ON THE ASYMPTOTIC DISTRIBUTION OF EIGENVALUES IN AN UNBOUNDED DOMAIN

Jun-ichi TSUJIMOTO

(Received October 13, 1981)

1. Introduction

Let Ω be a domain in real space R^{n} with generic point $x=\left(x_{1}, \cdots, x_{n}\right)$. We denote by $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right)$ a multi-index of length $|\alpha|=\alpha_{1}+\cdots+\alpha_{n}$ and use the notations

$$
D^{\alpha}=D_{1}^{\alpha} \cdots D_{n}^{\alpha_{n}}, \quad D_{k}=-\sqrt{-1} \partial / \partial x_{k} .
$$

For an integer $m \geqq 0, H_{m}(\Omega)$ is to be the set of all functions whose distribution derivatives of order up to m belong to $L^{2}(\Omega)$ and we introduce in it the usual norm

$$
\|u\|_{m}=\|u\|_{m, Q}=\left(\int_{Q} \sum_{|a| \leq \leq^{m}}\left|D^{\infty} u\right|^{2} d x\right)^{1 / 2}
$$

$\dot{H}_{m}(\Omega)$ denotes the closure of $C_{0}^{\infty}(\Omega)$ in $H_{m}(\Omega)$.
Let B be a symmetric integro-differential sesquilinear form of order m with bounded coefficients

$$
B[u, v]=\int_{\alpha|\alpha|,|\beta| \leq m} \sum_{\alpha \beta}(x) D^{\alpha} u \overline{D^{\beta} v} d x
$$

satisfying

$$
B[u, u] \geqq \delta\|u\|_{m}^{2} \quad \text { for any } u \in \dot{H}_{m}(\Omega)
$$

where δ is some positive constant. Let A be the operator associated with this sesquilinear form: an element u of $\stackrel{\circ}{H}_{m}(\Omega)$ belongs to $D(A)$ and $A u=f \in$ $L^{2}(\Omega)$ if $B[u, v]=(f, v)$ is vaid for any $v \in \grave{H}_{m}(\Omega)$. It is well known that A is a positive definite self-adjoint operator in $L^{2}(\Omega)$. On the other hand, Beryer \& Schecter [3] proved that the injection $\dot{H}_{m}(\Omega) \subset L^{2}(\Omega)$ is compact if

$$
\begin{equation*}
\operatorname{meas}(S(x) \cap \Omega) \rightarrow 0 \quad \text { as } \quad|x| \rightarrow \infty \tag{1.1}
\end{equation*}
$$

where $S(x)=\left\{y \in R^{n}:|y-x|<1\right\}$. Hence, when Ω satisfies (1.1), the spectrum of A consists of a sequence $\left\{\lambda_{k}\right\}$ of eigenvalues of finite multiplicity having $+\infty$ as the only accumulation point. For $t>0$ let $N(t)$ be the number of eigen-
values of A which do not exceed t. This paper is devoted to the investigation of the asymptotic distribution of eigenvalues of A under the assumption $2 m$ $>n$. The asymptotic distribution of eigenvalues in unbounded domains was studied by several writers. For the Laplace operator Tamura [8] and Asakura [1] obtained the asymptotic formula of the distribution. Fleckinger [4] considered a certain type of elliptic operators on domains in R^{2}. For the uniformly elliptic, second order, formally self-adjoint partial differential operators Hewgill [5], [6] gave upper and lower bounds for $N(t)$. In the case of order $2 m$ Audrin \& Pham The Lai [2] gave an upper bound for $N(t)$: under the condition $\int_{\Omega} \delta(x)^{-2 k} d x<\infty$ for an integer k such that $m>n / 2+k$ they established $N(t)=0\left(t^{(n+2 k) / 2 m}\right)$ where $\delta(x)=\operatorname{dist}(x, \partial \Omega)$.

