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1. Introduction

Let Q be a domain in real space R" with generic point x=(x;, **-, %,).
We denote by a=(ay, ***, @,) a multi-index of length |a|=a;+-+a, and
use the notations

Dd:D71"’Dz", Dk: —\/jf 6/6.%‘;,-

For an integer m=0, H,(Q) is to be the set of all functions whose distribution
derivatives of order up to m belong to L* Q) and we introduce in it the usual
norm

lell = llallna = ({33 1Dl dxy.
Qlajsm

I-OI,,,(Q) denotes the closure of C'§(Q) in H,,(Q).
Let B be a symmetric integro-differential sesquilinear form of order m
with bounded coefficients

Blu, v] = g dop(%)D*u DPo dx
Qe 1pTsm
satisfying

Blu, u]=8||ul|z,  for any ucH,(Q)

where 8 is some positive constant. Let A4 be the operator associated with
this sesquilinear form: an element u of H,,(Q) belongs to D(4) and Au=f€&
LXQ) if Blu, v]=(f, v) is vaid for any v€H,,(Q). It is well known that 4
is a positive definite self-adjoint operator in L*Q). On the other hand, Beryer
& Schecter [3] proved that the injection I%,,,(Q)CLZ(Q) is compact if

meas(S(x)NQ) -0  as [x]| — oo (1.1)

where S(x)={yeR": | y—«x|<1}. Hence, when Q satisfies (1.1), the spectrum
of A consists of a sequence {A\;} of eigenvalues of finite multiplicity having
+- oo as the only accumulation point. For >0 let N(¢) be the number of eigen-
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values of 4 which do not exceed ¢. This paper is devoted to the investigation
of the asymptotic distribution of eigenvalues of 4 under the assumption 2m
>n. The asymptotic distribution of eigenvalues in unbounded domains was
studied by several writers. For the Laplace operator Tamura [8] and Asakura
[1] obtained the asymptotic formula of the distribution. Fleckinger [4] con-
sidered a certain type of elliptic operators on domains in R? For the uni-
formly elliptic, second order, formally self-adjoint partial differential operators
Hewgill [5], [6] gave upper and lower bounds for N(¢). In the case of order
2m Audrin & Pham The Lai [2] gave an upper bound for N(f): under the

condition S 8(x)™% dx< oo for an integer k such that m>n[2-k they established
Q
N(t)=0(s+2/2m) where §(x)=dist(x, 0Q).
In this paper we consider domains which satisfy a P.-condition:

(P,) meas(QN {x: |[x| =7})<C(147)"

where 7 is a positive constant such that 0<<7=<1. The conclusion of this paper
is that
O(tn/2m+(n—l)(1—7')/2m'f)) if O<’T<1

1.2
Oo(t"* log t) if =1 (12)

N =

as t— oo, When 7=1, under some additional assumptions on  and the
coefficients of B we shall derive the asymptotic formula:

N(t)~S a(x) dx ¢/ (1.3)
Q;
as ¢ — oo where

Q,= QN {x: |x]| Sy
a(x) = (2r)™" meas {él‘:“gl 2=maa,,(x)3§°’+3<l} .

=|a|

The method used in this paper is different from the above papers. By this
method we can estimate the eigenfunctions of A: for any positive integer k
there exists a constant C,, such that

[ () | = Conj/omr r=DMam (L [ [) 7 (1.4)
where A¢p;=N;p;, (¢, ¢;)=38;;. In the proof of (1.3) we shall use the result
of Tsujimoto [9].

2. Main theorems

As was stated in the introduction it is assumed that 2m>n and we con-
sider domains which satisfy a P, -condition:
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(P;) meas(QN {x: [x] =r})=C(1+r)".
Theorem 1. Suppose that Q satisfies (P,), then we have

O(tn/2m+(n-1)(1-"‘)/2m7)) lf O<r<1

N = {O(t "2 Jog £) if r=1

ast— oo,

Next, we consider the following assumptions:

(Q) awaQw(ﬂ) ’
(R)~(1) meas Q,=C log ¢,
~(ii) lim lim [meas (Q, N {x: 8(x)<<€|x|"C~})] (log ) = 0,

(i) S

for £>0, 1>2 where Q,=QN {x: |*| <€*-D27} | §(x)—min {1, dist(x, 6Q)}.

