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0. Introduction

For a based space X, X and QX denote respectively the reduced sus-
pension and loop space of X. There is a natural (iterated) isomorphism

¢": [S'X, Y] —> [X, Q'Y]

For i>1 let *: H(ZX)—H""Y(X) be the suspension isomorphism and o*:
H'(X)— H"Y(QX) the cohomology suspension (see, for example, [16, VIII]).
For an n-fold loop space X=Q"Y, let

En = ¢_n(lx): EnX“) Y.
Then £¥: H(Y)— H'(Z"X) factors as the composite

H(Y) _(i‘i» Hi~(X) (2*)_: H'(Z'X).

==

So we can obtain results on (¢*)" by studying &¥.

Convert £, into a fibre map and denote by G,X its fibre. (It is known
by Barcus and Meyer [2] that G, X=3(X A X).) Suspose that X is (m—1)-
connected (m>1) and consider the Serre spectral sequence for the mod p co-
homology of this fibration. Then Milgram [12, I] showed that there is a (3m
+n—1)-equivalence of ="¢;X into G,X (where e;X=S""X,,(X AX), the
extended square of X [11]). Using it, he found formulas for the differentials
of this spectral sequence in total degrees less than 3m-n—1, which gives a
precise description of the relationship between the cohomology of Y and that
of X. Our aim is to extend this result to total degrees less than 4m-+n—1.

Throughout this paper, all spaces are assumed to be of the homotopy
type of a based CW-complex. p will always denote a prime, and let Hy(X)
and H*(X) denote respectively the mod p homology and cohomology of X.
For all X, H.(X) is assumed to be of finite type. So we have a dual pairing

<O H(XD)QH(X) > Z,.
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This paper is organized as follows. In §1 we collect some results about
n-fold loop spaces. In §2 we mention the result of Milgram [12, Theorem
4.6] (Theorem 3) in our terminology. With the aid of this theorem, our main
result (Theorem 7) is stated in §3. Its proof is facilitated by use of two lem-
mas (Lemmas 8 and 9) which are also due to Milgram; we treat them in §4.
885 and 6 are devoted to prove Theorems 3 and 7 respectively. §7 contains
several remarks.

1. Results about n-fold loop spaces

F. Cohen [5, III] constructed a satisfactory theory of homology opera-
tions on n-fold loop spaces. We exhibit some of his results which we need.
For more complete accounts see [5, III].

Let Y be an arbitrary space and #>1. Then

(1.1) In Hy(QQ'Y) there exist operations

O’ H(Q'Y) - H;, (Q"Y) for p=2 and 0<s<i+n—1,
O’ H(Q"Y) = H,.p,-1,(Q"Y) for p>2 and 0<2s<i+n—1,
N1t H(QY'Y)QH (Q"Y) = H;y 4y o(Q'Y)

which are natural with respect to n-fold loop maps and satisfy the following
properties:

(1.2) Q(a)=0 if p=2 and s<|a| or p>2 and 2s<|a| (where |a| denotes the
degree of a).

(1.3) O’(a)=ax---xa (p-fold) if p=2 and s=|a| or p>2 and 2s=|a| (where
* denotes the Pontrjagin product).

(1.4) O (1)=014f s>0 (where 1= H(Q"Y) is the identity element).

(1.5) Let ¢: Hy(Q"Y) > Hy(Q'Y)RQH(Q"Y) be the coproduct induced by the
diagonal map of Q"Y. If p(a)==a'®a”, then

¢Q%(a) = 2, Q'(a)®Q'(a") .
(1.6) If s> pt, then
QSQI = 2, (— 1)"”((1)— 11)”(1_30“ 1>Qs+t—iQi;
if p>2, s> pt and A is the mod p homology Bockstein, then
o°AQ' = }TJ—‘ (— ])S+i((P;1.)_(§:"t)>AQs+t—iQi
_ 2 (—1)+ ((P—pli)—(i:tl)_ 1)Qs+t-iAQi
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(where (;>=i!/j! (i—j)).

(1.7)  Suppose p=2 and let Sqi: H(Q"Y)—>H, (Q"Y) be the dual of the
Steenrod square Sq” [14]. Then

()0 Sha) i s<lal a1

S0'@) = 131 (375;) 0 (Sgka)
+ 2 M-i(Sgia, Sgia)

i<j

(1.8) If Y is a loop space, then \,_,(a, b)=0.

if s=|a|+n—1.

(1.9) no(a, b)=axb—(—1)1a"¥Ipsxq.

(1.10)  n,_i(a, b)=(—1ylebidalsisnm=nny  p gy: if p=2 N\, \(a, a)=0.
(1.11)  nyor(1, @)=nNpos(a, 1)=0.

(1.12) If $(a)=3 a'Qa” and (b)=Sb'Qb", then

Phami(, b) = 23 (=108, _(a!, b)@(a”*b")
(1) D b ) @ B
(1_13) (—l)ual+"_1)(|c[+"—1)7tn—1(ay Xn_l(b, c))+(_ 1)(‘“+”_l)(|a‘+n_l)7\m~l(b’ xn_l(c’ a))
”I_(_“1)(”'+”—1)(|b|+n_1)7\m—1(6; 7\'n—l(a’ b)):O) lfP:37 7\'n—l(a) )\»n—l(a) a)):()
(1.14) Suppose p=2. Then
SN, -1(a, b) = .E'x,,_l(Sqfka, Sqib) .

(1.15)  For n>1 let oy: H(Q"Y)—>H; . ((Q"'Y) be the homology suspension.
Then U*Qs(a):Qs(U*a) and s hy-1(a, b)=x, (o xa, oxb).

(1.16) If Q*'Y, n>1, is simply connected and a’, b'EH . ,(Q"7'Y) transgress
to a, bEH(Q"Y) respectively in the Serre spectral sequence of the path fibration
Q'Y—PQ*" 'Y Q" 'Y, then Q%(a’) and A, (a’, b') transgress to Q°(a) and
An-1(a, b) respectively.
(Here we have written

Qlal+n-l(a) when p= 2
{Q(|a|+n—l)/2(a) when p > 2

instead of &,_,(a); for this notation see Theorem 1.3 of [5, III].)

Throughout the remainder of this section, X will denote an arbitrary con-
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nected space. Let

{a’ b, c, }

be a totally ordered Z,-basis of homogeneous elements for Hy(X). (This order-
ing has no essential influence on the following argument.) Then the basic
Aa—1-products are defined as follows. Define g, b, --- to be the basic \,-,-pro-
ducts of weight 1. Assume inductively that the basic A,-;-products of weight
7, 1<j<k, are defined and totally ordered among themselves. Then a basic
Ny-1-product of weight k is defined to be A,_)(x, ¥) where

(1) x and y are basic \,-;-products with weight(x)+weight(y)=k;

(2) x<y and if y=n,_4(3, @) for z and w basic A,_,-products with <<=,
then x>z;
or

(2) x=y if p>2 where x is a basic A,-,-product of weight 1 and |x|
“+n is even.

For example, the basic A,-,-products of weight 2 are

Au-1(a, b) for a<<b;
Na-i(a, a) for p>2 where |a|-+n is even,

and those of weight 3 are

7\'n—l(by 7\,”_.1((1, C))) )\'n—l(c) 7\'n—l(a’ b)) for ﬂ<b<C H
A=1(@y Np-1(a, B)), Ny=1(by Ny-1(a, b)) for a<<h.

ReMARK. The notion of basic A,_;-products is derived from (1.10) and
(1.13). It will be regarded as a procedure for choosing certain indecomposable
elements of H,(Q"S"X).

Consider sequences of non-negative integers

I {( s)  whenp—2
(811 Sy *y 613, Sk) Whenp>2

where &;=0 or 1. Define the length and excess of J by

I[(J)y=F and

§— z:;s,- when p=2
o)) = S

(26— & — g(Z(p—l)sj—Ej) when p>2.

J is said to be admissible if

25,28, when p=2
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ps;i—E&j=s;-; when p>2

for 2<j<k. J determines the homology operation

0’ =

~

{Qsl v Q% when p=2
ASQ%1 - A%Q% when p>2

ReEMARK. The notion of admissibility is derived from (1.6).

For any space X let
= ¢"(lyry): X = QX

It is well known that z,.: Hy(X)—H4(Q"S"X) is injective. So we may re-
gard that Hy(X)CH4(Q"S"X). Then, for a, b& H(X), we have the following
elements of H4(Q"S"X):

axb, Q%(a), Ay-1(a, b), etc.
Under the above notations and terminologies, we have

(1.17)  If n>1, H (Q'S"X) is the free (associative and) commutative Z,-algebra
generated by

x is a basic N, -product; | is admissible;

O/(x)|tf p=2, e(J)> |x| and ;< |x|+n—1;

if p>2, e())+&> x| and 25, < |x|+n—1.

and if n=1, Hy(QZX) is the free associative Z,-algebra generated by {a, b, ---}.

Thus for n>1 Hy(Q"S"X) has a Z,-basis consisting of all monomials in
the above generators. Let us define the height of a monomial as follows:

height(Q/(x)) = p'’weight(x) and
height(Q7(x) * Q%(y)) = height(Q’(x))+height (Q*(y)) .

According to May [7], there is a functor C, from spaces to spaces together
with a natural transformation «,: C,—Q"S" such that ,X: C,X—>Q">"X is a
(weak) homotopy equivalence for all X. The space C,X has a natural filtration
{F,C,X|k>0} (such that F,C,X={x}, F,C,X=X and F,C,XCF,,C,X is a
cofibration for all k). H(F,C,X) may be regarded as a sub-Z,-module of H,
(Q"="X) and then it is additively generated by the elements of height <k.

For k, n>1 let

X = F,C,X|F,-,.C.X .

As displayed in [9], if X is (m—1)-connected, m>1, then €, X is (km—1)-
connected and therefore
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(1.18)  The composite
C X
F.CX —> C,X 2% ors'x
(which we denote by j,) is a ((k+1)m—1)-equivalence.
So there is an isomorphism
H(Q'S'X)=H'F,C,X) fori<(k+1)m—1.

For a€H(X) let a4 denote its dual. We regard it as an element of H;
(Q"2"X). Then, for a, BeH*(X), we have the following elements of H*
Q=" X):

o * 3 = the dual of ay* By ,
O’(a) = the dual of Q%(ay),
An-1(ct, B) = the dual of N,—i(ax, Bx), etc.

