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Introduction. In this paper we consider Maxwell's equations with a
certain nonlinear condition and give an elementary method of constructing the
solutions of these.

After the work of Penrose [5], complex manifold techniques have been used
for representing the solutions of Maxwell's equations. It is now known that the
solutions are represented in terms of cohomology classes on an open complex
manifold with coefficients in a certain holomorphic vector bundles (cf. Penrose
[5], Wells [7]). But it is not always easy to have the solutions in the explicit
form using this representation. The purpose of this paper is to give a direct
method of constructing the solutions. Our approach is based on the work of
Robinson [6]. In [6] he studied a particular class of the solutions, so-called
null electromagnetic fields and found the connection between these fields and
the special families of null lines.

We give a brief summary of the results of [6]. The solutions of MaxwelΓs
equations, namely, electromagnetic fields are represented by means of the dif-
ferential 2-forms on Minkowski space. The differential 2-forms induce the
linear mappings from the tangent space to the contangent space by contraction.
The intersection N of the kernels of the transformations induced by F and * F
plays an essential role, where F is a differential 2-form and * F is the Hodge
dual of F. If F is a null electromagnetic field, N has dimension 1 and is null.
Therefore we have a family of null lines (null rays associated with a null elec-
tromagnetic field). This family satisfies some nonlinear equations which are
called shear-free equations. We say that a family of null lines is a shear-free
null congruence if it satisfies shear-free equations. Null electromagnetic fields
are constructed from shear-free null congruences.

In the process of carrying out Robinson's method of constructing null
electromagnetic fields we must solve an overdetermined system of differential
equations (3.11) which has coefficients related to a shear-free null congruence.
In the present paper we solve Eqs. (3.11) exactly and construct null electro-
magnetic fields. At this stage the theorem of Kerr which asserts that every
analytic shear-free null congruence is obtained from a complex analytic homo-
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geneous function with four variables has important place. We find that the shear-
free nature is the integrability condition of Eqs. (3.11). This condition is equiv-
alent to the existence of the analytic function associated with a shear-free null
congruence. This fact allows us to construct the solutions of Eqs. (3.11) using
the shear-free null congruence and the associated analytic function.

The contents of the paper are as follows. In the first section Maxwell's
equations are presented in a form which is invariant with respect to Lorentz
transformations and the definition of null electromagnetic fields is given. In §2
using the spinor components of the differential 2-forms, we rewrite Maxwell's
euqations in SL(2, C) invariant form. In § 3 we review the relation between
null electromagnetic fields and shear-free null congruences given in [6]. We
remark that the spinor language adopted here simplifies the proof of [6]. The
main results are in §4 and §5: we prove in §4 the existence of the solutions of
Eqs. (3.11) by showing its compatibility and in §5 give a method of constructing
all of its solutions using the Kerr theorem.

The author would like to express his hearty thanks to Professor S. Tanaka
for suggesting this investigation and for his attention to this work. The author
would also like to thank Dr. T. Tsujishita for his useful comments on the pre-
paration of the manuscript.

1. MaxwelΓs equations

Maxwell's equations, which describe the time evolution of electric fields
E=(E1,E2,E3) and magnetic fields B=(B1,B2,B3) in affine 3-space R3={(x)yyz)\
x,yyz€ΞR}y classically take the form

d τ-1

— £ + r o t E = 0 , div B = 0 .
dt

We want to rewrite Eqs. (1.1) in a form which is invariant with respect
to Lorentz transformations. Let (M,g) be the Minkowksi space, namely, M is
affine 4-space R4 with Cartesian coordinates (x°y x

1, x2

y x
3) x°=t> xί=x, x2=y, x?=z

and g is the metric form on M defined by g=(dx°)2—(dx1)2—(dx2)2—(dx3)2. We
define a 2-form F as follows:

F = FijdxiΛdxi

where

0 -Eλ -E2 -E3)

(1.2) [ F i j ] = El ° B> ~ B >
1 tj] E2 -B3 0 Bx

[E3 B2 -Bx 0
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REMARK. We suppress the summation sign every time that the summation
has to be done on an index which appears twice in the term.

