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0. Introduction

For a based space X, ΣX and ΩX denote respectively the reduced sus-
pension and loop space of X. There is a natural (iterated) isomorphism

Φn: [Tx, Y] -^ [x, nnγ]

For i>\ let 2*: Ht(ΣX)->fft'1(X) be the suspension isomorphism and σ*:
H\X)->ff~\CίX) the cohomology suspension (see, for example, [16, VIII]).
For an n-fold loop space X=ΩnY, let

Then ξ*: Hi(Y)-*Hi(Ί,HX) factors as the composite

H\Y)±—U &-*(X) i^-> H\TX).

So we can obtain results on (σ*)w by studying ξ*.
Convert ξn into a fibre map and denote by GnX its fibre. (It is known

by Barcus and Meyer [2] that G^—^X AX).) Suspose that X is (m— 1)-
connected (m>l) and consider the Serre spectral sequence for the mod p co-
homology of this fibration. Then Milgram [12, I] showed that there is a (3m
+rc-Inequivalence of Te2

nX into GnX (where ^Z—Sn~ι\XZ2{X ί\ X\ the
extended square of X [11]). Using it, he found formulas for the differentials
of this spectral sequence in total degrees less than 3m-\-n—1, which gives a
precise description of the relationship between the cohomology of Y and that
of X. Our aim is to extend this result to total degrees less than \m-\-n—1.

Throughout this paper, all spaces are assumed to be of the homotopy
type of a based CW-complex. p will always denote a prime, and let H%(X)
and H*(X) denote respectively the mod p homology and cohomology of X.
For all X, H*(X) is assumed to be of finite type. So we have a dual pairing

< , y.Hi{X)®Hi(X)-+Zp.
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This paper is organized as follows. In §1 we collect some results about

72-fold loop spaces. In §2 we mention the result of Milgram [12, Theorem

4.6] (Theorem 3) in our terminology. With the aid of this theorem, our main

result (Theorem 7) is stated in §3. Its proof is facilitated by use of two lem-

mas (Lemmas 8 and 9) which are also due to Milgram; we treat them in §4.

§§5 and 6 are devoted to prove Theorems 3 and 7 respectively. §7 contains

several remarks.

1. Results about n-fold loop spaces

F. Cohen [5, III] constructed a satisfactory theory of homology opera-

tions on w-fold loop spaces. We exhibit some of his results which we need.

For more complete accounts see [5, III].

Let Y be an arbitrary space and n> 1. Then

(1.1) In H*(Ωn Y) there exist operations

Qs: Hi(ΩnY)-^Hi+s(ΩnY)forp=2and0<s<i+n-l ,

Qs: Hi(ΩnY)-+Hi+2(p-ιh(£lnY)forp>2 and 0<2s<i+n-ί ,

x,-!.- Hi{Ω!Ύ)®Hj{anY) -> Hi+j+^arY)

which are natural with respect to n-fold loop maps and satisfy the following

properties:

(1.2) Q\a)=0 if p=2 and s<\a\ or p>2 and 2s<\a\ {where \a\ denotes the

degree of a).

(1.3) Qs(a)=a*~-*a (p-fold) if p^2 and ί = | α | or p>2 and 2s=\a\ (where

* denotes the Pontrjagin product).

(1.4) QX1)=0 if s > 0 (where 1 e H0(Ω,n Y) is the identity element).

(1.5) Let ψ: H*(ΩnY)-+H*(ΩrY)®H*(ΩTY) be the coproduct induced by the

diagonal map of Ωn Y. If ψ(a)=Σ a' <g) α", then

ψQ\a) = Σ £?V)®£?V)

(1.6) Ifs>pt,then

ffQ* = ̂ ί - i

if p>2, s>pt and Δ is the mod p homology Bocksίein, then

QsAQι = ψ-\Y
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(1.7) Suppose p=2 and let Sqr*: jy,(Ω"Y)—fl l _r(Ω11Y) be the dual of the

Steenrod square Sqr [14]. Then

if s<\a\+n-9 (ίl2i)&'"r+i('Sϊ*

_

(1.8) 7/ Y w α loop space, then \H-χ(a, b)=Q.

(1.9) \0{a,b)=a*b-(-ψmb*a.

(1.10) λ ,-^, ft)=(-l)| |1»l+( | | + l»'«-1)+ λll_1(6, α); »

(1.11) λ,_,(l, β)=λ._1(β, l ) = 0 .

(1.12) Ifφ(a)=Σa'®a" and φ(b)=Ί,b'®b", then

ί =

(1.13) (-l)<1 | + - - w k l + -

«λ.-1(£:, λ,_,(α, ft)) = 0; ί/^>=3, λ^^α, λ^^α, β))=0.

(1.14) Supposep=2. Then

Sq%Xn^{a, b) = Σ X,_,(Siie, 5 4 * ) .

(1.15) For n>\ let σ*: Ei(aMY)-+Hi+1(ΩH-1Y) be the homology suspension.

Then σ*Q\ά) = QXσ*ά) and

(1.16) // Γίn~ιY, n>l, is simply connected and a\ bf<^H*+l(£ln~lY) transgress

to β, b^H*(ΩnY) respectively in the Serre spectral sequence of the path fibratίon

ΩnY-*PΓLn-ιY->Ωn-ιY, then Q\a') and \n-2(a\ br) transgress to Q\a) and

λn-i(tf, b) respectively.

(Here we have written

instead of ξn.x{a)\ for this notation see Theorem 1.3 of [5, III].)

Throughout the remainder of this section, X will denote an arbitrary con-
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nected space. Let

{a, ft, c, •••}

be a totally ordered Z^,-basis of homogeneous elements for H*{X). (This order-

ing has no essential influence on the following argument.) Then the basic

Xn-λ-products are defined as follows. Define a, ft, ••• to be the basic Xn-.Γpro-

ducts of weight 1. Assume inductively that the basic Xn_ rproducts of weight

j , 1<7<&, are defined and totally ordered among themselves. Then a basic

Xn-Γproduct of weight k is defined to be Xn-χ(x, y) where

( 1 ) x and y are basic Xw ̂ -products with weight(x)+weight(y)=β;

( 2 ) x<y and if y=Xn-i(z> w) for z and w basic Xw_1-products with z<w,

then x>z;

or

(2)' x=y if p>2 where x is a basic Xn_ rρroduct of weight 1 and \x\

\-n is even.

For example, the basic XM ̂ -products of weight 2 are

Xn-λ(a> ft) for α<ft;

Xn-!(a, a) for p>2 where | a \ -\-n is even,

and those of weight 3 are

^Λ-i(ft) λ,Λ_i(<z, c)), Xn-^c, Xn-i(a, ft)) for a<Zb<ic

REMARK. The notion of basic X^-products is derived from (1.10) and

(1.13). It will be regarded as a procedure for choosing certain indecomposable

elements of iί^(ΩwΣMX).

Consider sequences of non-negative integers

where 6 ; = 0 or 1. Define the length and excess of J by

l(J) = k and

is said to be admissible if

12ίi-£i— Σ (2{p— l)Sj—€j) when ^ > 2 .

, > ί y _ j when p = 2
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for 2<j<k. J determines the homology operation

(ρ s i . ρs* when p = 2
0' = . . . ,

when p > 2

REMARK. The notion of admissibility is derived from (1.6).

For any space X let

It is well known that ηn%: H*(X)->H*(ΩnΣnX) is injective. So we may re-
gard that H*(X)(ZH*(ΩnTX). Then, for a, b<=H*(X), we have the following
elements of H*(ΩnTX):

a*b, ρs(α), λM.!(β, b), etc.

Under the above notations and terminologies, we have

(1.17) If n>l> H*(ΩnΣnX) is the free (associative and) commutative Zp-algebra
generated by

x is a basic Xn-γ-product\ J is admissible \

QJ(x) ifp = 2ye(J)>\x\ and sk<\x\+n-ί;

ifp>2,e(J)+S1>\x\ and2sk<\x\+n~]

and if n=l> H*(ΩΣX) is the free associative Zp-algebra generated by {α, b, •••}.

Thus for n>\ H*(ΩnΣnX) has a Z^-basis consisting of all monomials in
the above generators. Let us define the height of a monomial as follows:

height(QJ(x)) = pιu) weight (x) and

height(ρ'(*)*ρ*(3;)) = height(ρ'(*))+height(ρ*(;y)).

According to May [7], there is a functor Cn from spaces to spaces together
with a natural transformation an: CM->ΩMΣW such that anX: CWX->ΩWΣWX is a
(weak) homotopy equivalence for all X. The space CnX has a natural filtration
{FkCnX\k>0} (such that FOCMX={*}, FλCnX—X and FkCnXdFk+1CnX is a
cofibration for all k). H*(FkCnX) may be regarded as a sub-Z^-module of H*
(ΩnΊ?X) and then it is additively generated by the elements of height <k.

For k, n>\ let

As displayed in [9], if X is (m— l)-connected, w > l , then ek

nX is (Am—1)-

connected and therefore
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(1.18) The composite

Fkcnχ _£> cnx ^ i εΐT

[which we denote by jk) is a ([k-\-\)m—^-equivalence.

So there is an isomorphism

nX)^H\FkCnX) for i

For a^H\X) let a* denote its dual. We regard it as an element of Hi

(ΩnTX). Then, for a, β<E:H*(X\ we have the following elements of H*

(ΩTTX):

α*/3 = the dual of a**β* ,

Qs(a) = the dual of Qs(a*),

λΛ_!(α, β) = the dual of λM-i(α*, β*)y etc.

