ON Z/2-e-INVARIANTS

Haruo MINAMI

(Received November 25, 1981)

Let G be the group $Z / 2$. Denote by $\pi_{p, q}^{S}$ the equivariant stable homotopy group of Landweber [12]. In a similar way to the usual e-invariants we define equivariant e-invariants e_{G} and $e_{G, R}$ on $\pi_{p, 2 q-1}^{S}$ by using the Adams operations in the K_{G} - and $K O_{G}$-theories and the equivariant Chern character. And we compute these invariants, in particular $e_{G, R}$, on the image of the equivariant J-homomorphism, making use of the Adams' result for e_{R}^{\prime}. Here we study the case when $\widetilde{K O}_{G}^{-1}\left(\Sigma^{p, 2 q-1}\right)$ is torsion-free. The torsion case is discussed by Löffler [14].

1. Definitions

Let $R^{p, q}$ denote the R^{p+q} with non trivial G-action on the first p coordinates. By $B^{p, q}$ and $S^{p, q}$ we denote the unit ball and unit sphere in $R^{p, q}$ and by $\Sigma^{p, q}$ the $B^{p, q} / S^{p, q}$. If p and q are even then $R^{p, q}$ is a complex G-module. In particular, we write 1 and L for $R^{0,2}$ and $R^{2,0}$. Then $\{1, L\}$ are basis of the complex representation ring $R(G)$ of G.

For the Thom class of $R^{2 p, 2 q}$ as a complex G-vector bundle over a point we write $\lambda_{2 p, 2 q}$, so that $\tilde{K}_{G}\left(\Sigma^{2 p, 2 q}\right)=R(G) \cdot \lambda_{2 p, 2 q}$ [16]. Here let $A \cdot x$ denote the module generated by x over a ring A. Then we have the formula

$$
\psi^{t}\left(\lambda_{2 p, 2 q}\right)=\rho^{t}(2 p, 2 q) \lambda_{2 p, 2 q}, \quad \rho^{t}(2 p, 2 q) \in R(G)
$$

for the t-th Adams operation ψ^{t}, and $\rho^{t}(2 p, 2 q)$ is computed briefly, using the result for ψ^{t} in $\tilde{K}\left(S^{2 n}\right)$, as follows.

Lemma 1.1. $\rho^{t}(0,2 q)=t^{q}$, and if $p>0$ then

$$
\rho^{t}(2 p, 2 q)= \begin{cases}\frac{1}{2} t^{p+q}(L+1) & (t \text { even }) \\ t^{p+q}+\frac{1}{2} t^{q}\left(t^{p}-1\right)(L-1) & (t \text { odd })\end{cases}
$$

As is easily seen, $\tilde{K}_{G}\left(\Sigma^{1,0}\right)$ is isomorphic to the augmentation-ideal of $R(G)$. Identifying $\tilde{K}_{G}\left(\Sigma^{1,0}\right)$ with $Z \cdot(1-L)$ it is clear that $\tilde{K}_{G}\left(\Sigma^{2 p+1,2 q}\right)=Z$.
$(1-L) \lambda_{2 p, 2 q}$. Hence we have the following
Corollary 1.2. ψ^{t} operates on $\tilde{K}_{G}\left(\Sigma^{2 p+1,2 q}\right)$ as multiplication by 0 if t is even and by t^{q} if t is odd.

For $p, q-1 \geqq 0$ suppose given a base point preserving G-map $f: \Sigma^{p+2 k, 2 q-1+2 l}$ $\rightarrow \Sigma^{2 k, 2 l}$ for k, l large, which is fixed in this section. f yields a cofiber sequence

$$
\Sigma^{p+2 k, 2 q-1+2 l} \xrightarrow{f} \Sigma^{2 k, 2 l} \xrightarrow{i} C_{f} \xrightarrow{j} \Sigma^{p+2 k, 2 q+2 l} \xrightarrow{-\Sigma^{0,1} f} \Sigma^{2 k, 2 l+1}
$$

where i, j are the inclusion and projection maps and C_{f} is the mapping cone of f. Applying \widetilde{K}_{G} we obtain the following exact sequence.

$$
\begin{aligned}
& 0 \leftarrow \tilde{K}_{G}\left(\Sigma^{2 k, 2 l}\right) \stackrel{i^{*}}{\leftarrow} \tilde{K}_{G}\left(C_{f}\right) \stackrel{j^{*}}{\leftarrow} \tilde{K}_{G}\left(\Sigma^{p+2 k, 2 q+2 l}\right) \leftarrow 0 \\
& \approx R(G) \\
& \approx \begin{cases}R(G) & (p \text { even }) \\
Z & (p \text { odd })\end{cases}
\end{aligned}
$$

Choose generators ξ, η of $\tilde{K}_{G}\left(C_{f}\right)$ so that

$$
i^{*}(\xi)=\lambda_{2 k, 2 l} \text { and } \eta= \begin{cases}j^{*}\left(\lambda_{p+2 k, 2 q+2 l}\right) & (p \text { even }) \\ j^{*}\left((1-L) \lambda_{p-1+2 k, 2 q+2 l}\right) & (p \text { odd })\end{cases}
$$

For any odd integer $t(\neq \pm 1), \psi^{t}(\xi)$ must be given by the formula

$$
\psi^{t}(\xi)=\rho^{t}(2 k, 2 l) \xi+ \begin{cases}(c(t)+d(t)(L-1)) \eta & (p \text { even }) \\ c(t) \eta & (p \text { odd })\end{cases}
$$

$c(t), d(t) \in Z$. So we set

$$
\begin{aligned}
& \lambda(f)=\frac{c(t)}{t^{p / 2+k+q+l}-t^{k+l}} \\
& \mu(f)= \begin{cases}\frac{1}{2}\left(\frac{c \text { even })}{t^{p / 2+k+q+l}-t^{k+l}}+\frac{2 d(t)-c(t)}{t^{q+l}-t^{l}}\right) & (p \text { even }) \\
\frac{c(t)}{t^{q+l}-t^{l}} & (p \text { odd })\end{cases}
\end{aligned}
$$

