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Introduction

Let M be a Kahler manifold with Kahler metric g and D be a relatively
compact domain of M with smooth boundary dD. We assume that for some

the holomorphic bisectional curvature of M^>2K on D ,

and

where S$ is the second fundamental form of dD with respect to the unit inner
normal vector field ζ and X is a unit tangent vector of M such that X and JX
are both tangent to dD (J is the complex structure of M). In this note, we
shall prove the following results.

Theorem 1. Let M and D be as above. Then D is a Stein manifold if
one of the following conditions holds:

(1) ϋΓ=O and Λ<0,

(2) K<0, - v

/ : r ^ ^ Λ < 0 , andi(D)<C(K, Λ),
(3)

where /(/))=max dis (dD, x) and C(K, Λ) = l/\/^ΓK: arctanh (—Λ\/^1Π.

Theorem 2. Z ί̂ M be a Kahler manifold of non-negative holomorphic
bisectional curvature. Then the following assertions are true.

(1) M has no exceptional set in the sense of Grauert.
(2) If there is a proper holomorphic map τ\ M->M fiom M onto a complex

manifold M such that r is biholomorphic on an open dense subset of M, then T is
globally biholomorphic on M.

Corollary. Let M be a Kahler manifold as in Theorem 2 and D be a rela-
tively compact domain of M. Then D is a Stein manifold if one of the following
conditions holds:
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(1) D is strongly pseudoconvexι).

(2) D is locally pseudoconvex2) and moreover there is a neighborhood U of dD

and a continuous strictly plurisubharmonic function λ on UΓ\D.

We should mention here the three papers by Elencwajg ([1]), Suzuki ([10])
and Greene and Wu ([3]). They proved that a domain D as in Theorem 1
is Stein if K>0 and Λ=0. More generally they showed the above corollary
provided M has positive holomorphic bisectional curvature and D is locally
pseudoconvex. The essential ingredient in their arguments is to show that
—log pdD (pdz>=dis (dD, *)) is strictly plurisubharmonic on D. As we see their
proof for this fact, the Rauch's comparison theorem is implicitly used. Recently
we have obtained a general and sharp Laplacian comparison theorem which
generalizes the Rauch's comparison theorem (cf. [5]). Applying the technique
used in the proof of our comparison theorem, we shall show that, if a domain
D satisfies one of the three conditions in Theorem 1, there is a smooth function
ψ on (0, oo) such that ψ(ρ^D) is strictly plurisubharmonic everywhere on D>
where p9 I )=dis (3D, *) (cf. Main lemma in Section 1). As for Theorem 2,
the first assertion was proved by Suzuki ([10]) provided M has positive holo-
morphic bisectional curvature and the second assertion has been conjectured
by Wu ([12]).

The author would like to express sincere thanks to Professor T. Ochiai
for his helpful advice and encouragement.

1. Preliminary

Certain facts and notations from Riemannian and Kahler geometry will be
needed. Let M be a Kahler manifold with Kahler metric g. We write Mx

for the (real) tangent space of M at x and / for the complex structure of M.
We denote by V the Riemannian connection and by dis (x, y) the distance be-
tween two points x and y in M. Now we recall the definition of holomorphic
bisectional curvature (cf. [6: p. 372]). Let R be the Riemannian curvature
tensor of g with the sign convention: if X and Y are an orthonormal basis
of a plane π> then the sectional curvature of π is R(X, Y, X, Y). Given two
/-invariant planes πλ and π2 in Mx} the holomorphic bisectional curvature H(πlt π2)
is defined by

9 Y, JY),

where X (resp. Y) is a unit vector in πλ (resp. π2). Then by Bianchi's identity

1) i.e., for any x^dD, there is a neighborhood U of x in M and a continuous strictly
plurisubharmonic function Φ such that DΓ\ U—{xGιU: φ(x)<.0}.