Combining the above notations and results, we obtain

Proposition 1. Suppose that X is (m—1)-connected and let {ay β, 7, •••}

be a totally ordered Zp-basis for B*(X). Then a Zp-basis for B*(ΩttTX) in

dimensions<.3m—l is given by

height 1: α,

height 2: α*/3 for a<β where if a=β, p>2 and \a\ is even;

Q\a) for Poland \a\ <s< \a\ + r c - l ;

λM_i(α, β) for a<β where if a=β, p>2 and \a \ +n is even,

and that in dimensions<4m— 1 is given by the above together with

height 3: α*/3*γ for a<β<Ύ where if a=β—fY,p>2 and \a\ is even,

and if a=β^rY or aφβ=7, p>2 and \β\ is even;

a*Q\β) forp^land \β\<s<\β\+n-\;

a * \n-i(β, Ύ) for β<γ where if β=7,p>2 and \β\+nis even
A*QXa) forp=3, S=0or 1 and \a\ +£<2s< \a\ +n-l;

λn_!(α, Xn-^β, 7)) for a>β<J.

2. Review of Milgram's work

As in §0, if X=ΠnYy we have a fibration

(2.1) GnX-^ TX -^+ Y.

Application of the functor Ωw yields a fibration

(2.2) ΩnGnX ^ i ΩnTX —ϊn X.
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Put

FnX=ΩnGnX.

Since (Ωnξn)ηn=lx it follows that (2.2) is fibre (weak) homotopically trivial
(see [12, Lemma 4.1]). So we have

Lemma 2. The following equivalent statements hold:
(i) The mod p cohomology Serve spectral sequence of the fibratίon (2.2)

collapses.
(ii) {Ωnvn)*: H*(ΩnTX) -» H*(FnX) is surjective and its kernel coincides

with the ideal generated by (ΩM?M)*(Σ H\X)).

For the proof see [13].

Suppose again that X=ΩnY is (m—1)-connected for m > l . Then it
follows from Proposition 1 and Lemma 2(ii) that FnX is (2m— l)-connected.
Let (FnX)Zm-λ be the (3m— l)-skeleton of FnX. Then the inclusion map ί3m-λ:
(FnX)3m-}->FnX is a (3m-- Inequivalence. Since FWX=ΩWGWZ, we have a
map

Consider the commutative diagram

where Σw is the «-fold suspension homomorphism. By the Freudenthal sus-
pension theorem, Σw is an isomorphism for z<4m— 1 and an epimorphism for
i=4m—1. Therefore φ~w(4w_]) is a (3m+τz—l)-equivalence. So there is an
isomorphism

flΓί(GwZ)^^(ΣM(ί1

wZ)3._1) for i<3m+n-l .

Through this isomorphism we shall identify them. Then, for ω^H\FnX)
with i<3m — \, we have an element σn(ω)^Hi+n(GnX) (hereafter we often write

<r"( )for(Σ )-( ))•
Let us compute H*((FnX)Zm-^ by using the Serre exact sequence of the

fibration (2.2); it is valid for dimensions <3m—1. Moreover, the transgression
T is trivial, by (i) of Lemma 2. Thus we have a short exact sequence

0 -* H\X)v—^> H\anTX) nJ> H\FnX) -> 0

for i<3m— 1. For XGHi(ΩnΈ,nX) we denote by [X] the image of X under
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Then from the former part of Proposition 1 it follows that

(2.3) Suppose that X=Ω"Y is (m—\)-connected (m>\) and let {a, β, •••} be

a totally ordered Zp-basis for B*(X). Then a Zp-basίs for i?*(GwX) in dimen-

sions <3m-\-n—l is given by:

(1) σn[a*β\ for a<β where if a=βy p>2 and \a\ is even;

(2) σn[Q\a)] forp=2 where \a\ <s< \a\ +n-l

(3) σn[Xn-ι(a, β)] for a<β where if a=β, p>2 and \a \ -\-n is even.

Notice that the elements a and β appearing in (2.3) have dimension

< 2 m - l . We now recall the following fact (see (3.1) of [16, VIII]):

(2.4) // X=£ΐ Y is (m~ l)-connectedy then

(σy:Hi+n(Y)-^Hi(X) or

ξ*:Hi+n(Y)->Hi+n(ΣnX)

is an isomorphism for i < 2m— 1.

For a^H\X) we denote by na an element of Hi+n(Y) such that

(σ*)«(«tf) = α or ξ*{na) = σn{a).

Thus, for each a€=.H\X) with i<2m—l> nd exists uniquely.
Consider the ίibration (2.1). Since Y and GnX are (m-\-n—\)- and (2m-\-n

— l)-connected respectively, its Serre exact sequence

(2.5) — H\ Y) h H\TX) V-^ H\GnX) -^ Hi+\ Y) ->

is valid for i<?*m-\r2n—1.

Theorem 3 (Milgram). Under the above situation, the following formulas

hold up to non-zero constants:

(1) v*(σn(al)β))=σn[a*β] (where U denotes the cup product) and so

τ(σ*[α*/3])=0;

(2)

(3)

REMARK. In (1) a [jβ is always non-zero; see the Remark below Lemma 5.

For the proof see §5. Assuming this Theorem for a while, we proceed

with our argument.

In the exact sequence (2.5), for ωei/ι'((i^wZ)3wί_1) with τ(</(ω))=0, we

denote by {ω} an element of H\X) such that
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in Hi+n(GnX). (2.5) gives rise to a short exact sequence

0 -> Cok T ̂  rfφX) ^ Ker T -> 0

for i<3m+n—l. By Theorem 3, the additive structures of Im τ and Ker τ
can be easily described. Thus we have

Corollary 4. Let

Then ΪΪ*(X) in dimensions <3m— 1 Aαs # Zp-basis consisting of elements of the
following four kinds:

(1) θ where σn(θ)£Ξlmξ*;
(2) aUβ for a<β where if a=β,p>2 and \a\ is even;
(3) {QXcή} forp=2 and \a\ <s< \a\+n-l where Sq s+1(wα)=0;
(4) {λM-i(α, β)} for a<β where if a=β, p>2 and \a\+n is even, and

NOTATION. From now on, we use the letters α, β, 7 to denote elements
of i?*(X) of dimension <2m— 1 and the letter θ to denote an element of i?*
(X) of dimension <3m— 1 for which nθ exists, unless otherwise stated. Of
course, the θ includes a.

Since the fibration (2.2) is fibre (weak) homotopically trivial, we may as-
sume that there is a fibration

Consider the following commutative diagram

where the upper row is a cofibration. Then it follows from (1.18) that the
induced map j ' 2 : elX->FnX is a (3m— Inequivalence. Since e\X is homotopy
equivalent to Sn'ι\XZ2(XAX) (see Proposition 2.6 and Remark 4.10 of [8]),
we can use 5Λ"1|XZz(-X'Λ-X') instead of (FnX)Zm-x in the argument of this section,
which is just the argument of Milgram [12, I].

3. The main, theorem

We now take the (4m—l)-skeleton (ί1

MX)4m_1 of FnX. Since the inclusion
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map iim-ii (FnX)Am-ι->FnX is a (4m— l)-equivalence, by the same argument as
in §2, the map

Pn = φ-n(hm-l) r(F,X)im-l ~+ GnX

is a (\m-\-n— l)-equivalence. (Note that this equivalence is natural in X;
see the diagram (5.1).) So there is an isomorphism

tfίGΉ^ΦφJQim-i) for i<4m+n-l .

(It follows from (2.4) that this isomorphism holds for i=4m-\-n—l.) Similarly
we shall identify them.

Let us compute //*((JFMX)4;M_1) by using the Serre spectral sequence {En

dr} of the fibration (2.2) that is,

EίJ = H\FnX)®H\X) and £* '* = Gr i/*(Ω*ΣMX).

By (i) of Lemma 2, £*•*=£*•* for all r>2. It follows from (2.3) that ElJ

for i+y<C4w—1 with /, y>0 has a Z^-basis consisting of elements

α (ρ = 2) and [ λ , - ^ , Ύ)]®a .

For atΞH\X) let a&HHΩ'TX) denote the dual of α ^ e i ί ^ Ω ' Σ ^ ) ; then
^*(^)=zcί. By the multiplicative properties of the cohomology spectral se-
quence, [β*Ύ]®a, [Qs(β)]®a (p=2), [kn-^β, 7)]®a&E* * are represented
by αU(/3*7), α[JQs(β) (p=2), α\J\H^(β9 τ)ei/*(ΩwΣMZ) respectively.

Lemma 5. In Σ ff\Ω.nΈ,nX) the following relations hold:
ί<4w 1ί<4w -1

( i) (1) If α, β, Ύ are distinct,

^U(^*γ)-(-l) | Λ

(2) //αΦ/3,

^U(/3*/3) = /3*(α

β{J(a*β) = 2a*(β\Jβ)+β*(aΌβ)+2a*β*β;

(3) α

(ii) 7/^>=2,

(iii) (1) If a, βjΎ are distinct,

a\J\u-i(β, Ύ) = (-l)1"11-8^^1

+ ( —
(2)
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, . ^ , β) = (-l) l"" ί | + l '"(- 1>λ,- 1(α, βUβ)

+(-l) l 0 l + | α | ("-1 ) +"λB_1(A αU/9)+/9*λ,-1(α, /3);

(3) a U U " . «) = (-l j ' 'λ.-^α, αUα)+α*λ«-1(α, α).

REMARK. Note that for a, β<=H*(X), αU/3ΦO if αΦ/3, and αUαφO if
p>2. In fact, since .X=Ω"Y is a connected ϋ-space, H*(X) becomes a con-
nected, associative and commutative Hopf algebra of finite type over Zt\ hence
the Borel structure theorem (see (8.12) of [16, III]) implies the result.

Proof. Since \a\, \β\, \y\ <2w—1, a, β, Ύ are primitive. So

Ψ{a* * (£ U 7)*) =

and

+ 10(0;* */3**γ#).

Thus if %=/3**(αU7)*, 7* * (α U /S)* or α**/9**7*, </»(X) contains the term
α*®(/?**7*) whose coefficient is (-I) 1 " 1 "", (_l)i-ιw+'βιm or 1 respectively.
This implies (1) of (i), for if % is other base, ψ(X) does not contain it. Similar
calculations yield (2) and (3) of (i).