Using Lemma 1.1, Corollary 1.2 and the relation $\psi^{s} \psi^{t}=\psi^{s t}$ we can check that the values $\{\lambda(f)\},\{\mu(f)\}$ do not depend on the choice of an integer t where $\}$ denotes the coset in Q / Z. As in [1, IV], $\S 7$ we see that the assignment

$$
f \mapsto \begin{cases}(\{\lambda(f)\},\{\mu(f)\}) & (p \text { even }) \\ \{\mu(f)\} & (p \text { odd })\end{cases}
$$

induces a group homomorphism

$$
e_{G}: \pi_{p, 2 p-1}^{s} \rightarrow\left\{\begin{array}{ll}
Q / Z \oplus Q / Z & (p \text { even }) \\
Q / Z & (p \text { odd })
\end{array} \text { for } p, q-1 \geqq 0 .\right.
$$

Regard e_{G} as taking values in $\tilde{K}_{G}\left(\Sigma^{p+2 k, 2 q+2 l}\right) \otimes Q / Z$, namely let $e_{G}[f]$ be $(\{\lambda(f)\}+\{\mu(f)\}(L-1)) \lambda_{p+2 k, 2 q+2 l}$ or $\{\mu(f)\}(1-L) \lambda_{p-1+2 k, 2 l}$ according as p is even or odd where $[f]$ is the stable homotopy class of f. Then we have easily the following

Proposition 1.3. e_{G} is natural for stable maps from $\Sigma^{p, 2 q-1}$ to $\Sigma^{\gamma, 2 q-1}$.
To evaluate $\psi^{t}(\xi)$ we shall next describe e_{G} in terms of the equivariant Chern character. Let $c h_{G}$ be as in [18] and $c h_{G}^{n}$ denote the $2 n$-dimensional component of $c h_{G}$ which is a homomorphism of K_{G} to $H_{G}^{2 n}\left(, R_{G}\right)$ in the notation of [18]. By the definition of equivariant Bredon cohomology [7] we have the following canonical isomorphisms

$$
\begin{aligned}
H_{G}^{p+2 k+2 q+2 l}\left(C_{f}, R_{G}\right) & \approx H^{p+2 k+2 q+2 l}\left(C_{\psi_{f}}, Q\right) \\
& \approx H^{p+2 k+2 q+2 l}\left(S^{p+2 k+2 q+2 l}, Q\right), \\
H_{G}^{2 q+2 l}\left(C_{f}, R_{G}\right) & \approx H^{2 q+2 l}\left(C_{\phi f}, Q\right) \cdot(1-L) \\
& \approx H^{2 q+2 l}\left(S^{2 q+2 l}, Q\right) \cdot(1-L)
\end{aligned}
$$

Here ψ and ϕ are the forgetful and fixed point functors [3]. Under the identification of the above isomorphisms we may set

$$
\operatorname{ch}_{G}^{p / 2+k+q+l}(\xi)=a(f) h^{p+2 k+2 q+2 l}
$$

and

$$
c h_{G}^{q+l}(\xi)=b(f) h^{2 q+2 l}(1-L),
$$

$a(f), b(f) \in Q$ (p even) where $h^{2 i} \in H^{2 i}\left(S^{2 i}, Z\right)$ is a canonical generator such that $c h^{i}\left(\psi \lambda_{0,2 i}\right)=h^{2 i}$. Then we obtain

Proposition 1.4. If p even then

$$
\lambda(f)=a(f), \mu(f)=\frac{1}{2}\left(a(f)-\frac{b(f)}{2^{p / 2+k-1}}\right)
$$

and if p is odd then

$$
\mu(f)=\frac{b(f)}{2^{(p-1) / 2+k}} .
$$

Proof. Consider the following commutative diagram with the exact sequence which ϕf yields as f does.
(Here h 's are the inclusions.) Choose $\xi_{1} \in \tilde{K}_{G}\left(C_{\phi f}\right)$ so that $i_{1}^{*}\left(\xi_{1}\right)=\lambda_{0,2 l}$ and put $\eta_{1}=j_{1}^{*}\left(\lambda_{0,2 q+2 l}\right)$. Then we may write

$$
h^{*}(\xi)=2^{k-1}(1-L) \xi_{1}+x(1-L) \eta_{1}, \quad x \in Z
$$

for a cohomological reason and the fact that $h^{*}\left(\lambda_{2 k, 2 l}\right)=2^{k-1}(1-L) \lambda_{0,2 l}$. Applying ψ^{t} we have

$$
\begin{equation*}
\psi^{t}\left(h^{*} \xi\right)=2^{k-1}(1-L) \psi^{t}\left(\xi_{1}\right)+x t^{q+l}(1-L) \eta_{1} . \tag{1}
\end{equation*}
$$

On the other hand, apply h^{*} to the defining formula of $c(t), d(t)$ we have

$$
\begin{align*}
& \psi^{t}\left(h^{*} \xi\right)=2^{k-1} t^{l}(1-L) \xi_{1}+x t^{l}(1-L) \eta_{1} \tag{2}\\
& + \begin{cases}2^{p / 2+k-1}(c(t)-2 d(t))(1-L) \eta_{1} & (p \text { even }) \\
2^{(p-1) / 2+k} c(t)(1-L) \eta_{1} & (p \text { odd }) .\end{cases}
\end{align*}
$$

Combining (1) and (2) shows

$$
\psi^{t}\left(\xi_{1}\right)=t^{l} \xi_{1}+\frac{x\left(t^{l}-t^{q+l}\right)}{2^{k-1}} \eta_{1}+ \begin{cases}2^{p / 2}(c(t)-2 d(t)) \eta_{1} & (p \text { even }) \\ 2^{(p+1) / 2} c(t) \eta_{1} & (p \text { odd })\end{cases}
$$

Case p even. From the definition of $c h_{G}$ it follows easily that

$$
c h_{G}^{p / 2+k+q+l}(\xi)=c h^{p / 2+k+q+l}(\psi \xi)
$$

and

$$
\operatorname{ch}_{G}^{g+l}(\xi)=2^{k-1} c h^{q+l}\left(\psi \xi_{1}\right)(1-L)+x h^{2 q+2 l}(1-L) .
$$

Hence we get

$$
c h^{p / 2+k+q+l}(\psi \xi)=a(f) h^{p+2 k+2 q+2 l} \text { and } c h^{q+l}\left(\psi \xi_{1}\right)=\frac{b(f)-x}{2^{k-1}} h^{2 q+2 l}
$$

Therefore [1, IV], Proposition 7.5 for ψf and ϕf leads to the equialities

$$
a(f)=\frac{c(f)}{t^{p / 2+k+q+l}-t^{k+l}} \text { and } \frac{b(f)}{2^{p / 2+k-1}}=\frac{c(t)-2 d(t)}{t^{q+l}-t^{l}}
$$

Case p odd. Similar to the proof of the above case. q.e.d.
2. $(0,2 q-1)$-stem

Let $\pi: \Sigma^{2 k, 2 q-1+2 l} \rightarrow \Sigma^{2 k, 2 q-1+2 l} / \Sigma^{0,2 q-1+2 l}$ be the canonical projection map for k, l large. Let $\lambda_{p, q}^{s}$ denote the equivariant stable homotopy group introduced in [12]. Then we have by [12] a split short exact sequence

$$
0 \rightarrow \lambda_{0,2 q-1}^{S} \stackrel{\pi^{*}}{\rightarrow} \pi_{0,2 q-1}^{S} \stackrel{\phi}{\underset{\theta}{\rightleftarrows}} \pi_{2 q-1}^{S} \rightarrow 0
$$

where π^{*} is the homomorphism induced by π and θ denotes a left inverse of ϕ as in [4], §5.