In this paper we consider domains which satisfy a P_{τ}-condition:

$$
\left(P_{\tau}\right) \quad \text { meas }(\Omega \cap\{x:|x|=r\}) \leqq C(1+r)^{-\tau}
$$

where τ is a positive constant such that $0<\tau \leqq 1$. The conclusion of this paper is that

$$
N(t)= \begin{cases}O\left(t^{n / 2 m+(n-1)(1-\tau) / 2 m \tau)}\right) & \text { if } 0<\tau<1 \tag{1.2}\\ O\left(t^{n / 2 m} \log t\right) & \text { if } \tau=1\end{cases}
$$

as $t \rightarrow \infty$. When $\tau=1$, under some additional assumptions on Ω and the coefficients of B we shall derive the asymptotic formula:

$$
\begin{equation*}
N(t) \sim \int_{\Omega_{t}} a(x) d x t^{n / 2 m} \tag{1.3}
\end{equation*}
$$

as $t \rightarrow \infty$ where

$$
\begin{aligned}
& \Omega_{t}=\Omega \cap\left\{x:|x| \leqq t^{(n-1) / 2 m}\right\} \\
& a(x)=(2 \pi)^{-n} \text { meas }\left\{\xi: \sum_{|\beta|=|\alpha|=m} a_{\alpha \beta}(x) \xi^{\alpha+\beta}<1\right\}
\end{aligned}
$$

The method used in this paper is different from the above papers. By this method we can estimate the eigenfunctions of A : for any positive integer k there exists a constant C_{k} such that

$$
\begin{equation*}
\left|\phi_{j}(x)\right| \leqq C_{k} \lambda_{j}^{n / 2 n+(n-1) k / 4 m}(1+|x|)^{-\tau k / 2} \tag{1.4}
\end{equation*}
$$

where $A \phi_{j}=\lambda_{j} \phi_{j},\left(\phi_{i}, \phi_{j}\right)=\delta_{i j}$. In the proof of (1.3) we shall use the result of Tsujimoto [9].

2. Main theorems

As was stated in the introduction it is assumed that $2 m>n$ and we consider domains which satisfy a P_{τ}-condition:

$$
\left(P_{\tau}\right) \operatorname{meas}(\Omega \cap\{x:|x|=r\}) \leqq C(1+r)^{-\tau} .
$$

Theorem 1. Suppose that Ω satisfies $\left(P_{\tau}\right)$, then we have

$$
N(t)= \begin{cases}O\left(t^{n / 2 m+(n-1)(1-\tau) / 2 m \tau)}\right) & \text { if } 0<\tau<1 \\ O\left(t^{n / 2 m} \log t\right) & \text { if } \tau=1\end{cases}
$$

as $t \rightarrow \infty$.
Next, we consider the following assumptions:
(Q) $a_{\alpha \beta} \in \mathscr{A}^{\infty}(\Omega)$,
(R)-(i) meas $\Omega_{t} \geqq C \log t$,
-(ii) $\lim _{\varepsilon \rightarrow 0} \lim _{t \rightarrow \infty}\left[\right.$ meas $\left.\left(\Omega_{t} \cap\left\{x: \delta(x)<\varepsilon|x|^{1 /(1-n)}\right\}\right)\right](\log t)^{-1}=0$,
-(iii) $\int_{\mathbb{Q}_{t} \cup\left\{x: \delta(x)>\mathrm{e}|x|^{1 /(1-n)\}}\right.} \delta(x)^{-1} d x \leqq C_{\mathrm{e}} t^{1 / 2 m}$,
for $\varepsilon>0, t>2$ where $\Omega_{t}=\Omega \cap\left\{x:|x|<t^{(n-1) / 2 m}\right\}, \delta(x)=\min \{1, \operatorname{dist}(x, \partial \Omega)\}$.
Theorem 2. Suppose that Ω and B satisfy $\left(P_{1}\right),(Q)$ and (R), then the following asymptotic formula for $N(t)$ holds as $t \rightarrow \infty$:

$$
N(t) \sim t^{n / 2 m} \int_{\mathbf{Q}_{t}} a(x) d x
$$

where

$$
a(x)=(2 \pi)^{-n} \text { meas }\left\{\xi: \sum_{\alpha|=|\beta|=m} a_{\alpha \beta}(x) \xi^{\alpha+\beta}<1\right\}
$$