Combining the above notations and results, we obtain

Proposition 1. Suppose that X is (m—1)-connected and let {a, B, v, -}
be a totally ordered Z,-basis for H*(X). Then a Z,-basis for H*(Q'S"X) in
dimensions<<3m—1 is given by

height 1: «,
height 2: axB for a<@ where if a=0, p>2 and |a| is even;
(@) for p=2and |a| <s<|a|+n—1;
A1ty B) for a<B where if a=pB, p>2 and |a|+n is even,

and that in dimensions<<4m—1 is given by the above together with

height 3. axBxv for a<B<7v where if a=08=v, p>3 and |a| is even,
and if a=B=% or aLB=", p>2 and |B| is even;
axQ’(B) for p=2and |B| <s<|B|+n—1;
A*N-1(B, ¥) for By where if 3=, p>2 and |B|+n is even;
AQ(a) for p=3,6=00r 1 and |a|+6<2s< |a| +n—1;
An-1(€y Np=i(B, 7)) for a>B<.

2. Review of Milgram’s work
As in §0, if X=Q"Y, we have a fibration

@.1) X sy
Application of the functor Q" yields a fibration

2.2) vex T osx Xy,
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Put
F.X=QGX.

Since (Q'€,)n,=1y it follows that (2.2) is fibre (weak) homotopically trivial
(see [12, Lemma 4.1]). So we have

Lemma 2. The following equivalent statements hold:

(1) The mod p cohomology Serre spectral sequence of the fibration (2.2)
collapses.

(1) (Qv,)*: H¥Q'S"X) - H*(F,X) is surjective and its kernel coincides
with the ideal generated by (Q”E,,)"‘(Z>0 H'(X)).

For the proof see [13].

Suppose again that X=Q"Y is (m—1)-connected for m>1. Then it
follows from Proposition 1 and Lemma 2(ii) that F,X is (2m—1)-connected.
Let (F,X)s,-, be the (3m—1)-skeleton of F,X. Then the inclusion map z;,,_:
(FuX)sm-1—F,X is a (3m—1)-equivalence. Since F,X=Q"G,X, we have a
map

¢ "(am-1): ' (FpX)gp-1 = G, X .
Consider the commutative diagram
i3m—l#

T(FuX)am-1) — 7i(F,X)

" -n

oK) . (6,)
where =" is the n-fold suspension homomorphism. By the Freudenthal sus-
pension theorem, =" is an isomorphism for /<<4m—1 and an epimorphism for
i=4m—1. Therefore ¢ "(i3,-,) is a (3m-+n—1)-equivalence. So there is an
isomorphism

H(G,X)=H'(Z"(F\,X)sm-1) for i<3m-+n—1.

Through this isomorphism we shall identify them. Then, for o €H'(F,X)
with i<3m—1, we have an element ¢"(0)EH""(G,X) (hereafter we often write
o"( ) for (Z*)7°( )

Let us compute H*((F,X)sn-1) by using the Serre exact sequence of the
fibration (2.2); it is valid for dimensions <3m—1. Moreover, the transgression
7 is trivial, by (i) of Lemma 2. Thus we have a short exact sequence
('E,)* Q"v,)*
>

0 — H'(X) H/(Q'S'X) "> H'(F,X)—0

for i<3m—1. For X€H'(Q'S"X) we denote by [X] the image of X under
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(Q",)*:
(Q',)*(X) = [X] -
Then from the former part of Proposition 1 it follows that

(2.3) Suppose that X=Q"Y is (m—1)-connected (m>1) and let {a, B, -} be
a totally ordered Z,-basis for H*(X). Then a Z,-basis for H*(G,X) in dimen-
stons <3m-+n—1 is given by:

(1) &"[axB] for a<pB where if a=0, p>2 and |ct| is even;

(2) o"[Q(a)] for p=2 where |a| <s<|a|+n—1;

3) " [Au-i(a, B)] for a<B where if a=p, p>2 and |a|+n is even.

Notice that the elements a and B appearing in (2.3) have dimension
<2m—1. We now recall the following fact (see (3.1) of [16, VIII]):

(2.4) If X=Q'Y is (m—1)-connected, then

(e*)": H*™(Y) — H(X) or
¥ H*(Y) - H*"(2'X)
is an isomorphism for i <2m—1.
For a € H'(X) we denote by "& an element of H***(Y) such that
(e*)'('a)=a or E('@) = o"(a).
Thus, for each a € H'(X) with i <2m— 1, "& exists uniquely.

Consider the fibration (2.1). Since Y and G, X are (m+-n—1)- and (2m+n
—1)-connected respectively, its Serre exact sequence

. * vF T
(2.5) e H(Y) 22 B X) 2 HY(G,X) > H(Y) > -
is valid for : <3m-2n—1.

Theorem 3 (Milgram). Under the above situation, the following formulas
hold up to non-zero constants:

(1) v (@aUPB)=c"[a*B] (where U denotes the cup product) and so
7(o"[er* B])=0;

2) If p=2, 7(a"[Q(a)])=Sg"("®);

(3) (o s, B))="2U"B.

Remarx. In (1) o U@ is always non-zero; see the Remark below Lemma 5.

For the proof see §5. Assuming this Theorem for a while, we proceed
with our argument.

In the exact sequence (2.5), for o EH ((F,X)s,-1) with 7(¢"(0))=0, we
denote by {w} an element of H'(X) such that
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vi(c"{0}) = o"(w)

in H**(G,X). (2.5) gives rise to a short exact sequence
EX vy
0— Cok 7> H'(Z"X) > Ker7—0

for i<3m+n—1. By Theorem 3, the additive structures of Im 7 and Ker 7
can be easily described. Thus we have

Corollary 4. Let
i<§—1Hi(X) = Zﬁ{a’ B, -} .

Then H*(X) in dimensions <3m—1 has a Z,-basis consisting of elements of the
following four kinds:

(1) 0 where s"(0)=Im EF;

(2) aUp for a<B whereif a=0, p>2 and |a| is even;

3) {Q'(a)} for p=2 and |a| <s<|a|+n—1 where Sq *'("@)=0;

4 {Pa-ia, B} for a<pB where if a=p, p>2 and |a|+n is even, and

"ay"B=0.

NoTtaTioN. From now on, we use the letters a, B, ¥ to denote elements
of H*(X) of dimension <2m—1 and the letter § to denote an element of H*
(X) of dimension <3m—1 for which "0 exists, unless otherwise stated. Of
course, the @ includes «.

Since the fibration (2.2) is fibre (weak) homotopically trivial, we may as-
sume that there is a fibration

x2aorsrx > FX .

Consider the following commutative diagram

FC,X—F,(C,X — eﬁX
= J2 vfé

X Q' X - F.X

where the upper row is a cofibration. Then it follows from (1.18) that the
induced map j3: eX —F,X is a (3m—1)-equivalence. Since €;X is homotopy
equivalent to S*7X<,,(X AX) (see Proposition 2.6 and Remark 4.10 of [8]),
we can use S*7!Xz,(X A X) instead of (F,X),,-, in the argument of this section,
which is just the argument of Milgram [12, I].

3. The main theorem

We now take the (4m—1)-skeleton (F,X),,-, of F,X. Since the inclusion
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map 2yt (FuX)ym-1—>F,X is a (4m—1)-equivalence, by the same argument as
in §2, the map

Pr = ¢-n(i4m-l): Zn(FnX)Am—l g GnX

is a (4m-+n—1)-equivalence. (Note that this equivalence is natural in Xj;
see the diagram (5.1).) So there is an isomorphism

H(G,X)=H'(S"(F,X)m-1) for i<4m-+n—1.

(It follows from (2.4) that this isomorphism holds for i=4m+n—1.) Similarly
we shall identify them.

Let us compute H*((F,X),,-,) by using the Serre spectral sequence {E,,
d,} of the fibration (2.2); that is,

Ej’ = H(F,X)QH/(X) and E** = Gr H*(Q'3"X).

By (i) of Lemma 2, Ef*=EX* for all r>2. It follows from (2.3) that Ej*/
for i+j<4m—1 with 7, >0 has a Z,-basis consisting of elements

[B+7]®a, [(8)]®a (p=2) and [A,(B, 7)]Qc .

For acH'(X) let acH(Q"3"X) denote the dual of ayeH (Q'S"X); then
75(@)=a. By the multiplicative properties of the cohomology spectral se-
quence, [B*7]Qa, [0 (B)]Ra (p=2), [M-i(B, 7)]QasEX* are represented
by @aU(B*7), aUQ'(B) (p=2), @ UN,—1(B, ¥)EH*(Q"Z"X) respectively.

Lemma 5. In >) H(Q'S"X) the following relations hold:

i<dm~-1

(i) () If a, B, v are distinct,
aU(Bx7) = (—1)"BIBx(aUy)+(—1)“mM+BIVyx(q U L)+ axBxy;
(2) If a=8,
auB*p) = p*(aUB)+axB*B and
BU(a*B) = 2a*(BURB)+B*(aURB)+2axB*p;
3) aU(axa)=ax(aUa)+3a*ra*a.
(i) If p=2,
aUQi(B) = axQ’(B).
(i) (1) If a, B, 7v are distinct,
aUn,.(B, v) = (—1)1“”5”'“'(”_1)7&”_1(/3, aUuw)
- (— 1) EBIYHASHBLE GOy U B) btk hyi(By V)3
2) If a*B,
aAUN(By B) = (—1)'""\-1(B, aUB)+a*n,-(B, B) and
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BU)\'n—l((xy ﬁ) — (___1)[‘”|B|+Iﬁ|(ﬂ—l))\'n_l(a’ BUB)
+H(—1)FHE=DE (8 aUB)+B* Ny-i(at, B);
(3) aun,_i(a, a) = (—1)"r(a, aUa)+a*r,(a, a).
RemaRrk. Note that for a, BeH*(X), aUB=*0 if a%R, and aUa=0 if
p>2. In fact, since X=Q"Y is a connected H-space, H*(X) becomes a con-

nected, associative and commutative Hopf algebra of finite type over Z,; hence
the Borel structure theorem (see (8.12) of [16, III]) implies the result.

