Carroll, R.
Osaka J. Math.
19 (1982), 815-831

TRANSMUTATION, GENERALIZED TRANSLATION,
AND TRANSFORM THEORY. PART I

RoBerTr CARROLL

(Received July 22, 1980)

1. Introduction. The development of transmutation 'theory initiated
in Carroll [8; 9] has proved to be very productive and we continue this line of
investigation here (see [8] for extensive references). Let us think of P(D) and
Q(D) as (usually second order) linear differential operators acting in spaces E
and F. An operator B: F—F, usually some kind of integral operator, trans-
mutes P into @ if QB=DBP acting on suitable objects. In [8; 10] we displayed
a framework of spaces and maps linking the various transforms arising from P
and @ together with B, B™!, B¥, etc. In this series of papers (I and II) we will
deploy this framework in developing further the ideas of [8;9], and proving some
results announced in [10], as well as generating, in a sort of canonical way, some
general Parseval formulas of Gasymov-Marcéenko type (cf. [26;27;37]). Our
framework also guided us to formulate the link between some of Fadeev’s scatter-
ing technique in [24] and various connecting formulas for special functions
involving Riemann-Liouville and Weyl type integrals (cf. [31]) and we have
written this up as joint work in [12; 13]. Further extension of this scattering
technique allows us also to give versions of the Gelfand-Levitan and Marcéenko
equations in a context based on harmonic analysis in symmetric spaces (see
[11] and cf. also [29]): such Gelfand-Levitan equations are also derivable via
a technique indicated here in Part II in our general transmutation framework.

2. General formulas. One way of finding a transmutation operator
B: P—Q is to consider a Cauchy problem (*) P(D,)p(x,y)=Q(D,)p(x,y)
with @(x, 0)=f(x) and ¢,(x, 0)=0, where f is extended to (—oo, 0) as an even
function for example; then, given a unique solution to such problems, Bf(y)
can be defined as @(0,y) (cf. Lions [35]). A Cauchy problem is not always
suitable here and unique solutions can often be assured by an appropriate com-
bination R of data at y=0 plus growth conditions on @. When Q=P we
speak of a generalized translation associated with P and write (x, y)="T7f(x);
similarly for P=@Q we write @(x,y)=S?f(x) so that P~T and Q~S. It is
important to note that not all transmutations need arise in the above manner
(cf. [11;13; 24]). As in Carroll [8; 9] let us consider generalized eigenfunctions
of the form
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(21)  P(D)H(x, p) = pH(x, p); H(O, p) = 1;
Q(D,)8(y, v) = v8(y, v); €0, ») = 1;

(2.2)  P*D)x, p) = px, p);
Q*(D,)W(y, v) = vW(y, v)

where P* and @* denote formal adjoints. Here we are using x[0, o) and
y€[0, o) as a model situation but other intervals (e.g. (— oo, o0)) can also be
envisioned. We will proceed somewhat formally at first. Thus assume what-
ever requirements Ry or Re of the form D:H(0, n)=0 or D}8(0, u)=0 plus
possible growth conditions are necessary in order to make A and © unique in
suitable spaces E and F. This is discussed in [8:9] and examples are given;
in the present situation simply take H’(0, x)=0 and ©'(0,»)=0 as a model
(for higher order operators see e.g. [4;5;6;7;22;33; 38;41; 42; 46; 47; 48]).
Similarly we will define bracket operations <H(x, u), f(x)> and <{H(x, w), F(p))>
for example without spelling out details. 'The first bracket is usually a (weighted)
distribution pairing and the second a spectral type integral involving a suitable
measure (see Section 3 for examples). Then define

(2.3) By, %) = <Q=, 1), O, 1)>s .

Note here that x and » may be different in (2.2) and the o pairing refers basically
to a measure or distribution over the spectrum o(P) of P. In order for ex-
pressions such as (2.3) to make sense and be useful we must have some coin-
cidence of o(P) and o(€). Our examples in Section 3 below are illustrative
here and provide situations where p=—\’—p% and v=—2\*—p}; the pairing
involves a measure do over a A range (0, o). Also in such a case we shift
notation and speak of transmuting IS(D)=P(D)—}— p% into é(D):Q(D)—}— ps and
then the two spectra a(ls) and a(é) are identical; we basically assume this kind
of situation holds here in general. It could be interesting to study cases where
the two spectra are substantially different but we have not done this. Now
let U(x, £) be the solution of

(24)  PDYU = PDYU; Ux, 0) = fix)
so that U(x, £)=T:f(x) (with U(0, £)=f(£)). 'Then formally
2.3) b(x, y) = <B(y, &), Ulx, £)>

satisfies (*¥) with ¢(x, 0)=f(x) and from ¢(0,y)=(Bf)(»)=<B(y, ), f(&))> we
have B(y, &) desplayed as the kernel of B. This can be made rigorous by

assuming

2.6) Q@ p), 1>, = 8(x)

which is known to be true in many abstract and concrete situations (cf. Section
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3). If one writes further