8(x) 1dx=C, t2m |
Qufx: 6(3)>!|x|1/(1"'))

Theorem 2. Suppose that Q and B satisfy (P,), (Q) and (R), then the
Sfollowing asymptotic formula for N(t) holds as t — oo:

~ n/2m
N(t)~t Sm a(x) dx
where

a(x) = (2r)™" meas {E:u1=|zgf‘=ma“ﬂ(x)‘sd+ﬁ<1} .

3. Some lemmas and proof of theorem 1

Lemma 3.1. Let S be a bounded operator on the antidual H_,(Q) of H,
() 2o I;V,,,(Q) Then S has a kernel M in the following sense:

() @ = | M@ ) f0) dx for feIx0).

M(x, y) is continuous in QXQ and there exist a constant C such that for any
x, yEQ
| M(x, y)|
2 2 » 2 2 n —n2 2 - m)2
= ClISIEm IS A WSS~ " 1S o e ™

where we denote by ||S|lc-mm» |ISllc-m,05 1ISllco,m» ISlleo,00 the morms of S con-
sidered as an operator on H_,(Q) to H,(Q), on H_,(Q) to L¥Q), on L¥Q) to
H,(Q), on L(Q) to L¥Q) respectively.

Proof. We note that for any function ueﬁm(ﬂ) we can use Sobolev’s
inequality even if Q does not have the cone property. Hence, the present
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lemma can be proved just as Lemma 3.2 of [7].

Let K,(x, y) be the resolvent kernel of 4. For A&E(0, 7/2) we set A=
A 0=<arg A=22—6, |A|>0} .

Lemma 3.2. There exist constants C, d such that
| K(%, y) | SC [ |#/m=1g= 1231 (3.1)
for x, yeQ, AEA.

Proof. Using Lemma 3.1, the present lemma can be proved just as Lem-
ma 5.1 of [10].

Next, we consider the iterated kernels of K,(x, y):
K 9) = | K@, ) K3, 5) ds,
KQ(x, y) = Ky(%, y) -
We note that K" is the kernel of (4—2)~¢**D.

Lemma 3.3. For any positive integer k there exists a constant C, such
that

| K, )| SCyIA|#mso-mmia(1p [ )14 |y )™ (3.2)
for any x, yEQ, AEA.

Proof. We prove (3.2) by induction on k.
In the case of k=1. Using (3.1) and Schwartz’s inequality, we have

| KM, y) ] gc,7\"Zn/Zm—Z(Sne—dlMllzmlx—zldz)llzX(Sne—dl}\lllz"'lz—yldz)llz . 33
In proving (3.2) we may assume that |x|, |y|>2. We set

Q.= QN {z: |z—x|>[x]"},
Q,.=0N{z: |[2—x| <|x]|"} .

Then we have
Q
— S +S — I,+1,.
Q. Q2,4
Introducing polar coordinates, we have for any positive integer N

L=C s em N 5=2l gy
13-21>1211/2
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- 1/2m -
=C S 172 € amt/ Ty ldr
r>|xl

§C1v|7\:| ~N/2m |x| (n=N)/2 |

577

(3.4)

We set ow,—meas(QN {2: |z|=r}). From (P,) we have that o,=C(1+7r)".

Hence, introducting polar coordinates, we have

Izl+1211/2
L=< S e 4N/ 2 r= 11|

L2l - 12112 o, dr

INY/27 (121 4+1211/2) "
_S_C 1_|_|x| -T|7\:|_1/2"'S e—d|f—ml/2 1211 gy
( ) IAIV/2m(| 5]~ £11/2)

=CIn (14 x])" .
From (3.4) and (3.5) we have

S e~ NI gy < C || Ve (14 2 ])
Q

Hence, from (3.3) we have (3.2) for k=1.

Assuming now that (3.2) holds for %k, we shall prove it for k1.

