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Introduction. In this paper we investigate some function-theoretic
properties of universal covering spaces of certain quasi-projective algebraic

surfaces.

Let A be a two-dimensional complex manifold and let C be a one-dimen-
sional analytic subset of X or an empty set. Let R be a Riemann surface.
We assume that a proper holomorphic mapping π: X-+R satisfies the follow-

ing two conditions: (i) π is of maximal rank at every point of X, and (ii)

by setting X= X— C and π=π\X, the fiber Sp=π~\p) over each point p
of R is an non-singular irreducible analytic subset of X and is of fixed finite

type (g, n) with 2g—2-f-n>0 as a Riemann surface, where g is the genus of
Sp and n is the number of punctures of Sp. We call such a triple (X, π, R)
a holomorphic family of Riemann surfaces of type (,g n) over R. We also
say that X has a holomorphic fibration (X, π, R) of type (g, n).

We assume throughout this paper R is a non-compact Riemann surface
of finite type and its universal covering space is the unit disc Z>—(|ί|<l) in

the complex ί-plane.
P.A. Griffiths [2] got the following uniformization theorem of quasi-pro-

jective algebraic surfaces. Let X be a two-dimensional, irreducible, smooth,
quasi-projective algebraic varitey over the complex numbers. Then for every

point x in ,̂ there exists a Zariski neighborhood X of x in X such that X has
a holomorphic fibration (X, π, R) as above. Then the universal covering

space -X" of X is topolόgically a cell. Griffiths proved that X is biholomor-
phically equivalent to a bounded domain of holomorphy in C2 using the theory
of simultaneous uniformization of Riemann surfaces due to Bers. (cf. Bers

[1].) The function-theoretic properties of such interesting domains X are
little studied, (cf. Shabat [10].)

At the begining, in § 1, we recall some notations and results of [3], [4]
and [5] which will be used later. Let JM be the homotopic monodromy group

of (Xy 7Γ, R), which will be defined in § 1. Then we get the following theo-

rems in § 2, § 3, § 4 and § 5.
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Theorem 1. The universal covering space -X" of X is not bίholomorphically
equivalent to the two-dimensional unit ball J32=(|#|2+ |α;|2<l).

Corollary. The universal covering space X of X is not biholomorphically
equivalent to any two-dimensional strongly pseudoconvex domains.

Theorem 2. The homotopic monodromy group JM is a finite group if and
only if all the fibers Sp are conformally equivalent.

Theorem 3. The homotopic monodromy group <3& is a finite group if and
only if J£ is biholomorphically equivalent to the two-dimensional polydisc Z)2=

Theorem 4. // (X, π, R) is of type (g, 0) with g>l, then X is biholo-
morphic to the polydisc D2 if and only if the analytic automrophism group Aut(-X)
of X is not a discrete group.

In the last § 6, we give some examples of these quasi-projective algebraic
surfaces X and some related problems.

1. Preliminaries. We shall briefly explain some notations and results
in [3], [4] and [5] which will be used later.

Let G be a finitely generated Fuchsian group of the first kind with no
elliptic elements acting on the upper half-plane U such that the quotient space
S=U/G is a finite Riemann surface of type (g, n). Let Qn0ΐm(G) be the set
of all quasi-conformal automorphisms w of U leaving 0, 1, oo fixed and satis-
fying wGw~1c:SLf(2] R), where SL' (2; R) is the set of all real Mϋbius trans-

formations. Two elements wλ and w2 of ^normC^) are equivalent if zvl=w2

on the real axis R. The Teichmΐiller space T(G) of G is the set of all equiva-
lence classes [w] obtained by classifying Qnoτm(G) by the above equivalence

relation.
Let Wμ. be the element of Qnoτm(G) with a Beltrami coefficient μeL°°([7, G)x

Λ

and let W* be a quasiconformal automorphism of the Riemann sphere C such
that Wμ has the Beltrami coefficient μ on the upper half-plane C7, and is
conformal on the lower half-plane L, and

z-\-ι

as z tends to — /. This mapping Wμ is uniquely determined by [wμ] up to
the equivalence relation, that is, w^=w^ on R if and only if Wl*=W* on L. Let
φμ, be the Schwarzian derivative of Wμ. Then φμ is an element of the space
B2(L, G) of bounded holomorphic quadratic differentials for G on L. Bers
proved that the mapping sending [zvμ] into φμ is a biholomorphic mapping

of T(G) onto a holomorphically convex bounded domain of J52(L, G), which
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is denoted by the same notation T(G). The space B2(L, G) is a (3#— 3+n)-

dimensional complex vector space. We associate with each φ of B2(L, G)
a uniquely determined solution Wφ=zu]/zv2 of the Schwarzian differential equa-

tion on L

where πl and w2 are the solutions of the linear differential equation on L

2w"+φw = 0

normalized by the conditions w1=w2=l and w{ = w2=Q at z== — L The
homomorphism G->SLr (2, C) induced by φ, which carries g into g in such

a way that Wφ<>g= g°Wφ, is denoted by Xψ. Since each point φ of T(G) is
a Schwarzian derivative of some W* with μ^L°°(U, G)ly we have Wφ=Wμ on

L. Hence Wφ is conformal on L and has a quasiconformal extension of C
onto itself, which is denoted by the same notation. If we set Gφ='X,φ(G)=

WφoGoWφ1 and Dφ=Wφ(U), then Gφ is a quasi-Fuchsian group and the de-
finitions are legitimate since Dφ is the complement of the closure of Wφ(L)

and since Wφ \ L depends only on φ. The Koebe's one-quarter theorem
implies that Dφd( \w\ <2) for every φ of T(G).