@7 flw) =<, w), f(6)> = Pf(u)

then rearranging (2.5) it can be shown that

28)  d(x,y) =<8, u), fAw)H(x, 1)

" which is in a form generally associated with separation of variables techniques
for (*) and this implies, setting y=0,

29)  flx) = <fw), Hx, p)>, = Pf(x)

while the transmutation operator B is displayed as (setting x=0)

(2.10)  Bf(y) =<8, u), An)>. = 2f(y).

Thus assuming R and Ry we can state (cf. Carroll [8; 9])

Theorem 2.1. Given (2.6) the kernel of B is given by (y, x) of (2.3) and
¢ is given by (2.5) or (2.8). Further P=P~! and B=2P.

Proof. That ¢ satisfies (%) follows from (2.6) and the uniqueness insured
by R gives a well defined B with kernel @ (provided the ¢ of (2.5) satisfies R).
The rearrangement of (2.5) involves looking at <Q(&, n), U(x, &))> = (s, p)

and R, will give Jr(x, [L):f([L)H(x, u) (provided r(-, p)€E). The inversion
formula (2.9) is then immediate and (2.10) defines 2. Q.E.D.

Remark 2.2. This presentation is somewhat “neater’ than that of Carroll

[8; 9] and shows that the inversion (2.9) can be based on the uniqueness insured
by R and Ry. '

Let us assume also that, working in suitable spaces, B is 1-1 with inverse B
which can be then characterized as follows. Let V(y, 7)=3S;Bf(n) (=S}Bf(y))
satisfy

211) QD) =QD,)V; Wy, 0) = Bf(y).

(so that V(0, »)=Bf(x)). Consider, in analogy with (2.3), but with a generally
different bracket operation (cf. Section 3)

(212) 'y(x, y) = <H(x: ”)) W(y: v)>w .
Then we can show that
(2.13)  Px, y) = <v(x, 0), V(3 )0 = p(x, y) .

The brackets here involve generally different pairings than (2.3) and (2.5) (e.g.
a different spectral measure arises in (2.12)). Indeed P(D,)¢=<P(D.)y, V>
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while Q(D,)p=<7, QD,)V>=<7, QD,)V>=<Q*D,)7, V> and P(D,)y=
Q*(D,)v so that § satisfies (*) with
(2.14) &(O: y) = <7(0’ ), V(3, 7)> = KL, Win, v)>u, V(y, 7)> =
<8(n), V3, m)> = V(», 0) = Bf(y)
where it is required that (cf. (2.6))

Now if Bf is extended suitably for y<<0 and natural conditions R, compatible
with R, can be imposed on D:¢p(0,y) which together with possible growth
conditions guarantee a unique solution of (1.1) for x>0 with data Bf(y) then
$=¢ as asserted (provided ¢ as constructed, and ¢, satisfy R). Since V(0, )=
Bf(n) we have then

(2.16)  (x, 0) = <v(x, DV(0, n)> = fix) = <¥(x, 7), Bf(n)> =
KHi(x, v), W(n, v)>0, Bf(n)) = <H(x, v), {W(=, »), Bf(n)>>n

which we display as
(217)  Bf(v) = <W(u, »), Bft)> = QBf(v)
(2.18)  f(x) = BBf(x) = <H(x, v), Bf()>. = PQRBf(x)

so that B=/Q (P involves a different pairing than P in general). Further from
QD)X W(n, v), V(y, n)> = v<W(n, v), V(y,)> with <W(n,»), V(0, 7)>= Bf(»)
and the condition Re one has by uniqueness <W(x, »), V(y, 7)>=Bf(»)8(y, »)
provided <W(, v), V(y,7)>EF. Hence (cf. (2.8)—(2.9)) from (2.13) we obtain
(219)  ¢(x,3) = <H(, »), Bi)ew, .

and as inversion for Q set x=0 to get (with a different bracket than for 2)
(2.20)  Bf(y) = <Bf(»), ©(y, v)>. = QBf().

Theorem 2.3. Given R and Re as indicated plus (2.15) it follows that
B=PQ has the kernel y(x,y) of (2.12) with B=B™" and ¢ is given by (2.13) or
(2.19). Further @Q=Q".

Let us define next the transforms
(2.21)  Pf(p) = <{H(x, n), f(x)>; PF(x)=<Qx, p), F(u)>,
(2.22)  2fp) =<8(y, v), f(y)>; QF(y) = <W(y, v), F)>, .