(ii) and (iiί) are proved similarly by using (1.4), (1.5), (1.10), (1.11) and
(1.12).

It follows from Lemma 2 (ii) and Lemma 5 (i) (1) that if a, β, 7 are dis-

tinct,

0 = [σU(/3*7)] = (-l) | O > i | β |[/3*(αU7)]

0 = \β[J(a*Ύ)] = (-l) | Λ | l β l[α*(/3U7)]

0 = pyU(«*/3)] = (- l) | α | ' γ | + l β l l v l [α*( / δU7)]

(—l) | β | | γ l + I P ι m[αr*/8*7]
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in H*(FnX). Hence

(3.1) [/3*(αU<y)] = (- lΓ l l β l [α*

[Ύ*(aUβ)] = (-iy«m+ίβM[a*(β(J7)] and

[a*β*Ύ] = — 2[α*(/SL)7)]

Similarly from (2) of Lemma 5 (i) it follows that if αΦ/3,

(3.2) [β*(aUβ)] = 2[a*(βϋβ)] and

[a*β*β] = -2[a*φ\Jβ)] •

From (3) of Lemma 5 (i) it follows that

(3.3) [α*(αUα)] = -3[a*a*a].

From (ii) of Lemma 5 it follows that

(3.4) [a*Qs(β)] = 0.

From (1) of Lemma 5 (iii) it follows that if α, β, 7 are distinct,

(3.5) [α*λ.-1GS, Ύ)] = ( - l ) | |""+l*l<-ι>+1[λ.-108, αUT)]

I>+1[λB_1(α, /9U7)]

^(a9 β)] = (- lJ '- '^ '+^'^+^'^-^tλ.^α, /3U7)]

From (2) of Lemma 5 (iii) it follows that if αΦ/3,

(3.6) [α + λ.-iί/S, /?)] = ( - l ) 1 " 1 ^ ^ 1 " 1 ^ - 1 ^ 1 ^ - ^ , aΌβ)] and

n-M β)] = (_l)

From (3) of Lemma 5 (iii) it follows that

(3.7) [ α i ' V ^ α , a)] = ( - l ) 1 " 1 ^ , - ^ , aUa)].

Combining Proposition 1, Lemma 2, Corollary 4 and relations (3.1)—(3.7),
we obtain

Proposition 6. Suppose that X=ΩnY is (m-l)-connected (m>\). Then
a Zp-basίs for β*(GnX) in dimensions <i4 m-\-n—1 is given by:

(1) crn[α*<9] for a<θ where if a=θ, ρ>2 and \a\ is even;
(2) σn[a*(βUΎ)] for a<β<7 where if a=β=7, p>3 and \a\ is even,

andif a=βφy or a + β=y,p>2 and \β\ is even;
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(3) σn[a* {Q\β)}] forp=2 and \β\ <s< \β\ + n - l where Sqs+1("β)=0;
(4) σ"[a* {\n-ι(β, 7)}] for β<,7 where if β=y,p>2 and \β\+n is even,

and "/SU"7=O:
(5) σn[Q\a)\ forp=2and \a\<s<\a\+n~l;
(6) σ"[λB-i(α, θ)] for a<θ where if a=θ,p>2 and \a\-\-n is even;
(7) σ"[λM-x(α, β U7)] for β<y where if β=γ, p>2 and \β\ is even
(8) ^ [ λ ^ α , {gs(/3)})] forp=2 and\β\ <s< \β\+n-l where Sq°+\"β)

= 0 ;
(9) σ

n[Xn^(a, {X.-.φ, T)})] far β<7 where if β=y,p>2 and \β\+n is
even, and"β\JnΎ=0;

(10) <r"[Qs(a)] for p=3 and \ a\ <2s< \a\ +n-1
(11) σ"[AQs(a)] forp=Z and \a\ <2s< | α | + n - l ;
(12) σ"[λB_1(α, K-^β, 7))] for α > / 3 < 7

Consider the mod p cohomology spectral sequence {En dr} of the fibration
(2.1) in total degrees <l4m-\-n—1 that is,

(3.8) E'2
J = H'(Y)®Hi(GnX), dr: E'/1' -* E'r

+r '-r+1 and

E* * = GrH*(Σ"X).

Then our main result is

Theorem 7. Under the above situation, the following formulas hold up
to non-zero constants:

(1) v*(<τn(aυθ))=σ

n[a*θ];

(2) φ " ( α U / 3 U 7 ) ) = σ " [ α * ( ^ U τ ) ] ;
(3) Ifp=2 and ^+ 1(»/3)=0, v*(<r«(a\J {ρs(/3)}))=<r"[α* {Qs(β)}V>
(4) Ifβ U "7=0, 4
(5) Ifp=2, τ(
(6) τ(σ"Lλl,-1(α
(7) dw+u{l®σ

(8) Ifp=2 and Sq^("β)=0, dM+tl(ί®σ

n[Xn-1(a, {Q\β)})]) = "a ® σ"[Qs

(β)Y,
(9) (a) // "β U "7=0, dw+.(ί®σ'[\n.1(a, {K-iiβ, 7)})]) = " « ® ^ [ λ , . ^ ,

(b) //"aU"^="/3U"7=0, ((a) Ao/Λ <»u2) τ(<r"[λ,-^, {λ,-!^, 7)})]
+ c ' σ"[λB_1(7, {λB_1(α, /δ)} )])=<"«, "/§, B7> (where c' is a non-zero constant and
<( , , y denotes the Massey product [15]);

(c) //BaU"/3="/3U"7="7LJB<2=0, ((a), (b) hold and) r{σ

n[χn_γ{β,
{λ.-xί-y, α)})]+c" «r"[λ,_1(α, {λ.-^/S, 7)} )])=<"/§, "% "«> (wΛere c" » α n0W-
zero constant);

(10) If ρ=3, τ(σ

n[Qs(a)])=A*^χna) (where Δ* w ίAe mod 3 cohomology
Bockstein and ^βs is the Steenrod 3rd power [14]);
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(11)
(12) dla}+u{l®σn[\Λ^(a9 λ.-iί/S, Ύ))])=tta®σ

n[xn^(β, γ)].

The proof is postponed until §6.

REMARK. In the proof of Theorem 7, for the convenience of argument
only, we will take as a Z^-basis for β*(GnX) the set of elements given in Pro-
position 6. However, Theorem 7 is valid, independently of the choice of Zp-
basis for R*(GnX) and of the ordering of Z^-basis for i?*(X). This assertion
will be discussed in §6.

4. Lemmas

In §3 we have shown that

(4.1) If X=ΩnY is (m—\)-connected, there is a (\m-\-n—X)-equwalence pn: Σw

For n>k>\ consider the following diagram

(4'2) \Vk ak \ηk

where the rows are ίibrations. Commutativity of the right-hand square yields
a map η'k: Gn-k£ΐY-*Ω!ιGnΓLnY. Application of the functor Ωn~k to the
diagram (4.2) yields a commutative diagram

F,-,Ω Y z'a-'x -'a Y — Ϊ Z ' Ω Ύ
(4 3 ) !"•"'« ΩV. IΩ""'" β ϊ . =1

Fna
nγ — n-> Ωrτnnnγ — % nnγ

Let η'k: (Fn_kΩl

nY)4m_1-+(FnΩ
nY)4m-1 be the restriction to the (4m—1)-skeleton

(of a cellular approximation) of the map Ωn~krjk. Then there is a commuta-
tive diagram

Pn-k \φ%Pn)
Vk j, *

and by (4.1), both pn_k and φk(ρn) are (\m+n—k— 1)-equivalences. Thus
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may be identified with the composite

for i<4 m+n—ί. Then we have

Lemma 8. For any a, β^H*(ΩnY) the following relations hold:

(1) (vί)*(σ*Ϋ(Λ<**β]) = o--*[α*/ϊ];
σn~k[Qs(a)] if p = 2 and s<\a\+n—k—ί or

(2) (yί)*(σ*Ϋ(σn[QX*)]) = ρ>2and2s< \a\+n—k—

ft otherwise

(3) (#)*(σ*)V[λ.-i(α. i8)]) = 0

Proof. By (1.1) and (1.8),
satisfies:

a) ?/^ = 2 and ί < | α | + w — Λ — 1 orp>2 and

(0 otherwise

(Ω-*, i)*(λ,_1(α, β)) = 0.

So the result follows from (4.3) and the definition of η'k.

For n > k > 1 consider the following diagram

(4-4) j|ί

where the rows are fibrations. Commutativity of the right-hand square yields
a map ψk\ GjtfY-*Gu-ka

n-kY. Application of ΩT to (4.4) yields a com-
mutative diagram

Fna
nγ —n-> nnτnnnγ — - > Ω T Y

(4.5) |θ-B I Ω ^ " ^ Ω . g - |
akFn.kw-kY — " ^ nnτn-kw-kY —^-> nnγ.

Let ξ/

k:Ί!i(Fna
nY)Am-ι-^{Fn.ka

n-kY)^ι be the restriction to the (4m-1)-
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skeleton of the map φ~\anξίY ^kFnίl
nY->Fn.ka

n'kY. Then there is a
commutative diagram

[Pn-k

and by (4.1), ρn and pn-k are (\m-\-n— 1)- and (4m+n-\-3k— Inequivalences
respectively. Thus

/f (GB_*Ω"-* Y) ^-* H\Gna
n Y)

may be identified with the composite

for z<4ffί+M—1.

Lemma 9. For any "δt, kβ^H*(Ω,"~kY) the following relations hold:

(1) (|ί)*(σ""*[*«**/9]) = 0;

(2) (lί)*(σ-*[ρί(*a)]) = σ [ρ'(α)];

(3) (lO ίσ-^λ,-*-^**, kB)]) = «τ"[λ.-,(α, /?)] ,

where a (resp. β) is the image of *c? (resp. kβ) under (σ*)k: Hi(Ω,n-kY) -*
#'-*(Ω"Y).