Proof. Since |a|, |8, |7|<2m—1, a, B, ¥ are primitive. So

Plax*(BUY)x) = Plas) *P(BUY)4)
= (@x®@1+1Qax)*(BU7)x@1+BxQ 7«
(1) @Bx+1Q(BU7)x)
= (a4 *(BU 7)) QL+ (ax* Bx) Q7
F(— DI (g * 74) @Bs+ s (B U V)«
_’_(__1)|'”||B|+|‘”I|YI(BUy)*®a*+(_l)|m||ﬁ|ﬁ*®(a**(y*)
(= 1) P @ty % 8) + 1@ (e (B U D))
and
= (s * B * V) 1H(s * Be) @V s+ (— 1) P17 (s % 74 ) R B«
0 @ (B V) +(— 1) PN (Bok 74) Dty
- (—1) 21818, @ (ot % V) +(— 1) 2B Moy @ (ot * Bye)
T 1@ (s * Bk ) -
Thus if X=Bx*(@UY)s Yx*(@UB)x Or ay*By* Y4 ¢(X) contains the term
axQ(Bx*74) whose coefficient is (—1)!*11 (—1)!*I"+ 817 or 1 respectively.
This implies (1) of (i), for if X is other base, ¢(X) does not contain it. Similar
calculations yield (2) and (3) of (i).
(i) and (iii) are proved similarly by using (1.4), (1.5), (1.10), (1.11) and
(1.12).
It follows from Lemma 2 (ii) and Lemma 5 (i) (1) that if &, B, ¥ are dis-
tinct,
0=[auB*m)] = (=) [B*(aU")]
(= 1y By % (U B)]+[a*B*7],
0=[BU(ax7)] = (—1)"*"P[ax(BU)]
- (— 1)@y 5 (U B)]+(— 1) P [ % B% 7],
0= [7U(axB)] = (— 1)@+ g s (BU )]
—|—(—1)'“]'B'HMWIHB'W'L@*(QU ')’)]—I—(——1)“”"7'*'”3"7‘[6!*,3*’)/]



410 T. WATANABE

in H*(F,X). Hence

(3.1) [Bx(aU7)] = (=) ax(BUT)],
[7#(@UB)] = (=)' fax(8U)] and
[axBxv] = —2[ax(BUY)].

Similarly from (2) of Lemma 5 (i) it follows that if a4,

(3.2) [8%(aUB)] = 2[a+(BUR)] and
[a*B*B] = —2[ax(BURB)] .

From (3) of Lemma 5 (i) it follows that
(3.3) [ax(aUa)] = —3[a*a*a] .

From (ii) of Lemma 5 it follows that

(3.4) [axQ(B)] = 0.
From (1) of Lemma 5 (iii) it follows that if a, B, 7 are distinct,
(3.5) [a*xn—l(ﬁ) ry)] — (_1)!‘”1Iﬁl+l“l(n-1)+1[7\,n_l(ﬁ’ al ’)/)]

+(_1)le|v|+lﬂli'rl+<|w1+lB|+|v|+1)(n—1)[7\n_1(,y’ aUB)] ,
[B* 7\.”_1(6{, ’)’)] — (—1)“”"mHB'("_”H[Xn_l(a, BU’)’)]

+(__1)I“||3I+l‘”|I‘YI+IBII'Yl+(|00|+lﬁ|+['Y!)(n—1)[7\’”_1(,Y’ (XU,B)] ,
[ # Aps(@, B)] = (—1)!IHIRITEME=DHN, (o, BUY)]

+(_1)|¢1|ﬁ|+1“1|v|+|ﬂ||71+(|~|+|B!+w|+1)(n—1)[7\”_1(18’ aU')/)] .

From (2) of Lemma 5 (iii) it follows that if a2,

(3.6) [a* Npa(B, B)] = (—1)!NBIHI=DHN (B, aUB)] and
[B*)\‘”_l(a, B)] — (___1)I"’llﬁl+|ﬁl(ﬂ‘1)+1[7\'”_l(a’ BUB)]
_I_(_1)|3I+(|051+1)(n—1)[>\‘”_1(18’ aUB)] .

From (3) of Lemma 5 (iii) it follows that
3.7) [@*np-i(at, @)] = (— 1) [N, _i(a, U )] .

Combining Proposition 1, Lemma 2, Corollary 4 and relations (3.1)—(3.7),
we obtain

Proposition 6. Suppose that X=Q"Y is (m—1)-connected (m>1). Then
a Z basis for H*(G,X) in dimensions <4m-+n—1 is given by:
(1) o"[ax0] for a<6 whereif a=0, p>2 and |a| is even;
(2) o"[ax(BUY)] for a<B<7Y whereif a=p="v, p>3 and |a| is even,
and if a=RB*y or aFLB=2, p>2 and | 3| is even;
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(3) o"[a*{Q(B)}] for p=2 and |B| <s<|B|+n—1 where Sg*'("B)=0;
@) o"[a* An-1(B, V)}] for By where if B=7, p>2 and | B|-+n is even,
and "B U"§=0;
(5) " [O(a)] for p=2 and |a| <s<|a|+n—1;
(6) " Nui(a, )] for a<0 where if a=0, p>2 and || +n is even;
(7) " Ap-1(a, BUY)] for By where if B=v, p>2 and |B| is even;
(3) o"Dmse, (OB for p=2 and |81 <s< | 8| +n—1 where Sy™("B)
=0;
9) " ni(et, ui(Bs M})] for B where if B=", p>2 and |B|+n is
even, and "B U"§=0;
(10) o"[Q ()] for p=3 and || <2< || +n—15
(11) o [AQ )] for p=3 and || <2s< |al+n—1;
(12)  o"ra-s@ X8y V)] Sfor a=B<7.

Consider the mod p cohomology spectral sequence {E,, d,} of the fibration
(2.1) in total degrees <4m-+n—1; that is,

(3.8) i = H(Y)QHG,X), d,: Ei” — Ei*"i=*! and
EX* = Gr H¥S"X) .

Then our main result is

Theorem 7. Under the above situation, the following formulas hold up
to non-zero constants:

(1) v¥"(aUb))=o"[ax0];

(2) wie"(@UBUY)=c"la*(BUY)];

(3) If p=2 and Sg**'("B)=0, vii(c"(a U {Q"(B)}))=0c"Ta* {O*(8)}];

(#) If"BU"7=0, »i(c"(@U us(B, M}))=0"Ta* {Nu-s(B, M}

() If p=2, 7(s"[Q()])=Sg""("®);

(6) (" [A-s(a, O))="U"0;

(7) dia+s(1Q0" aes(@, BUY])="AR"[B*7];
gD TP ST 0, 18 Il QRN =2 B (O

L A e R

V)15

) 'UB=BU"T=0, (@ Jolds a1d) o" D OuaB, )
+¢" " Mner(Ys Praa(et, BN =L"a, "B, "7> (where ¢’ is a non-zero constant and
<, , > denotes the Massey product [15]);

(c¢) If'@u"B="BU"y="yU"a=0, ((a), (b) hold and) T( "n-1(B,
Pnar (7, ON]H7 " Nty uca(By VIDN=L"B, ", "@> (where " is a non-
zero constant);

(10) If p=3, 1(c"[OQ’()])=A*PB'("®) (where A* is the mod 3 cohomology
Bockstein and 3’ is the Steenrod 3rd power [14]);
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(1) If p=3, (a"TAQ()])) =B ("?);
(12)  dita(1Q6" Nas(@ Xaa(85 V) ="AR " [X-s(B, V)]-
The proof is postponed until §6.

ReMARK. In the proof of Theorem 7, for the convenience of argument
only, we will take as a Z,-basis for H*(G,X) the set of elements given in Pro-
position 6. However, Theorem 7 is valid, independently of the choice of Z,-
basis for H*(G,X) and of the ordering of Z,-basis for A*(X). This assertion
will be discussed in §6.

4. Lemmas

In §3 we have shown that

4.1) If X=QY is (m—1)-connected, there is a (4m-+-n—1)-equivalence p,: ="
(FoX)im-1—> G, X.

For n>k>1 consider the following diagram

G” an kaY En—kﬂn kaY E QkY
42 5 l =
( ) \ "712 ky Nk ng .
Q G QY —5 0f 'Y —5 QY

where the rows are fibrations. Commutativity of the right-hand square yields
a map #: G, Q'Y—-Q'G,Q"Y. Application of the functor Q"* to the
diagram (4.2) yields a commutative diagram
Qn—k

F, @y T Uty O
4.3 lQ” kit Qrk =l
(4-3) YU o oo,

FQY —— ao30'Y —— Q'Y

nk
EﬂkQY

Let nt: (F i 'Y ) oy = (F,Q"Y),,,—; be the restriction to the (4m—1)-skeleton
(of a cellular approximation) of the map Q"~*#;. Then there is a commuta-
tive diagram

p
S K A0V Yo e S HEL Y Y

Pn—t ~t ¢k(Pn)
k

G,.Q'Y —— Q'GQY
and by (4.1), both p,_, and ¢*(p,) are (4m--n—k—1)-equivalences. Thus

H n (o *)k imkf "y (7)* i~k
(G Q"Y) —— HXHQ'G,Q'Y) —— H™%G,-,Q"Y)
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may be identified with the composite

A Y n (2*)k i—k -k n
H(Z(FY)m-1) —> HTHETHELQY ) n-1)

En—k 7\*k )
( 77"); H‘—k(zn_k(Fn—kﬂ”Y)«lm—l)
for i<4m-+n—1. Then we have

Lemma 8. For any a, BEH*(Q"Y) the following relations hold:
(1) (@)% (e [a*B]) = o HaxB];

" MO ()] if p=2 and s<|a|+n—k—1 or
@) () (@) = p>2 and 25< |et| +n—k—1

0 otherwise

(3) (T)*(™) (" Pa-slet, B)]) = 0.

Proof. By (1.1) and (1.8), (Q" *p)*: H(Q'Z'Q'Y) — H(Q**="*Q"Y)
satisfies:
Q" ) (% B) = a*f;
O'(a) if p=2and s<|a|+n—k—1o0r p>2 and
Q) *(Q'(e) = z < |al+n—k—1
0 otherwise
(‘Q”_k’?k)*(hn-l(a’ B)=0.
So the result follows from (4.3) and the definition of »;.

For n>k>1 consider the following diagram

Gy s Ty sy
i, n—k —
(+4) i [=e, =]

G”_kﬂn—kY_l_}_"___k) zn—kﬂ”_kY—) Y

where the rows are fibrations. Commutativity of the right-hand square yields
a map &: GQ'Y -G, ,Q""Y. Application of Q" to (4.4) yields a com-
mutative diagram

n injﬂ Nt Qn&n
FQY — Q3Q0'Y — Q'Y
4.5 ln"“/ Qrsrt =
( ) Ek rlyn_k l 2 Ekﬂﬂfﬂ_ l

Q'F,_ Y SIS sty S Q'Y
Let &: SHF,Q"Y)py = (Fpoi Q™ #Y),-y be the restriction to the (4m—1)-
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skeleton of the map ¢~ *(Q'F): Z'F,Q"'Y - F, Q" *Y. Then there is a
commutative diagram

n n = < ~k -k
S(FQ Y )y ——3 SHE, Y ) ey — S HE MY ) e
Pn -g, pn—k
G,Q'Y ¢ > G, Y

and by (4.1), p, and p,, are (4m+n—1)- and (4m+n+3k—1)-equivalences
respectively. Thus

i n—k (gi’f)* i n
HY(G,_,Q"*Y) =5 HY(G,Q"Y)

may be identified with the composite

Hi(zn_k(Fn—an_kY)4m+4k—1) -_— Hi(zn_k(Fn—kQ"_kY)m—l)
(O34 R
—> H'(Z"(F,Q"Y)m-1)
for i<4m--n—1.