Let (X, π, R) be a holomorphic family of Riemann surfaces of type (g, n)
with 2g — 2+/z>0 and let p: D—>R be the universal covering with the covering
transformation group Γ. Then there exists a holomorphic mapping Φ: Z)— >

T(G) such that the quotient space Dφω/Gφ(t) is conformally equivalent to SPω

for every ΐ^D. We abbreviate Gφ(,) to Gt and AD(/) to D,. We set

This set -X" is topologically equivalent to the two-dimensional polydisc D2.
Since Dtd( \w \ <2) for every ίeD, the set X is a bounded domain in C2. We

can also show that X is a domain of holomorphy. Let Ft be the conformal
mapping of Dt/Gt onto Sp(t) induced by Φ(t) for every t^D and let Π be the

holomorphic mapping of X onto X sending (ί, w) into Ft(w). Then Π: %-*X
is the universal covering of JC" constructed by Griffiths [2].

Let G be the covering transformation group of the universal covering
Π : Sj-^X. We can explicitly express the elements of Q as follows. For each

element γ^Γ, the homotopic monodromy MΊ of γ is the element of the
Teichmuller modular group Mod(G) of G with the property φoγ=Mγoφ.

The subgroup J^= {My|γeΓ} of Mod(G) is called the homotopic monodromy
group of (X, π, R). Denote by Λf(G) the set of all quasiconformal automor-

phisms ω of U with ω°Goω~l=G. Take an element ωγ of N(G) which induces
Mγ, that is, <ωv>=My. We may assume that ωv&δ=ωγoωδ for all γ,
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For each ίeZ), let [w^J be the point of T(G) with a Beltrami coefficient μt

corresponding to the holomorphic quadratic differential Φ(t) in B2(L, G).
For each g eG, we set w^t=\°wμt°(ωΊ°gyl^Qnoτm(G), where λ is a real
Mϋbius transformation. If we set

(7, g)(t, w) = (7(0, W\o(ω,og)o(W^-\w)) ,

then the mapping (7, #) is an analytic automorphism of -X'for all 7GΓ, g eG.
Now the covering transformation group Q is identical with the set ΓxG.
By definition, we have the relation

( 1 ) (7, g)o(8, h) = (<yoδ, ω^ogoωtoh)

for all 7, δ^Γ and £, AeG, that is, ^ is a semi-direct product of Γ by G.
It is noted that (7, £)=(δ, h) if and only if 7=8 and g=h.

Now, we have the following fundamental theorem. (See [3] and [4].)

Theorem. Let (X, πy R) be a holomorphic family of Rίemann surfaces
of type (gy n) with 2g—2-\-n>0. Take a puncture pQ of R. Let t0 be a para-
bolic fixed point with p(to)=p0 and let 70 be a generator of the stabilizer of tQ in
Γ. Then there exists an element φ0 in the closure of T(G) in B2(L, G) such that
the holomorphic mapping Φ(t): D-*T(G) converges to φ0 uniformly as t tends
to tQ through any cusped region at t0 in D. The homotopίc monodromy MyQ is
of finite order if and only if φQξΞT(G), and is of infinite order if and only if
φo^aΓ(G), where QT(G) is the boundary of T(G) in B2(L, G). In the latter
case, the boundary group Gφo correspcndίng to φQ^dT(G) is a regular b-group.

2. Proof of Theorem 1. Assume that there exists a biholomorphic
mapping F: J£->B2. Let p0 be a puncture of R and let t0 be a parabolic fixed

point with ρ(tQ)=p0. By the above Theorem, there is an element φ0 of the
closure of T(G) such that holomorphic mapping Φ(t) converges to φ0 uni-
formly as t tends to t0 through any cusped region Δ at t0 in D. Let Gφo be the
Kleinian group corresponding to φ0, which is a quasi-Fuchsian group or a
regular ft-group. Take a component Ω of Gφo which is not equal to the in-
variant component of Gφo corresponding to the lower half-plane L.

Let K be an arbitrary compact subset of Ω. Then K<Σ.Dt=DΦω for
any Δeί sufficiently near t0. Hence, by the diagonal method, we can take
a sequence {/Λ}Γ=ι in Δ such that tn->tQ as w->co and such that F(tn, w) =
(Fj(tn9 w), F2(tn, w)) converges to a holomorphic mapping f(w)=(fι(w), /2(«0):
Ω->9-B2 uniformly on any compact subset of Ω as w-> oo. Since

we have
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92

QzQz

which implies that -J^ = ̂ =0 on Ω. Hence f=(fιy /2) is a constant map-
Qz Qz

ping. We may assume that/ is a constant mapping with the value (1,
Denote by GQ the stabilizer of Ω in Gφo. Let GQ=X^(GQ)y gt=XΦω(g)

for £GΞG, fe=A and gto=X^(g) for 5eG. Set 4,=Fo(l, ^OJ^GΞ Aut(S2)
for each g^G, where 1 is the identity element of Γ. Since gt ->g as t -> t0

through Δ for all g^Gy and since gtQ(Ω)= Ω for all g^GQy the boundary point
(1, 0) of B2 is a fixed point of Ag for all g^G0.

We set

S= {(uyv)(ΞC2\Im(u)>\v\2}y

where Im(w) is the imaginary part of u. This set S is a Siegel domain of the
second kind. We put

x -"9 -

u-\-i u-\-i

Then the mapping T: S-*B2 sending (*/, v) into (zly %2) is biholomorphic and
it carries the boundary point (°°, 0) of S into the boundary point (1,0) of B2.
It is known that an analytic automorphism ΨeAut(S) of S has a fixed point
(°o, 0) if and only if

Ψ(uy v) = (\a\2u +2iabv+c+i\b\2

y av+b) ,

where a is a non-zero complex number, b is a complex number and c is a real
number. (See Pyatetskii-Shapiro [8, Chap. 1, §2, Thm. 1].)

