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1. Introduction. Part I of this series of two papers contains the relevant
background and a number of references to which we refer here as [1 — x\.
Additional references added in this paper will be denoted by [y] (references
frequently used here from Part I will be listed again). In Part I (ref. [7]) we
developed a number of themes in the transmutation framework introduced in
[3 5]. In the present paper we will generalize some constructions of Marcenko
[16] (cf. also Koornwinder [14]) in this framework and then, in a sort of
canonical manner, develop a procedure for generating Parseval formulas of
Gasymov-Marcenko type (cf. [11; 12; 16]). The Parseval formulas will be
examined from various points of view and a derivation of the appropriate
Gelfand-Levitan equation will also be given (in this connection see also Carroll
[6]). Let us mention here also [8; 9] for extensive use of our transmutation
framework in studying the interaction of certain scattering theory ideas with
the construction of connection formulas of Riemann-Liouville and Weyl type for
special functions.

2. Basic constructions. We recall briefly the background ideas from
Part I. P(D) and Q(D) will be (second order) linear differential operators acting
in spaces E and F with B : E-+F (B : P-*Q) a transmutation operator such that
BP=QB acting on suitable objects, and β=^B~l:Q-^>P. As in [3; 4; 7] we
consider general eigenfunctions of the form

(2.1) P(D,)H(X, μ) = μH(X, μ); H(Q, μ)=l; fΓ(0, μ) = Q

Q(D,)θ(y, v) = Vθ(y, v); 0(0, v)=\ θ'(0, v) = 0

(2.2) P*(Z>,)Ω(*, μ) = μΩ(x, μ); Q*(Dy)W(y, v) = vW(y, v]

where P* and Q* denote formal adjoints. We assume either that the spectra
σ(P) and σ(Q) coincide or that, as occurs in typical examples from [6; 7; 8; 9],
μ=\2-—p2

P and v= — λ2— p2

Q in which case we shift notation and speak of trans-
muting p=P+p2

P into Q=Q+p2

Q (so σ(P) =

EXAMPLE 2.1. The basic example here can be written as P(D)u=(Au'Y/A
with ρP=ρA=ll2 lim (A'jA) as#-^oo (A= AP=ΔP is a common notation). Set
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P=P-\-p2

P and consider eigenfunctions H=φ£ of β(D)u=—\2u. The hy-
potheses on A are such that P(D) is modeled on the radial part of the Laplace-
Beltrami operator on a noncompact Riemannian symmetric space of rank 1.

Then eigenfunctions φ£ satisfying φ£(0)=l and DΛφ£(0) = 0 correspond to
spherical functions. One has P*(D)u=(A(u/A)Ύ and Ω=Ωf=-4φf=Δ^φf

satisfies P*(Z>)Ωf=(-λ2-p?>)ΩΓ or ^*(Z))Ωf=-λΏf. Many such examples
are discussed in [3; 4; 6; 7; 8; 9; 14] and in Chebli [1-18; 1-19] and Flensted-

Jensen [1-25]; we will not dwell on this for the moment. Our constructions
will be based on the physically important case A=x2m+1 where P(D)=Pm(D)=

D2+((2m+ί)lx)D and pP=Q. In this case P*(D)u=u"-(2m+\)(ulx)' and for
basic eigenfunctions we take (μ~~—\2)

(2.3) H(x, μ) = 2mT(m+l)(λx)-mJm(\x) = Rm(x, λ);

Ω(#, μ) = 2-2T(m+l)-2(\x)2m+1H(x, μ).

This choice of Ω for Pj£ was made earlier in [3 4] for purposes of symmetry and
we will retain it now for uniformity of notation; note however ΩφAίf (Ω=AH

is a more natural choice of Ω in general—see Remark 4.1 in [7]). Let us record
here that in fact Ω = RQ(λ)A(x)H where A = x*m+1 and R, = c2

m\2m+1 (cm =
\l2mΓ(m+1)) is the density of the associated spectral measure dvP=R^d\. With

the above choice of Ω we change the associated spectral measure to dvp(\)=d\.

REMARK 2.2. We recall some notation for transforms based on a trans-

mutation jB:P-»Qwith eigenfunctions H=φ£, Ω=Ωf, θ=φ%, and W=Ω%.

Thus

(2.4) P/(λ) = /(λ) = <Ω(*, μ), /(*)> = Γ Ω(*f μ)f(x)dx
Jo

(2.5) PF(x) = <F(λ), H(x, M)>V = Γ F(\)H(x, μ)dvp(\)
JO

where μ^~\2 in general and dvp can be given an explicit form in terms of

I c(λ) I ~2M^) ^s t'ιe Harish-Chandra or Jost function in our examples P(D)u=
(Au')ΊA. However when (complex) potentials q(x) are added to P(D) the
spectral pairing may not be given in terms of a measure and we will have a
generalized spectral function RP such that for suitable F(\)

(2.6) PF(x) = <F, H\ = <RP, F(\)H(x, μ)\

where the last bracket is a distribution pairing in λ (cf. [11 16; 17]). We remark

that it is necessary to study this situation in physics (cf. Chadan-Sabatier [1-17],

Coudray-Coz [1-21], Newton [1-39]) and we refer to [10; 17] for nonselfadjoint
operators, spectral singularities, etc. In any event we will have the following
collection of maps and properties, where <Ω, l>v=δ(#) and <ϊF, l\=S(y):
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(2.7) Pf(\) = /(λ) = </(*), H(x, μ)*> PF(x) = <F(λ), Ω(*,

PF(X) = ̂ (λ), H(», μ)\

(2.8) <&(λ) = £(λ) = <g(y), W(y, ^)>; ^(λ) = g(\) = < )̂, θ(y, ,*)>;

(2.9) ?=?-!; Q = Q-:; P=P~l; Q = ^~l; P* = P;
Q* = Q p* = P; 2* = 2;B* = (2P)* =

(see here [3; 4; 5; 7; 8; 9; 14] and Chebli [1-18; 1-19], Flensted-Jensen [1-25]
for details).

Let us recall here also the expressions for the kernels of B=2P and J8=^Q
which we write as β/(j)=</δ(j, x),f(x)y and ^g(x)='\Ύ(x,y),g(y)y. Thus

(2.10) β(y, x) = <ίϊ(x, μ), Θ(y, μ)\; <y(x, y) = <#(*, μ), W(y, )̂>ω

In certain cases it is possible and convenient to work with the kernels in the form
β(y, x)=δ(x—y)+L(y, x) and fγ(x,y)=S(x— y)-\-K(x, y). In general β and γ
are distributions and a decomposition of this sort with L and K functions is
only possible in certain circumstances.

We give now a key theorem (cf. [5]), generalizing a result of Marcenko
[16] (cf. also Koornwinder [14]). The proof is very simple but the theorem is
extremely important in working with Paley- Wiener and Parseval type theorems.

Theorem 2.3. Let /(y)-(J

<β(y>*)>g(y)> τhen

(2.1 1) 3J(\) = PJ(\) Pg(\) = 2g(\) .

Proof. From (2.9) β*=QP and B*=P2 so 2f=2β*f=2QPf=Pf and
Pg=pp2g=j2g since ^=Q~1 and P=P~\

This proof uses the transforms indicated and thus depends on spectral data.
Let us give an alternative proof of Theorem 2.3 independent of any spectral
information or transform theory.

Second proof: The operator B: P->Q can often be constructed by solving
P(Dx)φ(x,y)=Q(Dy)φ(x,y) with φ(x,Q)=f(x) and φy(x, 0)= 0; then Bf(y)φ=
φ(Q,y) and similar constructions yieldJδ— B'1 (cf . [3 4 5 7] and Carroll-Showalter
[1-14], Lions [1-35]). In particular B and J8 can often be constructed using
Riemann functions in a manner which yields relevant properties of β or L (resp.
γ or K) quite readily (cf. [18; 19; 21] and Braaksma [1-1], Braaksma-deSnoo
[1-2], Levitan [1-33], Lions [1-35]). We know ®=BH and H=£θ from [3;

4; 7] so define then f(y)=(fi*f)(y) wd g(x)=(B*g)(x) as in Theorem 2.3 and
write for example (formally)
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(2.12) Pf(\) = <H(x, μ),f(X)> = <j8( , μ)θ(x),f(X)y =

<%, μ), &f(y)> = <θ(y, μ)J(y)> = -^/W .
Similarly Pg(\)=2g(\) and we have an alternative proof of Theorem 2.3 in-

dependent of any spectral data or a priori transform theory. QED

REMARK 2.4. Recall now the Pm spaces E= {/; xm+1/2f(x)(ΞL2}, E=E'=

{/; *-*-1/2/(*) e L2} , E=PE= {/; λ-»-1/2/(λ) e L2} , and £' - E=PE= {/;
λw+1/2/(λ)eL2} (from [3; 5; 7]). For general P one can also envision a frame-

work where E=PEy E=E'y PE=£f=Ey etc. and similarly the Q-operators in-

volve F=QFy F'=F, 2F=F=F'y etc. For a transmutation B adapted to such
a (P— Q)-framework (by which we mean a situation as in Theorem 4.3 of [7] or

Theorem 4 of [5] whose properties are summarized in (2.9)) one has from [3 5

7] B=2P: E-*Fy B*=P2*y and R(2*)dEn F. Thus Pg=PB*g=PP3*g=

2*gaEΓ(Fand similarly for J8=PQ with j8*=Q/0* and R(P*)dEΓ\F we

have 2f=2β*f=2QP*f=P*fc:En F. Hence for/, g such that fandg make
ΛΛ •— '

sense we have /^/and 2g in EΓiFand as an adjunct to theorem 2.3 we state

Proposition 2.5. Given α transmutation B adapted to a (P-Q)-framework as
in Part /, theorem 4.3, f^E and g^F as in Theorem 2.3 we have Pf and 2g in
ΛΛ —

EΠF.