Lemma 9. For any ‘@, *BE H*(Q"*Y) the following relations hold:

(1) E)*e" "T'ax"B]) = 0;

(2) ED* e MO (a)]) = o"[Q()];

3) EY* " s, B = " Dha(@, B
where o (resp. B) is the image of '@ (resp. *B) under (o*)': H(Q'*Y)—
H4Q"Y).

Proof. Recall (e.g. from §3 of [16, VIII]) that

(4.6) For any Y, o*: H(Y) — H"(QY) maps every decomposable element into
zero.

By this fact and (1.15), &F: H(Q"*Y) — H'(S*Q"Y) satisfies:
Ef(‘ax"B) = 0;
E(0' (') = o (Q'(@);
EF ('@, *B)) = o (Mur(at, B)) -

So the result follows from (4.5) and the definition of &;.

5. Proof of Theorem 3

Milgram [12, I] did not give a detailed proof of Theorem 3. Here we
present it for later convenience.
If Y and Y” are (m'4+n—1)- and (m”+n—1)-connected respectively,
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where m” >m’>1, and if g: Y'—Y” is a map, there is a commutative diagram
of fibrations

n ’ p” ’ -ll” ’ En ’
SFX Yoy —\G X —5 X =5 Y
5.1 : ‘G, 12"
(5:1) ( ) f /e le

Pa GV”X// Uy EnX// Y//

2n(-l;‘mX//)‘;m”-1 —_

where X'=Q"Y’, X”=0"Y” and f=Q"g. Then the naturality of the Serre
exact sequence yields a commutative diagram of exact sequences
*

0 — Cok & 5 H(G,X") —> Ker £ — 0
(52 e e e

0 — Cok E¥ — H{(G,X') —> Ker £ —0

for i<<3m’'+n—1.

Let K(Z,, 7) be an Filenberg-MacLane space of type (Z,, 7) and let ;€
H'(K(Z,, 7)) be its fundamental class.

Proof of (1).

In the diagram (5.2), set g=("&, "B): Y—>K(Z,, |a|+n)xK(Z,, |B|+n);
then we see that to show (1) it suffices to prove

1y vi(o"(var X up)) = o [(uar X 1) % (1 X tig1)]

in the case Y=K(Z,, |a|+n)xX K(Z,, |B|-+n).
Suppose n>>1 and consider the diagram (5.2) for the case g=m,: K(Z,, ||
+n)x K(Z,, |B|+n) —K(Z,, || +n), the projection to the first factor. Then

H®HPENG(K((Z,l el ) < K(Z ), |81)))
= Z,{o"[(t1a1 X 1) *(1 X ¢15)]} modulo Im (G,z))* .
On the other hand,

Cok[E}: H™ P K(Z,, |al+n)x K(Z,, |8|+n))
— H'*PEEHK(Z,, (o)X K(Z,, |B1)))]
= Z,{o"(ts X t1p1)} modulo Im (Z"z,)*
and
Ker[gF: H"PH Y K(Z,, |a|+n)X K(Z,, |B|+n))
— HIH 0 (SUK(Z,, |al) X K(Z,, 18]))]
= 0 modulo Im =¥ .
For ¢"(0)EIm (G,m))* let o*(@) = H*(G,K(Z,, |a|)) be such that (G,7))*(¢"(®))
=¢"(w). Then the behavior of ¢"(w) in the lower sequence of (5.2) depends
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on that of ¢"(®@) in the upper sequence of (5.2). So the above observation
implies (1) for n>1.

It remains to prove the case n=1. Consider the diagram (4.2) for the
case that Y=K(Z,, |a|+n)x K(Z,, |B]+n) and k=n—1; then there is a com-

mutative diagram

%
B S
(a_*)n—l J(a*)n—l
) Qn—l " * )
(53) ~ (2*)#-—1 Hx—n+l(Qn—12nX)( v !) H:—n—i—l(ﬂn—lGnX)
"7:lz<—1 % (’7::—1 *

5 Hi~n+1(2X) ‘Jl s Hi—n+1(GlX)
where X=K(Z,, |a|)xK(Z,, |B]), and by (1) of Lemma 8,
V(o (e X ugr)) = vH(E*)"" 0" (tar X )
= (Fn-1)*(®)" ¥ (" (4 X 1))
= (F1-1)*(a™)" (" [(t1ar X 1) % (1 X 011)])
== G[(Lm! X 1)*(1 X L“g‘)] .

Proof of (2).
In the diagram (5.2), set g="&: Y —K(Z,, |a|+n); then we see that to
show (2) it suffices to prove

@) (o' [Q"(t2)]) =S¢ (tar+)

in the case Y=K(Z,, |a|+n).
Consider the lower sequence of (5.2) for the case that Y'=K(Z,, s+1)
and n=1. Then

H*NGK(Zy, 8)) = Z{e[Q()]} -
On the other hand,
Cok[E¥: H*"(K(Z,, s+1)) > H**N(ZK(Z,, 5))] = 0

and
Ker [Ei" H*Y(K(Z,, s+1)) = H*"*(ZK(Z,, s))]
= ZZ{SqS+1(Ls+1)} .

So we have
(o [O°(¢)]) = Sg*(¢err) -

Consider the diagram (4.4) for the case that Y=K(Z,, s+ 1), n=— || +s
+1 and k=n—1=—|a|+s; then there is a commutative diagram
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H(GQY)— H(Y)
(5.4) l“zfl =
. T vwe
H'(G,X) — H™(Y)
where X=K(Z,, |a|) and Y=K(Z,, s), and by (2) of Lemma 9,

(o™ O (Ua)]) = T(ELiair) *(a1O°(cs)])
= T(O'[QS(LS)])
= 8¢ (t541) -

Consider the diagram (4.2) for the case that Y=K(Z,, |a|+n) and k=
|| +n—s—1; then there is a commutative diagram

Hi+k(G”X) __T_) Hi+k+l( Y)
()" (*)"
. T
(5.5) H'(Q'G,X)— H"(Q'Y)
it -
H{(G,_,X) —> H*{Q'Y)
where X=K(Z,, |a|) and Q'Y=K(Z, s+1), and by (2) of Lemma 8§,

(a®) (" [Q(ta)])
= 7(™)!* " [Q ()]
= T(larn-5-1)*(¢*) ("0 (1))
= 7(o™ O (va)])
= 8¢ (t541)
= ()" (S (b +a) -

Since (o) =57l HIWUHH* Y K(Z,, || +n))—> H**(K(Z,, s+1)) is monomor-
phic (see [4]), (2)’ follows.

Proof of (3).
In the diagram (5.2), set g=("®, "B): Y—=>K(Z,, |a|+n)xK(Z,, |B|+n);
then we see that to show (3) it suffices to prove

(3)/ T(O'n[xn-l(‘lwl X 1, 1x ‘lsn)]) = Ual+n X LiBl+n
in the case Y=K(Z,, |a|+n)x K(Z,, |B|+n).

Consider the diagram (5.2) for the case that g==,: K(Z,, |a|+n)x K(Z,,
|B|+n)—>K(Z,, |a|+n)and n=1. Then

H 842y G(K(Z,, || +n—1)x K(Z,, | B8] +n—1)))
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= Zp{o'[(tlwlﬂ-lx D*(1X e1p144-1)] »
o No(tiai+n-1X 1, 1X ¢g1+5-1)]} modulo Im (Gym,)* .

On the other hand,
Cok[EF: H" P YK(Z), || +m) X K(Z,, |81 +m) =
Hi“+8ve-ys(K(Z || +n—1) X K(Z,, |B]+n—1)))]
= Z {0 (tiai+n-1X tip14n-1)} modulo Im (Z7;)*
and
Ker[gf: H"WWP(K(Z, |a|+n)x K(Z,, |B|+n)) —
H"+82(S(R(Z,, |a| +n—1)X K(Z,, |B|+n—1)))]

= Zp{‘la]—}-nx L!ﬁl+n} modulo Im 7[ik .
In view of the formula (1), we find that

T(eNotiarrn-1X 1, 1X t181500-1)]) = tiatn X tiglsn -

Suppose n>1 and consider the diagram (4.4) for the case that Y=K(Z,,
la|+n)x K(Z,, |B|+n) and k=n—1; then we have the commutative diagram
(5.4) (where X=K(Z,, |a|)xK(Z,, |B]) and QY=K(Z,, |a|+n—1)xK(Z,,
|8|+n—1)), and by (3) of Lemma 9,

(o An-1(tiar X 1, 1X ¢18))])
= 7(Er-1)*(e[No(tiai+n-1X 1, 1 X tipisn-1)])
= (o[ Mo(tar+n-1X 1, 1 X tig11s-1)])
= Ual+n X LiBl+n -

6. Proof of Theorem 7

We begin by introducing some notations.
For i< j let L(Z,, 7; j) denote the mapping fibre of

Sq'(¢j): K(Zy, j) = K(Zy, i+))
and for 7> j let
L(Zy 15 7) = Q7L(Z,, 1 1) .
Then for any (7, j) there is a fibration
. . eL .. §L .
K(Zy, i+j—1)—> L(Z,, 1;j) —> K(Z,, })

which is induced by Sq'(¢;). Put ¢=&%(¢;). Since Sq’ is stable, it follows that
O'L(Z,, 15 j+n)=I(Z,, i; j) for all 4, j and n, i.e., L(Z,, ; j) is an infinite loop
space.
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Suppose i> 7. Then Sg'(¢;)=0 and therefore
(6.1) L(Zsy 5 )y=K(Zy )< K(Zsy i-+j—1) .
Let «' i H*i"Y(L(Z,, i; j)) be the element such that
R ) = i

We now take integers 7, j and 7 so that (2) of Theorem 3 is applicable to ¢"[Q"!
(JMeH™ G, L(Z, i; j—n)), where Y=L(Z,, i;j). Then 7(a"[Q""'(¢™™)])
—=S¢'(), which is equal to zero by the definition of I(Z, 7; j). So ¢"[Q*
(¢7™)] lies in the image of »¥. In view of (6.1), we find that

(62) V(o (6 7) = o [0 ()]
For i< j let M(Z,; 1, j) denote the mapping fibre of
X K(Z,, 1)< K(Z,, j) = K(Z,, i+j) .

Then there is a fibration

& ¢
K(Z,, i+j—1) =2 M(Z,; i, ) =2 K(Z,, )X K(Z,, ]) .

