# ACTIONS OF SPECIAL UNITARY GROUPS ON A PRODUCT OF COMPLEX PROJECTIVE SPACES 

Fuichi UCHIDA*)

(Received October 26, 1981)

## 0. Introduction

Let $X$ be a connected closed orientable $C^{\infty}$ manifold which admits a nontrivial smooth $\boldsymbol{S} \boldsymbol{U}(n)$ action. Suppose

$$
H^{*}(X ; \boldsymbol{Q})=\boldsymbol{Q}[u, v] /\left(u^{a+1}, v^{b+1}\right), \operatorname{deg} u=\operatorname{deg} v=2,
$$

that is, the cohomology ring of $X$ is isomorphic to that of a product $P_{a}(\boldsymbol{C}) \times$ $P_{b}(\boldsymbol{C})$ of complex projective spaces, where $\boldsymbol{Q}$ is the field of rational numbers. We shall show the following result.

Theorem. On the above situation, suppose

$$
1 \leqq b \leqq a<n \leqq a+b \leqq 2 n-3 .
$$

Then, $a=n-1$ and $X$ is equivariantly diffeomorphic to $P_{n-1}(\boldsymbol{C}) \times Y$, where $Y$ is a connected closed orientable manifold whose rational cohomology ring is isomorphic to that of $P_{b}(\boldsymbol{C})$, and $\boldsymbol{S U}(n)$ acts naturally on $P_{n-1}(\boldsymbol{C})$ and trivially on $Y$.

## 1. Preliminary lemmas

We prepare the following lemmas.
Lemma 1.1. Let $G$ be a closed connected proper subgroup of $\boldsymbol{S U ( n )}$ such that $g=\operatorname{dim} \boldsymbol{S} \boldsymbol{U}(n) / G \leqq 4 n-6$. Then it is one of the following up to an inner automorphism of $\boldsymbol{S U (})$.
(i) $\boldsymbol{S} \boldsymbol{U}(n-k) \subset G \subset \mathbf{S}(\boldsymbol{U}(k) \times \boldsymbol{U}(n-k)), n \geqq 2 k ; k=1,2$ or 3.
(ii)

| $n$ | $G$ | $g$ | $4 n-6$ | $n$ | $G$ | $g$ | $4 n-6$ |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | $\boldsymbol{S p}(3)$ | 14 | 18 | 4 | $\mathbf{S O}(4)$ | 9 | 10 |
| 5 | $\boldsymbol{S p}(2)$ | 14 | 14 | 4 | $\boldsymbol{S p}(2)$ | 5 | 10 |
| 5 | $\boldsymbol{\operatorname { S P } ( 2 )}$ | 13 | 14 | 3 | $\mathbf{S O}(3)$ | 5 | 6 |
| 5 | $\boldsymbol{S O}(5)$ | 14 | 14 | 3 | $T^{2}$ | 6 | 6 |

[^0]Here $\boldsymbol{N S} \boldsymbol{p}(2)$ denotes the normalizer of $\boldsymbol{S p}(2)$ in $\boldsymbol{S U}(5)$.
The proof is a routine work by a standard method [2, 3], so we omit it.
Lemma 1.2. Suppose $n \geqq 3$ and $k \leqq 4 n-6$. Then a non-trivial real representation of $\boldsymbol{S U}(n)$ of degree $k$ is equivalent to $\left(\mu_{n}\right)_{R} \oplus \theta^{k-2 n}$ or $\pi \oplus \theta^{k-6}$ (for $n$ $=4$ ). Here $\left(\mu_{n}\right)_{\boldsymbol{R}}: \boldsymbol{S U}(n) \rightarrow \boldsymbol{O}(2 n)$ is a standard inclusion, $\pi: \boldsymbol{S U}(4) \rightarrow \mathbf{S O}(6)$ is a double covering, and $\theta^{i}$ is a trivial representation of degree $i$.