3. Some lemmas and proof of theorem 1

Lemma 3.1. Let S be a bounded operator on the antidual $H_{-m}(\Omega)$ of \dot{H}_{m} (Ω) to $\grave{H}_{m}(\Omega)$. Then S has a kernel M in the following sense:

$$
(S f)(x)=\int_{\Omega} M(x, y) f(y) d x \quad \text { for } f \in L^{2}(\Omega)
$$

$M(x, y)$ is continuous in $\Omega \times \Omega$ and there exist a constant C such that for any $x, y \in \Omega$

$$
\begin{aligned}
& |M(x, y)| \\
\leqq & C\|S\|_{(-m, m)}^{n n^{2} / 4 m^{2}}\|S\|_{(-m, 0)}^{n / 2 m-n^{2} / 4 m^{2}}\|S\|_{(0, m)}^{n / 2 m-n^{2} / 4 m^{2}}\|S\|_{(0,0)}^{1-n / 2 m)^{2}}
\end{aligned}
$$

where we denote by $\|S\|_{(-m, m)},\|S\|_{(-m, 0)},\|S\|_{(0, m)},\|S\|_{(0,00}$ the norms of S considered as an operator on $H_{-m}(\Omega)$ to $\stackrel{H}{m}_{m}(\Omega)$, on $H_{-m}(\Omega)$ to $L^{2}(\Omega)$, on $L^{2}(\Omega)$ to $\stackrel{\circ}{H}_{m}(\Omega)$, on $L^{2}(\Omega)$ to $L^{2}(\Omega)$ respectively.

Proof. We note that for any function $u \in \dot{H}_{m}(\Omega)$ we can use Sobolev's inequality even if Ω does not have the cone property. Hence, the present
lemma can be proved just as Lemma 3.2 of [7].
Let $K_{\lambda}(x, y)$ be the resolvent kernel of A. For $\lambda \in(0, \pi / 2)$ we set $\Lambda=$ $\{\lambda: \theta \leqq \arg \lambda \leqq 2 \pi-\theta,|\lambda|>0\}$.

Lemma 3.2. There exist constants C, d such that

$$
\begin{equation*}
\left|K_{\lambda}(x, y)\right| \leqq C|\lambda|^{n / 2 m-1} e^{-d|\lambda|^{1 / 2 m}|x-y|} \tag{3.1}
\end{equation*}
$$

for $x, y \in \Omega, \lambda \in \Lambda$.
Proof. Using Lemma 3.1, the present lemma can be proved just as Lemma 5.1 of [10].

Next, we consider the iterated kernels of $K_{\lambda}(x, y)$:

$$
\begin{aligned}
& K_{\lambda}^{(k)}(x, y)=\int_{\Omega} K_{\lambda}^{(k-1)}(x, z) K_{\lambda}(z, y) d z \\
& K_{\lambda}^{(0)}(x, y)=K_{\lambda}(x, y)
\end{aligned}
$$

We note that $K_{\lambda}^{(k)}$ is the kernel of $(A-\lambda)^{-(k+1)}$.
Lemma 3.3. For any positive integer k there exists a constant C_{k} such that

$$
\begin{equation*}
\left|K_{\lambda}^{(k\rangle}(x, y)\right| \leqq C_{k}|\lambda|^{n / 2 m+(n-1) k / 2 m-k-1}(1+|x|)^{-\tau k / 2}(1+|y|)^{-\tau k / 2} \tag{3.2}
\end{equation*}
$$

for any $x, y \in \Omega, \lambda \in \Lambda$.
Proof. We prove (3.2) by induction on k.
In the case of $k=1$. Using (3.1) and Schwartz's inequality, we have

$$
\begin{equation*}
\left|K_{\lambda}^{(1)}(x, y)\right| \leqq C|\lambda|^{2 n / 2 m-2}\left(\int_{\Omega} e^{-d|\lambda|^{1 / 2 m}|x-z|} d z\right)^{1 / 2} \times\left(\int_{\Omega} e^{-\left.d|\lambda|^{1 / 2 m}\right|^{2}-y \mid} d z\right)^{1 / 2} . \tag{3.3}
\end{equation*}
$$