Application of Q" yields a fibration

&

K(Z, i+j—n—1) -—M+Q"M(Zp; 7, J) —gﬂ K(Z,, i—n)x K(Z,, j—n)
which is induced by (¢*)"(¢;x¢;) for #>0. Put o/ "=fi(s;_,x1) and /"=
é‘;’;(l X ('j—n)‘

Suppose n>1.  Then (¢*)"(¢; X ¢;,)=0 by (4.6), and therefore
(6.3)  Q'M(Z,; 1, j)=K(Z,, i—n)x K(Z,, j—n)x K(Z,, i+j—n—1).
Let z* i=mimne H*i=""YQ*M(Z,; i, j)) be the element such that

% nyi=n,j—n\ __
Ei(n ) = bitj—n-1-

We now take integers 7, j and #z so that (3) of Theorem 3 is applicable to
" Nr (677, SN EHM G, M(Z,; 14, 7)), where Y=DM(Z,; i, j). Then
(6" [Ap-1(¢7", ¢™])=1'U ¢, which is equal to zero by the definition of M(Z,;
5, 7). S0 ¢"[Au-1(¢7", ¢F7™)] lies in the image of v¥. In view of (6.3), we find
that

(6.4) V"W ITITN)) = [Ny, )] (up to a mon-zero constant).

Let X=Q"Y and suppose that an element a = H*(X) such that S¢**'("@)
=0 is given. Consider the following diagram
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Y

/‘ n -~

RN (04

I(Z,, s+1; i 4)i» K(Z, "~|) (""El)K<Zz,1a1+s+1)

where the row is a fibration. By hypothesis there is a lifting "@~ of "&. Then
we have the commutative diagram (5.1) for the case g="&~, and from natural-
ity and (6.2) it follows that

(6.5) Q@A) (1) = {Q%(@)} -

Suppose that elements a, 8 H*(X) such that "@&U"B=0 are given. Con-
sider the following diagram

Y
(na’ nB)/\/’/_/” . lrn, nB)
I Y e 4a X g .
M(Z,;|"al, |"B|) —= K(Z,, |"@|)x K(Z,, |"B|) ——> K(Z,, |"@| +|"B1)

where the row is a fibration. By hypothesis there is a lifting ("@, "B)~ of ("&,
"B). 'Then we have the commutative diagram (5.1) for the case g=("&, "B)",
and from naturality and (6.4) it follows that

(6.6) (@', "By *(Wr ) = {x,-i(at, B)} -

We enter into the proof of Theorem 7.

Let {E,, d,} be the spectral sequence (3.8). It follows from (2.3) that
Ej’ for i+j<4m-+n—1 with 4, j>0 (explicitly speaking, i>m-n and j>2m
+n) has a Z,-basis consisting of elements

‘AR [B*7], "ARQ[O(B)] (p =2) and AR’ [Nsi(B, 7)] -

By Corollary 4 and the multiplicative properties of the cohomology spectral
sequence, if these elements survive to E., they represent the following ele-
ments of H*(2"X):

(@) Ua"(BUY), o"(a@) Us"({0°(B)}) (p = 2) and

() Ua" ({aa(85 M}) -
But all cup products in H*(="X) vanish (e.g., see (7.8%) of [16, III]). This
implies that
(6.7) E37 for i-+j<4m+n—1 with i, j >0 is divided into two parts: one part
consists of elements which kill certain elements of E3*7*"° (following the formulas

of Theorem 3) and the other part consists of elements which are killed by some ele-
ments of E9*i+i1,
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Consider now the diagram (5.1) and let {'E,, 'd,} and {"E,, "’d,} be the
mod p cohomology spectral sequences of the upper and lower fibrations, re-
spectively. Then the naturality of the Serre spectral sequence yields a homo-
morphism of spectral sequences

(6.8) g: "E—'E, which is a system of maps {gi+’}, gi’: "EX’ —'Ei*/, such that
'd,g,—=g,'d,, g,+, 1s induced by g, and the diagram

. gl .
//Eé,] ’Eé.l

Hx'( Y//)gHj(GnX//)g_*®an*

H( Y')@'@')H’(G,,X')

commutes.

Proof of (1).
Consider the homomorphism (6.8) for the case g=("@, "f): Y >K(Z,, ||
+n)x K(Z,, |80|+mn). Then we see that to show (1) it suffices to prove

(1) (" (bar X tg)) = " [(tar X 1) % (1 X 1191)]

in the case Y=K(Z,, |a|+n)xXK(Z,, |0|+n).
The rest of the argument is the same as that in the proof of (1) of Theorem
3, except that one uses the spectral sequence in place of the exact sequence.

Proof of (2).

Consider the homomorphism (6.8) for the case g=("®, "B, "¥): Y—>K(Z,,

la|+n) X K(Z, |B|+n)X K(Z,, |7|+n). Then we see that to show (2) it suf-
fices to prove

2y i(o"(tiar X tigr X ¢191)) = 0" [(1ar X 1 X 1) % (1 X €19 X 21)]

in the case Y=K(Z,, |a|+n)XK(Z,, |B|+n)XK(Z,, |7|+n).

We use the homomorphisms (6.8) for the cases that g=(7z, =,): K(Z,
la|+n)x K(Z,, |Bl+n)xK(Z,, |v|+n)—K(Z, |a|+n)xXK(Z, |B|-+n),
g=(m, m;) and g=(m, m;). Suppose n>1 and consider {'E,, ‘d,} modulo

Im (7, 7,)+-Im (7), 73)+ Im (7, 75); then for i+j=|a|+|B|+ |v|+n,

i {Zp{o'n[(Llle1X1)*(1X‘lﬁl><‘lvl)]} (#=0)
“ o > 0)

(recall the relation (3.1)). On the other hand,

H'“'*'“*”'*”(E”(K(Zp, IOCI)XK(Z!,, [ﬁl)XK(ZP, I'YI)))
= Z,{o"(tj1 X t1p1 X t11)} modulo Im (Z*(,, 7,))*
+Im (2"(7[1, 7r3))*+Im (B 7y 7r3))* .

This observation implies (2)’ for n>1.
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It remains to prove the case #=1. But the argument here is analogous
to that in the proof of (1) of Theorem 3.

Proof of (3).

Consider the homomorphism (6.8) for the case g=("@, "B"): Y—=>K(Z,,
la|+n) X L(Z,, s+1; |B|+n). Then by (6.5) we see that to show (3) it suf-
fices to prove '

(3) Vf(a’”(tlm X ST ”3')) = Gﬂ[(tlwl X 1) (1 ko+1 |B|)]

in the case Y=K(Z,, |a|+n)X L(Z,, s+1; |B|+n).

We use the homomorphism (6.8) for the case g=1x¢§,: K(Z,, |a|-+n)X
L(Z,, s+1; |B|+n)—>K(Z,, |a|+n)X K(Z,, |B|+n). Suppose n>1 and con-
sider {'E,, 'd,} modulo Im 1x&,; then for i+j= ||+ | 8| +n+s,

By = [ T D (=0
0 (i>0).

On the other hand,

H\ " Bents(SNK(Zy, |a])x L(Z,, s+1; |B])))
= Z,{o"(tjs X "™ ")} modulo Im (Z*(1xE,))* .

This observation implies (3)' for n>1.
The proof for the case n=1 is analogous to that in the procf of (1) of Theo-
rem 3.

Proof of (4).

Consider the homomorphism (6.8) for the case g=("&, ("B, "§)™): Y—
K(Z, lal+n)x M(Z,; |B|+mn, |7|+n). Then by (6.6) we see that to show
(4) it suffices to prove

(4)/ Vn*(o‘n(ha; Do i Iﬁl‘lvl)) — a”[(tlal X 1)*(1 XN IBI,I*/I)]

in the case Y=K(Z,, |a|+n)xM(Z,; |B|+n, |v|+n).

We use the homomorphism (6.8) for the case g=1x¢&y: K(Z,, || +n)X
M(Z,; |Bl+mn, |v|+n) > K(Z, |lal+n)xK(Z, |Bl+n)xXK(Z, |7|+n).
Suppose n>1 and consider {'E,, ‘d,} modulo Im 1x§,; then for i+j= ]
+IBI+1vI+2n—1,
it _ 1210 T X D (1 B} (= 0)

L iO (i>0).
On the other hand,
H'”'+'B'+”'+2”'1(2”(K(Zp, laI)XQ”M(Z,,; IB,+”, I'Yl"’n)))
= Z,{o"(tjg X A" ")} modulo Im (Z"(1x &,))* .
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This observation implies (4)" for n>1.
The proof for the case n=1 is analogous.

Proof of (5).
This proof is the same as that of (2) of Theorem 3.

Proof of (6).
Consider the homomorphism (6.8) for the case g=("®, "d): Y—>K(Z,
|a|+n)x K(Z,, |0]+n). Then we see that to show (6) it suffices to prove

(6)’ T(o" Ap-1(tie X 1, 1X101)]) = titsn X tig14n

in the case Y=K(Z,, |a|+n)xK(Z,, |0|+n).
The rest of the argument is the same as that in the proof of (3) of Theorem
3, except that one uses the spectral sequence in place of the exact sequence.

Proof of (7).

Consider the homomorphism (6.8) for the case g=("a, "B, "§): Y—>K(Z,,
la| +n)x K(Z,, |B|+n)xK(Z, |v|+n). Then we see that to show (7) it
suffices to prove

7y A0 41 Q0" Np-r(tia X 1X 1, 1X 015 X 11y))])
= (4a1+a X IX 1)@ [(1 X 11 X 1) # (1 X 1 X 1]

in the case Y=K(Z,, |a|+n)x K(Z,, |B|+n)xXK(Z,, |v|+n).

We use the homomorphisms (6.8) for the cases g=(7y, 7,): K(Z,, |a|+n)
XK(Zp’ |B| +n)XK(Zp» |’Y I +n)_)K(Zp, [a|+n)XK(Zp: Iﬁ' +n)) g=(7t1, 71'3)
and g=(my, 73). Then, in 'E;”’ for i+j=|a|+|B|+ |7 |+2n with 7,7 >0, there
are elements

(tat+a X IX D)@ [(1 X g X 1) # (I X 1 X ¢yy)],
(IX t1p14a X 1)@ [(t1a1 X 1 X 1) % (1 X 1 X ¢}y))] and
(I1x1x L]y|+,,)®0'n[(L|w[ X 1X 1)*(1 Xtg X 1)] .

