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1. Introduction

Let X,, ---, X, be independent random variables with common density
f(x—0), —oo<x, §<<oo, where 6 is an unknown translation parameter. We
shall consider here the case that f(x) is a uniformly continuous density which
vanishes on the interval (— oo, 0] and is positive on the interval (0, o) and
particularly

flxy~ax  as x— 40
with 0<a<<oco.
Let 9,,:3,, (Xy, -+, X,) denote the maximum likelihood estimate of @ for the

sample size n. Takeuchi [4] and Woodroofe [7] showed that ,\/ %an log n ((9,,—0)

has an asymptotic standard normal distribution. The speed of convergence to
the standard normal distribution has been given as O((log 7)*™") for every fixed
s€(0, 1) by the author [2] (see Theorem 1 below). Moreover, it was shown
by Takeuchi [4] and Weiss and Wolfowitz [6] that d, is an asymptotically efficient
estimator of 6.

Woodroofe [7] also showed that if @ is regarded as a random variable with

a prior density, then the posterior probability that ~/ —;—an logn (6—8,) ]

converges to normality ®{J} in probability for every finite interval J. The
purpose of the present paper is to give a refinement of his result. It is shown that
the variational distance between the posterior distribution and the standard normal
distribution decreases of the order (log 7#)~* with probability 1—O((log n)*?) for
every s&€(0, 1). Similar result for minimum contrast estimates in the regular
case was given by Strasser [3].

2. Conditions and the main result

We shall impose the following Condition A on f(x) and Condition B on a
prior distribution .
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Condition A

(i) f(x) is a uniformly continuous density which vanishes on (—co, 0]
and is positive on (0, o).

(i1) f(x) is twice continuously differentiable on (0, o) with derivatives
f(x) and f”(x). Moreover f(x) is absolutely continuous on every compact
subinterval of (0, co) with derivative f"/(x).

(iif) For some a&(0, o) and some 7 & (0, o)

f(®)=a+0®), f'(x)=0("") and f”(x)=o(x?% as x— 0.

Let g(x)=log f(x) for x>0. Then the second derivative g”(x) of g(x) is
absolutely continuous on every compact subinterval of (0, co) with derivative
g'=f"f1=3ff"f+2(f'f )3 Under conditions (i) and (ii), condition (iii)
is equivalent to the following condition (iii)'.

(iit)" For some aa&(0, o0) and some r&(0, o)

f(*) = ax+0@""), g(x) =*"+0x"), g'(x)= —x*+0(x"?)

and g"”'(x) = 2x"3+o(x7%) as x— +0.

(iv) For every t=0

[ tewroyfd<es .

(v) For every a>0, there is a >0, for which

@ [ sup 1o e <o
(®) [ sup g e-rufpde<eo,
© [ sup Lo s+ fwde< o

Let (R, B) be a parameter space, where R is the real line and B is the Borel
o-algebra of R. Moreover, let A be a prior distribution on (R, $). The
following Condition B is owed to Strasser [3].

Condition B
(j) For every >0 and every compact KCR

oinfx{teR; |t—0|<5}>0.
EK

(j3)) A has a continuous and positive density p on R with respect to the
Lebesgue measure satisfying the following condition: For every compact K CR
there exist constants ¢x>0 and dx>0 such that t€R, =K and [t—0|<d,

imply
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|p()—p(0) | = ckp(6) |2—6].
Obviously condition (jj) implies condition (j).
Let P, denote the conditional probability of (X, :--, X,) given @ and define
2
®{B} = S \/_exp< g—)dx, Beg.

The following theorem is often needed in the sequel.

Theorem 1 (Matsuda [2]). Suppose that Condition A holds. Then for
every s&(0, 1) there exists a positive constant c such that for all 0, teR and n>1

| Po{a,(0,~0) <t} —D{(— o, t]} | Sc(logm)™,
where 2a%=an(log n-+log log n) and the constant c tends to infinity as s—O.

It is remarked that the upper bound (log#)*™! in Theorem 1 is replaced
by a better bound (log #)~!, provided ¢ is restricted to (—oc, M) with 0<M < co.

But, using /\/ an log n instead of a,, the upper bound in Theorem 1 becomes
(log log n) (log #)~* which is worse than the order (log#)~'. Thus we use a,
rather than %an logn.

Let R, denote the conditional distribution of 8 given Xj, ---, X, and define
a probability measure @, by

Q.{B} = R,{0=R; a,(0—0,)eB}, Be3.