In proving (3.2) we may assume that $|x|,|y|>2$. We set

$$
\begin{aligned}
& \Omega_{1, x}=\Omega \cap\left\{z:|z-x|>|x|^{1 / 2}\right\}, \\
& \Omega_{2, x}=\Omega \cap\left\{z:|z-x|<|x|^{1 / 2}\right\} .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
& \int_{\Omega} e^{-d|x-z||\lambda|^{1 / 2 m}} d z \\
= & \int_{\Omega_{1, n}}+\int_{\Omega_{2, n}}=I_{1}+I_{2} .
\end{aligned}
$$

Introducing polar coordinates, we have for any positive integer N

$$
I_{1} \leqq C \int_{|x-z|>|x|^{1 / 2}} e^{-d|\lambda|^{1 / 2 m}|x-z|} d z
$$

$$
\begin{align*}
& =C \int_{r>|x|^{1 / 2}} e^{-d|\lambda|^{1 / 2 m} r} r^{n-1} d r \\
& \leqq C_{N} \int_{r>|x|^{1 / 2}}\left(|\lambda|^{1 / 2 m} r\right)^{-N} r^{n-1} d r \\
& \leqq C_{N}|\lambda|^{-N / 2 m}|x|^{(n-N) / 2} . \tag{3.4}
\end{align*}
$$

We set $\omega_{r}=\operatorname{meas}(\Omega \cap\{z:|z|=r\})$. From $\left(P_{\tau}\right)$ we have that $\omega_{r} \geqq C(1+r)^{-\tau}$. Hence, introducting polar coordinates, we have

$$
\begin{align*}
I_{2} & \leqq C \int_{|x|-|x|^{1 / 2}}^{|x|+|x|^{1 / 2}} e^{-d|\lambda|^{1 / 2 m}|r-|x||} \omega_{r} d r \\
& \leqq C(1+|x|)^{-\tau}|\lambda|^{-1 / 2 m} \int_{\left.|\lambda|\right|^{1 / 2 m}\left(| | x\left|-|x|^{1 / 2}\right)\right.}^{|\lambda|^{1 / 2 m}} e^{-d\left|r-|\lambda|^{1 / 2 m}\right| x| |} d r \\
& \leqq C|\lambda|^{-1 / 2 m}(1+|x|)^{-\tau} . \tag{3.5}
\end{align*}
$$

From (3.4) and (3.5) we have

$$
\begin{equation*}
\int_{0} e^{-d|\lambda|^{1 / 2 m}|x-z|} d z \leqq C|\lambda|^{-1 / 2 m}(1+|x|)^{-\tau} \tag{3.6}
\end{equation*}
$$

Hence, from (3.3) we have (3.2) for $k=1$.
Assuming now that (3.2) holds for k, we shall prove it for $k+1$. From (3.1) and the induction assumption, we have

$$
\begin{aligned}
\left|K_{\lambda}^{(k+1)}(x, y)\right| \leqq & C|\lambda|^{2 n / 2 m+(n-1) k / 2 m-k-2}(1+|x|)^{-\tau / 2} \\
& \times \int_{\Omega}(1+|z|)^{-\tau k / 2} e^{-d|\lambda|^{1 /\left.2 m\right|_{\mid z-y}} d z} .
\end{aligned}
$$

By the same way as the proof of (3.6), we have

$$
\int_{\Omega}(1+|z|)^{-\tau k / 2} e^{-d|\lambda|^{1 / 2 m}|z-y|} d z \leqq C(1+|y|)^{-\tau-\tau k / 2}|\lambda|^{-1 / 2 m}
$$

Hence we have

$$
\begin{align*}
\left|K_{\lambda}^{(k+1)}(x, y)\right| \leqq & C|\lambda|^{n / 2 m+(n-1)(k+1) / 2 m-k-2}\left(1+|x|^{-\tau k / 2}\right. \\
& \times\left(1+|y|^{-\tau-\tau k / 2}\right) . \tag{3.7}
\end{align*}
$$

Using $K_{\lambda}^{(k+1)}(x, y)=\int_{\Omega} K_{\lambda}(x, z) K_{\lambda}^{(k)}(z, y) d z$, analogously we get

$$
\begin{align*}
\left|K_{\lambda}^{(k+1)}(x, y)\right| \leqq & C|\lambda|^{n / 2 m+(n-1)(k+1) / 2 m-k-2}(1+|x|)^{-\tau-\tau k / 2} \\
& \times(1+|y|)^{-\tau k / 2} . \tag{3.8}
\end{align*}
$$

From (3.7) and (3.8) we have (3.2) for $k+1$. This completes the induction and establishes (3.2).