By (6.7) and (1) of Theorem 3, these elements must be killed by some elements
of 'EP'\*1+IBI+I+2n=1" The elements which may kill them are

1Q6" Ap-1(tiay X 1 X1, 1 X ¢15/ X ty))]
1®0'”[7\,,,_1(1 Xt X 1, Lig) X 1x L|—y|)] and
1Q0" a1 X 1 X t1y1; tiar X 1ipr X 1)],
since the behavior of other elements in ‘E, has been determined by the for-

mula (2) and the naturality arguments (with respect to the maps (7, m,), (7,

m3) and (my, 73)). So (7)’ follows.
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Proof of (8).

Consider the homomorphism (6.8) for the case g=("@, "B"): Y—K(Z,,
|| +n)X L(Z,, s+1; |B|+n). Then by (6.5) we see that to show (8) it suf-
fices to prove

(8)’ 101 +2(1Q 0 Npoy(tiar X 1, 1 X 15717 181)])

= (Ua1+: X 1) Q&"[O°(1 x ¢'*)]
in the case Y=K(Z,, |a|+n)X L(Z,, s+1; |B|+n).

We use the homomorphism (6.8) for the case g=1x§,: K(Z,, |a|+n)x
L(Zy s+1; |Bl+n) = K(Zy || +n) < K(Z;, |B]+n). Then in 'Ey*itn it
there is an element

(Llal+n>< 1)®0’n[QS(1 X LIBI)] .

By (6.7), (2) of Theorem 3 and the definition of L(Z,, s+1; |B|-n), this ele-
ment must be killed by some element of 'Ey!®!*Ifl*21+s=1 = The element which
may kill it is

1®an[xn—l(tla] X 1’ 1 X IC$+“ ]ﬁ[)] ,

since the behavior of other elements in 'E, has been determined by the for-
mula (3) and the naturality argument. So (8)’ follows.

Proof of (12).

Consider the homomorphism (6.8) for the case g=("a, "B, "y): Y—>K(Z,,
la|+n)X K(Z,, |B|+n)xXK(Z,, |v|+4+n). Then we see that to show (12) it
suffices to prove

(12)/ d|w|+”(1®0n[7\a”—1(51a| X 1x 17 7\'7:—1(1 X Tl X 1) Ix1x LWI))])
= (Ual4n X IX DR "Ny-1(1 X e1g) X1, 1X1X¢py))]

in the case Y=K(Z, |a|+n)xK(Z, |B|+n)xK(Z, |v|+n). (Here we
suppose that B<<a<7.)
We use the homomorphisms (6.8) for the cases ¢=(7,, 7,): K(Z,, || +n)
X K(Zy |81 +m)x K(Z,, |¥|+n)=>K(Z, |a| +n)xK(Z, |B]+n), g=(m, ;)
and g=(m, 7;). Then, in 'E} for i+j=|a|+|B|+|v|+3n—1 with >0,
there are elements
(taten X IX D@0 Ny-s(1 X 1igy X 1, TX T X tpy)]
(IXeig14x X )R Nyoi(tiar X 1 X 1, 1X 1 X ¢}y))] and
(IX1Xtpy14n) R Ap-r(1 X 01g X 1, 10y X 1x 1)] .

On the other hand, in 'E3?I*181+171+31-2 there are elements

1®0‘n[7\,n_1(6|w| X 1x 1, ln—l(l X g X 1, 1x 1 ><L|-y|))] and
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1®0‘n[7\.,‘_1(1 X 1% Lyl X,,_l(l Xtg X 1, Lig) X 1x 1))] .
Furthermore, in 'E,*I*181+171431.0 there is an element

(L:a|+n>< Ligl+a X 4m+n)®1

which must be in the image of 'd, (for some r), by (4.6). In view of (6.7) and
(3) of Theorem 3, we may conclude that

A1)+ (1Q " [Ny-1(tiar X 1 X 1, Nyog(1 X 151 X 1, 1 X 1 X £4)))])
= (tal+x X IX DR Ap-1(1 X g X 1, 1 X 1 X e1y))],

Ay a(1Q 0 N1 (1 X 1 X by, Nyer(1 X 11 X 1, 1101 X 1 1))])
= (1 X1 X tiy142) Q" [Ap-1(1 X 151 X 1, 111 X 1 X 1)] and
"digriy14za(1X 014 X DR [Nyo(tier X 1X 1, 1X 1 X e)])

= F(tiat+a X tipran X a1,

since the behavior of other elements in 'E, has been determined by the for-
mulas (2) and (7) and the naturality arguments.

Remark. It fcllows from (1.10) and (1.13) that any two of

Npe1(6: X TX T, Aoy (T X g5 X 1, TX 1 X g))
(= Fnpoa(e X IX T, Ay(IX 1 X g, 1Xe;%x 1)),
Mu—1(1X ;X 1, Ny (X 1 X gy ¢, X1 1)) and
Nact(ITX T X epy Npoy(6: X 11, 1X ;% 1))
constitute a part of a Z,-basis for H*(F(K(Z,, i) xK(Z,, j)x K(Z,, k))). Taking
this into consideration, we abandon the idea of fixing a Z,-basis for H*(G,X)

and assert that (12) always holds. The reader should refer to the Remark
below the proof of (9) (a).

Proof of (9) (a).

Consider the homomorphism (6.8) for the case g=("&, ("B, "9)~): Y —
K(Z, |al|+n)xXM(Z,; |B|+n, |v|+n). Then by (6.6) we see that to show
(9) (a) it suffices to prove

) (a)’ A0 (1@ 0" Nyor(tia X 1, TN P
= (tjat4n X 1) R[N, (1 X P! 1 M)]

in the case Y=K(Z,, |a|+n)XM(Z,; |B|+n, |v|+n).

We use the homomorphism (6.8) for the case g=1Xx8y: K(Z,, |a|+n)Xx
M(Z,; 181+, 171+n) =K (Z, |al+nxK(Z, |8l+n)xKZ, |7]+n).
Then, in 'Ei/ for i-+j=|a|+ 8]+ |v|+3n—1 with 7, j >0, there are elements

(ttatn X 1)@ [Aya(1x 0P, T3¢ M]
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(I X P Q6" Apoy(tiar X 1, 1 X)) and
(I X" Q " Ap-1(tiar X 1, 1PN .

On the other hand, in 'E:!®IF1fI+IM+31=2 there are elements

1®°'”[7\n—1(1 NN Ap-1{tid X 1, 1X Llw))] ,
1®o‘”[7\m—1(1 X Ll'Yl' )\,”_I(L[M X 1, 1x Llﬁl))] and
1®0n[7\‘n-1(tlw| x 1, I X A" Iﬁl.m)] .

It follows from the naturality argument (cf. the proof of (12)) that

"d1g142(1 Q0" Ay—r(1 X P!y Nyt X 1, 1XM))])
= (1X )@ [y os(trar X 1, 1 M)]
‘A n(1Q 6" [Nyoy(1 X e Npoi(t1ar X 1, T PY))])
= (X" @0"[Apr(tiar X 1, 1 #)] and
ldlﬂl+lvl+2n((5|al+n>< 1)®0'”[7»n~1(1 X le; 1x Lm)])
= +((tarr X HU A x P U (1 X M) 1
=0,
since (#1**J M**=0 by the definition of M(Z,; |B|-+n, |v|+n). Hence, by

(6.7), (tiatenX DR [ Ap_r(1x ', 1 )] is killed by some element of "Ef!®*IPI*
+35=2 Tt must be

1®°'n[7\n—1(tla| X1, IxXa" lﬁl.l'ﬂ)] ,

since the behavior of other elements in 'E, has been determined by the for-
mula (4) and the naturality argument. So (9) (a)’ follows.

REMARK. In the above proof we have supposed that a<<@<(7 and have
taken the set of basic \,-,-products as a part of a Z,-basis for H*(G,X). But
if we take a different order among «, B3, ¥ (e.g., B<a<7¥) and work in the same
way, we find that (9) (a) does not hold as a formula. This trouble is over-
comed by the following idea: we do not specify a Z,-basis for H*(G,X) and
assert that (9) (a) holds in any case.

For the proof of (9) (b) we need some notations.
Let M'(Z,; 1, j, k) denote the mapping fibre of

(X ;X 1, 1X ;X)) K(Z,, i) X K(Z,, j) X K(Z,), k) —
K(Z,, i+j)x K(Z,, j+k) .

Then there is a fibration

8 ’ ’
K(Zy i+j—1)X K(Z,y, j+h—1)—5 M'(Z,; i, j, k) S,
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K(Zyy )X K(Zpy )X K(Zp ) -

Application of Q" yields a fibration

E
K(Z,, i+j—n—1)XK(Z,, j+k—n—1) —> Q"M'(Z,; 1, , k)

Lo, K(Z,,i—n)XK(Z, j—n)X K(Z, k—n) .

which is induced by ((¢)"(¢; X ¢;x 1), (6¥)"(1X¢;X ¢)) for #>0. Put /"=
CH(ticax 1% 1), d7"=E5(1x¢j_yx 1) and F"=EF(1 X 1 X ¢-,).
Suppose n>1. Then (¢¥)"(¢; X ¢; X 1)=(a*)"(1 X ¢; X ,)=0 and therefore
QM'(Z,; i, j, k) = K(Z,, i—n) < K(Z,, j—n) < K(Z, k—n)
X K(Z,, i+j—n—1)xK(Z, , j+h—n—1).
Let A% -mi-na H+ QM (Z,; i, j, K)) (resp. A" I=m4=r& HItH=5=Y( Qe M'(Z,;
7, J, k))) be the element such that
8?‘4/(7\,”; i—-n,j-—n) — Li+j—-n—-1>< 1
(resp. Efr(A ") = 1 X tj1pmpey) -

We have fibrations
LeM’ L§M’ . .
(6.9)  K(Z, i+j—1)—> M'(Z,; i, j, k) —> K(Z,, i)x M(Z,; ], k),
Re. RE
(6.10) K(Z,,j+k—1)— M'(Z,; i, 3, k) S M(Z,; i, j) < K(Z,, k)

such that (1X &) 8= and (£ X 1), ==Ehr. Then EL, (1 x At i=mk=n)
27\4"; j—nk—n and RC;’&;’(K’“ i—n.j—nx 1): 7&"; i—-n,;‘-—n.

By the definition of M'(Z,; i, j, k), /Ud=07U#=0. So the Massey
product {d, J, > (= (—1)7HH*H*GE ) 07) is defined. Consider the mod p
cohomology spectral sequence {“E,, “d,} (resp. {*E,, *d,}) of the fibration (6.9)
(resp. (6.10)). Since “7(t;pj-1)=1¢; X (resp. #1(¢jip-1)=0/ X 43, it follows that

(1 X ®ti1yo1) = (X (U@ = 0

(resp. Rdj+k((lai>< 1)®1’j+k—1) = ﬁ:((ti U LJ)X l’lz)®1 = O) .
Thus we find that (1 X *)®¢;,;-,(resp. (¢ X 1)®¢;44-,) survives to LE., (resp. *E..).
Let IA"7* (resp. *APIMY e HH = M'(Z,; i, j, k)) be its representative.