We denote by Λ2T*M the space of all differential 2-forms on M. The
metric £ induces a Hodge *-operator on A2T*M:

We recall that if

then

where

- ( ? ! 2 3 )

and

{gli) = diag{\,-\, - 1 , - 1 ) .

Then Eqs. (1.1) are equivalent to

(1.3) dF=0, d*F=0.

Hodge ^-operator is linear and satisfies * 2 = — 1. Therefore * has eigenvalues
+ί, —i. Let Λ2T*M®C be the complexification of Λ2Γ*M, then we have
Λ 2 Γ*Λf(g)C=ΛlθΛi where Λ i and Λ i denote the +ί , — i eigenspaces. So
F has the decompositionF=F++F-> F+ e Λ I, F_ e Λ- and MaxwelΓs equations
for real forms become

or equivalently

We next give the definition of null electromagnetic fields which are the
main objects of our study. The tangent space at any point of M is equipped
with the inner product g. This induces naturally an inner product on A2T*M,
which we also denote by g.

DEFINITION. We say that a differential 2-form F is null if g(F,F)=0 and
g(F,*F)=0. In particular null solutions of MaxwelΓs equations are called null
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electromagnetic fields.

2. The spinor form of Maxwell's equations

In the previous section Maxwell's equations are given in a Lorentz in-
variant form. We rewrite these in SL(2, C) invariant form. The formalism is
based on the isomorphism between the group SL(2y C) and the universal cover-
ing of the connected component of the Lorentz group. We need the following
notations;

J

To raise or lower indices, we use the formulas

Then we have the identities

(2.1) gii = σi

I^σj

J^SIlj1Sl2^

for i,j=0, 1, 2, 3.
For a differential 2-form F=Fijdxi Λdxj we define ί V ^ / for ̂ 4, J5=0, 1

FAA'BB' = Fijσ1 AA'σJ BB'

where

σ V ' - gheAcBA'C<rkCC' and σ W = gJI€BD6B^σιDDf.

We call FAA'BB' the spinor components of F. It follows from (2.1) that

(2.2) FiF" = FΛA,BB,F"'**.
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Here we give properties of the spinor components of F. The details are referred
to Penrose [3].

( i ) Let φAB=(ll2)FBM,A

M' and ψA>B'=(ll2)FMA,
M

B,. Then we have

(2.3) FAA'BB' — ΦABS

and

(2.4) φ A B = φ B A ,

(ii) Let FAA'BB'=φABεA'B'-\-ψA'B'εAB. Then F is a real form if and only if

ΦAB^ΨA'B'-

(iii) The spinor components of F_ and F+ are φABSA'B' and ψA'B'SAB

respectively and we have

(2.5) *FAA?BB' = —iφABSA'B'+iψA'B'£AB .

We next rewrite Maxwell's equations using the spinor components of F.
Introducing new variables xAAr for ^4=0,1 and A'=0', V by XAA'—C*AA'Xiy we

define differential operators τjAA' by τjAA'= , for example V01 ' = — (1/2)1/2

OXAA'

( + * )• Next proposition gives the spinor form of Maxwell's equations.
\ dx2 dx31
Its proof is also referred to Penrose [3].

Proposition 2.1. If FAA'BB'=φAB£A'B'+ψA'B'SAB is the spinor components of
a differential 2-fornι F, then Maxwell's equations for F take the form

(3.6) VAA'φAB = 0 and φAB = φBA .

Hereafter we investigate Maxwell's equations in this spinor form.

3. Null electromagnetic fields and shear-free null congruences

The relation between null electromagnetic fields and shear-free null con-
gruences is discussed. We first characterize spinor fields which represent null
differential 2-forms.