Let ^*=Γ"1o^oΓeAut(*S) for each g^G. Then the point (oo, 0) is
a fixed point of A f for all g e G0. Hence,

A*(u, v) = (\ag\
2u+2iagbgv+cg+i\bg\

2

y agv+bg)

for
i) If \ago\ Φl for some g0^GQy there exists an element ΨeAut(S) with

ψ(oo, 0)=(°o, 0) such that Ψ°AfQoψ~l(u9 v)=(\a0\
2uy aϋv)y where a0 is a non-

zero complex number with \a0\ =t=l. Take an element h^G0 such that g0°fι^=
h°g0. We set

t/(ιι, v) - ψo^*oψ-i(ιι, v) - ( I α0 1 2 ιι, *0ϋ) ,

F(«, v) = ψoA$oψ-\Uy v) = (\a\2u+2iabv+c+i\b\2

y av+b) .

Since g0°h^h°g0y we have C7oFΦΓo?7, which implies that iΦO or £ΦO. By
direct computation, we have
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WΛ(u9 v) = V*U»°V-loU-n(u, v)

(l^^

for any integer n. Since \a0\ φ 1, we have

WΛ(u, v) -> W(u, v) = (u+2ibv+c+i\b\\ v+b)

asw-^oo or —oo, which implies that (F~1oΓ°Ψ~1)~1o.£o(JF-1oTIoψ-1) is not

discrete. Hence, Q is not discrete and we have a contradiction.
ii) If \ag\~\ for all g^G0 and if tf^0Φl for some g0^G0, there exists

an element ΨeAut(S) with Ψ(oo, 0)— (oo, 0) such that ψo^oψ-^n, v)=

(U+CQ, a0v), where a0 is a complex number with |#0|=1 and α 0Φl> and CQ is
a real number. Take an element h^GQ such that£0oAφλo£0. We set

U(u, v) = ψoA*Qoψ-\U) v) =

V(u, v) = ψoAfoψ-\u, v) = (u+2iabv+c+i \b\2, av+b) ,

where a is a complex number with \a\— 1, b is a complex number, and c is
a real number. Since hogl^gloh for all integer n, we have V°Un^pUnoV
which implies that έφO and αjφl. If we set a0=e^e

y then 0 is an irrational
number. By direct calculation, we have

Wn(u, v) = V°Un°V~l°U-n(u, v)

for any integer n. Since θ is an irrational number, there exists a sequence
{rij} of integeis such that (#0)

My->l asy~»oo. Therefore, Wnj(u,v)-^>W(u,v)=
(u, v) as y->oo, which implies that (F-1oToψ-1)'1oSo(F-loToψ'1) is not

discrete. Hence, Q is not discrete and we have a contradiction.
iii) If ag=\ for all g^G0, we have

A*(uy v) = (u+2ibgv+cg+i\bg\
2

y v+bg) .

Therefore,

A*oAΐo(A*)-lo(At)-l(u, v) = (ι/-

Hence, the commutator subgroup of the group {A%\g&G0} is commutative,
which implies that the commutator subgroup [G0, G0] of G0 is commutative.
Hence we have a contradiction. This completes the proof of Theorem 1.

Now, let us assume that there exists a strongly pseudoconvex domain Ω in
C2 which is biholomorphically equivalent to X. Let F: -3Γ-»Ω be a biholo-
morphic mapping. Since <2*—Fo£loF~1 is an infinite subgroup of Aut(Ω) and
acts on Ω properly discontinuously, for any point ζ of Ω, there exists an in-
finite sequence {Tn} of Q* such that Tn(ζ) tends to a boundary point ζQ of Ω
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as #->oo. Therefore, the Proposition in Rosay [9] implies that Ω is biholo-
morphically equivalent to the unit ball B2. Hence, we have a contradiction and
this completes the proof of Corollary.

3. Proof of Theorem 2. If all the fibers Sp are conformally equivalent,
then the mapping Φ: Z>— >T(G) is a constant mapping with a value qQ^T(G).
By the relation Mvoφ=φ0γ, the point q0 is a fixed point of all My^JM. Since

the modular group Mod(G) of G acts on T(G) properly discontinuously, the
subgroup <3tt of Mod(G) also acts on T(G) properly discontinuously. Hence,
<3tt, is a finite group.

Conversely, assume that <3tt is finite, and let Γ0 be the kernel of the mono-
dromy map γι->Mγ. Then Γ0 has finite index in Γ, so RQ~D/T0 is a Riemann
surface of finite type. Since φoγ^φ for all 7 in Γ0, the holomorphic map
Φ: D-*T(G) factors through R0. Since T(G) is bounded, every holomorphic

map from R0 to T(G) is constant, so Φ is a constant map. Hence, all the fibers
Sp are conformally equivalent and this completes the proof of Theorem 2.

4. Proof of Theorem 3. Assume that there exists a biholomorphic

mapping F=(Fl9 F2): X-+D2. If we set G*=F*(Q)=F*Q*F-\ then £* is a
properly discontinuous subgroup of the analytic automorphism group Aut(Z)2).

We recall that any analytic automorphism of D2= (\%ι\ <l)x (|#2I <1) is

either one of the following two types:

(I) (A, B)(*lf *2)

(II) (A, *)(*, z2) = (A(z2\

where A, 5eAut(Z>). (See Narasimhan [7, Chap. 5, Prop. 3].) Note that
(A, B)2 is of type (I) for all (A, J5)<EΞ Aut(Z>2).

We also recall the following results, which will be used frequently in this
section. (See Lehner [6, Chap. 2, §9, Thm. 1 and Thm. 2, and Chap. 3,
Thm. 2E].)

Two Mϋbius transformations are commutative if and only if they have
the same set of fixed points provided that neither is the identity and provided

that neither is a transformation of order two.

Let A be a hyperbolic or loxodromic transformation and let B be a Mϋbius
transformation which has one and only one fixed point in common with A.
Then the sequence {BoAnoβ~1oA~n} of Mόbius transformations converges to
a Mϋbius transformation as n— > oo or — oo .

By these results, we have the following assertion.