Proof. The proof is also a routine work by a standard method [3], but we give a proof for completeness. Denote by $L_{1}, L_{2}, \cdots, L_{n-1}$ the standard fundamental weights of $\boldsymbol{S} \boldsymbol{U}(n)$. Then there is a one-to-one correspondence between complex irreducible representations of $\boldsymbol{S} \boldsymbol{U}(n)$ and sequences ( $a_{1}, \cdots$, $a_{n-1}$ ) of non-negative integers such that $a_{1} L_{1}+\cdots+a_{n-1} L_{n-1}$ is the highest weight of a corresponding representation. Denote by $d\left(a_{1} L_{1}+\cdots+a_{n-1} L_{n-1}\right)$ the degree of the complex irreducible representation of $\boldsymbol{S} \boldsymbol{U}(n)$ with the highest weight $a_{1} L_{1}+\cdots+a_{n-1} L_{n-1}$. Notice that if $a_{i} \geqq a_{i}^{\prime}$ for $i=1, \cdots, n-1$, then $d\left(a_{1} L_{1}+\cdots\right.$ $\left.+a_{n-1} L_{n-1}\right) \geqq d\left(a_{1}^{\prime} L_{1}+\cdots+a_{n-1}^{\prime} L_{n-1}\right)$ and the equality holds only if $a_{i}=a_{2}^{\prime}$ for $i=1, \cdots, n-1$. The degree can be computed by Weyl's dimension formula. We obtain

$$
\begin{aligned}
& d\left(L_{i}\right)={ }_{n} C_{i} \text { for } 1 \leqq i \leqq n-1, d\left(2 L_{1}\right)=d\left(2 L_{n-1}\right)=n(n+1) / 2, \\
& d\left(2 L_{2}\right)=d\left(2 L_{n-2}\right)=n^{2}\left(n^{2}-1\right) / 12, d\left(L_{1}+L_{n-1}\right)=n^{2}-1 \\
& d\left(L_{1}+L_{n-2}\right)=d\left(L_{2}+L_{n-1}\right)=n(n+1)(n-2) / 2, \\
& d\left(L_{2}+L_{n-2}\right)=n^{2}(n+1)(n-3) / 4 \\
& d\left(L_{1}+L_{2}\right)=d\left(L_{n-2}+L_{n-1}\right)=n\left(n^{2}-1\right) / 3 \\
& d\left(3 L_{1}\right)=d\left(3 L_{n-1}\right)=n(n+1)(n+2) / 6
\end{aligned}
$$

(i) Suppose $n \geqq 5$. Then a non-trivial complex irreducible representation of degree $\leqq 4 n-6$ is equivalent to one of the following: $\mu_{n}, \mu_{n}^{*}, \Lambda^{2}\left(\mu_{n}\right), \Lambda^{2}\left(\mu_{n}^{*}\right)$, where $\mu_{n}^{*}$ is the conjugate representation and $\Lambda^{2}()$ is the second exterior product. Therefore a non-trivial self-conjugate complex representation of degree $\leqq 4 n-6$ is equivalent to $\mu_{n}+\mu_{n}^{*} \oplus$ trivial, which has a real form $\left(\mu_{n}\right)_{\boldsymbol{R}} \oplus$ trivial.
(ii) Suppose $n=4$. Then a non-trivial complex irreducible representation of degree $\leqq 4 n-6=10$ is equivalent to one of the following: $\mu_{4}, \mu_{4}^{*}, \Lambda^{2}\left(\mu_{4}\right)=\Lambda^{2}\left(\mu_{4}^{*}\right)$, $S^{2}\left(\mu_{4}\right), S^{2}\left(\mu_{4}^{*}\right)$, where $S^{2}(\quad)$ is the second symmetric product. Therefore a nontrivial self-conjugate complex representation of degree $\leqq 10$ is equivalent to $\mu_{4} \oplus$ $\mu_{4}^{*} \oplus$ trivial or $\Lambda^{2}\left(\mu_{4}\right) \oplus$ trivial. They have a real form $\left(\mu_{4}\right)_{\boldsymbol{R}} \oplus$ trivial and $\pi \oplus$ trivial, respectively.
(iii) Suppose $n=3$. Then a non-trivial complex irreducible representation of degree $\leqq 4 n-6=6$ is equivalent to one of the following: $\mu_{3}, \mu_{3}^{*}, S^{2}\left(\mu_{3}\right), S^{2}\left(\mu_{3}^{*}\right)$.