Proposition 3.1. Let FAA^B^=φABeA^^JrψA^B^εAB be the spinor components
of a differential 2-form F. Then F is null if and only if φABφ

AB=0 and ψA'B'ψ
A'B'

=0 hold.

Proof. Assume that F=FijdxiΛdxi is null: F , 7 F 7 = 0 and F l 7 *F > 7 =0.

Then we have by (2.2)

Therefore,
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+φABεABV'B'£Λ'B'+ψΛ'B'εA'B'φABεAB = 0

Symmetric nature of φAB and ψ /̂̂ / implies

φABβ
AB = O and ψΛ,B,6

Λ'B' = 0.

Hence it follows that

(3.1) ΦABΦAB+ΨAΈ<ΨA'B' = 0.

We recall that

Similarly as above, we have

(3.2) ΦABΦAB-ΨA<B>V'B' = 0 .

By (3.1) and (3.2), we find that

(3.3) φABφ
ΛB = 0 and ψA'B<ψΛ'B/ = 0 .

Conversely we can verify that (3.3) imply that F is null.
Q.E.D.

Consider a spinor field φAB which represents a null differential 2-form. From
Proposition 3.1 it follows that ΦABΦAB~Q B u t direct calculation shows ΦABΦAB

=2det[φAB\. Therefore φABy identified with an element of M(2,C), has an eigen-
value 0. Hence we can choose a non-zero spinor field nΛ such that φABn

B=Q.

Proposition 3.2. If a non-zero symmetric spinor field φAB satisfies VAA ΦAB^
0, then nBnjψJ'nB=0.

Proof. From the definition nA is a spinor field such that

(3.4) φABn
B = 0.

Here (3.4) implies that φBj and nj are linearly dependent, whence

(3.5) φjBnc—φBcnj = 0 .

Differentiating (3.4) and (3.5), we find that

(3.6) (n'Vn>φAB)nB+φABnJVjj<n* - 0

and

{VIJ'φjB)nc+φjBψJ'nc-{ψj'φBC)nj-φBCV
JJ'nj = 0.
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By our assumption on φAB it follows that

(3.7) nJT7jj'φBC = φJ

BVjj>nc—φBCVjj>nJ .

Multiply (3.7) by nB and use φjBn
B=0. Then we have

nBnJVjj'φBc = 0 -

Hence from (3.6) we find that

φABn
JVjj>nB = 0 .

Therefore nJVjj'nB are 0 eigenvectors and that they are parallel to nB. This
implies

nBnJ^jjmB = 0 .

Q.E.D.

DEFINITION. We say that a spinor field nA is a shear-free null congruence
if nA satisfies

nBnjVJJ'nB = 0 for / ' = 0', 1'.

It is now known from Proposition 3.2 that a spinor field nΛ such that φABn
B

= 0 is a shear-free null congruence if φAB is a null electromagnetic field. Con-
versely we can construct null electromagnetic fields from shear-free null con-
gruences as explained in the following.

Proposition 3.3. Let nA be a shear-free null congruence. If a symmetric
spinor field φAB satisfies φABn

B=0> then (VAΛ φAB)nB—®'

Proof. The assumption φBCn
B=0 implies

(3.8) (nAV
AA'φBC)nB+φBCnAV

AA'nB = 0 .

Since φABn
B=0, we have

(3.9) φABnc—φBcnA = Q

Differentiating (3.9) and using φABn
B=0y we find that

nB(VAA'φAB)nc = (VAA'φBC)nAn
B.

It follows from (3.8) that

(3.10) nB(VAA'φAB)nc = -φBCnAV
AA'nB .

Shear-free nature of nA implies the existence of the spinor field ζA so that
nAV

AA'nB=ζA'nB. Therefore (3.10) become

nB(VAA'φAB)nc = -φBCn
BζA' = 0 .
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Hence we have

Q.E.D.