REMARK 2.6. We recall that the operators P, P, etc. will have realizations
in various spaces so we are not always concerned with "pinning down" the P
and Q operators in any one framework; similarly B can act in various spaces.
When a framework is to be specified we refer to E=EA= {/; A1/2f e L2} ,

, and set &=PE.

3. Parseval formulas. We will sketch first the kind of procedure
followed by Marcenko [16] to obtain Parseval formulas for operators D2—q(x).
Then we will show how to generalize this formally to deal with operators having
singularities of the type arising in P(D)u=(Au')'/A—q(x). Precise results can

then be obtained for A=x?m+1, where further information is available, and this
gives an independent derivation of Gasymov's Parseval formula for this case (see
[11; 12]). The rigorous extension of this technique to general A as in Chebli

[1-18; 1-19] is in progress. The type of Parseval formula in question can be
written

(3.1) <Λ, PfPg\ = <A-*f, A-^gy

which reduces to the Marcenko case for A=l and is equivalent to to Gasymov's
formula for A=x2m+1 (where Gasymov works with l=m — 1/2 integral).

REMARK 3.1. Consider the case P(D) = D2—q(x) of Marcenko [16] and
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suppose first that spectral information is known (i.e. the v pairing). Let Sn be

a sequence of functions, δn^E if ipossible, δn(#)=0 for #>l/w, \ Sn(x)dx=l,
Jo

δ.(*)>0(*e[0,l/n]), and δn(#)-^δ in say 6'. Set Rn=P8n and Un(x,y)=
T'SΛ(x) Then (cf. [3; 7]).

(3.2) UΛ(x, y) = <H(yy μ), Rn(\)H(x, μ)\

Multiply by suitable f,g^E and integrate to obtain

(3-3) <g(y), <Un(x, y), /(*)» =<Rn(\), Pf(\)Pg(\)>*.

Given that Ty

x8(x) makes sense we have formally <Un(x,y)J(x)y-*<Ty

xδ(x),f(x)y

=(8*/)(y)=/(y) (cf [3; 7]) so the left side of (3.3) tends to </(?)> *00>=

Γ/(y)£(y>ίy. On the other hand from (2.4) l^(λ) = PδΛ(λ)-*Λ(λ)=Ω(0, /A)
Jo
which we call Pδ(λ) if this makes sense and is nonzero. Hence we can state.

Theorem 3.2. If the v spectral pairing is known for έ—Eand Ty

xS(x) makes
sense acting as indicated then the spectral function Λv(λ)=Ω(0, μ) yields a Parseval
formula

(3.4) </, g> = <JZ*(x),

Note that when a singularity is present as in our operators P based on A
and Ω=AH then Ω(0, μ)=0. This also occurs for Ω as in (2.3) and Example
3.5 of Part I shows that Ty

xS(x)=0 in such a case also. With operators such as
D2—q however Ω(0, μ) is a sensible function and Ty

xS(x) will make sense.

REMARK 3.3. In general the idea is to discover the v pairing and if one has
a transmutation B: P-+Q where the Q theory is known then the v pairing can
be obtained by a variation on the above argument (cf. Marcenko [16]). With
the operator P(D)=D2—q(x) (for suitable q) one transmutes P into Q—D2 of
course and we sketch here a version of Marcenko's argument in our framework.
It is convenient to use the representation β(y, x) = 8(x— y)-\-L(y, x) and
<γ(xyy)= δ(#— y)-\-K(x, y) here where K and L will be functions. In particular
L(y, x)=0 for x>y and K(x,y)=Q for y>x (such triangularity properties are
proved in a general way in Carroll-Gilbert [8; 9]). Let L and j£be obtained via
Riemann functions as in [16] so that no spectral theory is assumed (B~l refers

to spaces like O^C^-not L2). We can write f(y)=β*f(y)=f(y)+[°°K(ξ,y)
Γ~ J>

Xf(ξ)dξ with g(x)=g(x)+\ L(ξ,x)g(ξ)dξ. Let K2(σ) denote L2 functions /
J X

vanishing for x>σ and CK\σ) their cosine transform -2/"(λ); from the defini-

tions f,g^K\σ) implies fyg^K2(σ) (since K and L are triangular). From
(2.12) we see then that Pf(\)<=CK\σ) and CK\σ) can be characterized as the
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set of even entire functions G(λ)eL2 for λe/ί satisfying \G(\)\<c exp σ|Im λ|

for λeC. Let Z(σ) denote the space of even entire functions G(λ)eL1for
λe/2 satisfying this same type of estimate for λeC. Let Z=\jZ(σ) and
CK2=(jCK\σ) (countably normed-cf. [1-28]) so we have ZdCK2. Note
that F, G^CK2 implies FG^Z which is the kind of situation one wants in (3.1)

(i.e. we will have the product Pf(\)Pg(\)^Z). Following a procedure indicated
in part already and extended below it can be shown that the spectral function R
of (3.1) lies in Z'. First we go back to Un(x,y)=Ty

xδn(x) which we write in the

somewhat different form Un(x,y)=\Rn(\)H(x, μ)H(y, μ)d\. Then Un(x, 0) =

8n(x)= \Rn(\)H(x, μ)d\ (~PRn(x)). But Θ=BH so we want (B8n)(y)=Sn(y)

+ \y L(y,x)δn(x)dx=(βn(\)θ(y, μ)d\ (~QRn(y)). Thus we pass the deter-

mination of Rn from the P theory to the (known) Q theory but without in-
troducing v the pairing used in specifying P and 2 before thus the use of B
here bypasses the spectral theory for P. Now δn^E, BSn^F, and we suppose
an inversion for the Θ transform is known relative to the λ pairing. For

example assume the F— F'=F or ω pairing can be passed to λ as d\=ω(\)d\.

Then it follows that ( Rn(\)θ(y, μ)d\= ( Rn(\)θ(y, μ)ω(\)dω = Q(Rnω)(y) e F
J J

so Rncan be determined as Rn(\)ω(\)GF by

(3.5) ^B(λ)ω(λ) = QB8n = Q[Sn(y)+ L(y, X)Sn(x)dx] .
o

When Q(D}=D\ θ(y, μ)=Cos \y, F=F, W(yy μ)=—Cos\y, we have ω(λ)=l
π

and (3.5) works. Once Rn is thus determined we multiply Un(x,y) by f(x)g(y)
and integrate to obtain as in (3.3)

(3-6) <g(y), <Un(x, y),f(X) »

Using Riemann functions again it can be shown that (cf. [13; 16; 1-33])

(3.7) Un(x, y) = - [8a(x+y)+ S.(x-y)] + β(x, y, t)8n(t)dt
L Jx-y

where θn(x, y) =\ β(x, y, t)δn(t)dt can be estimated and 1 1 f(x)g(y)θn(x, y)

χdxdy-*Q as n-* oo . Since/, g are even the left side of (3.6) tends to </(#), g(x)y
and we write (formally)

(3.8) R = lim Rn = Q[S(y)+L(y, 0)]
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2since Q is based on W= — Cos λy (C denotes the cosine transform). Con-
7Γ

sequently (3.1) will follow.