Let $\left\{E_{s}\right\}$ be the spectral resolution of $A: A=\int_{0}^{\infty} t d E_{t}$ and $e(x, y ; t)$ be
the spectral function of A, that is, the kernel of E_{t}. It is well known that

$$
\begin{align*}
& \int_{0}^{\infty}(t-\lambda)^{-k-1} d E_{t}=(A-\lambda)^{-k-1} \tag{3.9}\\
& \int_{0}^{\infty}(t-\lambda)^{-k-1} d e(x, y ; t)=K_{\lambda}^{(k)}(x, y) \tag{3.10}
\end{align*}
$$

Lemma 3.4. For any non negative integer k there exists a constant C_{k} such that for any $x \in \Omega$

$$
\begin{equation*}
|e(x, x ; t)| \leqq C_{k} t^{n / 2 m+(n-1) k / 2 m}(1+|x|)^{-\tau k} . \tag{3.11}
\end{equation*}
$$

Proof. Since $d e(x, x ; t)$ is a positive measure, we have

$$
\begin{align*}
\int_{0}^{t}(s+t)^{-k-2} d e(x, x ; s) & \leqq \int_{0}^{\infty}(s+t)^{-k-1} d e(x, x ; s) \\
& =K_{-t}^{(k)}(x, x) \tag{3.12}
\end{align*}
$$

Noting that $e(x, x ; t) \leqq C t^{k+1} \int_{0}^{t}(s+t)^{-k-1} d e(x, x ; s)$, from (3.1), (3.2) and (3.12) we have the present lemma.

Remark. Noting that $e(x, x ; t)=\sum_{\lambda_{j} \leq t}\left|\phi_{j}(x)\right|^{2}$, from (3.11) we get (1.4).
Proof of Theorem 1. We set $\Omega_{1}=\Omega \cap\left\{x:|x|<t^{(n-1) / 2 m \tau}\right\}, \Omega_{2}=\Omega \cap\{x:|x|$ $\left.>t^{(n-1) / 2 m \tau}\right\}$. Then we have for $t>2$

$$
\begin{aligned}
\int_{\Omega_{1}} e(x, x ; t) d x & \leqq C t^{n / 2 m} \int_{\Omega_{1}} d x \\
& \leqq C t^{n / 2 m} \int_{0}^{t^{(n-1) / 2 m \tau}}(1+r)^{-\tau} d r \\
& \leqq \begin{cases}C t^{n / 2 m+(n-1)(1-\tau) / 2 m \tau} & \text { if } 0<\tau<1, \\
C t^{n / 2 m} \log t & \text { if } \tau=1 .\end{cases}
\end{aligned}
$$

Using (3.11), we have for $k>1 / \tau-1$

$$
\begin{aligned}
\int_{\mathbf{Q}_{2}} e(x, x ; t) d x & \leqq C_{k} t^{n / 2 m+(n-1) k / 2 m} \int_{\mathbf{Q}_{2}}(1+|x|)^{-\tau k} d x \\
& \leqq C_{i} t^{n / 2 m+(n-1) k / 2 m} \int_{t^{(n-1) / 2 m \tau}}^{\infty}(1+r)^{-\tau-\tau k} d r \\
& \leqq C_{k} t^{n / 2 m+(n-1)(1-\tau) / 2 m \tau}
\end{aligned}
$$

Hence, noting that $N(t)=\int_{\Omega} e(x, x ; t) d x$, we get Theorem 1 .