Proof. Recall (e.g. from §3 of [16, VIII]) that

(4.6) For any Y, σ*: H\Y) -> βi~1(Ω.Y) maps every decomposable element into
zero.

By this fact and (1.15), ξf: H'(Ω-*Y) — #'(Σ*Ω" Y) satisfies:

^ ( λ . . * - ^ ^ , */8)) = σ*(λ._1(α, /?)).

So the result follows from (4.5) and the definition of ξί.

5. Proof of Theorem 3

Milgram [12, I] did not give a detailed proof of Theorem 3. Here we
present it for later convenience.

If Y' and Y" are (m'+n— 1)- and (m"+w—1)-connected respectively,
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where m / / > m ' > l , and if g: Y'^>Y" is a map, there is a commutative diagram
of fibrations

p \ n ) i m x » -^> Ί, X' - A Y
(5-1) j JG./ I Σ 7 j *

^2, (ΓβΛ ) 4 w ί"-i •/urΛA > 2, A • y

where X^Ω^Y', X^-Ω^Y^ and /-Ωwσ. Then the naturality of the Serre
exact sequence yields a commutative diagram of exact sequences

0 -> Co& ξ* —ίU H\GnX") • iίβr f * -* 0

* ^ ^ H\GnX
f) > ̂ r ?* -* 0

for i<3m'-\-n—l.
Let i^(Z^, /) be an Eilenberg-MacLane space of type (Zpy i) and let * f e

H\K(Zpj i)) be its fundamental class.

Proof of (1).
In the diagram (5.2), set g=(nay

nβ): Y-*K(ZP, \a\+n)xK(Zp, \β\+n);
then we see that to show (1) it suffices to prove

(1)' z ' W , X i,β,)) = σ"[{iw X 1)*(1 X ί | β l)]

in the case F = ϋ : ( Z ί ) |a\ +n)X^(Z^, \β\+n).
Suppose n>\ and consider the diagram (5.2) for the case g—πx: K(Zp, \a\

+n)xK(Zp, Iβ I -\-ri) -+K(Zf, I a | +w), the projection to the first factor. Then

|α | )x-

= Zp{σn[(i\a\Xl)*(lXi\β\)]} modulo Im (Gnπ^* .

On the other hand,

„ \a\+n)xK(Zp, \β\+n))
•p, \a\)xK(Zp, |/3|)))]

= Zp{<rn(i\a\ X £|βi)} modulo Im ( Σ " ^ ) *

and

'„ \a\+n)xK(Zp, \β\+ή))

„ \a\)xK(Zp, I/S|)))]

— 0 modulo Im πf .

For σ w (ω)eIm ( G Λ ) * let σw(ω) tEH*(GnK(Zpy \ a \)) be such that (GllΛr1)*(σll(©))
==crw(ω). Then the behavior of σn(ω) in the lower sequence of (5.2) depends
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on that of σ\ω) in the upper sequence of (5.2). So the above observation

implies (1)' for n > l .

It remains to prove the case n=l. Consider the diagram (4.2) for the

case that Y=K(Zp \a\-\-n)xK(Zp, \β\-\-n) and k=n—\\ then there is a com-

mutative diagram

H\TX) > H\GnX)

(5.3)

where X=K(Zp, \a\)XK(Zp, | β \ ) , and by (1) of Lemma 8,

"?(σ(ί,βι X ιm)) = vf{Ί,*y-\σ%lw X ί | β l ))

= (v'n-in**y-1v*(a>'(cla{χίίβl))

= (Sί-OV*)-V[( t,e, X 1) *

V- > W-^G.X)

Proof of (2).

In the diagram (5.2), set g="δί: Y-^-K(Z2, | α | + « ) ; then we see that to

show (2) it suffices to prove

(2)' τ(σ"[Qχίw)])=Sq°+\tw+n)

in the case Y=K(Z2, \a\-\-n).

Consider the lower sequence of (5.2) for the case that Y'=K(Z2,

andτz=l. Then

* s)) = Z2{σ[Q\cs)}} .

On the other hand,

Cok [ξf: IPM(K(Z2, s+1)) -> H2s+\ΣK(Z2, ,))] = 0

and

So we have

Ker[ξf: H2s+\K{Z2,

= Z2{S<?+ί(ίε+1)) .

H2s+\ΣK{Z2, s))]

Consider the diagram (4.4) for the case that Y=K(Z2, s+1), n=— \a\ -\-s

and k=n—1 = — | α | + ί ; then there is a commutative diagram
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H'(Gj.aY)—T-^

(5.4) Jfiϊ, τ

H\GnX) • i

where X=K(Z2, \a\) and Y=i<:(Z2, Ϊ), and by (2) of Lemma 9,

Consider the diagram (4.2) for the case that Y=K(Z2, | a | 4-κ) and
I α I +w—ί— 1 then there is a commutative diagram

Hi+k(GnX) — -

(5.5)

where X=K(Z2, \a\) and Ω*F=X(Z2, ί+1), and by (2) of Lemma 8,

Since (σ*)1"1*"-'-1: Hm+"+s+\K{Z2, \a\+n))->H2s+2{K(Z2, ί+1)) is monomor-
phic (see [4]), (2)' follows.

Proof of (3).
In the diagram (5.2), set g=(na, nβ): Y-+K(ZP, \a\+n)xK(Zp, \β\+n);

then we see that to show (3) it suffices to prove

(3)' τ(σ*[λ,,_i(ί|β| X 1, 1 X ί,βl)]) = ίM+n Xtίβί+n

in the case Y=K{ZP, \ a \ +n) XK(ZP, \β \ +n).

Consider the diagram (5.2) for the case that g=πx .K(Zp, \a\ -\-n)XK(Zt,

\β\+n)-*K(Zf, | α | + « ) a n d » = l . Then

, \a\+n-l)xK(Zp> \β\ + « -
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= Zp{σ[(i\a\+n-1Xl)*(lXιm+n-1)],

cr[\0(iiai+n-iX 1, lXiι/ιι+,-1)]} modulo Im ( G ^ ) * .

On the other hand,

p9 \a\+n)xK(Zpy \β\+n))-»

p) \a\+n-l)xK(Zpy \β\+n-l)))]
= Zp{a(i\a\+n-iX^\+H'i)} modulo Im (ΣTΓJ)*

and

p) \a\+n)xK(Zpy \β\+n))->

pi \a\+n-l)xK(Zp, \β\+n-l)))]

= Zp{i\a\+nXi\β\+n} modulo Im πf .

In view of the formula (1), we find that

Suppose w>l and consider the diagram (4.4) for the case that Y=K(Zp,
\a\ -\-n)xK(Zp, \β\ \-rί) and k=n—1; then we have the commutative diagram

(5.4) (where X=K(ZP, \a\)xK(Zp, \β\) and ΩY=K(Zp, \a\+n-l)xK(Zp,
\β\+n-l)), and by (3) of Lemma 9,

l, ίXc]β\+n-i)])

= ιW+nX c\β\+n

6. Proof of Theorem 7

We begin by introducing some notations.
For i<j let L(Z2, i j) denote the mapping fibre of

and for i> j let

L ( Z 2 , z ; ; ) - Ω ^ X ( Z 2 , i; i).

Then for any (/, j) there is a fibration

K(Z2, i+j-1) -^ L(Z2y i;j)-^> K(Z2,j)

which is induced by Sq(cj). Put cJ~ζ*(tj). Since Sqι is stable, it follows that
ΩnL(Z2, i\ j+ri)—L(Z2, i; j) for all z, j and w, i.e., L(Z2y i\ j) is an infinite loop
space.
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Suppose i>j. Then Sq\ij)=O and therefore

(6.1) L(Z2, ί; j)^K(Z2, j)XK(Z2, i+j-l).

Let κi' '^Hi+'-\L{Z2, i j)) be the element such that

£f(«ίi>) = ί < + y_ 1.

We now take integers i, j and n so that (2) of Theorem 3 is applicable to σ*[Q'~ι

( ( '-')]eff i + '--(G sL(Z2 ) i j-n)), where Y=L(Z2, i j). Then τ(σ»[ρ -1(ί>-»)])

==5ήι'(ίJ), which is equal to zero by the definition of L(Z2, ί; j). So σ'ΊQ''1

(ι'~n)] lies in the image of vf. In view of (6.1), we find that

(6.2) vi{σ*(ιέ; i~n)) = σ-'ΊQ1-^-")] .

For i<j let M(Zp; i,j) denote the mapping fibre of

i, X i,: K{ZP, i) x K(ZP, j) - ίC(Z,, i+j).

Then there is a fibration

l) ^ * M(Zp; i,j) - K ^(Z,, i)xK{Zp,j).

Application of Ωw yields a fibration

, ί + i - Λ - 1 ) - ^ > ΩWM(Z,; ί, ) — liΓCZ^ ί-n) X K(Z,, >-n)

which is induced by (σ*)M(^X^ ) for ^>0. Put Γ ^ ϊ ί ^ ^ x l ) and ^ " M =

Suppose «> 1. Then (σ*)w(^ X ij) = 0 by (4.6), and therefore

(6.3) ΩnM(Zp; i,j)^K(Zp, i~n)xK(Zpyj-n)xK(Zpy i+j-n

Let \nι *-">>-*&Hi+j-'ι-1(ΩnM(Zp; i,j)) be the element such that

We now take integers /, j and w so that (3) of Theorem 3 is applicable to
Λϊ n-iV'"* ^-n)]^Hi+J-ι(Gna

nM(Zp; i,j)), where Y=M(ZP; iy j). Then
r(σn[Xn-1(cί~n

ί ιi'n)]) = ιt\JιJj which is equal to zero by the definition of M(Zp;
ij). So σn[λn-i(Λf""n, tj~n)] lies in the image of v*. In view of (6.3), we find
that

(6.4) v*(σn(\n;i-n'j~n)) = σ^λ,,-^^"*, 6;~w)] (wί to a non-zero constant).