By the definition we can easily describe the values of e_{G} on $\operatorname{Im} \theta$ in terms of the complex e-invariant e_{C} in [1, IV]. So we consider e_{G} on $\operatorname{Im} \pi^{*}$ in this section.

Suppose given a base point preserving G-map $\tilde{f}: \Sigma^{2 k, 2 q-1+2 l} / \Sigma^{0,2 q-1+2 l} \rightarrow \Sigma^{2 k, 2 l}$, so that \tilde{f} and $\tilde{f} \pi$ define elements $[\tilde{f}]$ and $[\tilde{f} \pi]$ of $\lambda_{0,2 q-1}^{S}$ and $\pi_{0,2 q-1}^{S}$ respectively. We consider $\tilde{f} \pi$ as f in $\S 1$.

Since $\Sigma^{i, j} / \Sigma^{0, j}$ is equivariantly homeomorphic to $\Sigma^{0, j+1} S_{+}^{i, 0}$ ([12], Lemma 4.1), we have $\tilde{K}_{G}\left(\Sigma^{i, j} / \Sigma^{0, j}\right) \approx K^{-j-1}\left(R P^{i-1}\right)$ [16] where $R P^{n}$ is the real n-dimensional projective space. Let η_{n} be the complexification of a canonical real line bundle over $R P^{n}$ and put $\tilde{\eta}_{n}=1-\eta_{n}$. We now recall [6] that

$$
\begin{aligned}
& \tilde{K}^{0}\left(R P^{2 n}\right)=Z / 2^{n} \cdot \widetilde{\eta}_{2 n}, K^{1}\left(R P^{2 n}\right)=0 \\
& \tilde{K}^{0}\left(R P^{2 n+1}\right)=Z / 2^{n} \cdot \tilde{\eta}_{2 n+1}, K^{1}\left(R P^{2 n+1}\right) \approx Z .
\end{aligned}
$$

Then we can identify

$$
\widetilde{K}_{G}^{0}\left(\Sigma^{2 k, 2 q-1+2 l} / \Sigma^{0,2 q-1+2 l}\right)=Z \oplus Z / 2^{k-1} \cdot\left(\psi \lambda_{0,2 q+2 l}\right) \tilde{\eta}_{2 k-1}
$$

Consider $\tilde{f}^{*}: \tilde{K}_{G}\left(\Sigma^{2 k, 2 l}\right) \rightarrow \tilde{K}_{G}\left(\Sigma^{2 k, 2 q-1+2 l} / \Sigma^{0,2 q-1+2 l}\right)$. Because $[\tilde{f}] \in \lambda_{0,2 q-1}^{S}$ for $q \geqq 1$ is of finite order ([12], Theorem 2.4 and Corollary 6.3) we may put

$$
\tilde{f}^{*}\left(\lambda_{2 k, 2 l}\right)=[\tilde{b}(\tilde{f})]\left(\psi \lambda_{0,2 q+2 l}\right) \tilde{\eta}_{2 k-1}, \tilde{b}(\tilde{f}) \in Z
$$

where [] denotes the coset in $Z / 2^{k-1}$.
Lemma 2.1. $\tilde{b}(\tilde{f})=-b(\tilde{f} \pi) \bmod 2^{k-1}$ where $b(\tilde{f} \pi)$ is as in $\S 1$.

Proof. Observe the following commutative diagram involving $\left(^{*}\right)$ in $\S 1$.
where the right-hand sequence is the exact sequence for a pair ($\left.\Sigma^{2 k, 2 q+2 l}, \Sigma^{0,2 q+2 l}\right)$. Clearly $C_{\phi(\tilde{f} \pi)} \approx \Sigma^{0,2 q+2 l} \backslash \Sigma^{0,2 l}$, hence we can verify that $\tilde{f}^{*}\left(\lambda_{2 k, 2 l}\right)=-\delta j_{1}^{*-1} h^{*}(\xi)$ where ξ is as in $\S 1$. Hence the canonical identification such that $\tilde{K}_{G}\left(\Sigma^{0,2 q+2 l}\right)$ $=\widetilde{K}\left(S^{2 q+2 l}\right) \otimes R(G)=H^{2 q+2 l}\left(S^{2 q+2 l}, Z\right) \otimes R(G)$ leads to the desired assertion. q.e.d.

Let $B G$ denote the real infinite dimensional projective space. There is an integer $c(n)$ such that $c(n) \eta_{2 n-1}$ becomes trivial (see, e.g. [9], p. 219). So we have an equivariant homeomorphism $\Sigma^{c(n), 0} S_{+}^{n, 0} \approx \Sigma^{0, c(n)} S_{+}^{n, 0}$. This homeomorphism, the equivariant suspension theorem and the Spanier-Whitehead duality theorem yield an isomorphism

$$
\lambda_{0, n}^{s} \longrightarrow \pi_{n}^{S}\left(B G_{+}\right)
$$

denoted by I, as follows. Let τ be the tangent bundle of $R P^{2 k-1}$ and ν be a normal bundle of $R P^{2 k-1}$ for an embedding of $R P^{2 k-1}$ in $R^{2 m-1}$ for m suitably large. Note that the Thom complex $T(\nu)$ of ν is a $(2 m-1)$-dual of $R P_{+}^{2 k-1}$ [5], and $\tau \oplus 1 \approx 2 k \eta_{2 k-1}^{\prime}$ so that $S^{2 m} T\left((s c-k) \eta_{2 k-1}\right) \approx S^{2 s c} T(\nu)$ for $s c>k$ where $\eta_{2 k-1}^{\prime}$ denotes the underlying real vector bundle of $\eta_{2 k-1}$ and $c=c(k)$ is as above. Then we have the following isomorphisms.