Let Ay B be two Mϋbius transformations of infinite order with ^4oβφ
BO A such that they have a common fixed point. Then the group generated
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by A, B is not discrete.

Let p0 be a puncture of R, t0 be a parabolic fixed point with p(tQ)—p0 and
let 70 be a generator of the stabilizer of tQ in Γ. Then Theorem of § 1 im-

plies that there exists an element φ0

 m the closure of T(G) in B2(L, G) such
that the mapping Φ(t): D-*T(G) converges to φ0 uniformly as t-*t0 through

any cusped region Δ at ΐ0 in D and such that the Kleinian group GΦQ corre-

sponding to φQ is a quasi-Fuchsian group or a regular ό-group. Let DQ=
Ω(Gφ0)—Δ(Gφ0), where Ω(Gφ0) is the region of discontinuity of GΦQ and Δ(Gφ0)

is the invariant component of GΦQ corresponding to the lower half-plane L.

Then the quotient space

S0 = (D0 U {accidental parabolic fixed points of Gφo} )/Gφ0

is a Riemann surface of type (g, n) with or without nodes.
be the set of nodes of ^SΌ, which may be empty. If π0: U-

Let {pl9 * ,̂ }
S= U/G is the

canonical projection and if a: S-+S0 is the deformation as in § 3 of [4], then
Λ

there exists a family {Wt}t(=& of quasiconformal automorphisms on C such
that Wt is conformal on L and has a Schwarzian derivative Φ(t) for all ZeΔ
and such that Wt converges uniformly on any compact subset of U0=U—

πϊϊl°a~\{pι, " ,pk}) to a locally quasiconformal mapping W0: U0-+D0 as
t-*t0 through Δ. (See §4 in [4].) Then the locally quasiconfoimal mapping

W0 induces the above deformation a: S->S0.

Figure 1
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Let Σ?, * ,Σ? be the parts of /SO, that is, the connected components of
SQ— (Ply ~'>Pk} and let 2> =α"1(Σ?) for each /=!, - - - j r . Take a sufficiently
small neighborhood 8~ {(zly z^^C2\zl%2= 0, |#ι|<£ and |#2|<£} °f a node

/>,. in S0 for each 7=!, ••-,& and set δ0=δiU — Uδ f e. If we set C{= ̂ ^((l^il

=£)X(*2=0)) and C'/=a-\(z1=tyx(\z2\=8)) for each y=l, •••,&, then the
domain bounded by C' and C/' is an annulus on S. Let Σ£ be the connected
component of S— a~\80) contained in Σ, for each /=!, " ,r. Then Σ£ is
homeomorphic to Σ, . (See Figure 1.)

Take a point <70

 on ̂  which is fixed as a base point. Let (C, #) be a pair
of a point q on *S and a path C from <70 to q on S. A pair (CΊ, q^ is equivalent

to a pair (C2, #2) if and only if ?ι=?2 an<l C^CiF1 is homotopic to the point
<70. Then we can identify the universal covering space U of S with the set

of all these equivalence classes [C, q] and the covering transformation group
of the universal covering τr0: U— >S is identified with the fundamental group

πι(S, qQ) of S with a base point q0, that is,

where [C0]# is a covering transformation sending [C, q] into [C0oC, #] for

[C, q]^U. Suppose that q0^C{ throughout this section and set

ι and C is a path from q0 to ^ on

Then ί7r is a connected component of TΓ^Σ!), which is invariant under G^

Since Σί is homeomorphic to ΣI, we have Gj= {[Cy* I C0^ Tr^Σί, ^o)} If we set

Ωi—W^Ui), then Ωx is a component of GΦQ and the isomorphism %ψo: G->GΦO

induces an isomorphism XψJG^ Gl-^GQ, where GΩ is the stabilizer of Ω! in

GΦ,
Let (/YO)* be an element of the modular group Mod(S) of the Teichmuller

space T(S) corresponding to the homotopic monodromy Mγo=<ωγ0^>^Mod(G)

of y0. Since there exists a positive integer m such that (//0)
w is homotopic to

a product d of z>-th powers of Dhen twists on S about Jordan curves mapped
by α: S-*SQ into nodes, we may assume that the quasiconformal automorphism

ωi of U with ω1°G°ωTl=G and <ωι>=(My0)
m is induced by d. Since rf|Σί

is the identity mapping, ωj t/ί is also the identity mapping, where U{ is the

connected component of r^^Σί) which is contained in U^ Note that U{ is

invariant under G^ Hence, we have ωι°g°ωT1==g for all gEίGi.
Set (^4, JB)=Fo(7j, IJoF-1, (Ag, Bg)=F°(l,g)oF-1 for each ^eG, where

1 is the identity of T or G. We may assume that (A, B) is of type (I).

By the same reasoning as in §2, we can choose an infinite sequence {tn}n=ι
of Δ such that tn-*t0 as τz-»oo and such that F(tn, w) = (F1(tn9 w), F2(ίny w))

converges to a holomorphic mapping /(^) =(/](«>), /2(α>))' Ωi->3D2 uniformly on
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any compact subset of Ωλ as n-»°o. Since QD2={(\z1\ = l)x( \%2\ = 1)} U
{(|*ιl^l)x(|*2 | = l)}, we have 1/^)1=1 or \f^o)\=l for each wef^.
Hence, |/ι|=l or \f2\=l on a non-empty open subset of ΩI, which implies
that /! or/2 is a constant function with a value in 9Z). So we suppose that/i is
a constant function with a value c^QD. Now, we have the following lemma.

Lemma 1. The analytic automorphism (A,B)=Fo(j$, tyoF'1 of D2 is
equal to (Ay 1) and A is of infinite order. For each g^Glt the analytic automor-
phism (Ag, Bg) = Fo(l9 g)°F~1 of D2 is of type (I) and Bg is of infinite order
provided that ^φl. Moreover, the group Jl— {Ag\g^G1} is commutative.