Let φAB be the same as above and ηA be the spinor field such that φAB=

ηAnB. Symmetric nature of φAB implies ηAn
A=0. So there exists the scalar

function K SO that ηA=κnA. We have then φAB=κnAnB. Since (VAΛ φAB)nB=zQ>

there exists the spinor field ξA so that VAA φAB=ζΛ nB- Then ξA' can be repre-

sented by means of ζA' introduced in the proof of Proposition 3.3, K and nA as

follows.

Differentiating φAB=κnAnB, we find that

V A A ' Φ A B = ( A A ' ' '

By the definition of ξΛ we have

t*' =

If the function K satisfies

nAV
AΛ'κ+(VAΛ'nA+ζA')ιc = 0 ,

then we have ξA'=09 namely, VAA ΦAB=Q- Hence φAB=κnAnB is a null electro-

magnetic field. Summarizing these, we have the next theorem.

Theorem 3.4. Let nA be a shear-free null congruence and ζA' be the spinor

field defined by nAy
AA'nB=ζA'nB. If a function K satisfies

(3.11) nAV
AA'κ+(VAA'nA+ζA')K = 0 ,

then φAB=κnAnB is a null electromagnetic field.

Eqs. (3.11) is an overdetermined system and so the existence of the solu-

tions is not always obvious. In the next section the existence of the solutions

will be proved in analytic case.

4. Existence theorem

We will dsicuss in complex analytic category.

Eqs. (3.11) are equivalent to homogeneous equations (cf. Courant and

Hubert [1], 31-32)

3
*A-\-I>" )

We define vector fields XA' on C 5 by

(4.1) nAV
M'f-^nA+ζ*') I-/ = 0.

OK
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XΛ' = nAV
AA'-{VAA'nA+ζA') | - for A' = 0', V .

OK

We need the next definition before we explain a property of XA>'.

DEFINITION. Let JϊΓ, ( ί=l,2, •• ,m) be vector fields on Cn where m<n. We
say that the set of vector fields {Xi} Ci\ is a complete system if there eixst func-
tions Xijk for ij,k =1,2, * -,m so that

[Xh Xj] = Σ*-iλ, yfrϊ*

where

For any set of vector fields {Xt}t «i we define a system of differential equa-
tions as follows:

XJ=0 for ί = 1,2, •--, m

where / is an unknown function. The following theorem for the complete
systems is well known (cf. Eisenhart [2]).

Theorem 4.1. Let X{ for i=l,2)'"ym be independent vector fields on Cn

where m<n. If {Xt}i=i is a complete system, then the system of equations

XJ=O for i = l , 2 , " . ,m

has n—m independent solutions.

The system of vector fields {XA'}A'=tfy 1S the complete system.

Theorem 4.2. Let nA be a shear-free null congruence and ζΛ' be the spinor
field such that nAV

AA'nB=ζA'nB. Then the system of vector fields {XA/}i4/=0/ x/ de-
fined by

, , , , o
XA = nAV —(V ^A~\-ζ ) —

8κ
is the complete system.

Proof. By direct calculation we have

C4 2) \X0' X1'] = n ΐ /V

We recall that

Differentiating we find that
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nAV
B

A>VAA'nB+nAV
AA'ζA, = ζΛ'vΆttB-{yjBA^ (VAA'nB).

We can easily verify

and we have

(4.3) nAV
B

A,V
AA'

Substituting (4.3) into (4.2), we find that

Hence {XΛ'}A'=*'y * s t r i e complete system.

Q.E.D.

5. Kerr theorem and its application to the construction of null

electromagnetic fields

Further we study Eqs. (3.11). Let nA be a shear-free null congruence.

Then Kerr theorem asserts that shear-free nature of nAy which is the integrability

condition of Eqs. (3.11), is equivalent to the existence of a certain complex

analytic homogeneous function related to nA. In §5 we consider local solutions.