2) i.e., for any x<=dD, there is a neighborhood U of x in M such that UΠD is a Stein
manifold.
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we have

H(πl9 π2) = R(Xy Y, X, Y)+R(X, JY, X, JY)

It will be helpful to use the concept of Hartogs of the modulus of pluri-
subharmonicity of a (not necessarily smooth) function, defined as follows:
Let φ: [/—>!? be a continuous function on an open subset U of M and x a point
of U. Let {zly ~yzm} (m=dimc M) be a holomorphic local coordinate system
in a neighborhood V of x such that {(9/3^), •••, (3/3#«)} is a unitary frame
at x. Let X 0

= Σ α^d/dZj) (x) be a complex unit tangent vector at x such that

X0=±(X-y/=ΪJX)(X^MX9 ||AΊ| = 1). Now we define an extended real
number Wφ(x; Xo) by

Wφ(x; Xo) = lim inf \ U- Γ φ(τ(exp V=

where τ; {λ£C: | λ | <£}-^F is a holomorphic imbedding such that #, (σ(λ))=
βt λ (cf. e.g., [1, 3, 10]) and define an extended real number Wφ(x) by

(x) = mfWφ(x;X0).

Then the following facts are known (cf. [1, 2, 3, 10, 11]).

Fact 1. If φ is of class C2 near x, we have

and furthermore

OZiOZj

Fact 2. φ w plurisubharmonic on U if and only if Wφ ^ 0 on U and φ
is strictly plurisubharmonic on U if and only if there is a positive continuous function
p on U such that Wφ^p.

Fact 3. Let φ be a continuous function near x such that φ^φ near x and
φ{x) = φ(x). Then Wφ(x; X0)^Wφ(x; Xo).

Fact 4. Suppose there is a sequence of continuous functions {φn} converging
uniformly to φ on U and suppose Wφn^.βny where {Sn} is a sequence of real numbers
converging to 8, then

Let N be a closed (imbedded) submanifold of M with real demension
n (0^n^2m—l). We write Hy(N) (y^N) for the maximal /-invariant subspace
of Ny (i.e., Hy(N)=Ny Π J(Ny)). Let ^ b e a point of M\N. Suppose there is
a geodesic σ\ [0, l]-*M such that σ(l)=x and dis (σ(ί), N)=t for t e[0, /]. We
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denote by Pσω the parallel displacement along σ from Mσ(o) onto Mσ ( ί ). Let

Vx{t) be the /-invariant plane spanned by σ(t) and Jσ(t) and V2(t) the /-invariant

subspace Pσu)(Hσ(0)(N)) of Mσ(t). Put V3(t) = the orthogonal complement of

P i ί O + ^ ί O m MσU). Now we choose a continuous function k: [0, ΐ\-^R and

a real number Λ such that for any t^[0, /] and every /-invariant plane π in

Mσ(th

(1.1) #(*, Vtf))^ 2k(t)

and for any X^Hσ(φ (N) of norm ||X|| = 1,

(1.2)

where S^(Q) is the second fundamental form of N with respect to <χ(0). Using

essentially the method of the Rauch comparison theorem, we shall now give

an estimate for Wp in the next lemma, where p=dis (N, *). For this purpose,

let us introduce the three solutions /,. (i=l, 2, 3) of the equations:

(1.3) f[/+2kf1 = 0 with M0) = 0 and / { ( 0 ) = l ;

(1.4) fί'+kf2 = 0 with /2(0) = 1 and f'2(0) - Λ;

(1.5) f'3'+¥3 = Q with /3(0) = 0 and /ί(0) = 1 .

Then we have the following

Main lemma. For any nonincreasing C2-function ψ on [0, /], the distance

function p=dis (TV, *) satisfies

(1.6) Wψ(P)(x;

where Xo is a complex unit tangent vector at x such that X0—^(X~\J — \ JX)

( I G M , , ||J?|| = 1), and X{ (/=1, 2, 3) are Vrcomponent of X} respectively.

Proof. Since there is no focal point of TV along σ|[0, /), we see that / f

(z=l, 2, 3) are all positive on (0, /). In fact, suppose fi(to)=O for some i and

£0e(0, /). Let X be a unit tangent vector at σ(t0) such that I G F ^ ) . Let

X(t) (Q^t^l) be the parallel vector field along σ such that X(to) = X. Set

l±=X—g(Xyσ)σ and (jX)±=j£—g(jX,ά)σ. Then since N has no focal

point along σ|[0, /0], we see that the index forms IuOtN)(ft^ fi%) a n d

hto,N) (fijXyfiJX) a r e both positive. On the other hand, by (1.1) and (1.2), we

have

Γ° ±, σ,f{X±, σ)di

, {fJX){0))
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2/ί(0)2Λ+δ,./1.(ί0)/<(ί0)-δ,./,.(0)/K0)