REMARK 3.4. As indicated before when singularities are present the above
argument breaks down at several points (e.g. (3.7) is inaccurate). The formal
change needed is basically to replace 8(x) by 8A(x)=8(x)/A(x), acting on suitable
objects, and rephrase the argument. This applies whether we take Ω=AH or
Ω,=RQAH as in(2.3). For simplicity take Ω,=AH with P(D)u=(Au')'/A and
observe that from (2.4) formally P8A(\)=$A(\)=l so that from (2.5) 8A(x)=
<#(*, μ), 1X (or δ(*)=<Ω(*, μ), l>v). Further from [7] [Ty

xδA(x)]*=H(yy μ)
where Ty

x denotes the generalized translation associated equivalently with P or
P=P+p2

P. Consider as in (3.2) 8n(x) -> S(x) and set 8^(x)=8n(x)/A(x) with
U2(x,y)=TySn(x); however in order to work in EA for example let δweC~ (see
Remark 3.5 for technical comments). Then

(3.9) U*(x, y) = <H(y, μ), Rΐ(\)H(x,

where R^(\)=P8^-> 1. Hence the analogue of (3.3) is

(3.10) <g(y), <UA

n(X, y), /(*)» = </tf (λ),

Jo

since the v pairing is given by a measure in this situation. Now, writing

(3.11) <£7ί (*, y), /(*)> = <ΓJδjf (*), /(*)> = (" T^(X)f(x)dx=
Jo

where we recall from [14] and Flensted-Jensen [1-25] that a generalized convol-

ution is given by (f*g)(x)= \T>f(x)g(y)A(y)dy= \T!f(y)g(y)A(y)dy (cf. also Part

I). Further one can prove for f,geEA for example that /*£=£*/ (cf. Theorem
3.6). Then the left side of (3.10) is formally

(3.12)

'" δ*(x)T'fA(x)A(x)dx - <g(y), T'fA(x) \ I=0> =
0

and hence (3.10) yields a Parseval formula of the form (3.4).

REMARK 3.5. That Ty

x can be extended to 8A(x) is clear (recall that
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[T%8A(x)]*=H(y, μ)). The manner in which one represents this in the argument
of Remark 3.4 is basically a matter of choosing a point of departure. Thus if
we work in EA=E (which is a convenient place to prove Theorem 3.6 below)
then S^(x)=Sn(x)/A(x) must be chosen accordingly. In the precise form which
is possible for A=x2m+1 the continuity of Ty

x: S\R\)-*S\R\) is available (cf.

[15; 18]—(5° denotes C° functions with the topology of uniform convergence on
compact sets). Hence for various arguments we will be able to work in the dual
OTt of S° (Jit being Radon measures of compact support) and in this context it
will be convenient to approximate δ by SneC7 (see Section 4 for more details).
In particular let LJcOTt be U functions with compact support and let Sn be a δ
approximation as in Remark 3.1. Then choose δ*eCj° which converge to Sn in

Z/o as a Cj°δ approximation in 6' (i.e. in OT£) We denote such δ* by 8n now so
that Sΐ(x)<=EA.

Now for feEA set f=Af*o that/ EiEA (cf. Remark 2.6-A1'2f=A~l/2f).
Then we have

Theorem 3.6. Given a v pairing, for f,g^EAyf=Af, g=Ag^EA one has

(3.13) <Γ>/ Sy = \~ T>J(x)g(x)A(x)dx = (Til g) = (/, Tίg) =
Jo

T!g(x)f(X)A(x)dx = <Γί|, />.

Proof. We generalize and recast an angument of Levitan [15] in our frame-
work. Thus for f<=E=EA let

(3.14) φ(y, μ) = <Tζf(x), ίl(*, /,)> = PT'f(x)(\)

Then P(Dy)φ=-\2φ with ^(0, μ)=Pf(\) and ̂ (0, ^)=0 (since DyT
y

xf(x)=0
at y=0)y here φ(y, )ej^ and φ( ,μ)^<S. On the other hand observe that
ψ(x,y,μ) = H(x,μ)H(y,μ) satisfies P(Dx)ψ = P(Dy)ψ with ψ(x,0) = H(x, μ)
and ^(tf, 0)=0 so

(3.15) H(x, μ)H(y, μ) = T*H(x, μ)

(cf. Part I—H( , μ)^<3 for example). Consider then (with H(y, •) a multiplier

(3.16) ω(y, μ) = H(y, μ)<f(x), ίl(x, /*)> = H(y, μ)Pf(\)

Clearly P(Dy)ω= - \2ω with ω(0, μ) = P/(λ) and ω,(0, μ) = 0 (ω( , μ) ε β) . By
uniqueness φ(y, μ)=ω(y, μ) while ω(y, μ) can be written as (from (3.15))

(3.17) ω(y, μ) = </(*), H(y, μ)H(x, μ)A(x)>

= <f(x), T>H(x, μ)A(x)y
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From (3.14) and (3.17) we obtain then

(3.18) <Tζf(x), H(x, μ)A(x)> = </(*), A(x)T>H(x, μ)>

Now let g(x)=ζH(x, μ), G(\)\=PG(x)^E and take v brackets (assumed to
exist in general and in fact known explicitly here already) in (3.18) with G(λ) to
obtain (3.13) for/,£e£, i.e.

(3.19) <T'f(x), g(x)A(x)y =

Note here that <G(λ), Ty

xH(x, μ)\=Ty

x<G(\), H(x, μ)>v = Ty

xg(x) since if

(3.20) φ(χ, y) = <G(λ),

then P(Dx)φ=P(Dy)φ with φ(x, 0)=<G(λ), H(x9 μ)>=g(x) (and φy(x, 0)=0) so
φ(x,y)=Ty

xg(x). Also from Txf(x)^E mdg(x)&E one has A1/2(x)Ty

xf(x)^L2

and ^1/2(jc)£(#)e:L2 sol Ty

xg(x)g(x)A(x) dx for example makes sense. Now in

order to get E=E' into the picture let f,g^E=E'. Then note f^E'~

A"1(x)f^E so writing f(x)=A(x)f(x) we have f(x) e £". Hence write (3.19) now
as

(3.21) (T'fo), g(x)) = (/(*), Γ (̂*))

for a (real) scalar product (/, g)=\f(x)g(x)A(x)dx and we can write for fξ=E',

(3.22) <|, /> = Γ g(X)f(x)dX = Γ
Jo Jo

Actually ( , ) could be a complex scalar product here since Txf(x) is real for f(x)
real; this may not be true in later sections.

REMARK 3.7. Problems modeled on the functions A introduced in Example
2.1, and discussed briefly with some specific examples in Part I (for which the
preceding analysis based on Remark 3.4 is in fact correct), are treated more ex-
tensively in our transmutation framework in Carroll-Gilbert [8; 9]. Properties
of the corresponding H(x, μ)=φ*(x) etc. are obtained in [14; 1-25] for A of the
form (ex-e-χ)2*+l(ex+e-χγβ+l or (ex-e~x)p(e2x-e-2x)q. More general A as well
as perturbations of P(D)u=(Au')ΊA by a potential are treated in [1-18; 1-19]
and the transmutation method for such A is developed in a forthcoming book
[24]. Thus at this point we restrict our investigation of general A in asserting

only that the preceding argument expounded via Remark 3.4 is valid for A of
the type in [14; 1-25; 8; 9] and leads to the following theorem. Note that the
theorem is not at all new or surprising (dvp is explicitly known) and has only
been proved formally; it is the methodology which is being summarized in its
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statement (cf. Remark 3.4 and remarks after Lemma 4.2).

Theorem 3.8. For P(D)=(Au')ΊA with A as in [8; 9; 14; 1-25] the above

procedure yields the Parseval formula for suit

(3.23) C4-1/2/, A-*g> = Γ Pf(\)Pg(\)dvP(\] .
Jo

REMARK 3.9. Note that, without specifying spaces, the formula (3.18) leads

one to write

(3.24) (T')*fl(x, μ) = A(x)T*H(x, μ) .

4. Parseval formulas for A=x?m+*. There remains of course the ex-
tension and modification of the argument of Remark 3.3 to discover the pairing

for the more general A of [1-18; 1-19] via a transmutation B: P-+Q where the

Q theory is known. Then the v pairing for P(D)+q can be obtained by a

transmutation P(D)+q-+P(D) for example using the same method. One wants

to isolate the essential features of such arguments in order to arrive at a minimal
collection of properties to study by hard analysis. As a step in this direction we

examine the case A=x2m+l in detail. Most of the technique will clearly gener-
alize. First let us mention that the arguments of Levitan [15] on which the

proof of Theorem 3.6 is based can be used to prove (cf. [15]).

Theorem 4.1. For continuous f such that I x2m+1f(x)dx< oo and £ e C° Π £°°

one has for the Ty

x associated with Pm(D)

(4.1) Γ Ty

xf(x)g(x)x2m+1dx = Γ Ty

xg(x}f(x)ocim^dx .
Jo Jo

We take now P= Pm and Ω as in (2.3)( i.e. Cl^R^AE for A=x2m+l and

R0=c2

w\
2m+l). Then 8A(x)=8(x)lx2m+1 and P8A(x)=c2

m\2m+1=RQ(\). With this

normalization for Ω recall that dvp=d\ and RA(\)=RQ(\) so that the Parseval

formula of type (3.23) which arises is (<( , >v— < , >λ)

(4.2) <*-"-1/2/, *-"-lβj'> = <*„, Pf(\)Pg(\)\ = Γ BάWJWPgWx
Jo

(if Ω,=AH recall dvP=RQd\ and RA=l as in (3.10)).