Therefore a non-trivial self-conjugate complex representation of degree $\leqq 6$ is equivalent to $\mu_{3} \oplus \mu_{3}^{*}$, which has a real form $\left(\mu_{3}\right)_{\boldsymbol{R}}$. q.e.d.

Notations. In the following sections, let $K^{0}$ denote the identity component of a closed subgroup $K$ of $\boldsymbol{S} \boldsymbol{U}(n)$, and $N(K)$ denote the normalizer of $K$ in $\boldsymbol{S} \boldsymbol{U}(n)$. Let $\chi(X)$ denote the Euler characteristic of a manifold $X$.

## 2. Smooth $\boldsymbol{S U}(\boldsymbol{n})$ actions

Throughout this section, suppose that $X$ is a connected closed orientable manifold with a non-trivial smooth $S U(n)$ action such that $\operatorname{dim} X \leqq 4 n-6$. Denote by $(H)$ the principal isotropy type.

Proposition 2.1. Suppose $n=5$ and $H^{0}=\boldsymbol{N S} \boldsymbol{p}(2)$. Then $\chi(X)=0$. In fact, $X$ has only one orbit type $\boldsymbol{S U ( 5 ) / \boldsymbol { N S }} \mathbf{p}(2)$.

Proof. Since $N(\boldsymbol{N S} \boldsymbol{p}(2))=\boldsymbol{N S} \boldsymbol{p}(2)$, it follows that $H=\boldsymbol{N S} \boldsymbol{p}(2)$ and $X$ has no exceptional orbits. Now we shall show that $X$ has no singular orbits. It is clear for $\operatorname{dim} X=13$. Suppose that $\operatorname{dim} X=14$ and $X$ has a singular orbit. Then the orbit type must be $\boldsymbol{S} \boldsymbol{U}(5) / \boldsymbol{S}(\boldsymbol{U}(1) \times \boldsymbol{U}(4))$ by Lemmas 1.1 and 1.2. Considering the slice representation, we obtain a covering projection of $\boldsymbol{S} \boldsymbol{U}(4)$ / center onto $\boldsymbol{S O}(6)$. But, there is no injection of $\pi_{1}(\boldsymbol{S U}(4) /$ center $)=\boldsymbol{Z}_{4}$ into $\pi_{1}(\mathbf{S O}(6))=\boldsymbol{Z}_{2}$, and hence there is no covering projection of $\boldsymbol{S} \boldsymbol{U}(4) /$ center onto $\boldsymbol{S O}(6)$. Therefore, $X$ has no singular orbits. q.e.d.

The next three propositions can be easily proved.
Proposition 2.2. Suppose that $H^{0}$ is one of the following: $\boldsymbol{S p}(3), n=6$; $\boldsymbol{S p}(2), n=5 ; \boldsymbol{S p}(2), n=4 ; \boldsymbol{S O}(5), n=5 ; \boldsymbol{S O}(4), n=4 ; \boldsymbol{S O}(3), n=3$. Then, $X$ has no singular orbits and $\chi(X)=0$.

Proposition 2.3. Suppose $n=3$ and $H^{0}=T^{2}$. Then $\mathbf{S U}(3)$ acts transitively on $X$.

Proposition 2.4. Suppose $n \geqq 6$ and $\boldsymbol{S U}(n-3) \subset H^{0} \subset \boldsymbol{S}(\boldsymbol{U}(3) \times \boldsymbol{U}(n-3))$. Then $n=6$ and $X=\boldsymbol{S U}(6) / \boldsymbol{S}(\boldsymbol{U}(3) \times \boldsymbol{U}(3))$.