Let X=Ω,nY and suppose that an element ae//%X) such that 5g5+1(wα)

= 0 is given. Consider the following diagram
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&,, ret

L(Z2,s+\; f ^

where the row is a fibration. By hypothesis there is a lifting nόt^ of ncί. Then
we have the commutative diagram (5.1) for the case g=nά^y and from natural-
ity and (6.2) it follows that

(6.5) (Ωnncί^)*(κ

Suppose that elements α, β^H*(X) such that nά\jnβ=Q are given. Con-
sider the following diagram

„. Y

C%nβ)^'-^
nf\)^K(ZpA

na\)xK(ZpA
nβ\)---^-^K{Zpy\

na\ + \nβ\)

where the row is a fibration. By hypothesis there is a lifting (wα, "/S)^ of (nά}
nβ). Then we have the commutative diagram (5.1) for the case g^=(ndy

 nβ)/^,
and from naturality and (6.4) it follows that

(6.6) (Ω'ff i , "/8H*(λβ i |α|'|S|) = {\.-i(oc, β)} .

We enter into the proof of Theorem 7.
Let {Ert dr} be the spectral sequence (3.8). It follows from (2.3) that

Έ%23 for i-\-j<i\m-\-n—1 with z. / > 0 (explicitly speaking, i>m-{-n and j>2m
-\-n) has a Z^-basis consisting of elements

na®σn[β*Ίl na®ΛQ\β)} ( ί = 2) and ^ ^ O ^ / S , 7)] .

By Corollary 4 and the multiplicative properties of the cohomology spectral
sequence, if these elements survive to E^ they represent the following ele-
ments of H*(TX):

σ\ά) U σ\β U 7), σκ(α) U σw( {ρs(/3)}) (/> = 2) and

But all cup products in H*(ΣnX) vanish (e.g., see (7.8*) of [16, III]). This
implies that

(6.7) i?2>; for i+j<4 m+n—l with iy j>0 is divided into two parts: one part
consists of elements which kill certain elements of Eί*'*1'0 (following the formulas
of Theorem 3) and the other part consists of elements which are killed by some ele-
mentsofE°2'

i+i-\
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Consider now the diagram (5.1) and let {'£,, fdr} and {"£„ "dr} be the
mod p cohomology spectral sequences of the upper and lower fibrations, re-
spectively. Then the naturality of the Serre spectral sequence yields a homo-
morphism of spectral sequences

(6.8) g: " £ - > ' £ , which is a system of maps {gW, gίJ: "#•>->'#•', such that
'drgr=gr"dry gr+1 is induced by gr and the diagram

g—®^> H\Y')®H\GnX')

commutes.

Proof of (1).
Consider the homomorphism (6.8) for the case g={nόc, nθ): Y->K(Zp) \a\

-f w) X K(Zpy I θ I +n). Then we see that to show (1) it suffices to prove

(1)' vt(σn(i\*\ X *ι ι)) = Λ{L\«\ X 1)

in the case Y=K(Zpy \a\+n)xK(Zp, \θ\+n).
The rest of the argument is the same as that in the proof of (1) of Theorem

3, except that one uses the spectral sequence in place of the exact sequence.

Proof of (2).
Consider the homomorphism (6.8) for the case g=(nόc, nβ, Hfγ): Y->K(Zpy

\a\+n)xK(Zp \β\+n)xK(Zp, \γ| +n). Then we see that to show (2) it suf-
fices to prove

(2)' vl?(<rn(i\a\ X ιm X ιm)) = σn[(ι[as\ X 1 X 1) * (1 X *,£, X ιm)]

in the case Y=K(ZP, \a\+n)xK(Zp, \β\+n)χK(Zp, | γ | + n ) .
We use the homomorphisms (6.8) for the cases that g={πXi π2): K(Zpj

\a\+n)xK(Zp, \β\+n)xK(Zpy \y\+n)'-» K(ZP, \a\+n)xK(Zp, \β\+n)9

g=(πlf π3) and g=(π2y π3). Suppose n>\ and consider {Ery dr} modulo

Im (πly τr2)+Im (πly π3)+ Im (τr2, τr3) then for i+j= | a \ + \ β \ + \ y \ +n,

ίZp{σn[(ιlalXlχl)*(lXι]βlXιm)]} (i=0)

lo
(recall the relation (3.1)). On the other hand,

p, \a\)xK(Zp, \β\)xK(Zp,
= Zt{σ"(ιia\ X i\β\ X *m)} modulo I m (Σ"(π-i, π2))*

+ Im (ΣV,, ^ ) ) * + Im (S"(JΓ2, *,))* .

This observation implies (2)' for « > 1 .
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It remains to prove the case w=l. But the argument here is analogous
to that in the proof of (1) of Theorem 3.

Proof of (3).
Consider the homomorphism (6.8) for the case g=(n&, H$/<): Y->K(Z2,

\a\+n)xL(Z2) s+ί; \β\+ή). Then by (6.5) we see that to show (3) it suf-
fices to prove

(3)' v*{σ\tm X «'+1; lβl)) - σ"[(*,β| X 1)*(1 X * ' + l ϊ |βl)]

in the case Y=K(Z2y \a\ +n)xL(Z2y s+1; \β\ +ή).

We use the homomorphism (6.8) for the case g=\χζL\ K(Z2i |α |+Λ)χ

L(Z2y s+l; \β\ +n) ->K{Z2, I a \ +n) XK(Z2, \β \ +n). Suppose n> 1 and con-

sider {Έr,
 fdr) modulo Im ίχζL; then for i+j=\a\ + \β\+n+sy

>Eu= ίZ2{σ [(^,Xl)*(lX^+ 1 ! t f l 1)]} (ι = 0)
2 (0 ( i > 0 ) .

On the other hand,

W«^^\τ\K{Z2y \a\)xL(Z2,s+l; \β\)))

- Z2{σn{cm X ̂ S + 1 ; |β|)} modulo Im (ΣM(1 X ζL))* .

This observation implies (3)' for « > 1 .
The proof for the case n=\ is analogous to that in the proof of (1) of Theo-

rem 3.

Proof of (4).
Consider the homomorphism (6.8) for the case g=(nόc, (nβ, nfγ)^): Y->

K{Zpy \a\+n)xM(Zp\ \β\+n, \j\+n). Then by (6.6) we see that to show
(4) it suffices to prove

(4)' ^ (

in the case Y=K(Zp, \a\+n)xM(Zp; \β\+n, \y\+n).
We use the homomorphism (6.8) for the case g = lxζM' K(Zp, | α | + w ) χ

M(Zf; \β\+n, \j\+n)^K(Zp, \a\+n)xK(Zp,jβ\+n)xK{Zp, | y|+n).

Suppose w>l and consider {Έr> 'dr} modulo Im lxζΆ,; then for i-\-j=\a\

+ |/S| + l7H-2»-l,

(0 ( ί > 0 ) .

On the other hand,

p, \a\)xΩ'M(Zt; \β\+n, \j\+n)))

= Zt{σ"(ι{aiX\Λt |SMγl)} modulo Im (Σ"(l xζM))* .
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This observation implies (4)' for n > l .
The proof for the case n= 1 is analogous.

Proof of (5).

This proof is the same as that of (2) of Theorem 3.

Proof of (6).

Consider the homomorphism (6.8) for the case g=(nay

 n8): Y-^K{Zpy

I & I +w) X K(Zpy I θ I +n). Then we see that to show (6) it suffices to prove

(6)' τ(σw[λft-i(*|α|Xl, IX'IΘI)]) = ^i+nX'iei+n

in the case Y=K(Zpy \a\+n)xK(Zpy \θ\+n).
The rest of the argument is the same as that in the proof of (3) of Theorem

3, except that one uses the spectral sequence in place of the exact sequence.

Proof of (7).

Consider the homomorphism (6.8) for the case g=(not9

 nβy

 nj): Y->K(Zpy

\a\+ή)χK{Zpy \β\+n)χK(Zpy \j\+n). Then we see that to show (7) it
suffices to prove

(7)' dm

= (tla\+nX 1 X l ) ® σ w [ ( l X t]β\ X 1) * ( 1 X 1

in the case Y=K{ZP, \a\+n)xK(Zp, \β\+n)xK(Zp, | γ | + n ) .

We use the homomorphisms (6.8) for the cases g=(πly π2): K(Zpy \a\ -\-n)
χK(Zpy \β\+n)χK(Zpy \y\+n)->K(Zpy \a\+n)χK(Zpy \β\+n)y g=(πly π?)
and g=(π2y τr3). Then, in rEi

2

J for i+j= \ a\ + \β\ + | γ | +2n with i,j>0, there
are elements

(l\a\+nX 1 X 1)®O-W[(1 X l\β\ X l ) * ( l X 1 X

(1 X i\β\+nX l)®σn[(c\a\ X 1 X 1 ) * ( 1 X 1 X i | Y | ) ] a n d

(1 X 1 X t\y\+H)®σ*[(i\a\ X 1 X 1 ) * ( 1 X i\β\ X 1)] .

By (6.7) and (1) of Theorem 3, these elements must be killed by some elements

of '£0f|*ι+|β|+m+2»-iβ τ h e elements which may kill them are

l®<r"[\»-i(i\*\ X 1 X 1, 1 X i\β\ X i\y\)] ,

l ® σ M [ λ Λ _ i ( l X ί\β\ X 1, t\a\ X 1 X ί|yi)] a n d

l ® σ - w [ λ n _ i ( l X 1 X % ι , i\a\ X t\β\ X 1)] ,

since the behavior of other elements in Έr has been determined by the for-
mula (2) and the naturality arguments (with respect to the maps (πly π2)y (πly

π3) and (τr2, τr3)). So (7)' follows.
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Proof of (8).
Consider the homomorphism (6.8) for the case g=(nocy

 nβ/<): Y-*K(Z2>
\a\+n)xL(Z2y s+l; \β\+n). Then by (6.5) we see that to show (8) it suf-
fices to prove

(8)' i|βι

in the case Y=K(Z2y | a | +n)XL(Z2y s+l; \β\ +ri).