) = 0 ,

where δ,= l if i=\ and δ t = 2 if ί=2 or 3. This is a contradiction. Thus
fi(i=l, 2, 3) are all positive on (0,/). Now suppose they are all positive on
(0, /]. Let Uz be a (sufficiently small) open ball with radius £ in Mx such that
the exponential map expΛ restricted to U2 induces a diffeomorphism between
ϊiz and its image Be(x). For any tangent vector l e t f , , we denote by X{i)
(O^t^l) the parallel vector field along σ such that J?(/)=X Let α: [0, /]x
$ε->M be a 2ra-parameter iV-variation of σ such that (i) a(t, 0) = cτ(£), (ii)
a(l, X) = exp, X, (iii) (dajds) (ί, ίJQ | s = 0 - C/i(ί)//i(/)) îW + {f^)ίfJJί)^(f)+
(f3(t)lf3(l))X3(t), (iv) α(0,X)ciV and (v) *(*, ̂ (/)) = σ(ί+(/i(0//i(0W- (We
see by e.g., [7: p. 25] that such a 2»ί-parameter N-variation a of σ exists,
taking a sufficiently small £ if necessarily.) Now .define a smooth mapping
β: B,,(x)^R by y8(expt X) ='the length of the curve tι-+a(t, X). Then p =
dis(iV, *)^/8 on Bt(x) and p(*)=/8(je). Hence we see by Facts 1 and 3 that

Wψ(P)(x; X0)^Wψ(β)(x; Xo)
, X)+ψψ(β)(JX, JX)

, X)+V2β(JX,JX))

Therefore in order to prove (1.6), it suffices to show that for any

(1.7) V2β(X, X)+V2β(JX, JX)

In fact, fix any l £ ^ . Since the both sides of (1.7) are invariant under the
rotations of F^/), we may assume g(X,Jσ(Γ))=0. Put Z(t)=(f1(t)lf1(l))£1(t)+
(/2(0//2(/))^2(/)+(/3W//3(0)^3(0 and ZJt) = Z(t)-g(ψ),ty))i(t). Since the
restriction of a to [0, /] X {sX: —£<s<6} is an iV-variation of σ which induces
a vector field Z such that Z(0)eiVσ(0), we see by the second variational formula
of arc length that

(1.8) ψβ{X, X) = g(S^(0)Z(0), Z(0))+ (' \\V;ZJ\2-R(ZX, σ, Z x, ά)dt
Jo

= {Vf2{l)fg{Skΰ)X2{% X2(0))+\' \\V«ZX\\2-R{Z, σ, Z, σ)dt.
Jo

Similarly we see that

(1.9) V2β(JX, JX) = (l//2(/))2^(^(0)/X2(0), /X2(0))

, σ, jz, σ)dt.



474 A. KASUE

Therefore by the assumptions (1.1) and (1.2), we have

Φβ{X,X)+ψβ(JXJX)

{f'3γ-kfidt\\x3ψ

This shows inequality (1.7). Now we assume fι{ΐ)f2(ϊ)fS) — ®' Then we
choose a family {&δ}δ>0 °f continuous functions on [0,/] such that kδ<k and
lim&δ = &. Let/,- δ (i== 1, 2, 3) be, respectively, the solutions of the equations
δ->o

(1.3), (1.4) and (1.5) defined by k8. Then the Strum's theorem tells us that
fits>fi ( ί = l , 2, 3) so that/ ί > δ (z=l, 2, 3) are all positive on (0, /]. Therefore by

the preceding argument, we see that

(l.io)

Since the right-hand side of (1.10) tends to that of (1.6) as δ—>0, we see that
(1.6) holds also in the case when f1(l)f2(l)f3(l) = 0. This completes the proof
of our main lemma.

The following fact was proved by Greene and Wu (cf. [3: Theorem 1 (A)).
Since we shall show the second assertion of Theorem 2 using this fact, we shall
give the proof for it in this place for the convenience to the reader.

Theorem 3 (Greene and Wu). Let M be a Kdhler manifold and D be a
locally pseudoconvex domain in M. Then if M has non-negative holomorphic
bίsectional curvature, there is a neighborhood U of 3D in M such that —log p is
plurisubharmonίc on C/fΊ-D, where p=dis (3D, *).