Now (cf. Carroll [8; 9]) the eigenfunctions ® of @(D) can be characterized as
O(y, v)= B[H(x, v)](y) since if one looks at w(x,y, v)=H(x, v)®(y,v) then
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P(D,yw=Q(D,)w with w(x,0,v)=H(x,v). Given that w satisfies #, which
involves some compatibility of R, and Re with &, it follows that w(0, y, »)=
6(y, v)= Blw(x, 0, »)](y). Given that B has the kernel B(y,x) of (2.3) we
have then

(2.23)  O(y, v) =<B(y, &), H(E, v)> = PB(y, -)(»)

whereas the form of 8 says that
(2.24) By, %)= PO(y, *)(x)

so that /PO=0. Suppose 2: H — A is an isomorphism for suitably large
spaces 4 and 4. Then for f=# one has

(2.25)  PPf=<PP8(y, v), fy)> = f .
On the other hand B=PAB so that for g=B*f={B(y, x), f(y)> we have

(2.26)  Prg=<PPBR(y, x), f0)> =& -

But we observe that

(2.27)  B*f(x) = <B(, %), f(y)> = <Qx, u), <O, n), f(¥)>>s = P2/(x)
so g€ PA and PPA=A by (2.25). Thus 2: PA—>A and P: H—>PH are inverse.

Theorem 2.4. Let 2: #— 4 be an isomorphism. Then 2: P —
and P: H#—> P4 are inverses. Similarly let 2: £—£ be an isomorphism. Then
2: QL—-K and Q: K—QK are inverses.

Proof. Only the last part remains and we observe first that from

(2.16)  Bh(x) = {v(x, n), k(n>) with
(2.28)  B*k(y) = <W(y, v), <H(x, v), k(x)>>, = QPk(Y) .

Now by (2.12) y=@QH while upon using the function w(x,y, v)=
H(x, v)O(y, v) again and assuming it satisfies £ we obtain H(x, v)=2580(-, v)(x)
so that H=2y. Hence H=2QH and y=@QZ2v. Consequently for hek
2Qh=<{2QH, ky=h while for g=DB*, Q2g=4Q2y,f>=g with gEQ,é. Thus
as before 2: Qlé—»é and Q: /(v’—>Q/z’ are inverse. Q.E.D.

3. Models based on selfadjointness. There are numerous examples
where all of this fits together. Classical cases are P(D)=D?—g(x) and Q(D)=
D?, or vice versa, which arise in quantum mechanics (cf. [15;16;17;24; 33;
37;39]). More generally one deals in quantum mechanics with D*—(m®—%)/«.
with or without a potential g(x), and we prefer to treat this in the form D?4-
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[(2m—++1)/x]D (cf. [1; 2; 8; 9; 10; 17; 24; 26; 27; 34; 35; 39; 44;45;49]). Indeed,
treated in this manner it provides a natural link to many other intersting
operators which arise in the context of harmonic analysis on symmetric spaces
(cf. [8;9; 18; 19; 25; 31]); we have studied this latter situation in more detail in
[11;12; 13] but will give some information here to give body to the general
theory.

Exampie 3.1. Consider P(D)u=(Au’)'|A where A has properties, spelled
out in [13], modeled on the radial part of the Laplace-Beltrami operator on a
noncompact Riemannian symmetric space of rank one. In particular one can
take A(x)=Ap(x)=Agp(x)=(e"—e *)*** (" +e *)**! with p,=a+B+1 or A(x)=
AY(x)=(¢"—e ") (e*—e™**)" with p,=$(p+2q). The relevant eigenfunction
equation is P(D)u=(—\*—p%)u where p,=%lim 4’/A4 as x—co. At this point
let us shift to P:P—}— p% and speak of transmutations IS—>é=Q+ p% etc. Thus
P(Dyu=—u is the eigenfunction equation for P. Note for A(x)=x"*' we
get D?+((2m+1)/x)D with p,=0. Let ®{(x) be a “spherical function”,
@f(0)=1, and D,p?(0)=0, satisfying the eigenfunction equation for P so that
@x(x) = H(x, p) for p=—n% Set QL(x)=Ap(x)pL(x); P*(D)Qf=uQf where
P*(Dyr=(A(|A)") for A=A,. Thus Qf(x)=Q(x, 1) in the notation of Sec-
tion 2. For example when A,=Ag, then @f (x)=@3(x)=F(3(p4+i\), $(pa—1IN),
a-+1, —sh?x) is a Jacobi function of the first kind (cf. [23]). The case A(x)=
sh?™*1x with A’|A=(2m-1) coth x arises in working with SL(2, R)/SO(2) and
is particularly useful for illustrative purposes. Operators P(D) as indicated are
selfadjoint in L*(4dx) but we prefer to work in E=E,= {f; A”’fL} with
P*(D) acting in Ej={f; A" *fL%. Infactour general framework of spaces
and maps in [3; 5] was based upon “spreading out” a selfadjoint situation in
this manner (cf. Section 4 for some further remarks on these spaces). For P
of this type we write dvp for the associated spectral measure (v~o in Section
2). Let us remark also that explicit formulas for dv, exist in terms of |¢(\)| 2
where ¢(\) is the Harish-Chandra (or Jost) function (see [7; 8; 9] for details).
Then write with a slight change of notation (f(x) in place of f(,u), etc.)