We use the homomorphism (6.8) for the case g=lxζL: K(Z2y \a\+n)x
L(Z2ys+l; \β\+n)->K{Z2y \a\+n)xK(Z2y \β\+n). Then in Έ[«^>^+s

there is an element

By (6.7), (2) of Theorem 3 and the definition of L(Z2y s+l; \β\+ή)y this ele-
ment must be killed by some element of fE^+m+2n+s'1. The element which
may kill it is

since the behavior of other elements in Έr has been determined by the for-
mula (3) and the naturality argument. So (8)' follows.

Proof of (12).
Consider the homomorphism (6.8) for the case g=(na,nβ, nj): Y->K(Zpy

\a\+n)xK(Zp, \β\+n)xK(Zpy \y\+ή). Then we see that to show (12) it
suffices to prove

(12)' i,α5|+w(lΘσ-n[λ«-1(^,α,χlxl, λ ^ l x ^ x l ,

= (*,«,+,X 1 X l)®σn[\n^(l Xi|P| X 1, 1 X

in the case Y=K(Zpy \a\+n)xK(Zpy \β\+n)χK(Zpy \<γ\+n). (Here we
suppose that β<a<y.)

We use the homomorphisms (6.8) for the cases g=(πly π2): K(Zpy \a\ -\-ή)
χK(Zpy \β\+n)xK(Zpy \y\+n)-+K(Zpy \a\+n)xK(Zpy \β\ +n)y g=(πly π3)
and g=(π2y π3). Then, in Έ^ for i+j= \a\ + \β\ + \y\ + 3 « - l with i,j>0,
there are elements

(Ha\+» X 1 X l ) ® σ w [ λ w - ! ( l X ιlβl X 1 , 1 X 1 X ι l y ] ) ] ,

(lXιm+nXl)®σa[\H-1(i\a\XlXl, lxlXi\y\)] and

(1 X 1 X ^ y i + O Θ ^ t λ . - i f l X ι]β\ X 1, i\a\ X 1 X 1)] .

O n the other hand, in ΈlΛ(Λ^m+m+Zn-2 there are elements

and
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l ® < χ * I X - i ( l X 1 X L\fU λ Λ - i ( l X i\β\ X 1, i\a\ X 1 X 1))]

Furthermore, in '£«-i+ι*ι+m+3«.o t h e r e i s a n e l ement

which must be in the image of 'dr (for some r), by (4.6). In view of (6.7) and
(3) of Theorem 3, we may conclude that

= (ι]a]+n X 1 X l ) ® ^ ^ ^ X ι m X 1, 1 X 1

'dlyl+n(l ® ( / [ λ ^ l X 1 X i\i\, λ n - i ( l X <ιβι X 1, *,«, X 1 X 1))])

= (1 X 1 X c\y\+n)®σw[λΛ_i(l X t | β | X 1, ί!α5| X 1 X 1)] and

'dlal+m+2n((l X *,βl+ί lX l)®σtι[λn-1(clail X 1 X 1, 1 X 1 X ιm)])

since the behavior of other elements in Έr has been determined by the for-
mulas (2) and (7) and the naturality arguments.

REMARK. It fellows from (1.10) and (1.13) that any two of

λM-.i(jf x l x l , λ«_i(lXί ; x l , lxlχck))

( = ±λ n - i(^ f X 1 X 1, λΛ-i(l X l X i * , l X ί , X 1))),

λM_i(lXί ; Xl, λ « - i ( l x l X ί έ ) tiXlxl)) and

λ n _i( lx lXί Λ , λ ^ x l x l , lXίyXl))

constitute a part of a Z^-basis for fί*(Fn(K(Zpy i) X K(Zpyj) X K(Zp, k))). Taking
this into consideration, we abandon the idea of fixing a Z^-basis for ίϊ*(GnX)
and assert that (12) always holds. The reader should refer to the Remark
below the proof of (9) (a).

Proof of (9) (a).

Consider the homomorphism (6.8) for the case g=(na, (nβ, flfy)/<): Y^
K(Zp, \a\+ή)χM(Zp; \β\+n, \<γ\+n). Then by (6.6) we see that to show
(9) (a) it suffices to prove

(9) (a)' d^+u(l®σn[\n^a\ X 1, 1 X λ*; | β M y |)])

= (*,«,+„ X \)®σn[Xn.1(l X I**, 1 X ^ ' )]

in the case Y=K(ZP, \a\+n)xM(Zp; \β\+n, \y\+ή).
We use the homomorphism (6.8) for the case g= lX? M : K(ZP, \a\+ή)X

M(ZP; \β\ + n, \y\ + n)-+K(Zp, \a\ + n)xK(Zp, \β\ + n)xK(Zpj \y\ + n).

Then, in 'E'2
J for i+j= \a\ + \β\ + \y\+3n— 1 with ί, j > 0, there are elements
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(lXtw+n)®σ"[\.-i{i\*\Xl, 1X(I?I)] and

(1 X ί l ϊ l+")®σ"[λ,_1(ί|βl X 1, 1 X ί1"1)]

On the other hand, in ' £ .I-I+IPI+WI+3»-2 there are elements

1 ®σ"[λ._!(l X ι|f", λ,.1(t l β | X 1, 1X < lγ |))],

l®σ B [λ B _ 1 (lχ ί '
γ l ,λ B . 1 ( ί | α l Xl, IX *'"))] and

It follows from the naturality argument (cf. the proof of (12)) that

= (1 X ίlf"+ )®«r"[λ,_1(i,βl X 1, 1 X t

| γ l )] >
/

</ l ϊι+.(l®<r [λ._ 1(lXί" l

> λ.-ifo-iXl, lXί""))])

= (1X ί 1 7 1- 1-")®^"^-^*!., X 1, 1X <"")] and

'dw+m+2n((cM+nx l)®σ"[λ._,(l X «"", 1 X <171)])

= ±((ίι«ι+.X 1) U (1 X ιw+a) U (1 X ί | γ | + "))® 1

= 0 ,

since ιm+lt\Jιm+n=0 by the definition of M(Zf; \β\+n, \Ύ\+n). Hence, by
(6.7), (ί|β |+.Xl)®σ"[λ,_1(lXί l p l, lXt f f l)] is killed by some element of Έ°2

 m+m +

| γ | + 3"" 2. It must be

l®σ"[λ._1(i|β |Xl, lXλ- ! l ί" m ) ] .

since the behavior of other elements in Έ, has been determined by the for-
mula (4) and the naturality argument. So (9) (a)' follows.

REMARK. In the above proof we have supposed that α<β<Ύ and have
taken the set of basic λB_i-products as a part of a Z^-basis for ff*(GnX). But
if we take a different order among α, β, 7 (e.g., β<α<j) and work in the same
way, we find that (9) (a) does not hold as a formula. This trouble is over-
comed by the following idea: we do not specify a Z^-basis for ff*(GnX) and
assert that (9) (a) holds in any case.

For the proof of (9) (b) we need some notations.
Let M'(Zp; i,j, k) denote the mapping fibre of

(it X i, X 1, 1 X ijX t 4 ): K(Zp, ί) XK(Zp, j) XK(Zp, k) —

K(Zp,i+j)xK(Zt,j+k).

Then there is a fibration
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K(Zp,i)xK(Zp,j)xK(Zp,k).

Application of Ωw yields a fibration

K(Zpy i+j—n—l)xK(ZpJ+k—n—l) >£IM\ZP\ i,j, ft)

- ^ K(ZP , i-n)χK(Zp,j-n)xK(Zpy k-n).

which is induced by ((σ*)w(*, X ijX 1), (σ*)w(l XtjXh)) for n>0. Put ^ - w -

Suppose τz>l. Then (σ*)"(ί, Xί ; X l ) = ( σ * ) n ( l X ^ X ^ ) = 0 and therefore

£lnM\Zp, i,j\ k)^K(Zpy i-n)xK(Zpyj-n)xK(Zpy k-n)

XK(ZP, i+j-n-l)xK(Zp ,j+k-n-\).

Let \ n ; i n>i n^Hi+i n \VLnM\Zp\ i,j, ft)) (resp. λ w ; ; n'k M|

z, j , ft))) be the element such that

(resp. e$'{Xn;j-n'k-n) = 1 X*, +*-Λ-i).

We have fibrations

(6.9) K(ZP, i+j-1) —^> M\ZP i, >, ft) —^ K{Zpy i) x M(ZP j , ft),

(6.10) K(Zp,j+k-l)^>M'(Zp; i,j, k)-^ M(ZP; i,j)xK(Zp, k)

such that (1 X ζM)LζM>^ζM' and (ζMX l)*ζ^ζM>. Then ^ M ,*( l X λw; ̂ » *"«)

By the definition of M'(Z/, ί, , ft), ̂ ' U ^ = ^ U ^ = 0. So the Massey
product <*f", c\ cky(= ( — l)«v+» *+j*+i<ό*j ^̂  ,<» i s defined. Consider the modp
cohomology spectral sequence {LEr,

 Ldr} (resp. {REr,
 Rdr}) of the fibration (6.9)

(resp. (6.10)). Since Lτ(ci+j_1) = ιiχci (resp. Rr(tj+k_1)=tiXck, it follows that

Lέ/ί+i((lX**)®*, +;-i) = ±(^X(^U**))®1 = 0

(resp. ^ 4 ^ x 1 ) ® ^ . ! ) = ±((ciΌcj)xck)®l = 0).

Thus we find that (1 X 4*)®ίf + J _1(resp. (^ X l ) ® ^ +*-i) survives to LE00 (resp. RE00).
Let Lλ/>Λ* (resp. Λλl" ^*)e JH" ί + y +*" 1(M /(Z i >; /,;', ft)) be its representative.