$$
\begin{align*}
& \lambda_{0, n}^{S}=\underset{k, l}{\lim }\left[\Sigma^{2 k, n+2 l} / \Sigma^{0, n+2 l}, \Sigma^{2 k, 2 l}\right]^{G} \quad \text { by definition [12] } \\
& \approx \underset{k, l}{\lim }\left[\Sigma^{0, n+2 l+1} S_{+}^{2 k, 0}, \Sigma^{2 k, 2 l}\right]^{G} \\
& \approx \underset{k, l}{\lim }\left[\Sigma^{2 s c, n+2 l-2 s c+1} S_{+}^{2 k, 0}, \Sigma^{2 k, 2 l}\right]^{G} \quad \text { for some } c \\
& \approx \underset{k, l}{\lim }\left[\Sigma^{2 s c-2 k, n+2 l-2 s c+1} S_{+}^{2 k, 0}, \Sigma^{0,2 l}\right]^{G} \text { by [3], Theo. } 11.9 \\
& \approx \underset{k, l}{\lim }\left[S^{n+2 l-2 s c+1} T\left((s c-k) \eta_{2 k-1}\right), S^{2 l}\right] \\
& \approx \underset{k, l}{\lim }\left[S^{n+2 l-2 m+1} T(\nu), S^{2 l}\right] \\
& \approx \underset{\rightarrow}{\lim }\left\{S^{n}, R P_{+}^{2 k-1}\right\} \quad \text { by [19], Cor. (7.10) } \tag{19}\\
& =\pi_{n}^{S}\left(B G_{+}\right)
\end{align*}
$$

On the other hand, the geometrical interpretation of I by Landweber [12] shows that the composite $\psi \pi^{*} I^{-1}: \pi_{n}^{S}\left(B G_{+}\right) \rightarrow \pi_{n}^{S}$ agrees with the $Z / 2$-transfer. So we write $t=\psi \pi^{*} I^{-1}$ as usual.

Following the homotopical construction of I we see that $I[\tilde{f}]$ is represented by a stable map $g: S^{2 q-1} \rightarrow R P_{+}^{2 k-1}$. Let $\tilde{g}: S^{2 q-1} \rightarrow R P^{2 k-1}$ be the composite g and the canonical projection from $R P_{+}^{2 k-1}$ to $R P^{2 k-1}$ and let

$$
\alpha_{1} \in \pi_{2 q-1}^{S}(B G)
$$

denote the stable homotopy class induced by \tilde{g}. Then we have
Proposition 2.2. $\left\{\frac{\tilde{b}(\tilde{f})}{2^{k-1}}\right\}=e_{C} t\left(\alpha_{1}\right)$
where e_{C} is as in $[1, \mathrm{IV}]$.

We prepare a lemma for a proof of Proposition 2.2. We recall the following universal coefficient sequence for a finite $C W$-complex X [2]

$$
0 \rightarrow \operatorname{Ext}\left(\tilde{K}^{0}(X), Z\right) \rightarrow K_{1}(X) \xrightarrow{k} \operatorname{Hom}\left(K^{1}(X), Z\right) \rightarrow 0
$$

where k is a map induced by the Kronecker product. Here we denote by ι the injection map. Furthermore we have a natural homomorphism

$$
\operatorname{Hom}\left(\tilde{K}^{0}(X), Q / Z\right) \rightarrow \operatorname{Ext}\left(\tilde{K}^{0}(X), Z\right),
$$

which we denote by Δ. In particular, for $X=R P^{2 k}, \iota$ and Δ are isomorphisms.
Denote by p the collapsing map $R P^{2 k-1} \rightarrow R P^{2 k-1} / R P^{2 k-2}$ and identify $R P^{2 k-1}$ $\mid R P^{2 k-2}$ with $S^{2 k-1}$. Then, clearly $p^{*}: \tilde{K}^{0}\left(S^{2 k}\right)=K^{1}\left(S^{2 k-1}\right) \rightarrow K^{1}\left(R P^{2 k-1}\right)$ is an isomorphism and hence by using the universal coefficient sequence we see that $p_{*}: K_{1}\left(R P^{2 k-1}\right) \rightarrow K_{1}\left(S^{2 k-1}\right)=\tilde{K}_{0}\left(S^{2 k}\right)$ is an epimorphism. Therefore, if we put $z^{\prime}=p^{*}\left(\psi \lambda_{0,2 k}\right) \in K^{1}\left(R P^{2 k-1}\right)$ then we have an element $z \in K_{1}\left(R P^{2 k-1}\right)$ such that $p_{*} z$ is a dual element of $\psi \lambda_{0,2 k}$, i.e. $\left\langle z^{\prime}, z\right\rangle=1$, which is a fundamental class of $R P^{2 k-1}$ ([19], p. 217). By [19], Corollary (7.8) we have an isomorphism

$$
P=z \cap: \widetilde{K}^{0}\left(R P^{2 k-1}\right) \rightarrow K_{1}\left(R P^{2 k-1}\right) .
$$

Consider the composite

$$
\tilde{K}^{0}\left(R P^{2 k-1}\right) \xrightarrow{P} K_{1}\left(R P^{2 k-1}\right) \xrightarrow{i_{*}^{\prime}} K_{1}\left(R P^{2 k}\right) \xrightarrow{(\iota \Delta)^{-1}} \operatorname{Hom}\left(\tilde{K}^{0}\left(R P^{2 k}\right), Q / Z\right)
$$

where $i^{\prime}: R P^{2 k-1} \subset R P^{2 k}$ is the inclusion map. Then
Lemma 2.3. $\left((\iota \Delta)^{-1} i_{*}^{\prime} P \tilde{\eta}_{2 k-1}\right) \widetilde{\eta}_{2 k}=-\left\{\frac{1}{2^{k-1}}\right\}$.
Proof. Let γ^{*} be the co-Hopf bundle on the complex ($k-1$)-dimensional projective $C P^{k-1}$ and γ be its dual. By D and S we denote the total spaces of the unit disk and unit sphere bundles of $\gamma^{*} \otimes \gamma^{*}$ with respect to some metric. Then $D \simeq C P^{k-1}$ clearly and $S \approx R P^{2 k-1}$ (see [10], IV.1.14. Example). We identify S with $R P^{2 k-1}$. Because, if we put $\tilde{\gamma}=1-\gamma$ then $K^{*}(D) \approx Z[\tilde{\gamma}] /\left(\tilde{\gamma}^{k}\right)$ and $i^{*} \tilde{\gamma}=\tilde{\eta}_{2 k-1}$, we have a short exact sequence