GD  fo)=pfn = [ feet@arwx;
1) = Pfir) = [ fonp@inan).

Let Q(D) arise from Ag(x)=DB(x) as above so we have @f(y)~0(y, u) (i.e.
QD)pf = (—N2— p3)pf and Q(D)pl = —A*p¢ so v~—2r?) and W(y, »)~
Q2(y)=A2¢(y)PL(y). Q and Q will have a form similar to (3.1), which we can

write also as §(\) = Qg(\)=<g(»), QL(y)> and QG(y)=<G(\), #L(¥)>n; o of
Section 2 corresponds here to dwe(X). The P and 2 transforms are written

then as AF(x)=<{F(\), ¢{(¥)>, and 2G(y)=<{G(\), #%(y)>» while Af(r)=<{f(x),
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®5(x)>, PF(x)=<{F(\), Qf (%), etc. The various inversions P=P* etc. from
Section 2 are then also known from results in [13; 18; 23] for example. We note
that such inversions based on uniqueness requirements (R, #) and (ﬁ, Re) provide
new derivations of integral transforms such as Hankel, generalized Mehler, etc.
modulo the spectral pairings.

Now using this background we can generalize some results of [8;10] as
follows. First let us recall from [8; 18;19;21; 30; 31; 32;40] that if T7 is
the generalized translation associated with P(D), or equivalently with IS(D)

(!) then formally T°=H(y, P)=S H(y, p)dE,, where dE, is a spectral resolu-

tion of I over o(P) (AE(0, ), p=—22), and T:H(x, p)=H(y, p)H(x, p).
Further [T7f(x)]\(z)=H(y, p)f(1) which we also write in our altered notation
as [T7f(x)]"(A\)=@L(»)f(\). A generalized convolution is defined by (f*g)(x)=

S:T;,”f(x)g(y)A(y)dy and we note that @ in (2.5) can be written as (TEf(x)=
Ulw, §)=TEf(E); O=AH)
(32 o3 =<8, 8, U B> =

[T a@xHE, 1), 00, WO TEE = [)*B0, )

where B(y, £)=<H(E, u), ©(y, £)>. Now define 8 ,(x)=38(x)/A(x) (working on
suitable functions). Then 8 (A)=<84(x), QF(%)>=<8(x), I (*)>=1 and 8 ,(x)=
<pR(x), 1> (i.e. <QF(x),1>=8(x) as desired in (2.6) for example). Further
[728 4(x)]* =% (y) and similarly for Q arising from B(x), 85(A)=<85(y), Y (y)>=
<8(p), PL()>=1 with 85(y)=<@2(»), 1> and [S285(x)]"=®$(y). Then from

Bf(}l)s)=<,8(y, x), f(x)> with B(y, x)=<Q%(x), pL(¥)>v (cf. (2.3)) we have (recall
B: P—Q)

(33) AN =40 | PLeL0)n,0) =

4@ |7 (e )N (S1u(0) drsn).
Similarly Bg(x)=<v(x, y), g(y)> where ¥(x, y) is given by (2.12) as
G4 79) =BO) | p)eLo)Mad) =

B(y) | (T58.£)N(SBu(E) dwan).

Note here in (3.3) that formally [B(y, P,)8,(x)]*=0(y, n)§,=0(y, r)=»2(y)
while in (3.4) [H(x, Q,)85(y)]"=®x(x). Hence formally
(3.5 B, %) = AX)8(y, P:)d4(x);

(% y) = B)H(%, ,)35() -
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Theorem 3.2. Given P~A=A, and Q~B=Aq as above the kernels 3
and v are given by (3.3)~(3.4) and (3.5) holds formally (B: P—@Q, B: §—P).

ReMARKk 3.3. Note that if brackets Bf(y)=<B(», x),f(x)>=S:BA(y, x)f(x)

x A()dx and Bg(x) = <v5(x,3), 80)> = | 7s(x,9)e)BO)dy are used then

Ba(y, x)=B(y, x)]A(x) and v,(x, y)="(x, y)/B(y) are respectively given by the

formulas {p}(%), P(y)>» and {@3(x), PR(¥)De-
Let us observe next that (cf. (2.8)), in the present context.