Now no transmutation is needed to produce (4.2). Formally we can derive
it via Remark 3.4 and a study of Ty

x as in Remark 3.5 and Theorem 3.6 (this is

made rigorous below). It is also interesting however to see how (4.2) can be

derived via a transmutation of P=Pm into Q—D2. This will serve as a model for
producing Parseval formulas for P=Pm—q via a transmutation with D2 by
displaying in skeletal form how the different order of singularity affects the

transmutation kernels etc. Another method on which we prefer to rely for such
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P is then developed where the Parseval formula for P=Pm—q is obtained via
transmutation into Q=Pm.

First let us deal with the limiting passage in (3.10) and (3.12) for A=x?m+1.
As mentioned in Remark 3.5 one knows Ty

x\ 8Q(R\)^>6\R2+) is continuous and
we assume Theorem 4.1 is known (as well as Theorem 3.6 for E=EA={f',
xm+1/2f(x)^L2}). Recall also the notation for OH and LJ from Remark 3.5 and
set^{φ;#2lM+1φ<ΞLJ} (one is thinking of 8n/x2m+1=φ^S where δnelj is a
δ approximation in Jfi). For φe JEίset x2m+lφ=φ^Ll and approximate φ by CJΓ
functions φk (recall lhat CJΓ is dense in L1 and supp φc[0, #ψ]). Then φk=
φkly?m+l^E is continuous and (4.1) can be invoked for g^C°Γ\L°°] thus

J T$k(x)g(x)**~+ίdx = J Tyg(x)φk(x)x2^dx = J Tyg(x)φk(x)dx-* j Tig(x)φ(x)dx and

one extends (4.1) to φ^S by this limiting procedure. In order to provide a
representation for the limiting values note that for g^<3Q and φ^j&the map

(4.3) g-+ φx2^Tyg(x)dx = M,(g) : <S» -> C
Jo

is continuous so we can write

(4.4) M,(g) = <Φ,9g>

for Φ^eOTl and we set Φy(x)=x2m+lTy

xφ(x) to determine TJ(ic)$. Thus the
version of (4.1) obtained by limiting procedures from (4.1) can be written

(4.5) Γ T>g(xWx)J +1dx
Jo

« , > denotes <S°— OH duality). Now let φn(x)x2m+1=8n(x)^Ll

Ό where δM->δ in

OH. The left side of (4.5) tends to Ty

xg(x) \ x=Q=g(y) in δ°-3K, duality and
henec in OTl

(4.6) x2m+1Ty

x(8n(x)lx2m+1) -> 8(x-y) =

We summarize this in

Lemma 4.2. For φ&βandg&δ0 (4.5) holds in δ°— JΐC rfw^/% αwrf ex-

tends (4.1). 5y limiting procedures we then arrive at (4.6).

Now to derive (4.2) we consider (3.11)-(3.12) for A = x*m+1

y Sf(x) =
8n(x)IA(x)&EA = E, and/eE'— E (i.e. use C? approximations to δ). The

fA*S* = Sn*fA interchange is then justified by Theorem 3.6 actually and the limit
in (3.12) is correct if TyJA(x)<=C°. Hence approximate f=A1/2fA=A-1/2f<=L2

by CQ functions fk in L2 so fA=A~1/2fk is continuous. Therefore for

(3.12) yields (fk=Afk

A=A«2fk)
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(4.7)

Note that Lemma 4.2 says

(4.8) A(x)T'δA(x) = δ(*-y)

and this can be applied directly in (3.11) (to continuous fA(x) at least) without
using Theorem 3.6. Thus it appears that we can use either Theorem 3.6 or

Lemma 4.2 in order to obtain (4.7). Note however that the existence of a v

pairing is used in proving Theorem 3.6. Also observe that a corresponding

Lemma 4.2 for general A however involves knowing that Ty

x: <S°-*<S° is con-

tinuous for the associated Ty

x. It remains to show that (cf. (3.10) and recall that

< , > V = < V > Λ )

(4.9) <Jtf(χ), Pfk(\)Pg(\)\ - Γ R£\)Pf(\)Pg(\)d\
Jo

where (cf. (2.3)) Λί(λ)=Pδί(λ) = <8ί(«), Ω(«, μy> = c2

m\ί^\SΛ(x)ί #(*, μ)>.
Λ/\ /\ AA ΛA A/\

Now P\E-*E=E'= {/; λw+1/2/(λ)eL2} is continuous and we denote by E+
AA /V\

the space JSr

ιr= {A; λ^^Ap^eL1} so that for f,g^E we have PfPg<=E«.

Further from fk-^f=:A~l/2f in L2we have fk=Al/2fk-*f in # by definitions.

Since P is continuous we have Pfk-*Pfm E and hence PfkPg-+βfβg in ^r If

we show that ^(λ)->Λ0 weakly (weak *) in j^= {ψ; λ-2"1-1^^//00} then (4.9)
holds. To do this note first that

(4.10) |Λ?(χ)λ-'«-i| = 4|<SM(*), J5Γ(Λf μ)>| <^A |8.(Λ)|Λ = c*mh

where |̂ , μ)| <A and we can take δw>0 with (sMέ/Λ?=l. Hence

On the other hand

(4.11) \R9-R*\\->--1 = t*m(l-<δlt,H».

We know /ί( , μ)^<5 so we need only show <δn, /ί>-»l weakly in Lj° as δΛ~>δ

in <?' (or OH). For λ fixed <δw, /ί>->! since £Γ(0, ^)=1 and for fixed/eL1 we
have </, (1— <δM, ίί»>->0 by dominated convergence in Zλ Hence we have
proved

Theorem 4.3. For PWί=Z)2+((2w+ 1)/Λ?)Z) ίfe Par seval formula (4.2)

REMARK 4.4. We emphasize again that this procedure is given in detail to
indicate clearly some of the ingredients which go into general Parseval formulas

in our framework. In this direction let us also consider a derivation based on

a transmutation B: P=Pm-+Q=D2. Thus (cf. Remark 3.3 now) write UΛ(x,y)
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(4.12) [/„(*, y) = <K(\), H(x9 μ)H(y,

where < , >ω=< , >λ in fact (SΪ(x)=Sn(x)lx*m+1 as before). Then

(4.13) δί(*) = <R*n(\), H(x, μ)\ = PR*n

(P suitably extended) and we operate on (4.13) with B=2P to get

(4.14) OBδί)(y) = OK

since β2"1=P/9Q(^P/9=Q-1=Q). Thus the determination of the spectral func-

tion R is passed to the Q theory and

(4.15) K(\) = QBSn

A = -M" (BSί)(y) Cos \ydy .
7Γ JO

We know from multiplying (4.12) byf(x)g(y) and integrating as before that (4.2)
should follow and since dω=d\ this means that R%(\)-*R0(\). Thus in order
to apply the transmutation method of determining the spectral function via the Q
theory we are led in general to deal with distribution arguments since (4.15)
involves generalized cosine transforms of functions like X2ίfl+1. This is connected
with the kernel β(y, x) of B being a distribution of order >0 and basically
arises out of the different type of singularity in Pm and D2. Since this method
will be important in determining Parseval formulas for Pu=(Au')'/A with
general A as in [1-18; 1-19] we will give some further discussion here of (4.15)
and related formulas. The groundwork for this was developed in Part I, Section
4 (Theorem 4.6) where a formula for BSA was derived. We recall this here
(cf. equation (4.23) in [7]).

(4.16) (BSA)(y) = βmy~2m~2 = 4 \°° \2m+l Cos \yd\
JQ

where /3w=2Γ(l/2)/Γ(m+l)Γ(— 1/2— m) and^-2m~2 is to be interperted as^2*'2

_l_y-2m-2 wnere y-<» denotes the standard pseudofunction of Schwartz (cf. [1-43]).

Various formulas for the kernel β(y, x) of B were given in [7] (cf. also [3; 4])

but there is no need to repeat these here. Now we need only show that /ζJ(λ)->

RQ(\) weakly in E' in order to pass from (4.12) to (4.2) (since the passage

<g(y)y <un(x, y)- f(x)»-»<x~m-l/2g, x~m'l/2fy has already been established). For
this let us show first.

Lemma 4.5. The image of E= {φ; φx2nt+1^Ll under B consists of distribu-

tions Bφ of the form (ψ=φx2m+1

y η=y2 ,ξ=x*)
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Proof. The formula (4.12) of Part I for Bφ becomes here

(4.18) (Bφ)(y) = 7n

my(-Dy}
n Γ ψ{x)(f-*γ-*-**dx

\ y / JQ

where rϋ=Γ(l/2)/2l|-1Γ(iff+l)Γ(Λ— w— 1/2) and —l/2<m<n-l/2. One can
take n>m+3/2 to insure that everything makes sense for -ψ eL1. Now set
x=\/ ξ , y=^ η 9 and (l/y)Dy=2Drι and recall the definitions of the pseudo-

functions Ya from [7] (based on Schwartz [1-43] and Gelfand-Silov [1-28]).