The remaining possibilities are the followings:

$$
\boldsymbol{S} \boldsymbol{U}(n-k) \subset H^{0} \subset \mathbf{S}(\boldsymbol{U}(k) \times \boldsymbol{U}(n-k)) ; k=1,2 .
$$

In these cases, considering the slice representation, we can prove that $\boldsymbol{S U}(n-j)$ $\subset K^{0} \subset \boldsymbol{S}(\boldsymbol{U}(j) \times \boldsymbol{U}(n-j)) ; j=0,1$ or 2 , for any singular isotropy type $(K)$. Denote

$$
\begin{aligned}
& F_{(k)}=\left\{x \in X \mid \boldsymbol{S} \boldsymbol{U}(n-k) \subset \boldsymbol{S} \boldsymbol{U}(n)_{x}^{0} \subset \boldsymbol{S}(\boldsymbol{U}(k) \times \boldsymbol{U}(n-k))\right\}, \\
& X_{(k)}=\boldsymbol{S} \boldsymbol{U}(n) \cdot F_{(k)} .
\end{aligned}
$$

Then $X=X_{(0)} \cup X_{(1)} \cup X_{(2)}$ for the remaining cases.
Proposition 2.5. If $X_{(2)}$ is non-empty, then $X_{(0)}$ and $X_{(1)}$ are empty.
Proof. Since $X_{(2)}$ is non-empty, we have $n \geqq 4$ and

$$
\begin{equation*}
\boldsymbol{S} \boldsymbol{U}(n-2) \subset H^{0} \subset \boldsymbol{S}(\boldsymbol{U}(2) \times \boldsymbol{U}(n-2)) \tag{}
\end{equation*}
$$

Suppose that $X_{(1)}$ is non-empty. Let $\sigma_{y}$ be the slice representation at $y \in F_{(1)}$. Then

$$
\operatorname{deg} \sigma_{y}=\operatorname{dim} X-\operatorname{dim} \boldsymbol{S} \boldsymbol{U}(n) \cdot y \leqq 2 n-4<4(n-1)-6
$$

Hence we obtain $\sigma_{y} \mid \boldsymbol{S} \boldsymbol{U}(n-1)=\left(\mu_{n-1}\right)_{\boldsymbol{R}} \oplus$ trivial, by $\left({ }^{*}\right)$ and Lemma 1.2. Let $\rho_{y}$ be the isotropy representation at $y$ in the orbit $\boldsymbol{S} \boldsymbol{U}(n) \cdot y$. Then $\rho_{y} \mid \boldsymbol{S} \boldsymbol{U}(n-1)$ $=\left(\mu_{n-1}\right)_{\boldsymbol{R}} \oplus$ trivial, and hence

$$
\operatorname{codim} F_{(1)} \text { at } y=4 n-4>4 n-6
$$

This is a contradiction, and hence $X_{(1)}$ is empty. Similarly we can prove that $X_{(0)}$ is empty. q.e.d.

Proposition 2.6. Suppose $X=X_{(2)}$ and $\chi(X) \neq 0$. Then $X=\boldsymbol{S U}(n) / \boldsymbol{S}(\boldsymbol{U}(2)$ $\times \boldsymbol{U}(n-2))$ or $X=\boldsymbol{S} \boldsymbol{U}(n) / \boldsymbol{S U}(n-2) \times{ }_{W} S^{2}$, where $W=\boldsymbol{S}(\boldsymbol{U}(2) \times \boldsymbol{U}(n-2)) / \boldsymbol{S} \boldsymbol{U}$ $(n-2)=\boldsymbol{U}(2)$.

Proof. Since $X=X_{(2)}$, we obtain an equivariant decomposition $X=\boldsymbol{S} \boldsymbol{U}$ $(n) / \boldsymbol{S U}(n-2) \times{ }_{W} F_{(2)}$, where $F_{(2)}$ is a connected closed orientable manifold on which $W$ acts smoothly. The conditions $\operatorname{dim} X \leqq 4 n-6$ and $\chi(X) \neq 0$ imply that $\operatorname{dim} F_{(2)} \leqq 2$ and $\chi\left(F_{(2)}\right) \neq 0$. Hence we have a desired result. q.e.d.