Theorem 2. Suppose that Condition A and condition (jj) hold. Then
for every s€(0, 1) and every compact K CR there exist constants ¢,>>0 and ¢,>>0
such that for alln=1

%g}fc’ Py {||Q,— P@l|=c\(log n) =} Scy(log m)**,

where ||+|| means the totally variation of a measure.

For the proof of Theorem 2 we need several lemmas and propositions.

3. Auxiliary results

In this section, §=0 will be chosen for simplicity and write P instead of
P,. Let E be the expectation with respect to P. The following Lemma 1
and Lemma 2 are closely related to Lemma 1 and Lemma 2 in Strasser [3],
respectively.

Lemma 1. Let conditions (i) and (iv) be satisfied. Then for every £>0
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there exists d>0 such that
P{sup n” 3}g(X;—)ZE{g(X)} —d} = O@™).
t<-t i=1
Proof. Let M be a positive number chosen such that
E{sup g(X—1)} <E{g(X)} .
For every te[—M, —¢&] there exists an open neighborhood U, of ¢ such that
E{ sup g(X—u)} <E{g(X)} .

The existence of such a positive number M and that of such a U, follow from
Wald [5] (see Woodroofe [7] and also [2]). As {U,;te[—M, —&]} covers
the compact set [—M, —&], there exists a finite subcover of this set [—M, —&]
determined by t,&€[—M, —¢&], j=1, ---,m. For notational convenience, let
Uy=(—o0, —M) and U;=U,,, j=1, ---,m. Write

d;= E{g(X)}—E{fgl;;g(X—t)} >0, j=0,-m
and let 2d=min {d;; j=0, -, m} >0. Then
sup n™ Ng(X,—1) 2 E{g(X)} —d
implies .
n“gfglpjg(X;—t)—E{fg,gg(X—t)} =d
for some j& {0, ---,m}. Hence we have
P{supn™ S1¢(X; —1)ZE{g(X)} —d)
= gP{ln"gf»gRg(Xf—t)*E{gpjg(X—t)} [=d} .

Now the assertion of Lemma 1 follows from Chebyshev’s inequality because of
conditions (i) and (iv).

Lemma 2. Let conditions (i)-(iv) and (v) (a) be satisfied. Then for every
d>0 there exists n>>0 such that

P{_inf n7 3g(X,—)<E{g(X)}—d} = O@n™).

Proof. Let a>0 be so small that g'(x)>0 for 0<<x<<2a. Next choose
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8>0 to satisfy condition (v) (a). Then for »<<3 we have
n S1g(Xi—t) = n 31g(X)—n" 33 (Xi— %)
= 7 3Yg(X) 07t 3 sup |g'(Xitu)|

for some t*&(—n, 0). Here and in what follows, >Y, denotes summation over
i<n for which u<X;<<v. Hence

|7 Be(X)—E{e(X} <2
and
|7 5 sup 1g'(Xit)| — | sup 1g'(e--u)| fix)ds <2
imply
" B RX—)ZE{O}— S+ e{ 24 [ sup g/t u) | S}

Choosing »<min {1, S, —‘;[Sm up Ig’(x—i—u)[f(x)dx]_l} , We obtain
a <8

inf 77 3 g(X,—1)>E{g(X)}—d.
—1<t<0 i=1
Lemma 2 follows from Chebyshev’s inequality because of conditions (iv) and

(v)(a)-

Lemma 3. Let conditions (i)—(iii) and (v)(b) be satisfied. Then for every
s€(0,1)

P{la* 31g"(X))+11 2 (log )} = O((log n)*™)..

Proof. According to condition (iii)" choose @ >0 and ¢>0 such that
| f(x)—ax| Zcx** and |g"(x)+x72| Scx™? for 0<x<<a. For i=<n let

Vi=g'X), if b=X;<a,
=0, if X;<b, or asX;,

where b,=a;(log n)*%  Since E{Y;}=0(b;*)=0(n(log n)'~*), it follows from
Chebyshev’s inequality that

P{la;* 3}(Yu—E{Y,})| 2 (log n) "} = O(logn)"™).

Considering E{Y,;} =—a log a,+O(log log n), this leads to
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P{lar* ) Vo112 %(log )~} — O((log n)*Y).
Moreover, using P{_é Y,: %23 ¢" (X))} =0((log n)*""), we obtain

P{la;* S} g"(X)+1] 2 (log m)"} = O((log n)"™) .
Since also
P{la* 317 (X)) | = (logn) "} = O(n™)
by Chebyshev’s inequality, the proof is completed.