Lemma 10. <t\ tj, tky=:±RXi>i'k (resp. <V, cj, ιk>=±LXi>i'k).

Proof. Consider the map

1 xβM: K(ZP, i)xK(ZpJ+k-l)-»K(Zp, i)xM(Zp;j, k)

(resp. 6M X 1: K(Zp , i+j-1) X ̂ (Z^, ft) -> M(Z, ί, ) X ̂ ( Z ^ ft)).



428 T . WATANABE

Then we have a map

f: K(ZP, i)xK{Zp,j+k-ί) - M'(ZP i,j, k)

(resp. */: K(ZP , i+j-ί)xK(Zp, k) - M'(ZP; i,j, k))

such that LζM'Lf— lxεM(resp.sζM'Rf— SMxl). It is clear that Lf*(ι') =
ι{ X 1 (resp. */*(;') = 0), y *(*>) = 0 (resp. */*(ι>) = 0), £/*(t*) = 0 (resp. sf %") =
1 x ιk) and for υ^Hi+)+t-\M'(Zt ί, , *)),

otherwise

(resp. t (υ) = < , ) .
[0 otherwise

By the same argument as in the proof of Lemma 7 of [15], we have

(resp. */*<;', *', cky = ±ιi+J-1Xιk) .

So the result follows.

Proof of (9) (b).
By hypothesis there is a lifting of fα, nβ, nγ), i.e., a map

(*tf, nj8, "7)^: Y->M'(Z,; | α | + Λ , |/S|+w, | 7 | + » )

such that ?M/(*ce, nβ, nγ)^—(na, nβy

 nγ). Consider the homomorphism (6.8)
for the case g=(nόc, n/S, "7)^. Then by (6.6) we see that to show (9) (b) it suf-
fices to prove

(9) (by Tίσ'lΛ,-^1*1, Xn; W ^yi+c'-σ'lXn-άi™, \n: | Λ | ' l β l)])

in the case Y=M'(Zp; \a\+n, \β\+n, \y\+n).
We use the homomorphism (6.8) for the case g= LζM'' M'(Zp; \a\-\-n,

\β\+n, \y\+n)^K(Zp, \a\+n)χM{Zp; \β\+n, \y\+n). Then, in

Έo,ι«ι+ |β |+ |V |+ 3 B-2 t h e r e a r e elements

l®σ M [λ B - 1 ( ί

| 0 > 1

> λ" ; | ? l | γ |)] and

On the other hand, in '£i<Ί+iβi+iYi+3»-i.o t h e r e i s a n element

(which is non-zero by Lemma 10). By [6], it must be in the image of 'dr (for
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some r). It follows from the naturality argument (cf. the proof of (9) (a)) that

So we may conclude that

(6.11) 'τio-'XXn-lt™, λκ ; m m)] + other terms)
/,ι<»ι+» ,iβi+» ,m+»\

Similarly from the naturality argument with respect to the map
'•M\Zp;\a

it follows that

sζM,:M'(Zp;\a\+n, \β\+n, \y\+n)-*M(Zt; \a\+n, \β\+n)xK(Zfi, \y\+n)

and

(6.12) '-7V0«-i(' |Λ|> λ " : l β | ' m )] + other terms)
/ ,\<*\Λ-n , |β |+« ,\Ί\+n\

\6 ,6 ,6 / .

Thus equations (6.11) and (6.12) imply (9) (by.

Proof of (9) (c).

Let M"(Zp\ i,j, k) denote the mapping fibre of
(it x cj X 1, ti X 1 x ιk, 1 X ij X ck): K(ZP, i) x K(ZP, j) X ur(Z#, *)

- K(Zp, i+j) x K{Zp i+k) x ^(Z,, ; + * )

Then L\ L3 and ι are defined similarly. We have fibrations

K(Zpy i+j-1) -> Mf\Zpy i,jy k) -> M'(Zp;j, k, i),

K(Zp, i+k-1) -> M"{Zp iyjy k) - M'(Zp; i,j, k) and

K(Zp,j+k-l) - M"{Zp- i,j, k) - M'(Zp] K i,j)

which are induced by t3 U t, ί U i and i U t} respectively. By definition, all
Massey products <y, ΰ\ι ky, (ι3, tk> O and (tk, c\ t3y are defined and non-zero;
this follows from the same argument as in Lemma 10. Furthermore, by [15]
there is a relation

(-1)%', ιj, **>+(-i)'V, Λ t'>+(-i)'V, i\ ό = o.
Taking this into consideration, we see that (the universal example for (9) (c)
is M'\Zp\ i, j , k) and) (9) (c) follows from the naturality arguments with re-
spect to the maps M"(ZP\ i,j, k)-*M'(Zp;j, k, ί), M'\ZP\ i,j, k)->M'(Zp; ij, k)
and so on.
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REMARK. We can go without (9) (c), because it is essentially a copy of

(9) (b).

Proof of (10).

Consider the homomorphism (6.8) for the case g=nόc: Y->K(Z3y \a\+ri).

Then we see that to show (10) it suffices to prove

(10)' τ(σ"[ρ'(t,β,)]) = Δ*ξβ (ί|«ι+.)

in the case Y=K(Z3y \a\-\-n).

Consider the spectral sequence (3.8) for the case that Y=K(Z39 2s-\-ί)

and n==l. Since

ξΫ(A*ψ(ι2s+1)) = A*φ(ξf(t2s+ι)) = A*ψ(cτ(c2s))

= <r(A*ψ(c2s)) = a(A*(ι2s U i2s U c2s)) = σ(0) - 0 ,

S + 2 ' 0 must be in the image of dr (for some r). (Describe

£*'*, especially, EQ

2'
:¥=^H:¥{GιK{Z2, 2s)).) In view of the formulas (1), (6) and

(7), we find that the only element which may kill it is l®<τ[Qs(ιs)](=E2'
6s+1;

that is,

Consider the diagram (4.4) for the case that Y=K(Z3, 2 ί+l) , « = — \a\ +

2 ί + l and k=n—1 = — \a\ -\-2s; then we have the commutative diagram (5.4)

(where X=K(Z3, \a\) and ΩY=K{Z3, 2s)), and by (2) of Lemma 9,

Consider the diagram (4.2) for the case that Y=K(Z3, \a\+n) and

k=\a\-\-n—2s—ί; then we have the commutative diagram (5.5) (where X=

K(Z3, \a\) and Ω,kY=K(Z3, 2s+l)), and by (2) of Lemma 8,

Since {σ*)w+"-2s'ι:Hm+n+is+\K(Z3, \a\+n))-^H&s+2(K(Z3,2s+\)) ismonomor-
phic (see [4]), (10)' follows.
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Proof of (11).
Consider the homomorphism (6.8) for the c a s e ^ ^ α : Y-*K(Z3i \a\+ή).

Then we see that to show (11) it suffices to prove

(11)' τ(σβ[Δ0Vi)]) = ? P W . )

in the case Y=K(Zό, \a\+n).
Consider the spectral sequence (3.8) for the case that Y=K(Z3, 2s-\-l) and

n=2. Since

s+U0 must be in the image of dr (for some r). (Describe £* '*,
especially, E\Λ=H*{GJS:{Z3y 2s-l)).) In view of the formulas (1) and (6),
we find that the only element which may kill it is
that is,

Consider the diagram (4.4) for the case that Y=K(Z3i 2s+l), n=— \a\ +
2s+ί and k=n—2=—\a\+2s—ί; then we have the commutative diagram
analogous to (5.4), and by (2) of Lemma 9,

Consider the diagram (4.2) for the case that Y=K(Z3, \a\-\-n) and
^ = I« | +n—2s—1 then we have the commutative diagram (5.5) (where X=
K(Z3, \a\) and &Y=K(Z3, 2s+l)), and by (2) of Lemma 8,

Since (σ *)i-i+«-*-1: JH'l<1>l+"+4s(Jfi:(Z3, |α|+«))-^^ 6 s + I(ii:(Z3, 2ί+l)) is monomor-
phic (see [4]), (11)' follows.

Furthering the assertion of the Remark below Theorem 7, we find that,
for example, in view of (1.10) and the diagram (5.4) together with Lemma 9
(3), the formula (6) of Theorem 7 should be rewritten as follows:
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But here we shall not pursue this discussion.

7. Several remarks

In this section we collect miscellaneous remarks on the results of the pre-
vious sections.

First we have

Proposition 11. Let n>\ and z, j>n. Then

(i) In H*(L(Z2J i i-ή)), ρ ' - ^ Γ ' H * * ^
(ii) In H*(nnM(Zp] ί,»), λ.-xί^"", 4"")=XJ ; i'n'i'n.

Proof. We use induction on n. To prove (i) for τz=l, we first consider
the mod 2 cohomology spectral sequence {Ery dr} of the path fibration

L(Z2) i\ ί—1) -> PL(Z2, i\ ϊ) -> L(Z2y i; ί).

Then by the well-known argument [10, Lemma 3.1.1], τ{ti~v) = ti and
di(\®κ%' ί""1)=^z(g)^ί~1. We next consider the mod 2 homology spectral sequence
{Er, dr} of the same fibration. It follows from the duality between Er and
Er that τ s ί ! (4)=4- 1 and rfί(4®4"1)=l®4; l'"1 According to [3, Theorem
II. 5.A], these equations imply that 4~1*4~1==/4Ϊ ί~1 m H*{L(Z2, i; /—I)). By
(1.3), this proves (i) for n=l.

Assume that Qf""1(4"n+1) = Λ*Ϊ '~"+1 i n H*(L(Z2, i\ i—n+l)). Consider the
mod 2 homology spectral sequence of the path fibration

L(Z2, i\ i—n) -> PL(Z2, i\ i— n-\-\) -> L(Z2, i\ i—n+l).