Put $G_{n, 2}=\boldsymbol{S U}(n) / \boldsymbol{S}(\boldsymbol{U}(2) \times \boldsymbol{U}(n-2))$. For the case $X=\boldsymbol{S U}(n) / \boldsymbol{S U}(n-2) \times$ ${ }_{W} S^{2}$, there is a fibration: $S^{2} \rightarrow X \xrightarrow{\pi} G_{n, 2}$. Suppose that the $W$ action on $S^{2}$ is non-transitive. Then the $W$ action on $S^{2}$ has a fixed point, and hence the above fibration has an equivariant cross-section $s$.

Proposition 2.7. On the above situation, there is an element of $H^{4}(X ; \boldsymbol{Q})$ which is not a linear combination of $x_{j}^{2} ; x_{j} \in H^{2}(X ; \boldsymbol{Q})$.

Proof. Let $c_{1}$ and $c_{2}$ be the first and the second Chern classes of the canonical 2-plane bundle over $G_{n, 2}$, respectively. Suppose that $\pi^{*}\left(c_{2}\right)$ is represented as

$$
\pi^{*}\left(c_{2}\right)=\sum_{j} a_{j} x_{j}^{2} ; a_{j} \in \boldsymbol{Q}, x_{j} \in H^{2}(X ; \boldsymbol{Q})
$$

Then $c_{2}=s^{*} \pi^{*}\left(c_{2}\right)=\sum_{j} a_{j}\left(s^{*} x_{j}\right)^{2}=a c_{1}^{2}$ for some $a \in \boldsymbol{Q}$, and hence $c_{2}$ and $c_{1}^{2}$ are linearly dependent in $H^{4}\left(G_{n, 2} ; \boldsymbol{Q}\right)$. This is a contradiction. Hence $\pi^{*}\left(c_{2}\right)$ is
a desired element. q.e.d.
Remark. Suppose $H^{*}(X ; \boldsymbol{Q})=\boldsymbol{Q}[u, v] /\left(u^{a+1}, v^{b+1}\right), \quad \operatorname{deg} u=\operatorname{deg} v=2$. Then any element of $H^{4}(X ; \boldsymbol{Q})$ is represented as

$$
p u^{2}+q u v+r v^{2}=p u^{2}+q^{\prime}(u+v)^{2}-q^{\prime}(u-v)^{2}+r v^{2},
$$

where $p, q, r \in \boldsymbol{Q}$ and $q^{\prime}=q / 4$.
Suppose next that the $W$ action on $S^{2}$ is transitive. Then $X=\boldsymbol{S U}(n) \mid$ $\boldsymbol{S U}(n-2) \times{ }_{W} S^{2}=\boldsymbol{S} \boldsymbol{U}(n) / \boldsymbol{S}(\boldsymbol{U}(1) \times \boldsymbol{U}(1) \times \boldsymbol{U}(n-2))$. Define

$$
X_{1}=\left\{\left(x_{1}: \cdots: x_{n}\right) \times\left(y_{1}: \cdots: y_{n}\right) \in P_{n-1} \times P_{n-1} \mid \bar{x}_{1} y_{1}+\cdots+\bar{x}_{n} y_{n}=0\right\}
$$

Then $X_{1}$ is invariant under the natural diagonal $\boldsymbol{S} \boldsymbol{U}(n)$ action on $P_{n-1}(\boldsymbol{C}) \times$ $P_{n-1}(\boldsymbol{C})$, and we have $X_{1}=\boldsymbol{S} \boldsymbol{U}(n) / \boldsymbol{S}(\boldsymbol{U}(1) \times \boldsymbol{U}(1) \times \boldsymbol{U}(n-2))$. Considering $X_{1}$ as a projective space bundle over $P_{n-1}(\boldsymbol{C})$, we have a ring structure: $H^{*}\left(X_{1} ; \boldsymbol{Q}\right)$ $=\boldsymbol{Q}[c, t] /\left(c^{n}, \sum_{i} c^{i} t^{n-i-1}\right), \operatorname{deg} c=\operatorname{deg} t=2$.