4. Proof of theorem 2

From the assumption (Q) and Lemma 3.2 we see that A satisfies the assumption of the main theorem of [9]. Hence, we have

$$
\begin{equation*}
\left|e(x, x ; t)-a(x) t^{n / 2 m}\right| \leqq C \delta(x)^{-1}\left(t^{n-1) / 2 m} .\right. \tag{4.1}
\end{equation*}
$$

We note that

$$
\begin{aligned}
& \left|N(t)-t^{n / 2 m} \int_{\mathbf{Q}_{t}} a(x) d x\right| \\
\leqq & \int_{\mathbf{Q}_{1}}\left|e(x, x ; t)-a(x) t^{n / 2 m}\right| d x+\int_{\mathbb{Q}_{2}}|e(x, x ; t)| d x \\
= & I_{1}+I_{2} .
\end{aligned}
$$

From the proof of Theorem 1 we have

$$
\begin{equation*}
I_{2} \leqq C t^{n / 2 m} \tag{4.2}
\end{equation*}
$$

We set for sufficiently small $\varepsilon \Omega_{1,1}^{2}=\Omega_{1} \cap\left\{x \in \Omega: \delta(x)<\varepsilon|x|^{1 /(1-n)}\right\}, \Omega_{1,2}^{2}=$ $\Omega_{1} \cap\left\{x \in \Omega: \delta(x)>\varepsilon|x|^{1 /(1-n)}\right\}$. Then we have

$$
I_{1}=\int_{\Omega_{1,1}^{\ell}}+\int_{\Omega_{1,2}^{\ell}}=I_{1,1}(\varepsilon, t)+I_{1,2}(\varepsilon, t) .
$$

From the assumption (R)-(ii) we have

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \lim _{t \rightarrow \infty} I_{1,1}(\varepsilon, t)\left(t^{n / 2 m} \log t\right)^{-1}=0 . \tag{4.3}
\end{equation*}
$$

Moreover from (4.1) and the assumption (R)-(iii) we have

$$
\begin{equation*}
I_{1,2}(\varepsilon, t) \leqq C_{\mathrm{\varepsilon}} t^{n / 2 m} \tag{4.4}
\end{equation*}
$$

From the assumption (R)-(i) we see that there exists a constant C such that for $t>2$

$$
\begin{equation*}
t^{n / 2 m} \int_{\mathbf{Q}_{t}} a(x) d x \geqq C t^{n / 2 m} \log t \tag{4.5}
\end{equation*}
$$

Hence, from (4.2), (4.3), (4.4) and (4.5) we get Theorem 2.

Bibliography

[1] F. Asakura: The asymptotic distribution of eigenvalues for the Laplacian in semiinfinite domains, J. Math. Kyoto Univ. 19 (1979), 583-599.
[2] Jean-Marie Audrin \& Pham The Lai: Comportement asymptotique des valeurs propres d'un probleme de Dirichlet elliptique autoadjoint sur un ouvert non borne, C.R. Acad. Sci. Paris 276 (1973), Serie A 1197-1200.
[3] M.S. Beryer \& M. Schecter: Embedding theorems and quasi-linear elliptic boundary value problems for unbounded domains, Trans. Amer. Math. Soc. 172 (1972), 261-278.
[4] J. Fleckinger: Asymptotic distribution of eigenvalues of elliptic operators on unbounded domains, Ordinary and Partial Differential Equations, Proceedings,

Dundee, Scotland, (1980).
[5] D. Hewgill: On the eigenvalues of a second order elliptic operator in an unbounded domain, Pacific J. Math. 51 (1974), 467-476.
[6] D. Hewgill: On the growth of the eigenvalues of an elliptic operator in a quasibounded domain, Arch. Rational Mech. Anal. 56 (1974), 367-371.
[7] K. Maruo \& H. Tanabe: On the asymptotic distribution of eigenvalues of operators associated with strongly elliptic sesqui-linear forms, Osaka J. Math. 8 (1971), 323-345.
[8] H. Tamura: The asymptotic distribution of eigenvalues of the Laplace operator in an unbounded domain, Nagoya Math. J. 60 (1976), 7-33.
[9] J. Tsujimoto: On the asymptotic behavior of spectral functions of elliptic operators, Japan. J. Math. 8 (1982), 177-210.
[10] J. Tsujimoto: On the remainder estimates of asymptotic formulas for eigenvalues of operators associated with strongly elliptic sesquilinear forms, J. Math. Soc. Japan 33 (1981), 557-569.

Advanced Memory Technology Dept.
Semiconductor Device Engineering Lab. Toshiba Corporation
Komukai-toshiba-cho Saiwai-ku
Kawasaki 210
Japan