Let M,=min (X,, ---, X,) and let b,=a;"(log n)*? with s&€(0, 1) as in the
proof of Lemma 3.

Lemma 4. Let conditions (i), (ii) and (iii) be satisfied. Then for every
s&€(0, 1) and sufficiently small a>0

P{la;z® 3% (X,—2b,)7*| = (log n)~@, M,>2b,} =O((log n)"™").

Proof. Let a>0 be so small that f(x)<<2ax for 0<<x<<a. Then define
{Ym’; 121’ R n} by

Y, = (X;—2b,)7%, if 3b,=<X;<a,
=0, if X;<3b, or azX;.
Since E{YZ,}=0(b;"), it follows from Chebyshev’s inequality that

P{la* 3} (Yu—E{Y,})| = (ogn) 0™} = O((log n)"™).
Moreover, using a;* Z_”} E{Y,;} =0O((log n)~'~*%) we obtain

P{las* 33 ¥,| 2 (log n)" >} = O((log m)"™),
which leads to the desired result.
For notational convenience define
G,(t) = z‘, oX, —1), if t<M,,
= —o0, if t=M,.

The following Lemma 5 and Lemma 6 refine Lemma 3.4 and Lemma 4.1 in
Woodroofe [7], respectively.
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Lemma 5. Let conditions (i)-(iii), (v)(b) and (v)(c) be satisfied. Then
Sfor every s€(0, 1) there exists ¢>0 such that

P{ sup a7°Gy/(t)+1] Ze(logn) ™} = O((log m)"™) .
H<2by

Proof. Since P{M,<2b,}=0((logn)*"), we can assume that M,>2b,.
Then G/ (t)zzn‘, g’(X;—t) for |t| =2b,. Using the equality
i=1

@ 3 (Xt) = @it S (X)—ar* 3 || ¢ (X~
we have
sup |a;°Gy/ () +11 < |0 2" (X)+11 46457, 33 (X,—2b,)
) +2a;°, EZ"I sup lg"(X;+u)| .
Here we used the fact that |g”(x)] <3x~% for 0<x< 2a with sufficiently small
a>0. Now tbe assertion follows from Lemma 3 and Lemma 4.
Lemma 5, together with Theorem 1, yields the following lemma.

Lemma 6. Let Condition A be satisfied. Then for every s<(0,1) there
exists ¢ >0 such that

P{ sup |a; 2G4 (0,+1)+1] =c(log n)~} = O((log n)*™),

where b,=a; " (log n)"*.
Lemma 7 (Lemma 2 in [2]). Let conditions (i)(iii) and (iv) be satisfied.
Then for every €0

P{l4,|=€& = On™).

Lemma 8 (Lemma 1 in [2]). Let conditions (i)—(iii) and (v) (b) be satisfied.
Then for sufficiently small €0, there are events D,, n=1, for whick P{D;} =0(n"")
and D, implies Sup n G ()<—1.

—e<I<My

The following lemma also may be proved analogously to Lemma 8.

Lemma 9. Let conditions (i)—(iii) and (v)(c) be satisfied. Then for suffi-
ciently small €>0, there are events F,, n=1, for which P{F;}=0(n"") and F,
implies sup n7'Gp’(t)<—1.

—ese<Hy

Lemma 10. Let conditions (i), (ii) and (iii) be satisfied. Then for every
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s&€(0, 1), every b>0 and sufficiently small a>0
P{|a;? >% (X,-—l-Zbd,,)_z—l | =(log n)-(l+s)/2} = O((log ny),
where d,=a;(log n)"2.

We shall omit the proof since Lemma 10 may be proved analogously to
Lemma 4.

4. Estimation of the speed of convergence

For each n=1 and each s<(0, 1), let H,(s)=[—(log n)”? (log n)*?]. In
this section, we shall estimate the speed with which @, {H,(s)°} converges to 0.
For the convenience of calculation, we shall divide H,(s)° into five parts as
follows:

1,(&) = (=00, —a, ],
L(&, b) = (—a,&, —b(log n)¥?],
Julb, ) = (—b(log n)'*, —(log n)*”*) ,
Jul(s) = ((log m)**, log n)
and J»=[logn, o)
with €>0 and 56>0. We first show the following proposition which is similar

to Theorem 1 in Strasser [3].