Proof. Since ωι°g0ωT1=:g for each g^G^ the relation (1) of § 1 implies
that (1, g)°(7o, 1)=(7?, 1)°(1, g) for each g^G^ Hence, we have (Ag, Bg}°
(A, B)=(A, B)°(Agy Bg) for each g^G,. If (Ag, Bg\ g^Gl9 is of type (I),
then Ag°A=A°Ag and Bg°B=BoBg. In general, denote by Fiχ(Γ) the set of

fixed points in C of an element ΓeAut(Z)). Then, if neither A nor Ag is the
identity, we have Fix(^4)=Fix(^). Similarly, if neither B nor Bg is the iden-
tity, then Fix(£)=Fix(J^).

Assume that neither A nor B is the identity. Take two non-commutative
elements £0, A0eGj such that both (AgQ, BgQ) and (Aho, BhQ) are of type (I).
If at least one of AgQ, Aho is the identity, then clearly AgQ and AhQ are commuta-
tive. If Ag^F\ and <4Λ oΦl, then Fix(^f)— Fix(^^o)-=Fix(^Ao), which implies
that AgQ and Aho are commutative. Hence, in any case, AgQ and Aho are com-
mutative. Similarly, it is shown that BgQ and BhQ are commutative. Hence,
(Ag^ BgQ) and (AhQ, BhQ) are commutative and so are #0 and h0. We have a
contradiction. Therefore, at least one of A, B is equal to the identity. Since
%, is of infinite order, either A or B is of infinite order. Hence, we have the
two cases: (i) A is of infinite order and jB=l, (ii) A— I and B is of infinite
order. Assume that A=l and B is of infinite order. Then we have AgQoAhQ=£
AhQoAgoy Bgo°Bho=BhQoBgQ and we have that AgQ and AhQ are of infinite order

because no powers of g0 or h0 commute. Set g0>t=^(t)(go) f°r eacn t^D.
Then (1, Λ)(/, w)=(t, g0,t(w)) for each (f, wje-ίl' The relation Fo(l, A) =

(^ 0̂>
 B^°F imPIies that

for each (*, ^)eJ?. Let g0>t0 = ^Φ0(go)' Since F^ ,̂ a;), F2(ίM, w) and ̂ 0,J^)
converge uniformly on any compact subset of Ωα tof1(zu)=clίf2(w) and gQttQ(w),
respectively, as n-^oo and since ^r

0t/0(Ω1)=Ωι, we have Ag^c^—Cj and /2

0

<§
ro,ί0

=BgQof2. Similarly, we have ^4^)=^ and f2oh0ttQ=BhQ°f2. Since ^4ίo and
-4Ao are two non-commutative Mϋbius transformations of infinite order with a
common fixed point c1 and since Bgo and Bho are commutative, the group
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generated by (AgQy Bgo) and (AhQ, Bho) is not discrete. Hence, Fo^oF'1 is not

discrete, which implies that Q is not discrete and we have a contradiction.

Therefore, A is of infinite order and B=l. Moreover, it is shown that both

BgQ and Bho are of infinite order, AgQ and AhQ are commutative, and BgQ and

BhQ are non-commutative.

Now, assume that (Ag, Bg) is of type (II) for some g^G^ Then we have

(Ag, B,)o(A, !)(*„ *2) = (Ag(z2), Bt

(A, l)°(Ag, B,)(gh *2) = (A°Ag(z2),

Since (Ag, Bg) commutes with (A, 1), we have

(Afa), BβoA(*J) = (A°Ag(z2),

for each point (zl9 %2) of D2. Hence, A=ίy which contradicts AΦί. There-

fore, (Agy Bg) is of type (I) for all g^G^

Since (A, B)=(A, 1), (Ag, Bg) is of type (I) and (A, 1) commutes with

(AgJ Bg)y we have that A°Ag=Ag°A for all g^Gv Hence, the group JL=
{Ag\g^G1} is commutative.

Moreover, Bg is of infinite order for all ̂ φl of Gl by the same argument

as the one that AgQ and AhQ are of infinite order. This completes the proof

of Lemma 1 .

Lemma 2. The yomotopίc monodromy MVo of J0 is of finite order.

Proof. We use the notations in the proof of Lemma 1. Assume that
Myo is of infinite order. Then S0 is a Riemann surface of type (g, n) with nodes

piy ~,pk Denote by Cy the Jordan curve α'^pj) on S for eachj=l, •••,&.
i) Assume that at least one of Cl9 •••, Ck9 say Cly is a non-dividing cycle

on S. Suppose that q0^C{= α~\(\%ι\ =8)x(z2~ 0)) and take a closed path
C0 starting at q0 on ΣI (See Figure 2.)

Figure 2.

Since the Dehn twist d inducing the homotopic monodromy

is the identity mapping on S—α'^δo), we have [^(C0)]==[Cί]voo[C0] for
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some integer v0. Set gQ = [C ί] £ <= Gly hQ = [C0] * e G, t/2 = Λ0( Z/O and G2 =
h^G^hό1. Then the relations [</(C0)] = [Cί]voo[C0], ^/o^^^o^ and ωj Z7X= 1

imply that ω1°t>Q=gQ°hQ on Z7lβ Hence, we have ωι=gQ

 on ^2- If we set

ω2~<§
ro"1°ωι, then ω2 |Z72=l, <ω2>— <α>ι)> in Mod(G) and ω2°h°ω2l=h for all

h£ΞG2. Moreover, the quasiconformal mapping ω2 induces an analytic auto-

morphism (1, gQ)~lo(7o9 1) of X. Hence, we have an element (Aj*<>A, Bj^)^
F°S°F~l. Note that, by Lemma 1, BgQ is of infinite order. By the same

reasoning as in the proof of Lemma 1, the relation ω2°h°ω^l=h for each

implies that Aj^°A=ly (Ahy Bh) is of type (I) for all h^G2 and the group

{Bh I h e G2} is commutative.