(3.6) T2f(%) = <H(y, w), [()H(x, p)> = d(, )

since this ¢ satisfies P(D,)p=P(D,)¢ with ¢(x, 0)=<1, f(W)H(x, p)»=
<H(w), H(x, p)»» =PPf(x)=f(x) while $(0,y)=<H(y, p), (#)»=f(y) so that
U(x,y)=¢(x,y). Similarly (cf. (2.19); p=r=—2»\?%

(3.7) S58(y) = V(x, y) = <O(x, u), Zm)O(y, 1)>s -
Writing U(x, y)=T2f(x)=<8(x, , £), f(€)> and V(x,y)=S;8(y)=<7(*.9,7), §(n)?

we obtain formally

(8) Ay &)= Hex, WH, WO, n)dy

(9 7w, 7) = | O W, W, wido

We record this in

Theorem 3.4. The generalized translation operators T} and S} have kernels
B(x,y, &) and v(x,y, ) given by (3.8) and (3.9).

ExampLE 3.5. Consider (3.8) with H and Q given by

(3.10)  H(x, p) = 2"T(m-+1) () ™™ Jn(r) = R"(x, 1)
Q(x, p) = 27T(m+1)"(Ax)*H(x, p).

This is the standard example from [8;9] and we note that Q is chosen differently
than before; this was done for symmetry and is explained in Section 4. Then
we have

@G11) B, y, £) = 2"T(m 1) (xy) "Em+17
-5: ATTHEEAN T )WM)W NE)N -

By known formulas (cf. [3; 36]) one has then B(x, y, £)=0 for 0<¢<|x—y| and
&E>x-+y while for |x—y|<E<x+y

— _Dm+l) (ENq_ymr
(3.12) B, y, S)~m<xy)(l e
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where 3=(x"+1*—£%)/2xy. Thus

(3.13)  TIf(x)— S.Hy. AE)B, y, E)IE

and hence we can write

T'(m-+1) ! 2\ m—1/2
C1) T = T [ A
with E=+/ x*yP—2xyz. This is a new derivation of a formula of Copson-
Erdelyi [20] and Levitan [34].

4. Explicit formulas for a model case. Let us record some formulas
here for a model problem based on P,(D)=D*+((2m+1)/x)D. This operator
will be used in developing the framework for general Parseval formulas in Part
IT based on which analogous results for other operators P(D)u=(Au")'|A will
follow (here A=«"*'). Thus recall (3.10) for H and Q (satisfying P,(D)u=
—A\%). One can write Pf(A)=("""22"T(m-+1))H,[x"/*f(x)] and PF(x)=
(2"T(m-+1)[x" V2 H,[»"""V2F(\)] where H,, denotes a Hankel transform. We
emphasize that Q) is not AH here so P is not the same as in Section 3. Standard
theorems on Hankel transforms say that H,: L>—L? is a selfinverse isometric
isomorphism for suitable m and here, modulo constants, x™*/2 f(x)HX‘m‘l’zfA(x)
under H,. Thus the choice of E=E,= {f; """’ f(x)eL*} is indicated (cf.
Example 3.1) and we take E=PE={f; X‘m‘l/zf()n)ELz} (recallalso E'=E. The
basic duality between £ and £'=F is expressed as < f,f)zr f(x)ﬁx)dx

M AN AN 0
(E={f;x""2f(\)eL?%}). Note here that for this model 127 | e(N) | P=c2 A1
=R, where ¢,,=1/2"T'(m+1) (cf. [11; 13]); this can be written dv,=Rd\ where
Ri?=c,\"""2, Now in (3.10) a normalizing factor involving A has been inserted
into Q (i.e. Q& AH). In fact what we have is exactly the relation Q(x, u)=
Ry(\)A(x)H(x, n)! Hence it was possible in [8;9; 10] to omit the measures dv
and set for example P, f(x)zg: FOOH(x, w)dn with Pf(A)= f(x)=§0 A, p)dx
since Pof=R,(\)Pf and Pyof= SRO(X)P FHdN— SP FHdv—PPf—f.

ReMARK 4.1. The procedure just indicated could be followed more gener-
ally when dv=2*(\)dn (which will not usually be the case when a potential is
present) by choosing Q(x, u)=QF (x)=2*(\)Ap(x)®5(x). Then a certain sym-
metry could be introduced into the spaces E, E, etc. in which P, P, etc. are

taken to have their “basic” action. The symmetry in E=E, and E} was in-
dicated in Example 3.1. For £, we could take now E,= {f; 5"'(\)f€L?} with

Bi={fi s00feL}. Then »f=s() g: App? fdx:ﬁ(x)g: AP (AY2f)dx and
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one is in the position of asking that the kernel #(A)A¥*(x)@x(x) map L*—L%
In our model this is c, A"t (Ax) ™" ], (Ax)=(Ax)"2 ] ,(Ax) which is the
standard Hankel form. One expects this situation to prevail more generally but
we leave this for now.