Lemma 10. </, J, D=4k (resp. </, o, FD=+4In\"7*F),
Proof. Consider the map

1% &y K(Z,, )X K(Z,, j+k—1) = K(Z,, )X M(Z,; j, k)
(resp. &y x 1: K(Z, , i+j—1)x K(Z,, k) = M(Z, ; i, )X K(Z,, k)) .
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Then we have a map

Lf: K(Z,, )X K(Z,, j+k—1) = M'(Z, i, j, k)

(resp. *f: K(Z, , i+j—1)X K(Z,, k) = M'(Z,; 1, , k))
such that 28, f==1X &y (resp. *¢,r =&, x1). It is clear that *f*(//)=
;% 1 (resp. B () = 0), Xf*(c)=0 (resp. *f*(/) =0), 5f*()=0 (resp. *f*(¢)=
1x¢) and for ve H VY M'(Z,; i, j, k)),

f* () = {LiX bj+k-1 if v =0
0 otherwise
L"+j..1><Lk if v =Lhi,j,k

(rep. *(0) = |

0 otherwise

By the same argument as in the proof of Lemma 7 of [15], we have
LFECE, o, i) = 4 Xt
(resp. BF*¥{, o, > = X ) .

So the result follows.

Proof of (9) (b).
By hypothesis there is a lifting of ("@, "8, "¥), i.e., a map
(@, "B,y Y > M'(Z,; |t +n, |Bl4m, |7]4n)

such that {yA"@, "B, "§) " =("&, "B, "¥). Consider the homomorphism (6.8)
for the case g=("a, "B, "¥)". Then by (6.6) we see that to show (9) (b) it suf-
fices to prove

(9) (b)' T(a"[)\”_l(c"”', A lBl,lvl)H_c'.a."[xn_l(‘m, A 1w|,lﬂ|)])
— <Llwl+n’ Lml+n’ lel+n>

in the case Y=M'(Z,; |a|+n, |Bl+n, |v|+n).
We use the homomorphism (6.8) for the case g="¢,: M'(Z,; |a|-+mn,
181 +n, 17| +n)—=K(Zy lal+m) X M(Z,; |8 +n |7]+n). Then, in

'EJ1®1+IBI+II+31-2 there are elements

1® 6" Ap-1(£'*, X B-MY]  and
1®0’ﬂ[7\.n_1(tlﬂ, 7\'”; I“I,IBI)] .

On the other hand, in 'E,*/#1FI*+7143#-1.0 there is an element
<Lla’l+ﬂ’ LIBH_”, Ll?l+n>®1

(which is non-zero by Lemma 10). By [6], it must be in the image of ‘d, (for
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some 7). It follows from the naturality argument (cf. the proof of (9) (a)) that

"1 a(1Q 6" [Ny oy (11, A7 1B1ITH])
=S5 Llal+"®o‘”[7\n_1(éw, LI‘H)] .

So we may conclude that

. T(o" [Ap=r(e™, A1 other terms
(6.11) (" Donon(e™, N7 1#HBY] & other terms)

— ®l+n  |Bl+n 1Y+ n
= I B e

Similarly from the naturality argument with respect to the map
B M'(Zy; lal+n, | Bl +n, |7 +n)—=M(Z,; |al+n, | Bl +n) X K(Z,, |7|+n)
it follows that

A4 a(1Q " [Ny y (1, AP 1ZLIEN])
= L|71+n®a_n[7\‘”_l(t|w|’ L“g‘)]
and

(6.12) (" Apea (¢, A" UMY - other terms)
— W Bl e,

Thus equations (6.11) and (6.12) imply (9) (b)'".

Proof of (9) (c).
Let M"(Z,; i, j, k) denote the mapping fibre of

(XX 1, X IX gy VX% 4): K(Z,, i)y X K(Z,, j) < K(Z,, k)
— K(Z,, i+j)x K(Z,, i+k)x K(Z,, j+k) .

Then ¢, ¢ and /* are defined similarly. We have fibrations

K(Z,, i+j—1)—>M"(Z,; 1,5, k) = M'(Z,; j, k, 1),

K(Z, i+k—1)—>M"(Z,;1,j, k) > M'(Z,; 1,5, k) and

K(Z, j+k—1)— M"(Z,;1i,j, k) > M'(Z,; k, 1, j)
which are induced by J U/, U/ ‘and FUd yespectively. By definition, all
Massey products <¢, du >, & E> and ) G O are defined and non-zero;
this follows from the same argument as in Lemma 10. Furthermore, by [15]
there is a relation

(—1)*, &, (= 1), & (=15 ¢, 0> = 0.

Taking this into consideration, we see that (the universal example for (9) (c)
is M"(Z,; 1, 7, k) and) (9) (c) follows from the naturality arguments with re-
spect to the maps M"(Z,; 1, j, k) —=M'(Z,; j, k, i), M"(Z,; i, j, R)—=>M'(Z,; i, j, k)
and so on.
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RemArRk. We can go without (9) (c), because it is essentially a copy of

(9) (b).

Proof of (10).
Consider the homomorphism (6.8) for the case g="d: Y —>K(Z,, |a|+n).
Then we see that to show (10) it suffices to prove

(10)’ T(O'n[Qs(Llal)]) = A*sBs(tlaHn)

in the case Y=K(Z,, |a|+n).
Consider the spectral sequence (3.8) for the case that Y=K(Z;, 2s+1)
and n=1. Since

EH AP (ts)) = A*P(EH (t2011)) = AP (0 (e2s))
= o (A*P(tz)) = (A% (12U 15U t)) = 0(0) = 0,

A*P(151)) Q1 EEF**° must be in the image of d, (for some 7). (Describe
E}*, especially, E9*=H*(G,K(Zs, 25)).) In view of the formulas (1), (6) and
(7), we find that the only element which may kill it is 1Qo[Q(¢,)]EE>**;
that is,

7(a[Q°(e2)]) = A*B(tze41) -

Consider the diagram (4.4) for the case that Y=K(Z;, 2s+1), n=— |a|+
2541 and k=n—1=—|a|-+2s; then we have the commutative diagram (5.4)
(where X=K(Z,, |a|) and QY=K(Z;, 2s)), and by (2) of Lemma 9,

(o 1 EHO(a)]) = T(E jt20) (o [Q(2:)])
= 7(o[Q(s)])
= A*%S(Lzs-f—l) .

Consider the diagram (4.2) for the case that Y =K(Z, |a|+n) and
k=|a|+n—2s—1; then we have the commutative diagram (5.5) (where X=
K(Z,, |a|) and Q' Y=K(Z,, 25+1)), and by (2) of Lemma 8,

()= (0" [Q (van)]) = (™) H N[O (bre)])
= (Tl tn-2-1) (™) [Q(s1an)])
= 7(a7 O (ten)])
= A*$s(52s+1)
— (0'*)‘”'4'”_25—I(A*EBS(M&H,,)) .
Since (g*)!®1Fn=2smt: HIWH Y K(Z | o | 4-n))—H (K (Zs, 25+-1)) is monomor-
phic (see [4]), (10)" follows.
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Proof of (11).
Consider the homomorphism (6.8) for the case g="&: Y —=K(Z,, |at|+n).
Then we see that to show (11) it suffices to prove

(1)’ (" [AQ (tia)]) = B(ctat+n)
in the case Y=K(Z,, |a|+n).

Consider the spectral sequence (3.8) for the case that Y=K(Z;, 2s+1) and
n=2. Since

F(B'(2041)) = PB'(EF(t2641)) = PB(0"(25-1))
= *(P(t35-1)) = 0*(0) = 0,

B (t2041) Q1 EES*"° must be in the image of d, (for some 7). (Describe EF*,
especially, E3*=H*(G,K(Z,, 2s—1)).) In view of the formulas (1) and (6),

we find that the only element which may kill it is 1@ [AQ(ty-1)]EEY®;
that is,

T(Uz[AQs(ﬁzs—l)D = PB(ta41) -

Consider the diagram (4.4) for the case that Y=K(Z, 2s-+1), n=— |a| +
2s+1 and k=n—2=—|a|+25s—1; then we have the commutative diagram
analogous to (5.4), and by (2) of Lemma 9,

(o™ M IAQ (t)]) = T(ELiar2e-1) *(0TAO(t2-1)])
= (" [AQ (e2e-1)])
== SBS(LZS-H) .
Consider the diagram (4.2) for the case that Y= K(Z, |a|+n) and

k=|a|+n—2s—1; then we have the commutative diagram (5.5) (where X=
K(Zs, |al) and Q*Y=K(Z;, 25+4-1)), and by (2) of Lemma 8,

()" [AQ (ta)]) = T(a¥) T E TN " [AQ (tia)])
= T(Fatn-20-1) (™) 5" [AQ(t1a)])
= (o™ HAQ(va)])
= S‘BS(L2$+1)
= ()R are)) -
Since (g*)!®1+n-2s=1; W S(K(Zy, || +-n))—>H %" (K(Zs, 25+ 1)) is monomor-
phic (see [4]), (11) follows.

Furthering the assertion of the Remark below Theorem 7, we find that,
for example, in view of (1.10) and the diagram (5.4) together with Lemma 9
(3), the formula (6) of Theorem 7 should be rewritten as follows:

(6" Nur(@, 0)]) = (— 1)1 "a U"q .
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But here we shall not pursue this discussion.

7. Several remarks

In this section we collect miscellaneous remarks on the results of the pre-
vious sections.
First we have

Proposition 11. Let n>1 and i, j>n. Then
(1) In H(L(Z,, 1; i—n)), Q""‘(L;.‘”)z./c:; i o
(i) In Ho(QM(Z,3 0, 1)), ey 77 =NG 7

Proof. We use induction on n. To prove (i) for =1, we first consider
the mod 2 cohomology spectral sequence {E,, d,} of the path fibration

IZ,, i} i—1) = PL(Z,, i; i) = L(Zy, i; i) .

Then by the well-known argument [10, Lemma 3.1.1], 7(/"!)=/ and
d(1Q«" ")=1'®.~'. We next consider the mod 2 homology spectral sequence
{E’, d"} of the same fibration. It follows from the duality between E, and
E" that 7,0)=:" and d'(th®i5)=1Q®«4 . According to [3, Theorem
II. 5.A], these equations imply that ¢ '*ef ' =xk’ "' in Hy(L(Z,, i; i—1)). By
(1.3), this proves (i) for n=1.