Theorem 5.1 (Kerr). An analytic spinor nA is shear-free if and only if there

exists a homogeneous function f(Z°yZ
1

yZ
2

yZ
3) which defines a surface in P\C) and

satisfies

f(nA

y -inAxAA) = 0 .

REMARK. The term homogeneous' means that

Ό %7i Λ V2 -v yz\ \m f(7<> 71 72 γz\

holds for any λ E C , where m is a fixed integer. In this case / is called m-

homogeneous.

Its proof is found in Penrose [4]. Here we give a simple example.

EXAMPLE 5.1. P u t ^ Z ^ ^ + ^ + Z Z 3 . Then

no= —l—xω,—x01, and nλ= l—xlo^~xn^

satisfy

f(nΛ, -inAxAA,) = 0 .

Hence nA is a shear-free null congruence.

We want to represent the solutions of Eqs. (3.11) using nA and/. For this
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purpose we need some lemmas.
Consider a shear-free null congruence nA and a homogeneous function f(Z°,

Z\Z\Z3) such t h a t / « -inAxAA,)=0. Put Z°=ω°, Z1=ω\ Z2=π^ Zz=πx,.

Lemma 5.2. There exists the scalar function K such that

nA for A = 0, 1 .

Proof. From Euler identity we have

Hence we can find the function tt such that

Q.E.D.

Lemma 5.3. The function K of Lemma 5.2 satisfies

Proof. Differentiating/^, —inΛxAA')=0y we find that

\dωΛ dπj dπB,

Using Lemma 5.2, we have

Q.E.D.

We can easily verify the following.

Lemma 5.4. For any spίnor nA

nAV
AA'nB-nAV

BA'nA = nB^AA'nA

hold for A'=0',V and B=0,1.

Now we can prove the next theorem which is one of the main results in
this paper.

Theorem 5.5. Let f be an m-homogeneous function which defines a surface
in P\C) and nA be the shear-free null congruence such that f(nA,—inAxAA')=0.
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Then the function K defined by

*( |4-«^'^) = »Λ for A = 0,

satisfies

(5.1) (nA^
AΛ/φB+(m~4)mA^nB+N:^AΛ/(nAnB) = 0 .

Proof. Differentiating κi-^—ίxBB'—I—\=nBy we find that

nAV
AA'nB

Here

v \ ιx*B'τr

*dπA,dωB

• KJ I \ 11 c yJ I A

dπC'dπB'/ dπA'dπB'

and that we have

iXB^~λ

We recall that

nAV
BB'nA = n

dπB>

and there exists the spinor field ζA' so that

nAV
AA'nc = ncζA'.

It follows that

nA\ B
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ικxBBΛ Wee'

Using Euler identity, we have

= (m-l)nAV
ΛA'nB-nAVB

Λ'nΛ .

Substituting these into (5.2) and using Lemma 5.4, we find that

(nAV
AA'κ)nB+(m-4)mAV

AA'nB+κVAA\nAnB) = 0.

Q.E.D.

Corollary 5.6. //"m=4, K is a solution of Eqs. (3.11).

Proof. Since

{nAV
AA'κ)nB+κVAAXnAnB) = 0 ,

we have

where ζA' is the spinor such that njtfAΛ'nB=ζΛ'nB.
Hence we have

)ιt = 0 .

Q.E.D.

It is shown that /c is a solution of Eqs. (3.11) if it is obtained from 4-ho-
mogeneous analytic function. For an arbitrary m we can construct the solutions
of Eqs. (3.11) from K as follows.

Lemma 5.7. Let nA be a shear-free null congruence and g(Z°yZ
1

yZ
2,Z3) be

an arbitrary m-homogeneous analytic function. Then \=g(nA, —inAxAJJ) satisfies

- rn(njψJ'nA)\.