REMARK 4.2. In general an emphasis on symmetry of the form discussed
in Remark 4.1 for E,, E,, etc. is probably misdirected effort. The operators
P, P, etc. with Q=AH will have realizations in various spaces (e.g. one will
want to talk about 2T%, A83(y, *), etc. and deal with various distribution spaces).
Also in general the spectral pairings will be effected by means of a generalized
spectral function (cf. Part II and [5; 26; 27; 37]) so a weight function #*(\) does
not exist. Thus at this stage we will concentrate more on the form of our
operators and not on their domains.

Now retaining the formula (3.10) for Q and the spaces E, E, etc. take
Q(D)=D? in LX0, o)=F with ©(y, u)=Cos Ay (satisfying D@ = u® for

p=—2A%). Then W(y, ,U,)ZQCOS Ay so that 2=7, and @ =7;' where 7,
T

denotes the Fourier cosine transform. It is natural to take F'=L*0, o), F=
LX0, oo; d\), and F'=F; here we will identify F and F’, etc. Let us write out
2P=RB as

0

(4.1) .QPf(y)zg F\) Cos Xyd,uzg: A"HER(N) Cos Ay

where F(A)eL?. Then it is natural to take D(2)= {fek;feLl}=EnF so
that map 2 will into F. Similarly consider B=/Q written as

*2)  Bfx) = S: FOOR"(x, Ndn = PB(x) = 2 L0 g o -mevepy

xm+1/2

where F(\)=Qf(») € I*=F. 1In order to insure that R(A)CE we take
D(P)={FeF;x " 2F(\)eL}=FNE. Observe also

#3)  <PLE = [<a@ w), AEO)N =
<, | s, WIS = <fiw), P>

for example which displays P as P*: £'—E’ (ﬁ—»E). Similarly for ¢ D(2)
and suitable f'€F’

(44 <2 > =<[ 80, wan, 17>

— [encey, w, fopan =< 21>
provided we have F'=F so that f'~f& F and 2f'~2f< F which we want to
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intersect E=F£’ so that 2F€ENF. Then (4.4) says 2*=2. Let us obser-
ve also in equation (4.4) that ;€ ENF with 2f eENF=E'NF’ and one has

e, 2f>= S AT E2F (N)d A= Sé(x)ﬂ(x)dx:@, 2f>. For P we have

a formula analogous to (4.4) for fED(P)CF and ¢'~ecE with Pec F E—
F'N E’, namely

#35)  <Af > =< FHE wr, e =
[ FOXH, ), e@pdr =<, pe>

This displays 2 as A* and as above for 2 one has {f, Pe>=<{Qf, e>.

The above example furnishes a typical model of a transform theory linked
to transmutation which we display in the following diagram.

(4.6)

& C &

Theorem 4.3. The diagram (4.6) indicates the relations P=P7'Q=Q™",
P=p", Q=2", P*=P, Q*=Q, p*=p, 2*=2, B*=(2P)*=P2, and B*=
(PQ)* =QP. Here D(2)=D(P)=ENF and R(2¥), RP¥)CECF=E'NF’
From B=pQ=B"'=(2P) '=P~'27" we obtain 2"'=PpPQ and p'=Q2P.



826 R. CarrOLL

REMARK 4.4. As a further guide to understanding D(#2) and D(2), or
equivalently D(B) and D(B), recall that from Bf(y)=<{B(y, %), f(x)> with

B(y, x)=<Q(x, ), 6(y, 1)) one obtains

xm+1/2

v Hm Xm+1/2 C A
Tt 1) L el

#7)  BO,®)=
and this was examined in Carroll [8;9]. Using a technique of Lions [35] an
explicit formula for B(y, x) was obtained as a distribution having a determina-
tion for —1/2<<m<m—1/2 of the form B(y, x)=0Fn(y, ¥) with

(4-8) <BZ(y, x)’ f(x)> — y—2n+1 :z:}:cnk<x2m+k(y2_x2)—+—m+n—3/2’ Dk—lf(x)>+ .