Proposition 2.8. Let $X_{1}=\boldsymbol{S} \boldsymbol{U}(n) / \boldsymbol{S}(\boldsymbol{U}(1) \times \boldsymbol{U}(1) \times \boldsymbol{U}(n-2))$ and $u \in H^{2}\left(X_{1} ;\right.$ Q). If $u^{n-1}=0$, then $u=0$.

Proof. Any element of $H^{2}\left(X_{1} ; \boldsymbol{Q}\right)$ is represented as $u=p c+q t ; p, q \in \boldsymbol{Q}$. Suppose $u^{n-1}=0$. Then we have

$$
q^{n-1}={ }_{n-1} C_{k} p^{n-k-1} q^{k}, k=0,1, \cdots, n-2,
$$

Hence we obtain $p=q=0$. q.e.d.

## 3. Proof of the theorem

Throughout this section, suppose that $X$ is a connected closed orientable manifold with a non-trivial smooth $\boldsymbol{S} \boldsymbol{U}(n)$ action, and $H^{*}(X ; \boldsymbol{Q})=\boldsymbol{Q}[u, v] /$ $\left(u^{a+1}, v^{b+1}\right) ; \operatorname{deg} u=\operatorname{deg} v=2$. Moreover, suppose

$$
\begin{equation*}
1 \leqq b \leqq a<n \leqq a+b \leqq 2 n-3 \tag{1}
\end{equation*}
$$

By arguments and notations in Section 2, the possibility remains only when $X=X_{(0)} \cup X_{(1)}$.

Proposition 3.1. $X_{(0)}$ is empty.
Proof. Suppose that $X_{(0)}$ is non-empty. Let $U$ be an invariant closed tubular neighborhood of $X_{(0)}$ in $X$, and let $E=X$-int $U$. Put $Y=E \cap F_{(1)}$. Then $Y$ is a connected compact orientable manifold with non-empty boundary $\partial Y$, and $\boldsymbol{U}(1)$ acts naturally on $Y$. Since there is a natural diffeomorphism: $E=\boldsymbol{S} \boldsymbol{U}(n) / \boldsymbol{S} \boldsymbol{U}(n-1) \times{ }_{\boldsymbol{U}(1)} Y=S^{2 n-1} \times{ }_{\boldsymbol{U}(1)} Y$, we obtain

$$
\begin{equation*}
\operatorname{dim} Y=2(a+b-n+1)=2 k, \quad k \leqq b \leqq n-2 . \tag{2}
\end{equation*}
$$

Let $i: E \rightarrow X$ be the inclusion. Then, $i^{*}: H^{t}(X ; \boldsymbol{Q}) \rightarrow H^{t}(E ; \boldsymbol{Q})$ is an isomorphism for each $t \leqq 2 n-2$, because the codimension of each connected component of $X_{(0)}$ is $2 n$ by Lemma 1.2. By the Gysin sequence of the principal $\boldsymbol{U}(1)$ bundle $p: S^{2 n-1} \times Y \rightarrow E$, we obtain an exact sequence:


Hence we obtain rank $H^{2 k}(Y)-\operatorname{rank} H^{2 k-1}(Y)=1$, by the cohomology structure of $X$. Considering the homology exact sequence of the pair $(Y, \partial Y)$ and the Poincaré-Lefschetz duality, we obtain

$$
\operatorname{rank} H_{0}(\partial Y) \leqq \operatorname{rank} H_{0}(Y)+\operatorname{rank} H^{2 k-1}(Y)-\operatorname{rank} H^{2 k}(Y)=0
$$

Therefore $\partial Y$ is empty; this is a contradiction. q.e.d.
Consequently we obtain $X=X_{(1)}=S^{2 n-1} \times{ }_{U(1)} F_{(1)}$.
Proposition 3.2. $a=n-1$ and $H^{*}\left(F_{(1)} ; \boldsymbol{Q}\right)=H^{*}\left(P_{b}(\boldsymbol{C}) ; \boldsymbol{Q}\right)$.
Proof. Since $n \cdot \chi\left(F_{(1)}\right)=\chi(X)=(a+1)(b+1) \neq 0$, the $\boldsymbol{U}(1)$ action on $F_{(1)}$ has a fixed point $y_{0}$. Consider the following commutative diagram:


Here $\pi, p$ are projections of the principal $\boldsymbol{U}(1)$ bundles, $q$ is the projection to the first factor, $i$ is an inclusion defined by $i(x)=\left(x, y_{0}\right)$, and $\bar{i}, \bar{q}$ are induced mappings. Denote by $e($ ) the Euler class of a principal $\boldsymbol{U}(1)$ bundle. We can represent as $e(p)=k u+j v ; k, j \in \boldsymbol{Q}$. Then

$$
0=\bar{q}^{*}\left(e(\pi)^{n}\right)=e(p)^{n}=(k u+j v)^{n}=\sum_{i n} C_{i} k^{n-i} j^{i} u^{n-i} v^{i}
$$

and hence ${ }_{n} C_{i} k^{n-i} j^{i}=0$ for $n-a \leqq i \leqq b$. Hence we obtain $k j=0$. Suppose $k=0$. Then

$$
0 \neq e(\pi)^{n-1}=\bar{i}^{*}\left(e(p)^{n-1}\right)=\bar{i}^{*}\left(j^{n-1} v^{n-1}\right)=0
$$

because $v^{b+1}=0$ and $b \leqq n-2$. This is a contradiction. Therefore $e(p)=k u$ $(k \neq 0)$. Since $i^{*}\left((k u)^{n-1}\right)=e(\pi)^{n-1} \neq 0$, we obtain $u^{n-1} \neq 0$ and hence $a=n-1$. Next, considering the Gysin sequence of the principal $\boldsymbol{U}(1)$ bundle $p: S^{2 n-1} \times Y$ $\rightarrow X$ and the ring structure of $H^{*}(X ; \boldsymbol{Q})$, we obtain $H^{*}\left(F_{(1)} ; \boldsymbol{Q}\right)=H^{*}\left(P_{b}(\boldsymbol{C})\right.$;
Q). q.e.d.

Proposition 3.3. The $\boldsymbol{U}(1)$ action on $F_{(1)}$ is trivial.
Proof. Suppose that the $\boldsymbol{U}(1)$ action on $F_{(1)}$ is non-trivial, and let $Y$ be the fixed point set. Consider the following commutative diagram:


Here $i, i_{\infty}, j, j_{Y}$ are natural inclusions; $L, L_{Y}$ are localization homomorphisms; $S^{-1}$ is a localization by the Euler class of the universal principal $\boldsymbol{U}(1)$ bundle. It is known that $S^{-1} i_{\infty}^{*}$ is an isomorphism [1]. Since $H^{\text {odd }}\left(F_{(1)} ; \boldsymbol{Q}\right)=0$, we have that $j^{*}$ is surjective and $L$ is injective, in particular, $i_{\infty}^{*}$ is injective. On the other hand, $j_{Y}^{*}$ is isomorphic for each $t \leqq 2 n-2$.

Now we shall show that $w^{b+1}=0$ implies $w^{b}=0$ for $w \in H^{2}\left(S^{2 n-1} \times{ }_{v(1)} F_{(1)}\right.$; $\boldsymbol{Q})$. We can represent as $i^{*}(w)=p_{1}^{*}(\alpha)+p_{2}^{*}(\beta)$ for some $\alpha \in H^{2}\left(P_{n-1}(\boldsymbol{C})\right), \beta \in$ $H^{2}(Y)$, where $p_{1}, p_{2}$ are projections from $S^{2 n-1} \times{ }_{U(1)} Y=P_{n-1}(\boldsymbol{C}) \times Y$ to each factor. Then

$$
0=k^{*} i^{*}\left(w^{b+1}\right)=\left(k^{*}\left(p_{1}^{*}(\alpha)+p_{2}^{*}(\beta)\right)\right)^{b+1}=\alpha^{b+1},
$$