Proof. By direct calculation we have

{njVJJ'g(nA, -inAxAA,)}nB

(n;ψ''nA)n*

dωA
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= mg(nA

y -inAxAAr)ζJ'nB

= mg(nA, -inAxAA,)njψJ'nB.

Q.E.D.

Theorem 5.8. Let f be an m-homogeneous function which defines a surface in

P\C) and nA be the shear-free null congruence such that f(nA,—inAxAA')=0. Con-

sider the scalar function K defined by

and the function X=g(nA, —inAxA A ') where g is an arbitrary (m—^-homogeneous

analytic function. Then κ=\κ is a solution of Eqs. (3.11). Conversely every

analytic solution of Eqs. (3.11) is obtained locally in this way.

Using Theorem 3.4 and Theorem 5.8, we have the following.

Corollary 5.9. Put φAB=κnAnB. Then φAB is a null electromagnetic field.

Proof of Theorem 5.8. The first statement follows at once from Theorem

5.5 and Lemma 5.7. In the following we prove the second statement.

Consider a system of equations for an unknown X:

(5.3) nAV
AA'X = 0 for A' = 0',V.

L e m m a 5.10. If κλ and κ2 be the solutions of Eqs. (3.11), then there exists a

solution X of Eqs. (5.3) so that κ2=Xκι.

Proof. The assumption on κ1 and κ2 implies

and

(nAV
AA'tc2)nB+VAA'(nAnB)κ2 = 0 .

Setting X=κ2lfcly we have

nAV
AA'X = 0 .

Q.E.D.

By virtue of Lemma 5.10 if we have all solutions of Eqs. (5.3), then we

can obtain all solutions of Eqs. (3.11).

Set X=n1jn0. Then Eqs. (5.3) are equivalent to

(5.4) VOA'X+XV1A'X = 0 for A' = 0', 1 ' .

Here we note that shear-free nature of nA is conformally invariant and therefore
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(1,-X) is also shear-free. Hence we have

duX-\-Xd ξX = 0,

where

{XAA') — i c

Using the same notations as above, Eqs. (5.4) become

duX+XdΊX = 0,
(5.6) *

Eqs. (5.6) are solved easily. In fact two independent solutions are obtained.

Lemma 5.11. We have two independent solutions X1=v—ζXand X2=ξ—uX
of Eqs. (5.6).

Proof. By (5.5) we find that

d^+Xd^X, = -ζ(duX+Xd-ζX) = 0

and

^ X x + ^ X ! - -r(9^X+X9,X) = 0 .

Also we have

duX2+XdfC2 = 0,

9^X2+^X2 = 0.

Q.E.D.

Therefore every solution of Eqs. (5.6) is given by

X = h(ξ-uX,v-ζX)

where h is an arbitrary complex analytic function. Now we return to spinor
representation. We define a O-homogeneous complex analytic function A(Z*, Z2,

Then we have
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h(n\ —ίnAxAA,) =

= h(ζ-uXyv-ζX).

Hence every solution of Eqs. (3.11) is represented in the form which is given in

the first statement.

Q.E.D.

EXAMPLE 5.Γ. In the case of Example 5.1, we find κ= — 1. Put £ = —1/
(Z1)3. Then we have λ— — l/Cl+^oo'+^oi')3- Hence we have a null electro-
magnetic field φAB:

Φn = (*

EXAMPLE 5.2. Put/=Z°—ίZ1. Then ( W i l )=(— 1,ί) is a shear-free null con-
gruence such thatf(nΛ,—inAxAA')=0. In this case we have κ= — 1. Therefore
we have

(κnAnB) =
- 1 i

i 1

7 = - - L s i n I ~ I <—ί—L Then we have
2 l(2)1 / 2Z°J l(Z 0 ) 3 /

r — sin ( X ° - — sin (xΌ-x3)

L — sin (x°-x3) —— sin (Λ°-Λ

In tensor form we have

This electromagnetic field represents light wave in charge free vacuum space.
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