(3.1) and the induction assumption, we have
|K§k+1)(x’ y)l g C|7\,|2"/2m+(”_1)k/2m—k_2(1+ le)-'rlz

x| (4 121y gy
Q
By the same way as the proof of (3.6), we have
Sﬂ(1+ ’z‘)_"kﬂe—d”"l/zmlz-yl dz é C(1+ IJ’ I )--r—.fk/zD\' I -1/2m .

Hence we have

IK&”“’(x, y)l é C l 7\'| n/2m+(n—1)(k+l)/2m—k—2(1_|_ lxl —Tk[2
X(L4]y177").

Using K&+ (x, y):SQK A, 2) K¥ (2, y) dz, analogously we get

|K§‘k+1)(x, y)l é C I A | n/2m+(n—l)(k+1)/2m—k—2(1+ lxl)—-r—-rklz
X (14 1y ).

(3.5)

(3.6)

From

(3.7)

(3.8)

From (3.7) and (3.8) we have (3.2) for k+41. This completes the induction

and establishes (3.2).

Let {E} be the spectral resolution of A4: Azrt dE, and e(x, y; t) be
0
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the spectral function of A4, that is, the kernel of E,. It is well known that
[Fe—ryrraE = (@, (3.9)
j: (t—n)"* de(x, y; 1) = KP(x, y) . (3.10)
Lemma 3.4. For any non negative integer k there exists a constant C,
such that for any xQ
le(x, x; £)| < C, gr/im+m-Dh2m ({4 |x[)™ . (3.11)
Proof. Since de(x, x; t) is a positive measure, we have
S:(s—l—t)‘”‘zde(x, x5 8) < S: (s42)"*de(x, x; 5)
= K% (x, x) . (3.12)
Noting that e(x, x; t)gCt"“gt(s—l—t)“”“lde(x, x; s), from (3.1), (3.2) and (3.12)
we have the present lemma. '
ReMARK. Noting that e(x, x; £)=2 <] p;(¥) |? from (3.11) we get (1.4).

Proof of Theorem 1. We set O,=QN {x: |x|<t* DV} Q,=QN {x: |x]
>¢»=V/2»7) . Then we have for t>2

S e(x, x; 1) dx < Ct”’z"‘s dx
Q, 2,

(-1 /2mT

< Ct”/z”'S (14-r)"dr
0

< {C premE-nA-N2mT - if <71,
=\C 1 1og t if r=1.

Using (3.11), we have for k>1/7—1
s e(x, x; t)dx < C, tn/2m+(n—l)k/2mS 1+ |x]) ™ dx
Q, Q,
=C; tn/2m+(n—1)k/2ms:;n_1)/2’"(1+r)-r-7kdr

< Ck tn/2m+(n—1)(l—'f)/2m'r .

Hence, noting that N(t):S e(x, x; t) dx, we get Theorem 1.
Q

4. Proof of theorem 2

From the assumption (Q) and Lemma 3.2 we see that A4 satisfies the as-
sumption of the main theorem of [9]. Hence, we have



AsymproTiC DISTRIBUTION OF EIGENVALUES 579

le(x, x; 8)—a(x)t"?m| < C&(x)™t gr-i2m 4.1)

We note that

|N(t)— t”/"”"L a(x)dx|

. — n/2m B
=< Solle(x,x, t)—a(x)t"*" | dx -+ ngle(x, x; t)|dx
= L+1,.

From the proof of Theorem 1 we have

L < Cim (4.2)

We set for sufficiently small &€ Qi ,=Q,N{x€Q: 3(x)<&|x|VAM}, Qf ,=
O,N{xeQ: 8(x)>¢&|x|Y™}. Then we have

Il - Sﬂg,l + Sﬂf,z = Il,l(e’ t)_l_Il/Z(E’ t) °

From the assumption (R)—(ii) we have

lim lim I, (&, #) (#"*" log t)' = 0. (4.3)

830 tpo

Moreover from (4.1) and the assumption (R)—(iii) we have

I, ,(& t) < Cg ", (44)

From the assumption (R)—(i) we see that there exists a constant C such that
for t>2

t"’z’”gma(x) dx = C 1™ log t . (4.5)

Hence, from (4.2), (4.3), (4.4) and (4.5) we get Theorem 2.
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