Proof. To prove the theorem, it suffices to show that given y^dD, there
is a neighborhood V of y in M such that —log p is plurisubharmonic on VC\D.
Let Vx be a neighborhood of y in M such that Vx Π D is Stein so that V1Γ\D
can be approximated from within by strictly pseudoconvex domains {Dn} with
smooth boundary dDn. For each Dny set pn= dis (dDm *). Let £>0 be so
small that B22(y) = {x^M: dis (x, y)<2ε} is relatively compact, geodesically
convex and contained in Vλ. Then ρn converges to p uniformly on Bs(y) Γl D
as n-+oo (B2(y)= {x^M: dis (x,y)<£}). Therefore it suffices to prove that
— log ρn is plurisubharmonic on Bs(y)f]Dn. In fact, for any x^Bs(y)Γ\Dn,
there is a geodesic σn: [0, ln]-^M such that crn(ln) = x and ρn(σ n(t)) = t for
ίG[0,/„]. Applying the above main lemma (& = 0, Λ = 0) topw, we see that
W(—log pn)(x)^0y since f1(t) = t a n d / 2 ( ί ) = l . This shows that — log ρn is
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plurjsubharmonic on Bs(y) Π Dn by Fact 2. This completes the proof of
Theorem 3.

2. Proofs of the results in Introduction

Throughout this section, we keep the notations in Introduction.

Proof of Theorem 1. We first remark that for any x^D, there is a geo-
desic σ: [0,/]-»M such that σ(l) = x and dis (dD, σ(ΐ)) = t for ίe[0, /], since
the closure of D is compact (cf. e.g., the first few lines in the proof of Corollary
(2.44) in [5]). Let fλ and f2 be, respectively, the solutions of the equations:
fί'+2X^=0 with/1(0)=0 a n d / ί ( 0 ) = l , and/£'+i£/ 2 = 0 with/ 2 (0)=l and

/£(0)=Λ. Set ψ(t)=[a \\j\ ( 0 < α < i n f { ί>0:/ 1 (^)^0} ^ + oo). Then by
v t

Main lemma, we see that the distance function p —dis {dD, *) satisfies

(2.1) Wψ(P)(x)^mm {/{//?, ~fίl(fϊf2)}(P{x))

for every Λ G D . Since each of the three conditions in Theorem 1 implies
t h a t / ί > 0 and f'2<0 on (0, i(D))y we see that the right-hand side of (2.1) is
positive for every x£fl . Therefore we see by Fact 2 that ψ(ρ) is a strictly
plurisubharmonic and exhaustion function on D. Thus D is a Stein manifold
(cf. [8]). This completes the proof of Theorem 1.

Proof of Theorem 2. Suppose M admits an exceptional analytic set E.
Here we call E an exceptional analytic set of M if there exists an analytic space
Y and a holomorphic mapping π: M-^Y such that π(E)={y} and π: M\E^
Y\{y} (cf. [4: p. 284]). Then it is clear that there is a strongly pseudoconvex
neighborhood D of E whose boundary is smooth and whose closure is compact.
Since D is a Stein manifold by Theorem 1, the existence of E is absurd. This
proves the first assertion of Theorem 2. Now we shall show the second asser-
tion. Set Z={X£ΞM: rank r τ<m}. Suppose Z is not empty, that is, Z is
an analytic hypersurface of M. Then by the proper mapping theorem τ(Z) is
an analytic subset of M. Set M0 = M\Z. Since r is biholomorphic on an
open dense subset of M, we see that r~ι{τ{Z))=Z and r is biholomorphic on
Mo. Set ρ = dis(Z, *). Then by Theorem 3, we see that there is an open
neighborhood U of Z( = 9M0) such that — log p is plurisubharmonic on U\Z,
since Mo is locally pseudoconvex. Therefore φ = (—log ρ)oτ'1: τ(MQ)-*R is
plurisubharmonic on an open subset τ(JJ\Z) = r{U)\r{Z). Now suppose there
is an irreducible component V of τ(Z) such that dimc V<m— 1. Then it
is well known that φ has a plurisubharmonic extention to an open set
τ(U\Z)\J$l(V), where 3t(F) is the regular points of V. This is absurd, since
φ(y) tends to +oo as y-^^V). Therefore we see that τ(Z) is an analytic
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hypersurface of M. Thus r: Z->τ(Z) is a surjective holomorphic mapping
between complex spaces of pure dimension m—1. Then the same argument
in the proof of Lemma 2 in [12] shows that Z must be empty and hence T:
M-+M is biholomorphic. This completes the proof of the second assertion of
Theorem 2.