$$
0 \rightarrow K^{1}(S) \xrightarrow{\delta} K^{0}(D, S) \xrightarrow{j^{*}} K^{0}(D) \xrightarrow{i^{*}} K^{0}(S) \rightarrow 0
$$

where δ is a coboundary homomorphism and i, j are the inclusion maps. As is well known, $j^{*} \lambda=-\tilde{\gamma}^{* 2}+2 \tilde{\gamma}^{*}$ where $\tilde{\gamma}^{*}=1-\gamma^{*}$ and λ is the Thom class of $\gamma^{*} \otimes \gamma^{*}$. Hence $K^{*}(D, S) \approx \underset{i=0}{k-1} Z \cdot \lambda \tilde{\gamma}^{i}$. Moreover, by an observation for $\tilde{\gamma}^{k-1}$ in [6], p. 100 we have

$$
\delta^{-1} \lambda \tilde{\gamma}^{k-1}=z^{\prime}
$$

Put $z_{1}^{\prime}=\delta z^{\prime}$ and denote by z_{1} a dual element of z_{1}^{\prime} so that we may suppose that $\partial z_{1}=z$ where ∂ is the boundary homomorphism. Similarly $P_{1}=z_{1} \cap$: $K^{0}(D) \rightarrow K_{0}(D, S)$ is then an isomorphism and the diagram

commutes.
A routine computation shows that $\lambda \tilde{\gamma}^{k-2} \in K^{0}(D, S)$ is a dual element of $P_{1} \tilde{\gamma}$, i.e.,

$$
\left\langle\lambda \tilde{\gamma}^{k-2}, P_{1} \tilde{\gamma}\right\rangle=1
$$

Let put $M=D \times S^{2 k-1}$ and $i_{1}: S \subset M$ be an embedding given by $i_{1}(x)=$ $(i(x), p(x)) x \in S$. Then we get a short exact sequence

$$
0 \rightarrow K^{*}(M, S) \xrightarrow{j_{1}^{*}} \tilde{K}^{*}(M) \xrightarrow{i_{1}^{*}} \tilde{K}^{*}(S) \rightarrow 0
$$

which is a free resolution of $\widetilde{K}^{*}(S)$, where j_{1} is the inclusion map. Hence we see that

$$
\tilde{K}^{0}(M)=\bigoplus_{i=1}^{k-1} Z \cdot q^{*} \tilde{\gamma}^{i} \text { and } K^{0}(M, S)=\bigoplus_{i=0}^{k-2} Z \cdot q^{*} \lambda \tilde{\gamma}^{i}
$$

where q is the projection map of M to D.
Here we adopt the above resolution as a free resolution in the proof of [2], Theorem 3.1 for $K_{1}(S)$. Define $f \in \operatorname{Hom}\left(K^{0}(M, S), Z\right)$ by

$$
f\left(q^{*} \lambda \tilde{\gamma}^{i}\right)= \begin{cases}1 & \text { if } i=k-2 \\ 0 & \text { otherwise }\end{cases}
$$

Then

$$
\operatorname{Hom}\left(q^{*}, 1\right) f=\left\langle\quad, P_{1} \tilde{\gamma}\right\rangle
$$

This implies that because Coker $\operatorname{Hom}\left(j_{1}^{*}, 1\right)=\operatorname{Ext}\left(\tilde{K}^{0}(S), Z\right)$,

$$
\iota[f]=P \widetilde{\eta}_{2 k-1}
$$

where $[f]$ denotes the equivalence class of f in $\operatorname{Coker} \operatorname{Hom}\left(j_{1}^{*}, 1\right)$.
By the definition of Δ it is verified that

$$
\left(\Delta^{-1}[f]\right) \tilde{\eta}_{2 k-1}=-\left\{\frac{1}{2^{k-1}}\right\}
$$

Hence,

$$
(c \Delta)^{-1}\left(P \tilde{\eta}_{2 k-1}\right) \tilde{\eta}_{2 k-1}=-\left\{\frac{1}{2^{k-1}}\right\}
$$

This proves the lemma because $i_{*}^{\prime} \iota \Delta=\iota \Delta \operatorname{Hom}\left(i^{\prime *}, 1\right)$.
Proof of Proposition 2.2. We may suppose that ν is a complex vector bundle, since the stable tangent bundle of $R P^{2 k-1}$ has a complex structure.

Observing the construction of I we have the following commutative diagram.

$$
\begin{array}{cl}
\tilde{K}_{G}^{0}\left(\Sigma^{0,2 q+2 l} S_{+}^{2 k, 0}\right) & \tilde{f}^{*} \\
\leftarrow \tilde{K}_{G}^{0}\left(\Sigma^{2 k, 2 l}\right) \\
I_{0} \mid & I_{1} \mid \\
\downarrow & \tilde{K}_{G}^{0}\left(\Sigma^{0,2 l}\right)=\tilde{K}^{9}\left(S^{2 l}\right) \otimes R(G) \\
\tilde{K}^{0}\left(S^{2 l+2 q-2 m} T(\nu)\right) & \tilde{K}^{0}\left(S^{2 l}\right) \\
D_{2} \downarrow & D_{3} \downarrow \\
K_{1}\left(R P^{2 k}\right) \stackrel{i_{*}^{\prime}}{\leftarrow} K_{1}\left(R P^{2 k-1}\right) & \stackrel{\tilde{g}_{*}^{*}}{\leftarrow} K_{1}\left(S^{2 q-1}\right)
\end{array}
$$

Here D_{2}, D_{3} are the duality isomorphisms as in [19], Corollary (7.10), and I_{0}, I_{1} are isomorphisms given by $I_{0}\left(\left(\psi \lambda_{0,2 q+2 l}\right) \tilde{\eta}_{2 k-1}\right)=\left(\psi \lambda_{0,2 l+2 q-2 m}\right) \lambda_{\nu} \tilde{\eta}_{2 k-1}, I_{1}\left(\lambda_{0,2 l}\right)$ $=\lambda_{2 k, 2 l}$ where λ_{ν} denotes the Thom class of ν.