Proposition 1. Let conditions (i)—(v)(a) and (j) be satisfied. Then for
every £>0 there exists c>>0 such that for every compact K CR

sup P,{R,{teR; |t—0| =&} > exp (—cn)} = O(n7Y).
EK

Proof. Since 6 is a translation parameter, it is easily seen that
sup Po{M,— 0 =6} =P{M, =&} =o(n™"). Therefore, we shall assume that
R

M,—60<é&. Then we have
[, e (G

R {|t—0]|z¢€} =
[, exp (G0} Man

< S so-e P {G ()} M(at)
= exp {G,,(t)}),(dt)

0-1<t<0

S exp {—n[_ gtf@n“’G,,(ﬁ—i—t)— sup n'G(0+t)

+ntlog A {—n<t—60<0}]}
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for >0. By Lemma 1 there exists >0 (depending on &) such that
sup n7'G(0+1)<E,{ g(X—0)} —d
t<-e

with probability 1—O(n™?), where O(n™') is uniform in @ for 6 R. Also, by
Lemma 2 there exists >0 (depending on &) such that

inf n7'G(0+8)>Ey{g(X—0)} — %

-1<t<0
with probability 1 —O(n™?) as just stated. Since — oo < BEoinf log A {—n<t—0<
EK
0} <0 by condition (j), for any 0<c< % we have

inf #7'G,(0+1t)— sup n7'G(0+1)+n"'B>c
<-t

-1<1<0 t<

for all sufficiently large n. 'This completes the proof of Proposition 1.

The following result immediately follows from Proposition 1 and Lemma

Proposition 2. Let conditions (i)—(v)(a) and (j) be satisfied. Then for
every €>0 there exists ¢>0 such that for every compact KC R

sup Pe{Q,{1,(€)} > exp (—em)} = O(n™") .

Easy computations show that condition (jj) and Lemma 7 imply that for
every compact K CR there exist ¢;, ¢,, 0<<c,<c¢,<<oo, and ¢;>0 such that
(4.1) inf Pyferpa<n{lt—0,| <7} Scom} =1—cp™

0EK .

for all n>1 and for every positive sequence {5,} with »,—0 as n—oo.

Proposition 3. Let Condition A and condition (jj) be satisfied. Then for
every s€(0, 1), every >0, every k>0 and every compact KCR

sup Po{Q,{/.(b, )} =(log m)™} = O((log n)™) .

Proof. Lemma 8 implies that, with probability 1—O(n™?), G,(t) is a con-
cave function in t[0—2€, M,), if €>0 is a sufficiently small number. Using
Lemma 7 we can assume that [§,—60|<é&. Hence for all sufficiently large n we
have

sup {Gn(l); én_ba;l(log n)l/2<t<én—bn} éGn(én_bn)
<G,8)+% sup G0+

<G,(B)— (log )’
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The last inequality follows from Lemma 6. A similar argument will show
that

inf {G,(2); |t—0,| <a;'} Zmin {G,(0,—a:"), G,(0,+a:")}

a;’ 5
>G,(0,)+%— inf Gi(6,+1)
2 se;t

= Gn(én) _% .

Therefore, for 0K
On—bn
QU5 )} = 55,.—b,a:laog 2P 1GAOPNE)

[ o exp {Guriar)

exp {G,(0,)— - (log myIr{11—0,| < ba*(log n)}

€xp {Gn(é\n)__i—}x{ I t——é\n l éa;l—l}
Taking account of (4.1), we obtain
Q.. {J.(b, $)} <cb(log n)" exp {—%(log n)’} <(log n)~*

for all sufficiently large », where ¢ is a real number depending on K. Thus
the proof is completed.

The following Proposition 4 may be proved similarly to Proposition 3,
and so the proof will be omitted here.

Proposition 4. Let Condition A and condition (jj) be satisfied. Then for
every s&(0, 1), every k>0 and every compact K CR

sup Py{Q, {,(s)} Z(log n) ™"} = O((log n)"™).
Proposition 5. Let Condition A be satisfied. Then for every s<(0, 1)

sup Po{Q,{/.} >0} = O((log n)™).

Proof. Itis easily seen that sup P,{M,—0 ;la;l log n} =O(n"°) for some
¢>0. Theorem 1 implies that °=° 2

sup Po{|0,—6| 2} = O((log n)"™").

Therefore, we may assume that
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M,—0<La1 d 14,—0]<b
»—0<5a’logn an 10,—6]<b,.

Then ¢=0,+a;" log n implies £>M,, for sufficiently large n. Since R, {t>M,}
=0, the assertion of the proposition holds.

Proposition 6. Let Condition A and condition (jj) be satisfied. Then for
every s&(0, 1), every k>0, every compact K C R and sufficiently small €>0 there
exists b>0 such that

sup Po{Q, {1,(¢, b} zn™*} = O((log n)*").