Write (4.18) now as

(419) 1(4.19)

and recall that D(S*T)=DS*T with USyn-m-i/2=i"-n*^-i«-i/2= i"-m-ι/2 to
obtain (4.17). QED

Next in order to describe thejR^ of (4.15) we want to characterize the cosine
transforms of BE where Bφ is given by Lemma 4.5. First observe that we
already know the answer since Rv

n=R£ = Pδn must coincide with Rω

n (recall
< > >ω=< > X=< , >λ here and compare (4.12) with (3.9)). Hence for φ^w+1=ι/r
one has (cm=l/2mΓ(m+ί))

(4.20) Rl = <δί(*), Ω(Λ

and we want to arrive at this formula without knowledge of the v pairing or the
identification Rl=Rω

n. Thus write from (4.15) and (4.17) (ψ=φίx?m+l)

(4.21) R%\) = (Bφ)(y} CθS ̂ ydy = (jBψ)(v/^ C°S

Then writing formally Fα:*( ψ (v/T)/V'y) = 2 Γ
Jo

^):-1,Vr(Λ;)>/Γ(α)(α=-m-l/2) and setting A, = 2Γ(l/2)/»Γ(α)Γ(»+l) we
obtain

(4.22) ^(λ) = km Γ <^_ )̂ί-S ψ(a.)> Cos
Jo

= ̂  f " ψ(*)(( " (/-«»)• Sin
cc Jo \J*
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where some basically routine calculation has been omitted in (4.22). Now the
last integral in (4.22) can be evaluated by a formula in Bryckov-Prudnikov [1-3].

500
sgn (y)(y2— x?)* Sin \y dy=&(x, λ) we have

-00

(4.23) Bfc λ) = V

Since a——m—\l2 we obtain for λ>0 the formula

(4.24) B%\) = kn Γ λ-+SKφ-
Joo

where km=km\/πT(—m-{-l/2)/2m+l(—m— 1/2)— cm which has the desired form

(4.20). Thus

Lemma 4.6. The image of E under QB consists of elements of the form (4.24)

(ψ=φΛ;2w+1eLj) and lies in E^ If φn->Slx2m+1 via ψn=δπ->δ in 6' then R^H=

R*n-*RQ in Eί weakly.

Proof. The formula (4.24) has been established and the remaining state-
ments can be proved exactly as in the proof of Theorem 4.3. QED

Using the background discussion for Theorem 4.3 with Lemmas 4.5 and 4.6

we can summarize by stating

Theorem 4.7. The Parseval formula (4.2) can be proved via a transmutation
B : Pm-+D2 as indicated.

5. Parseval formulas with singularities and potential. Having

' 'discovered' ' the v pairing for Pm(D) via a transmutation with Q(D)=D2 for

example let us turn to P(D)=Pm(D)—q(x) and set Q(D)=Pm(D). There will

be some interplay here with Pm(D)=D2—(m2—lj4)/x2 and we observe that

x»+Wpm(D)ψ=Pm(D){xm+l/2ψ} (Pm is the form usually studied in quantum

mechanics). It will be convenient to use here some results of Braaksma [1-1],
Braaksma-deSnoo [1-2], Gasymov [11; 12], Siersma [18], Stasevskaya [19; 20],
Volk [21], et al., where transmutation kernels connecting P=Pm~q and Pm

are constructed using Riemann functions (cf. also [1 2]). In the present situa-

tion where there is a singularity of the same order of magnitude (1/tf2) in P and

Pm=Q (with the same coefficient) it is possible (for suitable q) to transmute P

into Q via formulas BP=QB with inverse B~l= j8 where

(5.1) Sf(y) = /(JO + £ L(y, *)/(*>**

= §(χ)+\* £(*.
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Let us set L(y, x)=y-m~lf2L(y, x)xm+1/2 and K(x,y)=χ-m~1/2K(x, y)ym+1/2 with
f(y)=ym+1/2f(y) and g(x)=xm+l/2g(x). Further let B=y-m~l/2Bxm+l/2(x-+y) and

β=χ-m-1/2βym+1/2(y-*x). We are thinking here of P and Q in E=F=
{/; xm+1'2f=fζΞL2}. Then (5.1) is equivalent to

(5.2) 5/00 = f(y)+L(y, x)f(x)dx

and BP=QB with B~1=β. We emphasize that the transmutation operators

exist even though the spectra of P and Q are not the same.

REMARK 5.1. There are various hypotheses on q(x) which are used in
literature mentioned above (cf. also Chadan-Sabatier [1-17] for hypotheses in
physics). Regarding behavior near #=0 we mention for example Siersma [18]
where it is assumed that: n—l/2<Rem<n+l/2 (for mΦθ) or w=rc+l/2; M=
max (2, #); α>0 (where in addition α>3/2—Rem for n=\ and α>l/2—Rew*

for n=0); and geCM(0, a] with Dkq(oe)=Q(xΛ-k'1) as x-+Q for 0<k<M. Then
(working on [0, α], #<oo arbitrary) there exists a continuous L(y, x) such that
5 given by (5.1) is a transmutation operator P-»Q in ZΛ The domain of P and

Q involves here /~**+1/2(l+0(l)) and /^"""^/(^^(jr1) as x-+Q where
γ—l + Rem— |Reτw| (γ=l for Rew>0). We prefer to leave D(P) and D(Q)
unspecified in noting that various realizations are possible (x~m~^2f(x)r^Q(l) is

retained however). Further | L(y, x) \ <Ky*(x/y)Rem+1/2 (0<x<y) so that (taking
m real for simplicity) \L(yy x)x~m~1/2\ <Ky<*~m~1/2 and it will make sense to talk
about Ί(y)=limL(y, x)x~m~^2 as x-*Q', Ί(y) will come up later in our develop-
ment as it does in Gasymov [11 12]. For smoothness, Gasymov [11 12] takes
l=m—1/2 integral and assumes q(x) has / locally summable derivatives with

in which case, in particular, it follows that Lλ(y^ x)— ylL(y, x)x~l~l=
^ χ)x~m~1^2 (0<x<y) has 7+1 locally summable derivatives and L has /

continuous derivatives. Here L(y, x)x~l~1=y~lLl(y, x) so J(y)=y~lL1(y, 0) and
L^y.x) is continuous in (y, x) down to x— 0. Stasevskaya [19] assumes

S
a

I xq(x) 12+*dx< oo but the results are generally weaker regarding properties of
j)
L. Volk [21] assumes <?eC°[0, a] which is stronger than necessary. The be-
havior of q(x) at oo does not play a role in constructing L or K since basically
we are dealing with hyperbolic problems having compact domains of de-
pendence. It will come up later however in [6] when we consider Jost solutions
and the Marcenko equation; it also plays a role in determining the number of
bound states (i.e. eigenvalues).

We go now to the construction of Parseval formulas based on the technique
indicated in Remark 3.3, so this can be considered as an extension of Marcenko's
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procedure. Along the way we will indicate some of Gasymov's development for

comparison (where l—m—ί/2 is an integer). Recall that we are basically inter-

ested in the * Structure' ' of such theorems and will confine our attention to a

singular term (nf— 1/4)/*2 in P(D). The machinery extends then in an obvious

manner to other operators with comparable singularity (in particular to P(D)u

=(Au')'/A) and indicates a "canonical" direction for more general operators.

Moreover in view of the various types of detail available (see e.g. Remark 5.1)

for different hypotheses on q we do not make an explicit choice of such hypotheses

and only note when necessary that the properties we want are available for

suitable q. In this section then P(D)=Pm(D)—q(x) (q suitable) and Q(D)=Pm(D)

so we write out

(5.3) &(y, μ) = c

W(y, μ) = eito)2""^, μ)

(cm= l/2mΓ(m+ 1)). We will assume m real, m> — 1/2, but q(x) may be complex;

m complex, Rem> — 1/2, could be included but we omit this for convenience.

The function H(x, μ) is now a solution ofP(D)H=μH, ίf(0, μ)=l, H'(Q, μ)=0

whose explicit form is not known. Thus we are obliged to work with a ω pair-

ing (v is unknown) and think of Un(x,y) in the form (4.12) (dω=d\) with

R%(\)=QBφn (φn= δ«); we only need BH=Θ—no spectral comparison is re-

quired. From the previous development we know here that φn(x)=8n(x) =

8M(#)/#2w+1 with δn->δ is the right kind of object to introduce in dealing with the

Parseval formula for P(D). Now take B in the form (5.2) so that

(5.4) Bφn(y) = φn(y)+ Γ L(y, x)φn(x)dx
Jo

o

Then formally as δn->δ and φn-*φ=8/x2n+1 we have Bφn->Bφ where

(5.5) Bφ(y) = φ(y)+Ί(y)y-m-1/2

(cf. Remark 5.1 for 7(y)). Hence formally Rω

n=QBφn-*R=QBφ with (cf. (5.3)

and (3.8))

(5.6) R(\) = <W(y, μ),

ym+1/2Ί(y)Θ(y, μ)dy

Thus R=R0+Rq where Rq measures the effect of q.