In view of (6.1), we find that 4 " n + 1 and tc^' i~n+ι transgress to 4" Λ a n d Λ;* ''"*

respectively. So

= O'-W4r"+1)) (by (1.16))

To prove (ii) for n—ί, we first consider the mod p cohomology spectral
sequence {Er, dr} of the path fibration

OM(Zp ί, ) - PM(Z, /, ) - M(Zp i, ) .

Then τ(ιi-1) = ci and τ(c^1) = c\ Therefore di(l®(ci-1[jtj-ι)) = c1®^'1 and
^•(^®^"1) = (̂ ' U iθ® 1 = 0 by Λe definition of M(Zp; t, j). So i'®^1 must be
in the image of dj. In view of (6.3), we find that

dj(l®\ui-uj-ι+ other terms) — i'®^'1.
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We next consider the mod p homology spectral sequence {E\ dr} of the same

ίibration. It follows from the duality and [3, Theorem II. 5. A] that

rfl'(4®4~1) = l®(4~1*4~1) a n d ^(4'®4" 1 ) = 1®(4"1*4"1) T h i s implies that

;ifj)) = Z ί{4"1*4"1, 4"1*4"1, - } -

Here 4~1*4~1 c a n °e replaced by 4"1*4~1—(— l)< l '"1 ) ( y"1 )4"1*4"1=λ0(4"1, 4"1)
(see (1.9)). Since λo(4~\ 4"1) *s primitive, we may conclude that

(7.1) λo(4" 1, 4"1) (resp. 4~1*4~1) w dual to λ l ; i~uj-1 (resp. L1'1 U cj'λ).

This proves (ii) for n=ί.

Assume that λM_2(4"w+1, 4""+1) = λl" 1 ! ί-"+ 1 >-+1 in H*(ΩM-1M(Zp;iJ)).
Consider the mod p homology spectral sequence of the path fibration

WM(Zp; i,j) -> PW-'M(Zp i,j) -> ίl^M(Zp; ij).

In view of (6.3), we find that 4" Λ + 1 , 4~n + 1 a n d Xj"1'" l""fl+1'y'"n+1 transgress to
4"M, 4"" a n d λ * i~nJ~n respectively. So

•\ti;i-n,j-n _ />y «—1 t - n+l,j-n+l\

= τ»(λ._2(4-+1,4-+1))

= λ.-i(τ*(4-+ 1), τ*(4~"+1)) (by (1.16))

REMARK. This Proposition assures us that

{£'(«)}(ί = 2), {χu.ι(a,β)

are dual to

respectively.

Suppose X=ΓLnY for Λ > 1 . Let ̂ : XχX->X be the loop multiplication.
Then

H*(X)-?-+H*{XxX)<—H*(X)®H*(X)

gives a coproduct in H*(X).

Corollary 12. In the notations of Corollary 4,

(1) /
(2) μ*(aϋβ) = (a{Jβ)®l+a®β+(-iy*mβ®a+l®{aϋβ);

(3) /
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(4)

Proof. (1) is a consequence of

(7.2) Every element of Im σ* is primitive.

(See (3.3*) of [16, VIII].)

For (2), since a and β are primitive, the result follows.
Proposition 11 (i) and (1.5) imply that for i>j,

(7.3)

So (3) follows from (6.5).
From (7.1) we deduce that

<μ*(x1: iJ), 4®4> = <λ1: iJ, 4*4> = o a n d

O*(λ1; iJ), 4®4> = <ΛI; iJ, 4*4> = — (—i)li

This, together with Proposition 11 (ii) and (1.12), implies that for w>l,

So (4) follows from (6.6).

Let X— ΩnY. In certain situations the secondary operation problem in
H*(Y) is equivalent to the primary operation problem in H*(X). We de-
scribe such situations by the following examples whose origin is [1, Addendum].

EXAMPLE 1. Throughout this example, coefficients will be Z2. Let Φ be
the secondary cohomology operation associated with the relation

The universal example for Φ consists of pairs (JBy, φj),j">lf where Ej is the
total space of the fibration

K{Z2y j+2s) - ^ Ej - ^ K(Z2f j)

which is induced by Sq*+\ij): K(Z2, j)->K(Z2, j+2s+1), i.e., Ej=L(Z2, 2s+1;;),
and φj is an element of Hi+2s+1(Ej) such that

(1) (σ*)n(φj+n)~φj for all n, in particular, φj is primitive (by (7.2));

(2)
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If y<2ί+l> these conditions determine φy uniquely. In fact, from (7.3) and
the definition of κ2s+1; j it follows that

ώ ί 5 ίV)+'UW) ifj=2s
[ ' } Φj W ( « 2 s + 1 : 0 ifj<2s.

Suppose that an element a^H2s(X) such that S<fs+ι("ά)=0 is given. Then
we can consider the element Sq1 {Q2s(a)} ^His+1(X). By using (1.7) we see that
σ"(5?1{ρ2s(α)})eKeri;* if and only if Sq\a)=0. Assume that Sq\a)=0.
Then

Sq1 {Q2s(a}} = S ί

1 (β" fi/y(κ2 + 1 : 2s) (by (6.5))

= (anna^)*Sq\κ2s+1:2s)

= (Ω"«β / s)*(φ2 f+ ί* U SqXS*)) (by (7.4))

= (Ω« Ό V * ) » ( φ B + 2 s ) (by (1))

Thus Φ^S)="d if and only if ̂ { ^ ( α ) } = ^

EXAMPLE 2. Throughout this example, coefficients will be Z3. Let Φ
be the secondary cohomology operation associated with the relation

- φ 2 Δ * + 5 β 1 ( Δ * φ 1 ) — Δ * φ 2 = o .

The universal example for Φ consists of pairs (Ej, φj), ; > 1 , where Ej is the
total space of the fibration

K(Z3, j) x K(Z3, ; + 4 ) x K(Z3, j+7) -iΐ* Ej - ^ K{ZZ. j)

which is induced by (Δ*(ί,), Δ*φ(ι,), ψ(ij)): K(Z3,j)^K(Z3, j+l)xK(Z3,
j+S)χK(Z3,j+8) (so Ω.HEj+n — Ej), and φ, is an element of Hi+\E;) such that

(1) (σ*)"(φj+n)=φj for all n, in particular, φy is primitive;

(2) Sf(φ}) = -5β2(O X 1X 1 +1X φ{ιJ+t) X 1 - 1 X 1X Δ*(*,+7).
Put a,=tf{i}). Then (σ*)"(α y + κ )=α i for all n.

Consider the case j=2. Since Δ*5β1(ί2)=O and ψ(ι2)=0 in H*(K(Z3,2)),
it follows that

(7.5) E2 ^ K(Z9, 2) X K(Z3, 6) x ^(Zg, 9).

Let β6<=H\E2) (rtsp.y9(=H9(E2)) be the element such that 6f(β6)=lxι6xl
(resp. £*(79) = 1 X 1 X *,). Apply (10) of Theorem 7 to the case that Y=E3y n= 1
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(so X=E2 and at=2), a=a2 and s=l; then τ(σ[ρ l(α 2)])=Δ*φ 1(α 3), which is

equal to zero by the definition of E3. Thus we get an element {Q1(a2)} of

H\E2). In view of (7.5), we find that β6= {Q\a2)} (up to a sign).

Consider the mod 3 cohomology spectral sequence {Er, dr] of the path

fibration

E2 - * PE3 -^E3.

Then τ(a2) = a3. So, by the Kudo transgression theorem [7], d5(a3®(a2H a2))

== — A*ψ(a3)®l=0. Since B*(PE3)=:0y a3®(a2\Ja2) must be in the image

of d3. By (7.5), H%E2) = Z3{φ(a2), βe} and ^ ( α 2 ) is transgressive. Hence

the only remaining possibility is d3(l®β6) = a3®(a2Ucc2). This implies that

) = A * o r equivalently,

(7.6) μ*(β6) = β6®l-{a2\Ja2)®a2-a2®(a2Όa2)+l®β6.

The conditions (1) and (2) determine φ2 uniquely. In fact, by using

(7.5) and (7.6), we see that

), Δ*(r9)}

(where P denotes the primitive module functor), and so

(7.7) φ2 = -aj>*+φ(ββ)-A*(7β).

Let G2 be the compact exceptional Lie group of rank 2. As is well known,

(7.8) H*{G2) = A(y39 yn) where \ yt \ = i .

(7.9) In dimensions < 10, H*(ClG2)=Z3[x2]l(x%3)®Z3[x6, x10] where \ x{ \ =i .

(7.10) σ*(y3) = x2 and σ*(yn) = x10.

Applying Theorem 7 to the case that Y=G2 and w=l, we find that x6=

By (7.8) (resp. (7.9)), the map y3: G2->K(Z3, 3) (resp. x2: ΩG2-+K(Z3y 2)) can

be lifted to a map y^: G2->£3(resp. x2"\ ΩG2-*E2). Furthermore, by (7.10)

we may suppose that <r*(y^)=x^. Then we have the commutative diagram

(5.1) for the case that g=yC' and w=l, and it follows that

xΓ*(ct2) = x* x?*(β*) = x6 and *Γ*(79) = 0 .

Hence

= xf*(ψ2+«2

u 5+Δ*(79)) (by (7.7))
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= σ*Φ(y3)

Thus Φ(x6)=Xio is equivalent to Φ(y3)=yu.

Theorem 7 is applicable to the special case that Y=GnX and X=FnX.

In this case H*(FnX) is to be known; it suffices to use (1.17) and Lemma 2.

So, since FnX is (2m— l)-connected, by using Theorem 3 (resp. Theorem 7),

at least the additive structure of ίϊ*(GnX) in dimensions <6m-\-n— 1 (resp. 8m+

n—l) ought to be known. We conjecture that, on the Z^-basis obtained as

above, there are formulas for the differentials of the spectral sequence (3.8);

that is, Theorem 7 will be extended.
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