If (Λ0, Bko)=F*(l, h0)oF-ι is of type (I), then {B^g^G,} and {BJΛe
G2} are conjugate by BhQ. Since the group {Bh\h^G2} is commutative, the

group {Bglg^Gt} is also commutative and we have a contradiction.
Now, suppose that (AhQ, Bho) is of type (II). We set hl=hQ°gl and U3=

h\(Uύ for each g^G^ The relations [rf(C0)] = [Cί]voo[C0], rfo^0^^0oωι and

ωj U=l imply that ωι=gQ^h^g^hϊl on C/3. If we set ω3=(A1o^Γό"1°ArloίΓo"1)0ωι,
then we have ω3|ϊ73=l, (ω^>=(ω^/> and ω3°hoω^l=h for all hEzhloG^fiT2.

The elemnt ω3^N(G) induces an analytic auotmorphism (1, //1

0£(ΓloAr1°<ξr(Γ1)0

(7?, 1) of Jfand we have an element (Xl9 Yύ<=F°Q°F~\ where ^=(-4^0^)0

B^o(AhooBgιΓ
ί and Y^B^Aj^B^oB^. Note that (̂ , Y,) is of type (I).

By the same argument as the proof of Lemma 1, we see that (Xly Y1)=(Xly 1)

with -YjΦl or (Xly Yι)=(l, Yλ) with ^Φl. Since BgQ is of infinite order,
we have ^Γjφl and Y1= 1. We set h2=h0°gl. The same reasoning as above
implies that the element (A2°^

ro"1o/zi"1o<§fj"1)oωι of N(G) induces an element (X2, 1)

of F°3°F-\ where X2=-(A^Bl^B^o(Ah^B2

g^\ Now, we can prove that

<Jl={Ag\g&Gά is a discrete subgroup of Aut(Z>) as follows. Assume that
Jl is not discrete. Then there exists a sequence {An} of distinct elements of
<JL such that An-*l as /ί->oo. Take an element gι^Gλ with^QO^Φ^o^ and

consider the sequences {(̂ , ^«)°( ι̂> 1)°(Λ, Bn)~1} = {(A^X^A'1, 1)} and
{(An, Bn)o(X2, l)o(An, Bn)-ί}={(AnoX2oA-\ 1)} in β. They converge to
(Xly 1) and (^f2, 1) respectively as n— >°o. Therefore, the discreteness of ί?

implies that for any sufficiently large n, An commutes with X1 and X2. Thus,

AnoX1oAn1=Xι and A^X^A'1— X2 for any sufficiently large n, which implies
that

Fix(^) =

Fix(^) =

Hence, we have JB^ι(Fix(jB^0))=Fix(^0), which implies that the group generated
by (AgQ, BgQ) and (Agιy Bgι) is not discrete and we have a contradiction. There-
fore, Jl is an Abelian discrete subgroup of Aut(D). Then Jl is generated by

an element Ag* for some G^ with Φ1. Take an element 2^Gl with
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S* Let Λ2=(Λ*Γ for some integer n and let g3=g2°g
Then £3*1 and Fo(l, g^F'l=(Ag^ BΛJ=(1, Bg3). Since (Akl, Bkl) is of type
(II), we have Fo(l, h^g^h^oF^^A^B^Aΰ^ 1), which is of type (I).
Therefore, (Ag# Bg3) and (Ah^Bg^A^^ 1) are commutative, which implies
that £3 and h^g^hT1 are commutative. Since g3 and hλ are elements of the
discrete subgroup G with no elliptic elements of Aut(ί7), it is shown that g3

and h1=hQog1 are commutative, where gl is an arbitrary element of G> Take
an element gι^.Gl with £ι°AoΦλ0°£ι. Since g3 and h^gl are commutative and
£3 and h0°gι are also commutative, we have- that A0°£ι and hQogl are com-
mutative. Hence, h0 and gl are commutative and we have a contradiction.

ii) Assume that all the Jordan curves Cly "9Ck are dividing cycles on
S. Take two connected components ΣI and Σ2 of S — cc~\{pi9 •••>/>*}) which
have the common boundary curve Cj. Let #0€ΞCί, qΌξΞCί' and let L be a
simple path from q0 to #0 on the annulus bounded by C{ and C" . (See Figure 3.)

Figure 3.

Now, we set

C/Ί = {[C, g]|^eΣι and C is a path from q0 to ^ on ΣI} ,

ί72 = {[L°C, 5]|?^22

 an(l C is a path from ^o to ^ on Σ2} ,

Then C/i and ί/2 are invariant under G1 and G2, respectively. Since the Dehn
twist d inducing the homotopic monodromy (Myo)

w=<ωι> is the identity on
S—a~\S0)y it is shown that d(L) is homotopic to (Cί)vooL for some integer z/0.
Hence, if we set ^Γ

0=[Cί]^°eG1, then we have ω^go on Z72 and ωι°h°ωT1=

goohogo1 for all h^G2. Note that g^GlΓ\G2 If we set ω2=(§
ro~1°ωι, then we

have ω2 |C/2— 1 and ω2°hoω21=h for all /zeG2, and <ω2>=<ωι)> in Mod(G).
Moreover, the quasiconformal mapping ω2 induces an analytic automorphism
(1>£o)~1°( fyo, 1) of ^"and we have an element (AjjoA, Bj^^FogoF-1. Note
that BgQ is of infinite order. By the same reasoning as in the proof of Lemma
1, the relation ω2°hoώϊl=h for each h^G2 implies that Aj*oA=l, (Ah, Bh)
is of type (I) for each AeG2, Ah is of infinite order for each A φ l of G2 and
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the group {Bh\h^G2} is commutative. Take a closed path C0 starting at

q& on Σ2 and set CQ=L°CQ°L~I and hQ~ [Co]%^G2. (See Figure 3.) Let U1=
fy)(£Λ)> G1=h0o1G1ohόl and ω1=(g0oh0og^1oh^1)~1oωι. Since ω1=g0oh0o go1 ohΰ1

on ί/Ί, we have ώ1\U1=lί ώ1ogoώ^1=g for all g ^Gly and <£>!> — <ωι)> in

Mod(G). The quasiconformal mapping ώj induces an analytic automorphism
(ί^go°hQogό1ohQ1)-lo(^ί 1) of -X' and we have an element Ψ=(AhooAgQoA^o

A-JoA, Bk0°BgQ°Bϊ*oBj*) of F°β°F-\ Since Aj*oA=l and since £ 0̂ and

jBΛo are commutative, we have <ψ=(Aho<>AgQoA'ί*, 1).