Proof. By Theorem 1 we can assume that lé,, — 0| <bd, where d,=
a;'(log m)2.  Since G,(t) is concave on [0—2¢&, M,) with sufficiently small £>0,
Lemma 9 implies

sup {G,(2); —&<t—b,<—bd,} <G,(0,—bd,)
b%d;

=G0+, Gi'(0,~bd,)

for all sufficiently large ».
Let a>0 be so small that g”(x)<—%x'2 for 0<x<2a and choose §>0

to satisfy condition (v)(b). Then, it follows from Lemma 10 that

S g (X Oibd) < — L S (Xi—by-bd)

é—%ﬁg“(X,-—M—Zbd,,)"
<-— 1 al.
4

Since |2%. 2" (X ,-—(9,;1— bd,)| =2%. Is1|1p |g”(X;—6+-u)| for all sufficiently large
u|<§

n, we have D%, g”(X,.—OA,,—l—bd,,)=O(n) from Chebyshev’s inequality. Hence,
there is L>0 such that

A A 2
sup {Gy(1); —e<t—0,<—bd} <G, ¥ logn+L
for all sufficiently large #n. Thus it follows from (4.1) that

exp { G”(é,)—%2 log n+L}
exp {Gn(én)—%}x{lt—é’"l <a;'}

-b2/8
y

Qu{L(& )} =

=can
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where ¢ is a real number depending on K. Choosing 4°=8(1+k), it can be
easily seen that @,{Z,(&, )} <n™*. This completes the proof.

Now we are able to estimate the speed of convergence in the following
proposition.

Proposition 7. Let Condition A and condition (jj) be satisfied. Then for
every s&(0, 1),every k>0 and every compact K CR there exists ¢>0 such that

sup Py {Q,{H,(s)’} 2c(log n)~'} = O((log n)"™).

5. Proof of Theorem 2

According to Proposition 7, it is enough to see that for every s&(0, 1)
and every compact K C R there exists ¢>0 such that

sup P, {gg% |Q.{BN H,(s)} —®{B} | =c(log )~} = O((log n)*™").

This implies that we need only to show
sup Py{ sup |Q,{B} —®{B} | =c(log n)~*} = O((log n)*"),
0EK Be®

where
A~ _ Q.{Bn H,,(s)}r -
Q,{B} = m,,{ )} , Be®

Since sup P,,{Ié,,—@]g 1} =0(n"") by Lemma 7, we shall assume that 10,—0]<1.
6ER ~
Let K= {t; inf [t—v|<1}. Then §€K implies d,eR. Applying condition
VEK

(jj) to K, we have ) ) )
| p(Ostax'u)—p(0,) | <n™p(0,)

for ue H,(s) and all sufficiently large n. From Lemma 6 we obtain
— 2 (14 L(log 1)) S G0, a5 )~ G(B) < — 5 (1~ Lilog m)")
for all ue H,(s), where L, is a positive real number. Hence, for all sufficiently
large n, we have the upper tound of @, {B} as follows:
exp {G(0,+az'u)} p(0,+az"u)du

Q~,,{B} = SBan(S)
SH o P {G(0,+az'u)} p(O,+az'u)du

exp —%Z(I—L1 (log n)~%)} du

é (1+3n_1/2) SB“H,,(S)

2
exp {— %(1 +L, (log n)~*)}du
Hy(s)



AsYMPTOTIC PROPERTIES OF POSTERIOR DISTRIBUTIONS 319

3 (1—|—3n"’2)[SB exp (— gf)dqu Ly(log n)-s]
= V/2n—Lylog n)~
=®{B}+L(logn)*,

where L,~L, are positive constants. A similar argument shows that the lower
bound of @,{B} is ®{B} —Ls(log #)~*. This completes the proof of Theorem
2.

RemArRk. Easy computations show that the distribution of {n~! > X;?—
%log n} converges weakly to a stable law V(x) with characteristic exponent 1.

It is well known that

lim x{1—V(x)+V(—=x)} =c,

where ¢ is a positive constant (see Gnedenko and Kolmogorov [1]). If the

distribution of {#~! 3% X7? — % logn} is replaced by the limiting distribution
V(x), then we obtain 2

P{la;?>% Xi*—1| =(log n)~*}
=P{|n'>% XFZ—% log n| = at(log n)'~*}

z, (logn)"™
for sufficiently large #n. Thus it seems to be impossible to improve Lemma 3
and consequently Theorem 2.
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