} is biholomorphic to the polydisc D^{2}, then it is clear that $\operatorname{Aut}(\tilde{X})$ is not discrete. Conversely, assume that $\operatorname{Aut}(\tilde{X})$ is not discrete. Since the fibers of (X, π, R) are compact, Theorem 3 in Shabat [10] implies that $\operatorname{Aut}(\tilde{X})$ is transitive. Hence, by E. Cartan's Theorem, the homogeneous bounded domain \tilde{X} in \boldsymbol{C}^{2} is biholomorphic to the unit ball B_{2} or the polydisc D^{2}. By Theorem 1, \tilde{X} is not biholomorphic to B_{2}. Therefore, \tilde{X} is biholomorphic to D^{2}. This completes the proof of Theorem 4.
6. Examples and problems. We give the following typical examples of (X, π, R).

Example 1. Let S be a Riemann surface of finite type (g, n) with $2 g$ $2+\boldsymbol{n}>0$ and let R be an open Riemann surface of finite type whose universal covering space is the upper half-plane. Let $X=R \times S$ and let π be the canonical projection of X onto R. Then (X, π, R) is a holomorphic family of Riemann surfaces of type (g, n) over R. All the fibers are conformally equivalent to S and the homotopic monodromy group \mathscr{M} is tivivial. It is clear that the universal covering space \tilde{X} of X is biholomorphic to the polydisc D^{2}. Theorem 1 implies that \tilde{X} is not biholomorphic to the unit ball B_{2}. Hence, Theorem 1 is a generalization of the famous theorem due to Poincaré which asserts that the polydisc D^{2} is not biholomorphic to the unit ball B_{2}.

Example 2. We set

$$
\begin{aligned}
& R=C-\{0,1\} \\
& X=\left\{(x, y, t) \mid y^{2}=x^{3}+t,(x, y) \in C^{2}, t \in R\right\}
\end{aligned}
$$

Let $\pi: X \rightarrow R$ be the canonical projection. Then (X, π, R) is a holomorphic family of Riemann surfaces of type $(1,1)$ over R and its homotopic monodromy group \mathscr{M} is a finite cyclic group. All the fibers S_{t} are conformally equivalent and the universal covering space \tilde{X} of X is biholomorphic to the polydisc D^{2}.

Example 3. We set

$$
\begin{aligned}
& R=C-\{0,1,2,3\} \\
& X=\left\{(x, y, z, t) \in P_{2}(C) \times R \mid y^{2} z^{3}=x(x-z t)(x-z)(x-2 z)(x-3 z)\right\}
\end{aligned}
$$

where $P_{2}(\boldsymbol{C})$ is the two-dimensional complex projective space and (x, y, z) are the homogeneous coordinates of $P_{2}(\boldsymbol{C})$. Let $\pi: X \rightarrow R$ be the canonical projection. Then (X, π, R) is a holomrophic family of Riemann surfaces of type $(2,0)$ and its homotopic monodromy group \mathcal{M} is an infinite group. All the fibers $S_{t}, t \in R$, are not confomally equivalent. Theorems 1 and 2 imply that the universal covering space \tilde{X} of X is not biholomorphic to B_{2} or D^{2}. Moreover, Theorem 4 implies that $\operatorname{Aut}(\tilde{X})$ is a discrete group.

Let (X, π, R) be a holomorphic family of Riemann surfaces of type (g, n) with $2 g-2+n>0$. Let us give the following problems.

Problem 1. Let R be a closed Riemann surface of genus $g_{0}>1$. Then prove that the universal covering space \tilde{X} of X is not biholomorphic to the unit ball B_{2}. (cf. Shabat [10].)

Problem 2. Let X be a Stein manifuld. Then prove that the universal covering space \tilde{X} of X is biholomorphic to the polydisc D^{2} if and only if $\operatorname{Aut}(\tilde{X})$ is not a discrete group. (cf. Shabat [10].)

Problem 3. When $\operatorname{Aut}(\tilde{X})$ is a discrete group, can we write down all the elements of $\operatorname{Aut}(\tilde{X})$? Note that the covering transformation group \mathcal{G} of $\Pi: \widetilde{X} \rightarrow X$ is a subgroup of $\operatorname{Aut}(\tilde{X})$ and its elements are known as in $\S 1$.

References

[1] L. Bers: On Hilbert's 22nd problem, Proc. Sympos. Pure. Math. 28 (1976), 559-609.
[2] P.A. Griffiths: Complex analytic properties of certain Zariski open sets on algebraic varieties, Ann. of Math. 94 (1971), 21-55.
[3] Y. Imayoshi: Holomorphic families of Riemann surfaces and Teichmüller spaces, in "Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference" edited by I. Kra and B. Maskit, Ann. of Math. Studies 97, Princeton Univ. Press, (1981), 277-300.
[4] Y. Imayoshi: Holomorphic families of Riemann surfaces and Teichmilller spaces II, Applications to uniformization of algebraic surfaces and compactification of two-dimensional Stein manifolds, Tôhoku Math. J. 31 (1979), 469-489.
[5] Y. Imayoshi: Holomorphic families of Riemann surfaces and Teichmiiller spaces III, Bimeromorphic embedding of algebraic surfaces into projective spaces by automorphic forms, Tôhoku Math. J. 33 (1981), 227-247.
[6] J. Lehner: Discontinuous groups and automorphic functions, American Mathematical Society, Rohde Island, 1964.
[7] R. Narasimhan: Several complex variables, University of Chicago Press, Chicago, 1971.
[8] I.I. Pyatetskii-Shapiro: Automorphic functions and the geometry of classical domains, Gordon and Breach Science Publishers, New York, 1969.
[9] J.P. Rosay: Sur une caractérisation de la boule parmi les domaines de \boldsymbol{C}^{n} par son groupe d'automorphismes, Ann. Inst. Fourier 29 (1979), 91-97.
[10] G.B. Shabat: The complex structure of domains covering algebraic surfaces, Functional Anal. Appl. 11 (1976), 135-142.

Department of Mathematics
College of General Education
Osaka University
Toyonaka, Osaka 560
Japan
Current address:
Department of Mathematics
White Hall
Cornell University
Ithaca, New York 14853
U.S.A.