Now, assume that (_Λ={Ag\.g^G1} is not discrete. Then there exists a
sequence {An} of distinct elements of JH such that An-*l as w->oo. Thus the

sequence {(Λ, β,)°(Λ0

0^0^ϊ"o' (̂̂  ^Γ1} tends to OV^0^' J) as

n->ooy which implies that Ano(AhooAoA^)oAή1=Ah()oAoAh^ that is, ^4M and

AhQoAoA^ are commutative for any sufficiently large integer n. Hence, we
have Fix(A)=Fix(An)=Aho(Fίx(A)), which implies that Aho fixes every fixed

point of A. By the same argument, we can take another element h^G2 with

the same property as hQ and h^h^h^h^ Since Bho and Bhι are commutative,

Aho and ^4Aι are non-commutative. Hence, Aho and Ahι are two non-com-

mutative Mϋbius transformations of infinite order with a common fixed cOJ

which implies that the group generated by (AhQ, BhQ) and (Ahl, Bhι) is not dis-
crete and we have a contradiction. Therefore, Jl is an Abelian discrete sub-

group of Aut(Z>). Then Jl is generated by an element Agι for some gι^Gλ

with ^Φl. Take an element g2^Gλ with fto^Φ^o^. Let ^ 2̂-(^ 0̂)
M for

some integer n and let g3=g2ogTn e Gx. Then ^3Φ 1 and (^f^3, Bί3)=(l, Bg»B^).
If we set g=h0og3ohol, then we have (̂ , JS^)=(1, Bh^Bg^B^). Then (^4, 1)
and (^4j, 5 )̂ are commutative and so are (7?, 1) and (1, g). Then, by the

relation (1) of §1, we have ω1°|
foωΓlz= g Since ω1

0Λo0ωΓ1=<?o0^o0^rό"1 and
ωι°<§

r3°ωΓ1=<?3» we have gs^g^hό^g^oh^^ (go^^gό1 °h0)og3. Similarly, it
can be pioved that ^3 and hn^gQoh^nog^1oh1o are commutative for any integer n,
which implies that Fix(£3)— Fix(An) for any non-zero integer n. This is impos-
sible. In fact, by conjugation, we may assume that hQ(z)=k2z for some constant
k>\ and go(z)=(az+b)/(cz+d) with ad—bc=l. Since G is discrete and since
go and h0 are non-commutative, we have£0(0)φO andg0(oo)φoo, which implies
that iΦO and tΦO. By direct computation, we have

<h g\ =
^ " '

If α=0, then the relation ad—bc=l implies that 6c= — 1 and we have

Since both h0 and hn are Mobius transformations of infinite order with a com-
mon fixed point #=0 and since G is discrete, we have Fix(/i0)=Fix(/7n), that
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is, hn(oo)=oo. Hence, we have (1— k2n)cd—Q. Since k>l and £ΦO, we have

d= 0 and tr2(g0)— 0. Hence, gQ is an elliptic element and we have a contradic-

tion. Therefore, we have tfφO. Similarly, it can be shown that 6ΦO, £ΦO

and JΦO.
Now, by direct computation, the fixed points %n of hn are given by the

formula

z = (k~2n~k2n)bc± {(2ad-(k2»+k~2n)bc)2-4} 1/2

2(l-k2n)cd

Then the two fixed points go to 0 and b/d as n-^ + °o and they go to oo and

a\c as 7z-» — oo. On the other hand, since FΊx(g3)=FΊx(hn) for any non-zero

integer ny we have a contradiction. This completes the proof of Lemma 2.

Lemma 3. If X is biholomorphίc to the polydisc D2 and the homotopic
monodromy Myo of γ0 is of finite order, then the homotopic monodromy group JM

of (X, 7Γ, R) is a finite group.

Proof. Let My0=<ωy0> for some ω^N(G). Since (Mf0)
m=l for some

integer m, we may assume that ζ(ωγ0)
my is represented by the identity mapping

on the upper half-plane U.

We use the notations in the proof of Lemma 1. By Lemma 1, we may

assume that Fo(γ$, l^oF'1 is equal to (A, 1) and is of type (I). Take an ele-

ment δ<ΞΓ with r/0°δΦδoγ0. Set Fo(δ, l}oF~l=(X, Y). We may assume

that (X, Y) is of type (I) and we have Fo(So^oS~\ \)oF~l=(XoAoX-\ 1).

If X is of finite order, then (XnoAoX~n, l)=(A, 1) for some integer n. Hence,
we have (y%, l)=(Snoγ$oδ-n

9 1), which implies that <γ%=δnoγ%oδ-n. Hence,

Ύ0 and δ are commutative and we have a contradiction. Therefore, X is of

infinite order. Similarly, it is shown that A and X are non-commutative.

Since (ωγ0)
w— 1, we have ω^o .̂̂ l and the relation (1) of § 1 implies that

(δoγgΌδ'1, 1) and ( ί y g) are commutative. Hence, we have (X°AoX~loAg, Bg)
=(AgoXoAoX-\ Bg), that is, (XoAoX-l)oAg=Ago(XoAoX-1) for all g^G.