Assume that Q' ') =xi’ """ in Hy(L(Z, i; i—n-+1)). Consider the
mod 2 homology spectral sequence of the path fibration

L(Z,, t; i—n) — PL(Z,, t; i—n+1) = L(Z,, i; i—n+1).

n

In view of (6.1), we find that ("' and x4 ‘~"*! transgress to ¢f" and «i '~
respectively. So

"ka; i-n __ ’T*(/{;‘; i—-n+1)

(% )

= 0" (m(™™)  (by (1.16))

— Qi-l(t;-n) X

To prove (ii) for n=1, we first consider the mod p cohomology spectral
sequence {E,, d,} of the path fibration
QM(Z,; i, j) — PM(Z,; ¢, j) — M(Z,; 1, j) .

Then 7(c/"Y)=¢ and 7(/7')=¢/. Therefore d;(1 QU Y))=¢®¢! and
di( @) =(/U)®1=0 by the definition of M(Z,; 7, 7). So /@ must ke
in the image of ;. In view of (6.3), we find that

d;(1Q\" 71771+ other terms) = J/@: 7! .
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We next consider the mod p homology spectral sequence {E’, d'} of the same

fibration. It follows from the duality and [3, Theorem II. 5. A] that

Atk @) =1Q@ (k™ *5™) and d({@:i)=1Q(ef*¢5"). This implies that
H;j o QM(Z,; i, §)) = Zy k7% a5, o} .

Here o 'x¢4" can be replaced by ei BT — (— 1) DO g i (7Y 7Y

(see (1.9)). Since A (¢s7!, ¢&7Y) is primitive, we may conclude that

(7.1)  no(eh o&7Y) (resp. i %e47) is dual to NV TV (resp. U CTY)

This proves (ii) for n=1.
Assume that n,_p(ef"™, =AY T in H(QIM(Z,,; 4, ).
Consider the mod p homology spectral sequence of the path fibration
OM(Z,; 1, j) — PQ"'M(Z,; 1,j) = Q"'M(Z,; 1, ]) .
In view of (6.3), we find that ¢j**, """ and A} ="+1i="1 transgress to
7 o and Mg ™" respectively.  So
7\‘1: i=n,j-n __ 7'*(7\,;:“ i—n+l,j-n+1)
— T*(X,, Z(L'—n+1’ ‘ik +1))
= M), Ta(5Y) (by (1.16))
= N7 7).
RemARk. This Proposition assures us that

{O(a} (p=2), {rioie, B} EH¥(X)

are dual to

Q(a*)(P 2), N 1(“*, Bx)EH(X)

respectively.

Suppose X=Q"Y for n>1. Let p: XX X—X be the loop multiplication.
Then

*
H*(X) 2 H¥(X x X) = H¥X)QH*(X)
gives a coproduct in H*(X).

Corollary 12. In the notations of Corollary 4,

(1) w*(0) = 0R1+1R46;
2) p¥*aUp) = (aUB)R1+a®B+(—1)"""BRa+1Q(aUpB);

%[ {8 _ {0"(@)} 14+ aQ®@a+1R {0 (a)} if s =l
R "’({Q(“)”“{{Q‘(a»@m@{@(a)} if 5> lal;
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(e, B} R1—(—1)"1PIBRa
# (P, B}) = +1® (e, B)}
Dar(et, B} R1H1Q {Ayes(a, B)} if n>1.

ifn=1

Proof. (1) is a consequence of
(7.2) Every element of Im o™* is primitive.
(See (3.3%) of [16, VIII].)
For (2), since @ and B are primitive, the result follows.
Proposition 11 (i) and (1.5) imply that for >y,
KR IQIH1Qr T if i=j+1
Q1+ 1Q@x% if i>54+1.
So (3) follows from (6.5).
From (7.1) we deduce that
CuA ), @iy = O, > = 0 and
<:U‘*(7\'“ i’j)) Lgk@‘:k> = <7\41; i,j, Li*‘:k> = "—(«1)“ .
This, together with Proposition 11 (ii) and (1.12), implies that for n>1,
A IRQT—(—1DYQF 1@ if n=1
A IR 1QN if n>1.

03 -

pE) = {

So (4) follows from (6.6).

Let X=Q"Y. In certain situations the secondary operation problem in
H*(Y) is equivalent to the primary operation problem in H*(X). We de-
scribe such situations by the following examples whose origin is [1, Addendum].

ExampLE 1. Throughout this example, coefficients will be Z,. Let ® be
the secondary cohomology operation associated with the relation

SqgiSq=+t =0 .

The universal example for @ consists of pairs (E;, ¢;), j=>1, where E; is the
total space of the fibration
. 7 £ .
K(Z,, j+25) — E; —> K(Z,, j)
which is induced by S¢**!(¢;): K(Z,, j)—=>K(Z,, j+2s+1), i.e., E;=L(Z,, 2s-+1; ),
and ¢; is an element of H/***}(E)) such that
(1) (6*)(pj+s)=0; for all m, in particular, ¢; is primitive (by (7.2));
(2) €1($1)=5g"(tj42:)-
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If j<2s+1, these conditions determine ¢; uniquely. In fact, from (7.3) and
the definition of «**'*/ it follows that

{Sql(ICZH-I; Zs)_I_L2s U Sql(LZs) if ] — 28

7.4 = .
( ) ¢’1 Sgl(lc2‘+1”) lf]< 2 .

Suppose that an element o € H*(X) such that S¢**'("&)=0 is given. Then
we can consider the element S¢'{Q*(a)} € H**(X). By using (1.7) we see that
a"(S¢ {0*(a)})=Ker v¥ if and only if Sg¢(a)=0. Assume that Sg¢'(a)=0.
Then

SqHQ(@)} = Sq Q@™ (%) (by (6.5))
— (and/\)*SqI(K%—l-l ;Zs)
= (@) (ot U SE())  (by (7:4))
= (A () +a U Sgi(e)
= (Qa”)*(¢z)
= (@) (™) (Pnra)  (by (1))
= (0'*)”(”&/\)*(9{’%23)
= (e*)"®("a@) .
Thus ®("@)="0 if and only if Sq¢*{Q*(ct)} =6.

ExampLE 2. Throughout this example, coefficients will be Z;. Let @
be the secondary cohomology operation associated with the relation

—SBZA*—F?XSI(A*EBI)—A*SBZ — 0 .

The universal example for @ consists of pairs (E;, ¢,), j >1, where E; is the
total space of the fibration

K(Zy ) K(Zo j+4) X K(Zo j17) > B~ K(Z. )

which is induced by (A*(¢;), A*PY(c;), B(¢;)): K(Zsj)—> K(Zs, j+1)X K(Z,,
J+5)X K(Z;, j+8) (so Q'E;.,~=E;), and ¢; is an element of H/*}(E;) such that

(1) (6™®)"(pj+a)=0¢; for all m, in particular, ¢; is primitive;

(2) &(¢;)=—PBH;)) X IX THTX P11 X 11X I X A¥(¢ 7).
Put a;=C¥(¢;). Then (¢*)"(aj+n)=a; for all n.

Consider the case j=2. Since A*P'(,)=0 and B*(¢,)=0 in H*(K(Z;, 2)),
it follows that

(7.5) E, = K(Zy, 2) X K(Z;, 6)x K(Zs, 9)..

Let B HY(E,) (resp. v, H%(E,)) be the element such that &§(Bs)=1xX1¢x1
(resp. &F(7)=1x1Xys). Apply (10) of Theorem 7 to the case that Y=E; n=1
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(so X=E, and m=2), a=a, and s=1; then 7(c[Q%(;)])=A%P'(ats), which is
equal to zero by the definition of E;, Thus we get an element {Q%(a)} of
HYE,). In view of (7.5), we find that 8= {Q%(a,)} (up to a sign).

Consider the mod 3 cohomology spectral sequence {E,, d,} of the path
fibration

E, > PE, —>E,.

Then 7(a;)=a; So, by the Kudo transgression theorem [7], ds(a;®(a;U aty))
= —A*PYa;)@1=0. Since H*(PE;)=0, a;Q(a,Ua,) must be in the image
of d;. By (7.5), HYE,) = Z,{P"(,), Bs} and P'(a,) is transgressive. Hence
the only remaining possibility is dy(1®8s)=0a;@(a,Uat,). This implies that
OY0tz4)=[Bsx or equivalently,

(76) ,UJ*(BG) = ﬁe@ 1 —(a2 U a2)®a2—a2®(a2 U az)"l_ 1®BG .

The conditions (1) and (2) determine ¢, uniquely. In fact, by using
(7.5) and (7.6), we see that

PHlO(Ez) = Zs{azus”‘sl}’l(ﬁs), A*('Yg)}
(where P denotes the primitive module functor), and so
(7.7) b2 = — P (Be) — A*(75) -

Let G, be the compact exceptional Lie group of rank 2. As is well known,

(7.8) H*(Gy) = My, yu) where |y;| =1.
(7.9)  In dimensions <10, H*(QG,)=Zy[x,]/(x3*)Q Zs[xe, %,0) where |x;| =i .
(7.10) O'*(y3) == A’z and O'*(yu) = xm .

Applying Theorem 7 to the case that Y=G, and n=1, we find that x;= {Q"(x,)}.
By (7.8) (resp. (7.9)), the map y;: G,—>K(Zs, 3) (resp. x,: QG,—K(Z;, 2)) can
be lifted to a map y3°: G,—E;(resp. x5 : QG,—E,). Furthermore, by (7.10)
we may suppose that ¢*(y7")=x7". Then we have the commutative diagram
(5.1) for the case that g=y7" and n=1, and it follows that

x5 ¥(aty) = %y, x5°%(B) = % and x5 () = 0.
Hence
P(xe) = Bt *(Bs)
= x7"*PBY(Bs)
= x5 ¥(pptat*+A%(vy)  (by (7.7))
= a7 (o) +ui®
= x5 "*(¢hs)
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= x7*o*(¢s) (by (1))
= a*y5*(s)
= a*®(y;) .

Thus PB'(xs) =2, is equivalent to D(ys)=yy,.

Theorem 7 is applicable to the special case that Y=G,X and X=F,X.

In this case H*(F,X) is to be known; 1t suffices to use (1.17) and Lemma 2.
So, since F,X is (2m—1)-connected, by using Theorem 3 (resp. Theorem 7),
at least the additive structure of H*(G,X) in dimensions <6m-+n—1 (resp. 8m-
n—1) ought to be known. We conjecture that, on the Z,-basis obtained as
above, there are formulas for the differentials of the spectral sequence (3.8);
that is, Theorem 7 will be extended.
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