REMARK 5.2. Note that R(\) could have genuine distribution components
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arising from Rq. For example a conceivable 7 is ϊ(y)=D%[(ay)1/2Jm(ay)] in

which case (cf. [23])

(5.7) R, = cm\-+* 7(y)(λy)^Λ(\y>fy = ί-λ +I^(- l)>δ<»(λ - β) .

Now to model a Parseval formula on the procedure of Remark 3.3 we take

(4.12), multiply it by suitable f,g^E, and integrate to obtain

(5.8) <g(y), <Un(x, y), /(*)»

Here/, £ will have to be selected so that Pfflge WdE* with R*n-*R in W (E*

itself will not do in general since R&E^ — cf. Remark 5.2). The correct spaces

IF were found by Gasymov [11; 12] and are defined below (W is analogous to

the Z of Remark 3.3). Then a version of Lemma 4.2 (i.e. UH(x,y)=TZφH(x)-*

Tyφ(x)=8(x—y)lx2m+1 for ΓJ~P) must be obtained in order to get (4.7).

Alternatively a version of Theorem 3.6 can be envisioned and we remark that

the arguments used in proving Theorem 3.6 remain valid, given a v pairing with

suitable Ω. Thus (in passing).

Theorem 5.3. Assume there is a v pairing with Ω(x, μ)=km(\x)2m+1H(x9 μ)

and δ(*)=<Ω(*, μ), 1>V. Letf,g£ΞE,f=x2m+1f, and g=x?m+1g(f,g(ΞE). Then

(3.13) holds (i.e. <T'f,g>=<f,

Proof. Existence and uniqueness theorems for P(DX) U=P(Dy) U, U(x, 0) =

/(*), Uy(x, 0)=0 follow from [18; 1-1; 1-2] and determine U(x,y)=Ty

xf(x) (cf.

also [11 12; 19; 20]). One takes H as indicated above (P(D)H=μH, H(Q, μ)=l,

H'(Qy μ)=G) and the v pairing with <Ω(#, μ), l\=δ(x) is assumed so by Part I

P=P-1, etc. Here P*(Z))Ω=^Ω with P*(D) the real formal adjoint P*(Z>)Ω=

Ω//-(2w+l)(Ω/Λi)/-ί(Λ?)Ω. The explicit a=km(\x)2m+1H is used to obtain

(3.18)-(3.19). QED

Now the main ingredient used in proving Lemma 4.2 was the fact that, for

the Ty

x~Pm(D)9 Ty

x: δ\R\)-+6\R2+) was continuous and this will hold also for

the Ty

x associated with P(D). For example if m> — 1/2 (m Φ 0) and say

geC°[0, a] one obtains from Siersma [18]

(5.9)
x-y

where β is continuous and for x—y<ζ<x-\-y (0<j><#) there is a bound

Iβ(x,y> ξ) I <M(ξlx)m+1/2y-2m[y2-(x-ξ)2]m^2. However observe that
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χ+y I ε \ m +1/2

y J- */ \ //
9«+3/2f.y / ~2\«ι-l/2
ί - 1 (1-A) ,** = .£„,

Jo \ r/

v ?y/ ~2v w-ι/2 f i
since 1-— <2 and I (1-- ̂ ) dz=y\ (l—r,

2)m-l'2d η=yB(l/2, «+l/2)/2 =
ΛJ Jθ \ ΛJ / Jθ

yΓ(l/2)Γ(w+l/2)/2Γ(ιιι+l) (cf. [1-36]); thus ^w-2»+1/2Γ(l/2)Γ(m+l/2)/Γ(w
+ 1). Consequently Ty

x given by (5.9) maps L-(R\)-+L"(Rl) and <S°(Λi)-»

<?°(Λ+) continuously. The argument of Lemma 4.2 can then be repeated to

obtain

Lemma 5.4. The formula (4.5) holds for Ty~P(D),f<=E, and g<=<5° and

(4.6) determines x?m+1Ty

x(δ(x)lx?m+1).

Hence, as in the proof of Theorem 4.3, the calculation based on (3. 11 )-

(3.12) is valid for/, g^E and leads to (4.7). It remains to examine the con-

vergence R^ι-^R (cf. (5.6)). At this point we will introduce some spaces utilized

by Gasymov [11]. Recall first from Remark 3.3 that K2(σ) denotes L2 functions

vanishing for x>σ (L2 = L2(0, <χ>)) and set K2= (jK2(σ). For / such that

χ-m-l/2f(x)<=ΞK2(σ) consider

(5.11)

Gasymov calls cmF(\) the Fourier-Bessel transform and notes that

where (cf. Remark 5.9)

DEFINITION 5.5. Let W2

m be the space of even entire functions satisfying

a) I F(\) \<^c\\\ ~m~1/2 exp σ | Im λ | for | λ | large (some σ— here σ is related to

/) and also b) Γ | λ | 2m+1 \ F(\) \ 2d\< oo . One says that a sequence Fn(\)-*Q
Jo

in W2

m if a) holds for a fixed σ in the form \Fn(\)\ <c exp σ|Im λ| and

S
CO

|Fn(λ)|2λ2m+1rfλ->0. Let Win denote even entire functions satisfying a)
o

|F(λ)|<|λΓ2wexpσ|Imλ| for |λ| large (some σ) and b) Γ|λ|2w+1|^(λ)|rfλ<oo.
Jo

A sequence Fn(\) -> 0 in Wl

m if | Fn(\) \ < c exp σ | Im λ | for a fixed σ and

We note that if F^Wl

m then F is bounded for λ real so |F(λ)|2λ2w+1<

c\F(\)\\2m+l and FtEW2

m will follow. Wl

m will serve as the space W alluded
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to earlier. From [11] then we have

Lemma 5.6. Wl

m c W2

m is dense and F,GtΞW2

m implies

Now recall the format of Remark 3.3 and observe the difference in notation

f= j8*/and/~ Λ!2"14"1/. Let us proceed (up to a point) as in Remark 3.3. From

(5.2) we have £*f(y)=f(y)+\~K(xyy)f(x)dx. Iff<=ΞF(=E) andf(x)χ-m~1/2^K2

then from (5.11) j2f=F=f<=W2

m and f=QF. If F <=ΞWl

m and f=QF we say

x~m~l/2f^Kl

m\ in this event supp/is compact (cf. [11]). Now letf^E=E' so

f=β*f<=F=F' and supp /C [0, σ] implies supp /C [0, σ; consequently

χ-m-1/2fςΞK2(σ) implies that χ-m^2f^K9(σ). By Theorem 2.3 2f=PftΞW2

m

(similarly ^f=/?^ePF«); hence PfPg^Wl

m by Lemma 5.6. Recall now (cf.

(4.12)) J7β(ΛP,y)=ΓJΛ(Λ)=<lZ:, #(*, μ)H(y, /*)>„ so that 9>.(*)=<J5, H(x, /*)>.

and fi^,(y) = <IZ:,θ(y,^)X = QlZ:(y)(Λ: = Q ι̂,)- Again we will have an
equation (5.8) of the form <f(y),<Un(xyy),g(x)yy=<Rω

n> PfPg>ω and the left
side tends to ζy~m~1/2f,y~m~l/2gy (i.e. to (4.7)— using Lemma 5.4 for g ec?0 and
then passing to g &L2 as in the proof of Theorem 4.3). Consider now a func-

tion H^Wl, H=2h, so that χ-m-1/2h^Kl and in the formula <lζ, θ>ω=

QR"=Bφn=:φn(y)+\ L(y, x)φn(x)dx (cf. (5.4)) multiply by h(y) to obtain
Jo

(5.12) < (̂λ), JEΓ(λ)>. = <9».(y), %)>+<%) .
J

,
•

We can suppose supp Sw(#)c[0, 1/w] for example and all the terms in (5.12)

make sense (recall from Remark 5.1 that L(y, x)x~m~l/2~l(y, x) is continuous in

x with 7(y, x)-^Ί(y) as x-*0— also supp h is compact). In this respect we note

that s'mceh=QH one has

(5.13) %)y-2"-' = <W(y, μ),

But for HeWl, \"+1H(\)eD and since *-"/„(*) = am Cos (* Cos θ)
Jo

Sin2w θdθ for am = l}~m\\/~πT(m-\-\\ΐ) (cf. [22]) it follows that |θ(y, )̂ | <<m)

and consequently θ(y, )eLΓ Therefore ^(y)^"2111"1 is well defined (and con-
tinuous) with

(5.14) lim h(y)/y2^ = lim <Λ(y), A(y)> = c2

m Γ \2

v->0 » >o<» JO
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In particular we can define R^(Wl

my by (cf. [11])

(5.15) <Λ0, hy = <£, λ2»+1, A(λ)> = lim h(yWm+l

(clearly RQ=c2

m\2m+1<=(Wl

my). Now from (5.13) if a sequence Hp-+Q in Wl

m

then hp(y)jy2m+1-*Q in L°° say. Hence for ψ&£= {<ψ>; ofm+l^r^L\} we have
ζψ,hpy=(x2m+1ψ,hp/x2m+ly-*Q. Ύhush^ίH' and the map H-*h:Wl

m-*E' is
continuous (sequential limits as indicated in Definition 5.5 are quite sufficient
here). In particular the first term in (5.12) is well defined for ^^j^and one

can determine then Rl\ h-*(φn, hy^(Wln)' which we write as

(5.16) <£g, hy = <φn, hy

(cf. [11] for an essentially equivalent version). In view of (5.15) we have then
R»Q-»RQ in (Wl

my weakly.