Assume that Ag3=l for some g^G with £Φ1. Since Fix (A)= Fix (Ag) —

Fix^o^o^-^z^^Fix^Z)), A and X have a common fixed point. Hence, A

and X are non -commutative Mϋbius transformations of infinite order with a

common fixed point, which implies that the group generated by (A, 1) and

(X, Y) is not discrete. Therefore, we have a contradiction. Hence, Ag=l
for all g^G. Then we have the relations ^o(l, g)=Fly F2o(ly g)=BgoF2 and

gtoE2=E2oBg for each g&G, where F=(Fly F2) is the above biholomorphic

mapping, E=(El9 E2}=F~l and gt=^Φω(g) f°Γ each t^D. The relation
Fiθ(l, g)=F1 for all g^G implies that Fl is a bounded holomorphic automor-

phic function on Dφω for Gφ(/) for each t^D. Since Dφ(t^Gφ(t) is of finite

type, the function 7^ is a constant function with a value ct^D on Z>Φ(,) for



596 Y. IMAYOSHI

each t(=D. Set I>(t)=(zl=ct)x(\z2\<l) for each t<=D. Then F2 induces
an injective holomorphic function (F2)t: Dφ(t)->D(i) for each t^D. More-
over, E! is a constant function with a value t on D(t) and E? induces an injec-

tive holomorphic function (E2)t: D(t)->DΦω f°r eacrι t^D. Since EoF=lχ
and FoE=lD*, we have (E2)to(F2)t=lD^ and (F2)to(E2)t=lDω. Hence, (F2),:

Dφ(t)->D(t) is conformal and it induces a conformal mapping of Dφ(t)/Gφ(t)
onto D(t)l<B for each ίeZ>, where JS= {Zy^eG} is a finitely generated Fuch-
sian group with no elliptic elements. Since all the Riemann surfaces D(t)/J$,
t^Dy are conformally equivalent, all the fibers Spy p^R, are also conformally
equivalent. Hence, Theorem 2 implies that the homotopic monodromy group
<3W, of (X, π, R) is a finite group. This completes the proof of Lemma 3.

Now, we can prove Theorem 3. If the homotopic monodromy group <3tt
of (Xy πy R) is a finite group, then Theorem 2 implies that the mapping
Φ: D -> T(G) is a constant mapping with a value φ0. Hence, the universal
covering space X of X is equal to DχDφQ, which is biholomorphic to the
polydisc D2.

Conversely, if X is biholomorphic to Z)2, then Lemmas 2 and 3 imply
that <3tt is a finite group. This completes the proof of Theorem 3.

5. Proof of Theorem 4. If X is biholomorphic to the polydisc D2,
then it is clear that Aut(-X) is not discrete. Conversely, assume that Aut(-X)
is not discrete. Since the fibers of (X, π, R) are compact, Theorem 3 in Shabat
[10] implies that Aut(X) is transitive. Hence, by E. Cartan's Theorem, the
homogeneous bounded domain J? in C2 is biholomorphic to the unit ball B2

or the polydisc Z)2. By Theorem 1, j?is not biholomorphic to B2. Therefore,
X is biholomorphic to D2. This completes the proof of Theorem 4.

6. Examples and problems. We give the following typical examples
of (X, 7Γ, R).

EXAMPLE 1. Let S be a Riemann surface of finite type (g, n) with 2g—
2+#>0 and let R be an open Riemann surface of finite type whose universal
covering space is the upper half-plane. Let X=R X S and let π be the canonical
projection of X onto R. Then (X, π, R) is a holomorphic family of Riemann
surfaces of type (g, n) over R. All the fibers are conformally equivalent to S
and the homotopic monodromy group <3M is trivial. It is clear that the universal
covering space J?" of X is biholomorphic to the polydisc D2. Theorem 1 implies
that £ is not biholomorphic to the unit ball B2. Hence, Theorem 1 is a gener-
alization of the famous theorem due to Poincare which asserts that the polydisc
D2 is not biholomorphic to the unit ball B2.

EXAMPLE 2. We set
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R=C-{Q,l}y

X= {X,

Let π: X->R be the canonical projection. Then (X, π, R) is a holomorphic
family of Riemann surfaces of type (1,1) over R and its homotopic monodromy
group JM is a finite cyclic group. All the fibers St are conformally equivalent
and the universal covering space X of X is biholomorphic to the polydisc D2.

EXAMPLE 3. We set

Λ = C-{0, 1,2,3},

X = {(x, yy Zy *) <ΞP2(C) X R I y2z3 = x(x~zί)(x—z)(x—2z)(x—^} ,

where ί̂ C*) is the two-dimensional complex projective space and (#, y, z) are
the homogeneous coordinates of P2(C). Let π: X-^R be the canonical projec-

tion. Then (X, π, R) is a holomrophic family of Riemann surfaces of type
(2, 0) and its homotopic monodromy group <3H is an infinite group. All the
fibers Sty t^R, are not confomally equivalent. Theorems 1 and 2 imply that
the universal covering space J? of X is not biholomorphic to B2 or D2. More-
over, Theorem 4 implies that Aut(JS) is a discrete group.

Let (Xy π, R) be a holomorphic family of Riemann surfaces of type (g, n)
with 2g— 2+7/>0. Let us give the following problems.

PROBLEM 1. Let R be a closed Riemann surface of genus g0>l. Then
prove that the universal covering space -X" of X is not biholomorphic to the
unit ball B2. (cf. Shabat [10].)

PROBLEM 2. Let X be a Stein manifcld. Then prove that the universal
covering space J? of X is biholomorphic to the polydisc D2 if and only if
Aut(J?) is not a discrete group, (cf. Shabat [10].)

PROBLEM 3. When Aut(X) is a discrete group, can we write down all
the elements of Aut(-X")? Note that the covering transformation group β of
Π: J£-*X is a subgroup of Aut(X) and its elements are known as in § 1.
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