Thus in particular one needs z derivatives of f in order to define Bf. Similarly
for Bg(x)=<v(x, y), g(y)> with ¥(x, y)=<H(x, p), W(y, u)> one can write
(%, y)=R7%(x,y)=2R"(x,y) =&} where R" is the resolvant distribution of EPD
theory (cf. Carroll-Showalter [14]) which can be displayed in the form

- _ T(m+1)x™" A R\m-1/2
49)  Rey) = JOEITE ey,

(cf. Carroll [8]). We can actually obtain however a somewhat nicer expression
for B by recalling a formula used in the solution of Euler-Poisson-Darboux
equations (cf. Carroll-Showalter [14]). Thus for —1/2<m<n—1/2

(4.10) Cosny = Vf.,y(% Dy)ﬂ[yz,,-x S: Rm(gy, N)E+1(1—E2yn-m-3/24E)

where v,=I(1/2)/2""'T\(m+1)I'(n—m—1/2) and é’”(&‘y, A)=H(Ey, p) for p=
—M%.  This can be rewritten as

npy
w1 00,9ty (L.) [ e ey
Then since ®=BH we have

1 "
(4.12) Bp(y) = vny (7Dy) So P(x) a2y — )PPy, |

ReEMARK 4.5. In Part II it will be necessary to deal with By for ¢ =
3(x)/x**! and it seems appropriate to make a few preliminary observations
here. From (4.12) we have formally

(4.13)  Bgp(y) = fy;'”y< _yl_ Dy) R

= [2I'(1/2)/T(m~+1)T(—1/2—m)]y~~2 ,
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I;Ilow By, x) =ck S (Ax)*™*' H(x, p) Cos nydn with  Bf(y)=<8(y, x), f(x)> and
thus

#14)  xI8(y, x) - S: N+ Cos Ayd

as x—>0. Hence Bg should equal cf,,S A1 Cos Aydn. To see that this makes

sense we can use the appropriate pseudofunctions following Gelfand-Silov

[28] and Schwartz [43]. Thus recall

L 81 ]
@15) 9> = | #ow— o0 2 |
for —n—1<Re a<—n (so Re (n4a)>—1). Since

o oo n—1 1
(4.16) S *°p(x)dx — S x‘”[¢(x)—— by ¢<1>(0)%]dx
13 £%+HpM(0)
S (@t 1+ 1)

one can write <x%, @) as
(417)  <Pfs"), 9> = lim [S“’ g (x)dx - :2;:¢(’)(0)E'”+'“/l!(a+l+1)] .

This distributions Yg&, are defined by Y= (1/T(B))Pf(x*"") for B+a
negative integer or zero with Y_,=8® for >0 an integer. One has Y, Y =
Y,., and D"T=Y_,*T with I"T=Y,*T. The Fourier transforms of these

pseudofunctions are given in Gelfand-Silov [28]. First recall that x% =|x|®
for x<<0 and is 0 for x>0; then

#18) o o> =<t o~ =[xl ().
The distributions (x4-70)” are defined by
4.19)  (x+10)® = 23+ "%
(x—10)® = & +e "2 .
The following formulas then apply
(4.20)  F(*%) = e T(a+1)(a+0)""* ;
F(x2) = —ie” """ T (a+1)(c—i0)"*"*.
In particular since Yp=(1/T'(8))x5~"
(421)  FYay = e (a+10)™""".

Now we can write
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(4.22) S: A® Cos AydA = %[g: A% - So_m(—/ﬁ)wem’d,u]

- %mz +7A7]
_ %F<a+1)[l.eiw,/2(y+i0)-a-1__l‘e-iaﬂ/Z(y_iO)—m—l]
= —T(a+1) Sin ¥ [y 4+y=71] .

Consider the identification y~*~!=[y3*"'+4+y=*"!] and set B,=2TI(1/2)/T(m-+1)
XT(—1/2—m). Then for a=2m+1 we compare (from (4.22)) —ciT'(2m+2)
Sin (m+1/2)x with B,. Now recall that (cf. [36]) T'(2m+ 2)=2""*""T\(m+ 1)
X T(m+-3/2)/x/ = while 1/T(1/2—m)=T(m+3/2) Sin (m+1/2)z[z(m+1/2) so
we have —¢;,T'(2m2) Sin (m+-1/2)z=—2T'(m+3/2) Sin (m+1/2)z[T(m+1)\/ =
while 8, = —(2m+1)I'(1/2)/T(m+1)T(1/2—m)=—2(m + 1/2)T'(1/2)T(m—+- 3/2)
Sin (m+-1/2)z|T(m~+1)x(m—+1/2) = — 2T'(m+-3/2) Sin (m+ 1/2)z/T'(m + 1)/\/ = .

Thus we have proved

Theorem 4.6. The formula (4.13) for @(x)=&(x)/x***' is valid in the
form below and B is representable as indicated (2m=integer)

(423)  Bop(y) = Bny ™" = Bulys™ " +y=
=& [ Cos nydn = (R, (3, 14
0

REMARK 4.7. The model diagram (4.6) was constructed via the model
operator P,(D) and the choice (3.10) for Q. Let us point out that the same
kind of diagram holds more generally if we take Q=AH as in Section 3. Thus
consider an equation such as (4.3) and recall (3.1) etc. for the operators P, P,

etc. Let us write

(24 <PLD> = [ fovEonan,) =
KOL(x), fix)>, B>y = {fi(x), <QL(@), B> = {f(x), Pgl)>.