where $k: P_{n-1}(\boldsymbol{C}) \rightarrow P_{n-1}(\boldsymbol{C}) \times Y$ is an inclusion defined by $k(x)=(x, *)$. Since $b \leqq n-2$, we obtain $\alpha=0$, and hence $i^{*}(w)=p_{2}^{*}(\beta)$. Therefore $i^{*}\left(w^{b}\right)=p_{2}^{*}\left(\beta^{b}\right)$ $=0$, because $\operatorname{dim} Y<2 b=\operatorname{dim} F_{(1)}$. Since $j^{*}$ is surjective, there is an element $\bar{w} \in H^{2}\left(S^{\infty} \times_{U(1)} F_{(1)} ; \boldsymbol{Q}\right)$ such that $j^{*}(\bar{w})=w$. Then

$$
j_{Y}^{*} i_{\infty}^{*}\left(\bar{w}^{b}\right)=i^{*} j^{*}\left(\bar{w}^{b}\right)=i^{*}\left(w^{b}\right)=0,
$$

and hence $\bar{w}^{b}=0$, because $j_{Y}^{*} i_{\infty}^{*}$ is injective for the degree $2 b(\leqq 2 n-2)$. Then $w^{b}=j^{*}\left(\bar{w}^{b}\right)=0$.

On the other hand, $X=S^{2 n-1} \times{ }_{U(1)} F_{(1)}$ and $H^{*}(X ; \boldsymbol{Q})=\boldsymbol{Q}[u, v] /\left(u^{b+1}, v^{b+1}\right)$, where $a=n-1$. There is an element $v \in H^{2}(X ; \boldsymbol{Q})$ such that $v^{b+1}=0$ but $v^{b} \neq$ 0 . This is a contradiction. q.e.d.

Summarizing the above propositions, we obtain $X=P_{n-1}(\boldsymbol{C}) \times Y$ as $\boldsymbol{S U}(n)$ manifolds, where $Y$ is a connected closed orientable manifold with trivial $\boldsymbol{S} \boldsymbol{U}(n)$ action, and $H^{*}(Y ; \boldsymbol{Q})=H^{*}\left(P_{b}(\boldsymbol{C}) ; \boldsymbol{Q}\right)$. This completes the proof of the theorem stated in Introduction.

## 4. Concluding remark

We give examples [2] of a manifold whose rational cohomology ring is isomorphic to that of $P_{k}(\boldsymbol{C})$.

Example 1. Let $p$ be a positive integer. There is a connected closed orientable $C^{\infty}$ manifold $Y_{1}$ such that

$$
H^{*}\left(Y_{1} ; \boldsymbol{Q}\right)=H^{*}\left(P_{k}(\boldsymbol{C}) ; \boldsymbol{Q}\right) \text { and } \pi_{1}\left(Y_{1}\right)=\boldsymbol{Z} / p \boldsymbol{Z}
$$

for each $k \geqq 3$.
Example 2. Let $G$ be a finitely presentable group such that $H_{1}(G ; \boldsymbol{Z})$ $=H_{2}(G ; \boldsymbol{Z})=\{0\}$, where $\boldsymbol{Z}$ is the ring of integers. There is a connected closed orientable $C^{\infty}$ manifold $Y_{2}$ such that

$$
H^{*}\left(Y_{2} ; \boldsymbol{Z}\right)=H^{*}\left(P_{k}(\boldsymbol{C}) ; Z\right) \text { and } \pi_{1}\left(Y_{2}\right)=G
$$

for each $k \geqq 5$.

## References

[1] T. tom Dieck: Lokalisierung äquivarianter Kohomologie-Theorien, Math. Z. 121 (1971), 253-262.
[2] F. Uchida: Smooth actions of special unitary groups on cohomology complex projective spaces, Osaka J. Math. 12 (1975), 375-400.
[3] F. Uchida: Real analytic $\boldsymbol{S L}(n, \boldsymbol{R})$ actions on spheres, Tôhoku Math. J. 33 (1981), 145-175.


[^0]:    *) Supported in part by Grant-in-Aid for Scientific Research 56540005.