Theorem 5.7. One can write R°=Rl+Rn

q in (5.12) and R*n-*RQ+Rq=R

weakly in (Wl

my where R is given by (5.6) as R=R0+Rq, R0=c2

m\2m+\ <Rqy hy=

S
oo ^ ^_ „

h(y)y~m~l/2l(y)dy for h^Wl

m (h=2h) and formally, as a distribution,
o

(5.17) Rq = c2

m\2m+1 \ ym+1/2l(y)θ(y, μ)dy .
Jo

Proof. Writing ym+l/2L(y, x)x~m~1/2 = ym+1/21(y9 x) the remaining term in
(5.12) becomes

(5.18) ΞΛ =

Now as noted in Remark 5.1 it is appropriate to assume ym+1/2Ί(y, x)<K for
0<x<y (y<σ say) so we write ym+1/2Ί(y, Λ?)eL^c; here supp Ac[0, σ] will be
compact and one can assume y<σ in this discussion. The function ψn(y)=

Ϊ
y ~ -

ym+1/2J(y, x)8n(x)dx is continuous since δneLx and L^y, x)=ym~1/2Ί(y, x) is
o _

continuous in (y, x) (cf. Remark 5.1). Hence if Hp=hp-*Q in Wl

m then as above

hp(y)ly2m+1->Q in L°° so there exists Rn

q^(Wl

my such that Bn = <jι(y}y~2m~\

Ψn(y}y='\R">hy. Now as n->oo ^n(y)-^^τ(y)=ym+l/2Ί(y) pointwise boundedly—

hence in L1 by dominated convergence—and therefore <J?J, hy=&n-*<(h(y)y~2m~i,

ym+1/2Ί(y)y='Ξ. But as above Ξ = <CR9, hy (ym+l/2Ί(y) is continuous) and we
have then Rn

q-^Rq in (Wl

my weakly. As explicit formula for R" is unnecessary
and for Rq formally the last expression in (5.6) is required. We note in this

respect that given h^Wl

m with supp λc[0, σ], where (by (5.13)) h(y)y~2m~1=

X>\2m+1h(\)θ(yJ μ)d\, we have formally (cf. also (5.6) and (3.8))
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(5.19) <RV, h >=
Jo

which gives (5.17). We emphasize that in equation (5.19) in general Rq is a

distribution. Q.E.D.

Thus for f.g^E with x~m~1/2f and x~m~1/2g^K we have proved the

Parseval formula

(5.20) Cr-w/βO, y-»-1/2g(y)> = <R, Λf(λ)^(λ)>ω

for R^W'=(Wl

m)' (this coincides in form with (3.1) since dω=d\). We state
this formally as

Theorem 5.8. Let f.g^E with compact supports. Then there exists a

generalized spectral function R=RQ+Rq(=W'=(W1

m)', where RQ=c2

m\2m+1 and

Rq is determined by Theorem 5.7, such that the Parseval formula (5.20) holds

(dω=d\).

REMARK 5.9. In Chebli [1-18; 1-19] operators of the form P(D)u=(Au')Ί
A—q(x)u are considered for real A and q with A'/A generally of the form a/x
near x=0 and various hypotheses on q at 0 and oo (cf. also [14] and [1-25] for

special A with q=Q). Paley- Wiener type theorems are obtained there using

analyticity properties of transforms Pf(\), P/(λ), etc. and the analysis there

should lead to the construction of suitable spaces W for general Parseval for-
mulas (as in Definition 5.5). In particular (cf. Remark 4.1 in Part I) given a

spectral measure dv=v2(\)d\ for the principal part (Au')'/A of P(D)u the func-
tion z)2(λ) should play the role of the weight function \2m+1 in W2

m or Wl

m. The

technique of utilizing J2g=βg for g = £*g (cf. Theorem 2.3), which we extracted

from Marcenko [16], is also used in Koornwinder [14] for studying Paley-

Wiener type theorems and this is analyzed in Carroll-Gilbert [8; 9].

6. The Gelfand-Levitan equation. We will give a sketch here of

Gasymov's proof of the Parseval formula in [11] since it can be recast in our
framework in a meaningful way and brings the Gelfand-Levitan equation into
the picture (the Marcenko equation will be studied in [6]). The discussion will

be formal in general but precision can easily by supplied following Sections 2-5.

First one observes that if there is a Parseval formula of the form (5.20) say,

Ej^x^-^f^K^F-Pf-^^f^W^ and F.F^Wl with
, the action of R is specified formally in (Wl

m)' by the rule
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(6.1) <

The point here is to deduce this without recourse to Ty

x and then to show that
this formal stipulation allows us to determine R.

Lemma 6.1. Given (5.20) and Ί(y)=lim L(y, x)x~m~1/2 as before it follows
that (6.1) holds formally and describes the action of R on ίYF2.

Proof. Note that <*, Pf(\)Pg(\)\=<R, \f(x)H(x, μμ)dx \g(y)H(y, μ)dy\

= \\f(*)g(y)<R, H(x, μ)H(y, μ)\dxdy so formally <#, H(x, μ)H(y, μ)\ =

S(y—x)/y2m+1 (equivalently 8(x-y)lx2m+1). Now recall Θ=BH and take B in

!

y
L(y, t)H(t, μ)dt. Put this in the expres-

o
sion for </?, HH\ to obtain

(6.2) <Λ, H(x, μ)θ(y, μ)\ = 8(y-x)/y2m+l

, H(x, μ) Γ L(y, t)H(t,
Jo

Let now x-*Q in (6.2) to obtain

(6.3) CR, θ(y,

Multiply (6.3) now by / as in (6.1) with F—^2f\ this gives (6.1) upon integration

(with F=F1F2). Q.E.D.
Equation (6.1) shows what R must do acting on ίγF2 and we now refer to

Section 5 to confirm that there is an element jR— R0

JτRq^(Wln)
/ which fulfills

this. Thus by (5.15) <#<,, A> = lim H)y)/y2 m+1 and as in (9.15) <#9, A>-

Hence

Lemma 6.2. The formal requirement (6.1) (wϋA dω=d\) is fulfilled by

choosing R=RQ+Rq&(Wm)' and this determines R.

Since Fi=J2gi for ^r, =J8*/ί the Par seval formula for Q transforms derived

in Section 4 allows us to say that

(6.4) lim M = c«
y-^0 z»»+1 J



856 R. CARROLL

$
00
K(ξ, x)fi(ξ)dξ

X

to get Γ χ-2m-1g1(x)g2(x)dx = \" x-2a-1fl(x)f2(x)dx+ (V2--1/^*). (Γ*(f,*)
Jo Jo Jo \ J *

χ/2(?yι)fo+JV2"-l/2(*) (JJ*(*, *)£(«#)<**+J/"2""1- (jj*& *)/!(*)#)

«oo \ Λ oo

(̂97, x)f2(rj)dr] )dx=\ x~2m~1fι(x)f2Mdx+I1 (we will compress some cal-
x / J o

culations here). Next set I2=<^R-R^y F1F2>= Γy~m~l/2f(y)'ϊ(y)dy= Γ[7(y)/
Jo Jo

>"+I/lIβ{^[/Ί(*) + t"-K(f. *)/ι(eXΏ -^ΓΛW + Γ κ(^ xV*(nW$ dy where

J Λ Jx

j2gi(\)=Γgi(x)S(x)μ)dx and QF(y) = Γ F(\)W(yyμ)d\. We consider the
Jo JoJo

term

(6.5) Γ Ί(y)y-~-* Γ W(y,
Jo Jo

= Γ ?(y)y-m-" \Jo J

Ux}fm ΓΓ -̂  W[y, /*)θ(*, μ)θ(e, μ)dyd\dξdx
Jo Jo "1^1''

and set formally (ίF(j, Aί)=c^(λy)2"<+1'"(>', λ) and θ(*, Aι)=c^1

(*. λ))

(6.6) F(x, ξ) = ΓΓ -M W(y, μ)@(X> μ)@(ξ, μ)dyd\
Jo Jo m+1'*

When £->0, c^faξ) mjm(λ£)-*^ and we have

(6.7) F(x9 ξ) - χ-m'^Hm[Hm[Ί(y)}] - Ά-

Further (formally) Q(DX)F=Q(D()F so that we can write

(6.8) F(x, ξ) = Sift*)*-"-1/2]

where S is the generalized translation associated with Q (cf. Part I). Since

F(t, r)=F(τ, ί), I2 can be written (with (6.5) as a model) I2=\(f1(x)f,J(ξ)F(x, ξ)

, ήF(s, x)dsdxdξ+f1(x)f2(ξ)K(x, s)F(s, ξ)dsdxdξ+

, r)F(τ, t)dtdτdxdξ .