By [19], Corollaries (7.8) and (7.10) we have

$$
D_{2} I_{0}\left(\left(\psi \lambda_{0,2 q+2 l}\right) \widetilde{\eta}_{2 k-1}\right)=P \widetilde{\eta}_{2 k-1}
$$

which is pointed out by Dyer in [8]. By Lemma 2.3 we therefore have

$$
\left((c \Delta)^{-1}\left(i^{\prime} \tilde{g}\right)_{*} \beta\right) \tilde{\eta}_{2 k}=-\left\{\frac{\tilde{b}(\tilde{f})}{2^{k-1}}\right\}
$$

where $\beta=D_{3}\left(\psi \lambda_{0,2 l}\right)$.
Identifying $K_{1}\left(R P^{2 k}\right)$ with $\operatorname{Hom}\left(\tilde{K}^{0}\left(R P^{2 k}\right), Q / Z\right)$ through the isomorphism $\iota \Delta$, we may write

$$
\left(h \alpha_{1}\right) \widetilde{\eta}_{2 k}=-\left\{\frac{\tilde{b}(\tilde{f})}{2^{k-1}}\right\}
$$

in terms of the Hurewicz homomorphism $h: \pi_{2 q-1}^{S}(B G) \rightarrow K_{1}(B G)$. Hence by [11], Theorem 2.1 we obtain

$$
\left(C H^{q}\left(\alpha_{1}\right)\right) \tilde{\eta}_{2 k}=-\left\{\frac{\tilde{b}(\tilde{f})}{2^{k-1}}\right\}
$$

where $C H^{q}$ is the functional Chern character. By the naturality of $C H^{q}$ we get

$$
e_{c} t\left(\alpha_{1}\right)=-\left(C H^{q}\left(\alpha_{1}\right)\right) \tilde{\eta}_{2 k}
$$

(For the sign, see Remark 4 of [11], p. 128.)
Therefore

$$
\left\{\frac{\tilde{b}(\tilde{f})}{2^{k-1}}\right\}=e_{c} t\left(\alpha_{1}\right)
$$

q.e.d.

Consequently we get the following
Theorem 2.4. For $\alpha \in \pi_{0,2 q-1}^{S} \quad(q \geqq 1)$,

$$
e_{G}(\alpha)= \begin{cases}\left(e_{c}(\psi \alpha), 0\right) & \text { for } \alpha \in \operatorname{Im} \theta \\ \left(e_{c}(\psi \alpha), \frac{1}{2}\left(e_{c}(\psi \alpha)+e_{c} t\left(\alpha_{1}\right)+\varepsilon\right)\right. & \text { for } \alpha \in \operatorname{Im} \pi^{*}\end{cases}
$$

$(\varepsilon=0,1)$ where α_{1} denotes the first factor of $I \pi^{*-1}(\alpha)$ under the identification $\pi_{2 q-1}^{S}\left(B G_{+}\right)=\pi_{2 q-1}^{S}(B G) \oplus \pi_{2 q-1}^{S}$.

Proof. As to the first factors this is clear from the definitions of e_{G} and e_{C}. As to the second this follows in addition from Proposition 1.4, Lemma 2.1 and Proposition 2.2.
q.e.d.

3. Images of the \boldsymbol{S}^{1}-transfer

Let $\tilde{t}: \pi_{n}^{S}\left(B S_{+}^{1}\right) \rightarrow \pi_{n+1}^{S}\left(B G_{+}\right)$denote the S^{1}-transfer, where $B S^{1}$ is the complex infinite dimensional projective space.

Proposition 3.1. Let $\alpha \in \operatorname{Im}\left\{\pi^{*}: \lambda_{0,4 q-1}^{S} \rightarrow \pi_{0,4 q-1}^{S}\right\}(q \geqq 1)$ and $I \pi^{*-1}(\alpha)$ $\in \operatorname{Im} \tilde{t}$. Then

$$
e_{C} t\left(\alpha_{1}\right)=\left(1-2^{2 q}\right) e_{C}(\psi \alpha)
$$

where α_{1} is as in Theorem 2.4.
Proof. Consider the isomorphisms

$$
\lambda_{0,4 q-1} \stackrel{I}{\approx} \pi_{4 q-1}^{S}\left(B G_{+}\right)=\pi_{4 q-1}^{S}(B G) \oplus \pi_{4 q-1}^{S}
$$

We may write $I \pi^{*-1}(\alpha)=\left(\alpha_{1}, \alpha_{2}\right)$. Applying t we have

$$
\psi \alpha=t \alpha_{1}+2 \alpha_{2}
$$

Since $t=\psi \pi^{*} I^{-1}$ and t operates on $\pi_{4 q-1}^{S}$ as multiplication by 2. From [13], Theorem 3.4 it follows that

$$
e_{c}\left(\alpha_{2}\right)=2^{2 q-1} e_{c}(\psi \alpha) .
$$

Therefore we get the proposition.

The following theorem follows immediately from Theorem 2.4 and Proposition 3.1.

Theorem 3.2. For $\alpha \in \pi_{0,4 q-1}^{S}$ as in Proposition 3.1 we have

$$
e_{G}(\alpha)=\left(e_{c}(\psi \alpha),\left(1-2^{2 q-1}\right) e_{c}(\psi \alpha)+\frac{\varepsilon}{2}\right), \quad(\varepsilon=0,1)
$$

Let $J_{G}: \widetilde{K_{G}^{-1}}\left(\Sigma^{0,4 q-1}\right) \rightarrow \pi_{0,4 q-1}^{S}(q \geqq 1)$ be the equivariant J-homomorphism [14, 17]. Set $\alpha=J_{G}(H \nu) \in \pi_{0,4 q-1}^{S}$ where ν is a canonical generator of $\widetilde{K O^{-1}}\left(S^{4 q-1}\right)$ and $H=R^{1,0}$. Then $\alpha \in \operatorname{Im} \pi^{*}$ because $\phi(\alpha)=0$.

Lemma 3.3. Let α be as above. Then $I \pi^{*-1}(\alpha)$ or $2 I \pi^{*-1}(\alpha) \in \operatorname{Im} \tilde{t}$ according as q is odd or even.

Proof. We consider the S^{1}-homotopy theory. Replace $R^{1,0}$ by the standard complex 1-dimensional non trivial representation V of S^{1} in the $Z / 2$-homotopy theory. Then by the same argument as in [12] we have the S^{1}-homotopy groups $\pi_{n}^{V, s}, \lambda_{n}^{V, s}$ and an exact sequence $\lambda_{n}^{V, s} \xrightarrow{\pi^{*}} \pi_{n}^{V, s} \xrightarrow{\phi} \pi_{n}^{s}$. Moreover, we have an isomorphism $\lambda_{n}^{V, s} \approx \pi_{n-1}^{S}\left(B S_{+}^{1}\right)$. Clearly the diagram

commutes where r denotes the restriction of S^{1}-actions. Identifying the lefthand groups with the cobordism groups canonically, r agrees with the S^{1} transfer \tilde{t}.