Proof of Corollary. The first assertion is a direct consequence of Theorem
2 (1) and Theorem 1 in [8]. Now we shall show the second assertion. Set
p=dis (3.D, *) and φ=exp λ—log p. Then since —logp is plurisubharmonic on
VΓ\D for some neighborhood V of 3D, φ is strictly plurisubharmonic on
VpiUΓlD. Set Da= {χ(=D: φ(x)<a} (a(=R). Then by the first assertion
of the corollary, we see that Da is a Stein manifold for large a and further Da

is Runge in Z)β/, for large a and a' (ar>d) (cf. [8: Theorem II]). Therefore
a theorem of K. Stein tells us that D is a Stein manifold (cf. [9]). This com-
pletes the proof of Corollary.

Now we shall show a proposition which slightly extends the assertion (c)
of Theorem C in [11]. Let M be a noncompact, complete Kahler manifold
and a point O G M be fixed. Let {CJ ί e / be a family of closed subsets of M
indexed by a subset / of R. Assume ^Ξdis (Cu 0)->°° as £->°o. The family
of functions ηt: M->R defined by ηt[χ)=et—dis (x, Ct) is Lipschitz continuous
(with Lipschitz constant 1) and also satisfies 1^(^)1 ^dis(#, 0) (by the triangle
inequality). It is thus an equi-continuous family uniformly bounded on com-
pact sets. By Ascoli's theorem, a subsequence of {ηt}> to be denoted by ηny

converges to a continuous function η: M-+R, the convergence being uniform
on compact sets of M. Then we have the following

Proposition. Let M be a complete noncompact Kahler manifold. Suppose

the holomorphic bίsectίonal curvature is nonnegatίve everywhere on M and positive

outside a compact set A of M. Then η is strictly plurisubharmonic on M for each

η as above.

REMARK. It has been proved in the theorem cited above that ev is strictly
plurisubharmonic on M.

Proof. We fix any point x of M. By the assumption, we can find a small
neighborhood U of x and positive numbers a, β and γ which have the following
properties: (1) dis (y, z)<a for any y^U and z^A; (2) a>3y and 3/5γ2<l
(3) for any distance minimizing geodesic σ: [0,/]->M such that σ(l)^U and

(2.2) the holomorphic bisectional curvature at

where kt is a continuous function on [0, /] defined by k^t) - 0 for t G [0,1 —a], kt{t) =
t-(l-a)) for t€Ξ[I-a,l-a+y], kι(t) = β for ί€Ξ[/-α+<y, l-a+2y],
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?*ι(t)= —βlΎ (t—(l—a+27)) for / e [/- α + 2γ, / - α + 3γ] and £/(*) = 0 for
fe[/—α+3γ,/]. Let/,: [0, Z]-»Λ (Z>α) be the solution of the equation:
//'+£///—0 with//(0)=0 and//(0)=l. Then by simple computations, we see
that there are positive constants 8=δ(a, β, Ύ) and Zo = /0(α, β, 7), depending
only on α, /3 and 7, such that

(2.3) (/ί// /)(/)^-δ<0

for any Z^/o. Let y be a point of U and yM be a point of Cn such that
dis (yyyn) = dis (y, Cn). Then since 77^^-dis (ym *), and ^ O Ή ^ - d i s
we see by Fact 3 that

(2.4) WVn(y)^W(en-dis(yn,

We claim that for large n, the right-hand side of (2.4) ^ δ > 0. In fact, let
cr«: [0> J J - * ^ be a geodesic such that <rn(yn) =y (G f/) and dis (σ,,(ί)»y)=ί f°r

ίe[0, /J. Then by (2.2), Main lemma and (2.3), we have

-{fίjfiu) (In)

for large w so that ln^l0(a, β, 7). This shows that for large n and any

WVn(y)>S(>0).

Therefore by Fact 4, we see that 77 satisfies

on [/. Thus η is strictly plurisubharmonic on U and hence on M. This
completes the proof of the proposition.

REMARK. During the submission of this paper to the journal, the author
received the reprint [13] which contained among other things some extentions
of Theorem 1(1), Theorem 2(1) and Corollary (2), respectively.
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