In order to deal with I2 further we need a few facts relating K and L.
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First recal (using (5.2)) H(x, μ)=βθ=θ(x, μ)+(* K(x, t)θ(t, μ)dt and θ(y, μ)=
Jo

BH=H(y, μ) + (y L(y, ξ)H(ζ, μ)dξ. The relation Q2 = I also says that

<W(y, μ), θ(xy μ)>ω=8(x-y). Writing out θ(y, μ) =BH=B%θ=($θ}(y, μ)+

(yL(y, ξ)(fiθ)(ξ, μ)dξ one obtains then (since K(ξ,y)=Q for y>ξ)
Jo

(6.9) K(x, y)+L(x, y)+ Γ L(x, ξ)K(ξ, y)dξ = 0 .
Jy

We will state the next relation as a theorem because of its general importance.
Equation (6.11) is the Gelfand-Levitan equation and we give a derivation below
in our framework. First set F(x, ζ}=(xξ}~m~lf2F(x, ξ) with K and L as before.

Theorem 6.3. The following formulas hold under the hypotheses indicated
in Section 5, a somewhat neater formulation being given in (6.21).

(6.10) F(ξ, t)+ Γ K(t, s)F(s, ξ)ds = L(ξ, t)-K(t, ξ)
Jo

F(ξ, ί)+Γ K(t, s)F(s, ξ)ds = r2-1 ,̂ O-Γ2"-1^, ξ)
Jo

For ξ<t, L(ξ,t)=Q in (6.10) and we have an integral equation for K(t, ξ) (phrased
in ( x y y ) variables for convenience later,

(6.11) y-^-^x, y)+F(x, y)+ Γ K(x, t)F(t, y)dt = 0
Jo

£(*, y)+F(x, y) + (* K(x, y)F(t, y)dt = 0 .
Jo

We defer the proof of Theorem 6.5 for a moment (see Remark 6.5) in
order to return to 72. Thus, using the relations above between K and L we

have /2= J JΛWΛφPί*, ξ)dxdξ+^f1(x)f2(ξ)[-F(x, ξ)+L(x, ξ)-K(ξ, X)]dxdξ

+ \\Mx}/2(ξ)[-F(ξ, x)+L(ξ, x)-K(x, f)]ώ«ίf + J5/ι(*)/a(f)5D*^(*, t)[-F(t, ξ)

+L(t, ξ)-K(ξ, Wtdxdξ^foriWMx, ξ)-K(ξ, xWxdξ+lfatftf)'

J x ~ ^ ~K(x, s)[L(sy ξ) — K(ξ, s)]dsdxdξ. Note here for example one can write
o

J J/ι(*ι/i(e)J^(fι *)̂  χ)dsd*dξ= J \f^)f2(ξ)(Xξr+1/2' J V"-^& ^)^+l/2

X (sx)~m'1/2F(s, x)dsdxdξ= j J/ι(Λ?)/2(f ) ̂ K(ξ, s)F(s, x)dsdxdξ etc. Now K(x, y)

Ϊ
x
K(x, s)L(s, ξ)ds=Q for

o

5*K(x, s)L(s, ξ)ds= — L(xy ξ)
έ
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— K(x, ξ). The same formulas then hold for K and L. Consequently in the

last expression for /2 we have for example \ \/ι(#)Λ(l?)l K(xys)L(sy ξ)ds =

\fι(x)^/2(ξ)[-L(x,ξ)-K(x, ξ)]dξdx and hence /2 becomes I2= -Jo°°/ι(*)

X Γf2(ξ)K(x, ξ)dξdx- Γ/ι(*) (Xf2(ξ)K(xy ξ)dξdx- Γdξ (Vι
J* Jo Jo Jo Jo

χK(ξ, s)ds. Now look at I, and write for example U"2w"

It follows that ^H-J^O and <#, F1F2y=<^flίf2y which is the desired Parseval
formula. We summarize this in

Theorem 6.4. Tfo Parseval formula (5.20) wΛA jR^^+jR^ βί fe/or^ (and
dω=d\) can be established as above (without recourse to Ty

x).

REMARK 6.5. We will prove Theorem 6.3 now in our framework of spaces
and maps. The proof is modeled on a procedure of Marcenko [16] but our
representation in terms of generalized translation exhibits the facts more mean-
ingfully. Recall first

(6.12) R-R, = 4λ2*+1 Γ *»+1/27(*)#>, \)dx = <W(x, μ) , /(*)> == Q[t(x)]
Jo

where ί(x) = l(x)x~m~1/2. Note that when m= — l/2, cm = \/2jπ and R0 =

C2m-^m+i=2_ with w^ ^ = 2_ Cos.yλ; further R-— =C\— L(y, 0)1 where
π π π L π J

C denotes the cosine transform. Recall also that L(y, ΐ)=y~m~ϊ/2L(yy t) tm+1/2

and J(y) =lim l(y, i)Γm-l/2 as t->0 so that ί(y)=Ί(y)/ym+l/2=lίmL(y, t)/t2m+1

(=L(y,0) when ι»=-l/2). Now write H(x, μ) = (fiθ)(x, μ) = θ(x, μ) +

J x
K(xy t)θ(ty μ)dt and consider the product (R—R0)H(x, μ) in (Wl

m)r. Let us
o

ask for φ(ξ, x) such that (R—R0)θ(x, μ)=Q[φ(y, %)]• Formally this says that

(6.13) φ(y, X) = Q((R-R,)Θ(X, μ)] = <%, μ), θ(x, μ)<W(ξ, μ),

where γ(jy, Λ;, ξ) is the kernel of Sy

x given in Part I as γ(y, ΛJ, ?)= w(j, μ)θ(x, μ)

X PF(|, μ)rfω. Hence one can say (from H=θ-\-\KΘ)

(6.14) (R~R0)H(x9 μ) = Q[S>l(x)]+ K(x, t)Q[Sy

tί(t)]dt
Jo

= Q[«/(*)+ ί* X(«, ί)5?/(ί)Λ] .
Jo

Now consider F(λ)=^/(λ)e ϊFi so that from Theorem 2.3
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(6.15) F(\) = ^/(λ) = </(*), Θ(X, μ)y = </(*), (BH)(X,

= <H(t,μ), β*/(0> = <f(t)+"f(x)L(x, t)dx, H(t,

Recall if £=J8*/ then 2g=2(Qp)f=Pf and now for /=£*/ we have Ph=
P(P2)f=2f. Suppose we have a Parseval formula (5.20) for f,g^E=F
suitable. In a standard way now this extends to say g(x) = δ(x—y) with
Pg=H(y, μ) and one has </?/, H(y, μ)R\=y-2m-1f(y). Since F(\)=P(B*f) we
have then

(6.16) <F(λ), H(x, μ)R\ = X-*"-\B*f)(x)

= X-*»-lf(x)+X-^ \"f(y)L(y, X)dy .
Jx

On the other hand R^ is the spectral function for Q so that
<.X-

m~lf2f, x'm-llΐg>. Hence < /̂, θ(x, μ)R0\=χ-2m-lf(x') and

(6.17) <F(λ), H(X, μ)Royω = <2f, H(x, ^

•= <J2f, [&(X, μ)+ Γ K(X, t)θ(t,
Jo

= X-*»-if(X)+ Γ K(x,
Jo

Consequently

(6.18) <ί (λ), (R-R0)H(x, μ)\ = B

, χ)dy- \*f(t)K(x, or1

Jo

Since (̂Λ:, ί)=0 for ί>Λ? and L(y, x)= 0 for Λ?>^ we can write these as integrals
over (0, oo ) and obtain

(6.19) Ξ = Γ f(y)[x-"-lL(y, x)-y-^K(x, y)]dy .
Jo

Now <2f, (R-R0)H(x, /*)>.=</, 3*[(R-Rt)H(xt /*)]> and here J2*=Q so that
we can write

(6.20) (R-R,)H(x, μ) = Q^-^Liy, x)-y-^K(x, y)] .

Equating (6.20) and (6.14) we get (6.10) in the form

(6.21) x-^-^y, x)-y-2*-lK(x, y) = S>J(x)+ {' K(x, t)S>J(t)dt
o

from which the Gelfand-Levitan equation (6.11) follows. Q.E.D.

REMARK 6.6. The importance and use of the Gelfand-Levitan equation in
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quantum physics is well known and we will not comment on this here (cf. [1-17;
1-39]). For connections of the Gelfand-Levitan equation with transmutation
and special functions see [3; 6; 16; 24].
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