Analogously for S^{1}-actions we can define the equivariant J-map J_{V} as follows. Denote by $U(k V+l)$ the unitary group of $k V \oplus C^{l}$ with the induced action and by U_{V} the infinite unitary group obtained by taking a limit with respect to canonical inclusions of $U(k V+l)$'s. Then we have a map J_{V} from the equivariant homotopy group $\left[S^{n}, U_{V}\right]^{S^{1}}$ to $\pi_{n}^{V, s}$ as usual.

Now a generator μ of $\widetilde{K}^{-1}\left(S^{4 q-1}\right)$, viewed as a map from $S^{4 q-1}$ to an unitary group, comes from $\left[S^{4 q-1}, U_{V}\right]^{s^{1}}$ and so $V \mu$ does. Generally an equivariant map from $S^{4 q-1}$ to U_{V} defines an element of $\widetilde{K}_{S_{1}}^{-1}\left(S^{4 q-1}\right)$. So we have a map $\left[S^{4 q-1}, U_{V}\right]^{S^{1}} \rightarrow \tilde{K}_{S_{1}}^{-1}\left(S^{4 q-1}\right)$.

Because $J_{V}(V \mu)=0$, using the same notation for $V \mu$ in $\left[S^{4 q-1}, U_{V}\right]^{s 1}$, there exists $x \in \lambda_{4}^{V}{ }_{q-1}^{S}$ such that $\pi^{*} x=J_{V}(V \mu)$. From the above discussion it follows that $r\left(J_{V}(V \mu)\right)=\alpha$ or 2α, so that $r(x)=\pi^{*-1}(\alpha)$ or $2 \pi^{*-1}(\alpha)$, according as q is odd or even.

Let J_{0} be the real J-homomorphism. By [1, IV], Theorem 7.16 we may write

$$
e_{R}^{\prime} J_{o}(\nu)=\frac{a_{q}}{m(2 q)} \in Q / Z, \quad\left(a_{q}, m(2 q)\right)=1
$$

where $m(2 q), e_{R}^{\prime}$ are as in [1, II]. Then we have
Theorem 3.4. For $\alpha=J_{G}(H \nu) \in \pi_{0,4 q-1}^{S}(q \geqq 1)$,
$\left(\varepsilon, \varepsilon^{\prime}=0,1\right)$ as rational numbers mod 1 and the order of each factor of $e_{G}(\alpha)$ is $\frac{m(2 q)}{2}$ or $m(2 q)$ according as q is odd or even.

Proof. The first claim follows from Theorem 3.2, Lemma 3.3 and [1, IV], Proposition 7.14. The second follows from [1, II], Lemma (2.12) and the equality $\nu_{2}(m(2 q))=3+\nu_{2}(q)([1, \mathrm{II}]$, p. 139) immediately. e.d.q.

4. Real $Z / 2$-e-invariants

We take a base point preserving G-map $f: \Sigma^{p+8 k, 2 q-1+8 l} \rightarrow \Sigma^{8 k, 8 l}$ as a representative of elements of $\pi_{p, 2 q-1}^{S}$ for $p, q-1 \geqq 0$. Then the parallel argument to e_{G}, using the Adams operation in the $K O_{G}$-theory [12] and Table of [14], yields the following equivariant e-invariants.

$$
\begin{align*}
& e_{G, R}: \pi_{8 p+45+i, 8 q+4 \delta-1}^{S} \rightarrow \begin{cases}(Q / Z)^{2} & (i=0) \\
Q / Z & (i=1,2,3)\end{cases} \tag{1}\\
& e_{G, R}: \pi_{8 p+4 \zeta+2,8 q+4 \delta+1}^{S} \rightarrow Q / Z \tag{2}
\end{align*}
$$

for $\zeta, \delta=0,1$.
Theorem 4.1. For $\bar{\alpha}=J_{G}(\nu), \alpha=J_{G}(H \nu) \in \pi_{0,4 q-1}^{S}(q \geqq 1)$,

$$
\begin{aligned}
e_{G, R}(\bar{\alpha}) & =\left(\frac{a_{q}}{m(2 q)}, 0\right), \\
e_{G, R}(\alpha) & =\left(\frac{a_{q}}{m(2 q)},\left(1-2^{2 q-1}\right) \frac{a_{q}}{m(2 q)}+\frac{\varepsilon}{4}+\frac{\varepsilon^{\prime}}{2}\right)
\end{aligned}
$$

$\left(\varepsilon, \varepsilon^{\prime}=0,1\right)$ as rational numbers mod 1 and the order of the second factor of $e_{G, R}(\alpha)$ is $m(2 q)$.

Proof. As to the first factors of the equialties this follows immediately from the definitions of $e_{G, R}$ and e_{R}^{\prime}. As to the second this follows in addition from Theorem 3.4 and the fact that $e_{G}=e_{G, R}$ or $2 e_{G, R}$ according as q is even or odd. The proof of the last claim is similar to that of Theorem 3.4. q.e.d.

Finally we shall consider $e_{G, R}$ on $\operatorname{Im} J_{G}$ for $\pi_{p, 4 q-1}^{S}(p \geqq 1)$. Let χ, ρ be as in [3] and \hat{f} be the homomorphism induced by the element of [4], (8.1). Observe χ, ρ and $\hat{\eta}$ on the groups $\widetilde{K O}_{G}^{-1}\left(\Sigma^{p, 2 q-1}\right)$ (see [15], §2), then since $e_{G, R} J_{G}$ commutes with χ, ρ and $\hat{\eta}$ (by an analogue of Proposition 1.3), we can compute $e_{G, R}$ of (1) on $\operatorname{Im} J_{G}$ inductively by using Theorem 4.1. For $e_{G, R}$ of (2), considering $\psi e_{G, R}$ we get readily $e_{G, R}$ on $\operatorname{Im} J_{G}$. Specifically we have

Theorem 4.2. Let $\nu_{1} \in \widetilde{K O_{G}^{-1}}\left(\Sigma^{8 p+45,8 q+4 \delta-1}\right)(8 p+4>0), \nu_{2} \in \widetilde{K O_{G}^{-1}}\left(\Sigma^{8 p+45+i}\right.$, $\left.{ }^{8 q+4 \delta-1}\right)(1 \leqq i \leqq 3)$ and $\nu_{3} \in \widetilde{K O}_{G}^{-1}\left(\sum^{8 p+4 \zeta+2,8 q+4 \delta+1}\right)$ be generators as modules over the real representation ring of G respectively and set $\alpha_{k}=J_{G}\left(\nu_{k}\right)(1 \leqq k \leqq 3)$. Then as rational numbers mod 1

$$
\begin{aligned}
e_{G, R}\left(\alpha_{1}\right) & =\left(\frac{a_{2 p+2 q+\zeta+\delta}}{m(4 p+4 q+2 \zeta+2 \delta)}, \frac{1}{2}\left\{\frac{a_{2 p+2 q+\zeta+\delta}}{m(4 p+4 q+2 \zeta+2 \delta)}\right.\right. \\
& \left.\left.-\left(1-2^{4 q+2 \delta-1}\right) \frac{a_{2 q+\delta}}{m(4 q+2 \delta)}-\frac{\varepsilon}{4}-\frac{\varepsilon^{\prime}}{2}+\varepsilon^{\prime \prime}\right\}\right), \\
e_{G, R}\left(\alpha_{2}\right) & =\left(1-2^{4 q+2 \delta-1}\right) \frac{a_{2 q+\delta}}{m(4 q+2 \delta)}+\frac{\varepsilon}{4}+\frac{\varepsilon^{\prime}}{2}, \\
e_{G, R}\left(\alpha_{3}\right) & =\frac{a_{2 p+2 q+\zeta+\delta+1}^{m(4 p+4 q+2 \zeta+2 \delta+2)}+\frac{\varepsilon}{2}}{m}
\end{aligned}
$$

$\left(\varepsilon, \varepsilon^{\prime}, \varepsilon^{\prime \prime}=0,1\right)$ up to sign and

$$
\begin{aligned}
& \operatorname{order} e_{G, R}\left(\alpha_{1}\right)=\frac{m(4 p+4 q+2 \zeta+2 \delta) m(4 q+2 \delta)}{2^{\kappa} d} \\
& \text { order } e_{G, R}\left(\alpha_{1}\right)=m(4 q+2 \delta) \\
& \text { order } e_{G, R}\left(\alpha_{3}\right)=m(4 p+4 q+2 \zeta+2 \delta+2)
\end{aligned}
$$

where

$$
d=\left(\frac{m(4 p+4 q+2 \zeta+2 \delta)}{2^{v_{2}(2 p+2 q+\zeta+\delta)+3}}, \frac{m(4 q+2 \delta)}{2^{v_{2}(2 q+\delta)+3}}\right)
$$

and κ is the following integer:

$$
\begin{array}{ll}
\nu_{2}(2 q+\zeta)+2 & \text { if } \zeta=\delta \text { and } \nu_{2}(2 q+\zeta) \leqq \nu_{2}(p+q+\zeta), \\
\nu_{2}(2 q+\zeta)+3 & \text { if } \zeta=\delta \text { and } \nu_{2}(2 q+\zeta)=\nu_{2}(p+q+\zeta)+1 \\
\nu_{2}(p+q+\zeta)+3 & \text { if } \zeta=\delta \text { and } \nu_{2}(2 q+\zeta) \geqq \nu_{2}(p+q+\zeta)+2, \\
3 & \text { if } \zeta=0 \text { and } \delta=1, \\
2 & \text { if } \zeta=1 \text { and } \delta=0 .
\end{array}
$$

Here let $\nu_{2}(s)$ denote the exponent to which 2 occurs in s.
By Theorems 4.1, 4.2 and the results of [15] we have
Corollary 4.3. For $\pi_{p, q}^{S}$ in [15], Theorems 3.1, 3.2 and 3.3,

$$
\operatorname{Im} J_{G} \stackrel{i}{\hookrightarrow} \pi_{p, q}^{S} \xrightarrow{e_{G, R}} \operatorname{Im} e_{G, R}
$$

provides a direct sum splitting.

References

[1] J.F. Adams: On the groups $J(X)$-II, IV, Topology 3 (1965), 137-171, 5 (1966), 21-71.
[2] D.W. Anderson: Universal coefficient theorems for K-theory, Preprint.
[3] S. Araki and M. Murayama: τ-Cohomology theories, Japan. J. Math. 4 (1978), 363-416.
[4] and K. Iriye: Equivariant stable homotopy groups of spheres with involutions, I, Osaka J. Math. 19 (1982), 1-55.
[5] M.F. Atiyah: Thom complexes, Proc. London Math. Soc. (3) 11 (1961), 291-310.
[6] -: K-theory, W.A. Benjamin, Inc., 1967.
[7] G.E. Bredon: Equivariant cohomology theories, Lecture Notes in Math. 34, Springer-Verlag, 1967.
[8] E. Dyer: Relations between cohomology theories, Coll. on Algebraic Topology, Aarhus 1962, 89-93.
[9] D. Husemoller: Fiber bundles, McGraw-Hill, Inc., 1966.
[10] M. Karoubi: K-theory. An introduction, Berlin-Heidelberg-New York, Springer, 1978.
[11] K. Knapp: Das bild des Hurewicz-homomorphismus $h: \pi \underset{*}{S}\left(B Z_{p}\right) \rightarrow K_{1}\left(B Z_{p}\right)$, Math. Ann. 223 (1976), 119-138.
[12] P.S. Landweber: On equivariant maps between spheres with involutions, Ann. of Math. 89 (1969), 125-137.
[13] P. Löffler and L. Smith: Line bundles over framed manifolds, Math. Z. 138 (1974), 35-52.
[14] P. Löffler: Equivariant framability of involutions on homotopy spheres, Manuscripta Math. 23 (1978), 161-171.
[15] H. Minami: On equivariant J-homomorphism for involutions, Osaka J. Math. 20 (1983), 109-122.
[16] G.B. Segal: Equivariant K-theory, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 129-151.
[17] -: Equivariant stable homotopy theory, Actes Congrès intern. Math., 1970, t. 2, 59-63.
[18] J. Slomin̂́ska: On the equivariant Chern homomorphism, Bull. Acad. Polon. Sci. XXIV (1976), 909-913.
[19] G.W. Whitehead: Generalized homology theories, Trans. Amer. Math. Soc. 102 (1962), 227-283.