Thus take £=PE~L*\;dv) and £'=E~E. It would probably be most
natural to couple this with E=L* Adx) but this would be contrary to our desire
to “spread out” a selfadjoint situation using P*(D) in L*(dx) etc. This direc-
tive is of course founded in the fact that when complex potentials g(x) are pre-
sent for example we do not have a selfadjoint situation and in general dv will
be replaced by a generalized spectral function R acting on suitable elements.
This is examined in Part II. Note also here that an equation like B¥*=
(2P)*=P2 involves the kernel B*(y, x) where B(y, x)=-<Q5(x),pR(y)>=



TRANSMUTATION, GENERALIZED TRANSLATION [ 829

S.Q.f (*)@(»)dvp(N) arises from 2P (Bf(y)=<B(y, x),f(x)>). But P2f(x)=

P<f(y),¢§’(;v)>=gﬂi’(x)<f(y), P(y)>dv=<B(y, x), (y)> so everything fits to-
gether.

References

[1]1 B. Braaksma: A singular Cauchy problem and generalized translations, Int. Conf.
Diff. Egs., Academic Press, N.Y., 1975, 40-52.
[2] B. Braaksma and H. deSnoo: Generalized translation operators associated with
a singular differential operator, Springer Lect. Notes 415, 1974, 62-77.
[31 Yu. Bryékov and A. Prudnikov: Integral transformations of generalized func-
tions. Moscow, 1977.
[4] J. Butler: On the inverse problem for ordinary differential operators of even order,
J. Math. Anal. Appl. 26 (1969), 142-158.
[51 J. Butler: On the inverse problem for selfadjoint operators defined on certain rigged
Hilbert spaces, SIAM J. Math. Anal. 10 (1979), 281-291.
[6] J. Butler: On the inverse problem for differential equations of fourth order with
rational reflection coefficients. J. Differential Equations 4 (1968), 573-589.
[71 J. Butler: On smooth perturbations of selfadjoint operators defined on rigged Hilbert
spaces, Math. Nachr. 53 (1972), 1-12.
[8] R. Carroll: Transmutation and operator differential equations. Notes de Mate-
matica 67, North-Holland, Amsterdam, 1979.
[91 R. Carroll: Transmutation and separation of variables, Applicable Anal. 8 (1979),
253-263.
[10] R. Carroll: Some remarks on transmutation, Applicable Anal. 9 (1979), 291-294.
[11] R. Carroll: Remarks on the Gelfand-Levitan and Marcenko equations, Rocky
Mountain J. Math., to appear.
[12] R. Carroll and J. Gilbert: Scattering techniques in transmutation and some connec-
tion formulas for special functions, Proc. Japan Acad. 57 (1981), 34-37.
[13] R. Carroll and J. Gilbert: Transmutation, scattering theory, and special functions,
Math. Ann. 258 (1981), 39-54.
[14] R. Carroll and R. Showalter: Singular and degenerate Cauchy problems, Aca-
demic Press, N.Y., 1976.
[15] R. Carroll and F. Santosa: Inverse scattering techniques in geophysics, Applicable
Anal. 11 (1980), 79-81.
[16] R. Carroll and F. Santosa: Scattering techniques for a one dimensional inverse
problem in geophysics, Math. Methods Appl. Sci. 3 (1981), 145-171.
[17] K. Chadan and P. Sabatier: Inverse problems in quantum scattering theory,
Springer. N.Y., 1977.
[18] H. Chebli: Opérateurs de translation généralisés et semigroupes de convolution.
Springer Lect. Notes 404, 1974, 35-59.
[19]1 H. Chebli: Théoréme de Paley-Wiener associé a un opérateur diff érentiel singulier
sur (0, o0), J. Math. Pures Appl. 58 (1979). 1-19.
[20] E. Copson and A. Erdelyi: On a partial differential equation with two singular



830

[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]

[42]

R. CarroLL

lines. Arch. Rational Mech. Anal. 2 (1958), 76-86.

C. Coudray and M. Coz: Generalized translation operators and the construction
of potentials at fixed energy, Ann. Physics 61 (1970), 488-529.

J. Delsarte and J. Lions: Transmutation d’opérateurs différentiels dans le domaine
complexe, Comment. Math. Helv. 32 (1957), 113-128.

H. deSnoo: Inversion theorems for some genmeralized Laplace transforms, 1 and
II, Proc. Kon. Ned. Ak. Wet. 73 (1970), 222-244.

L. Fadeev: The inverse problem of quantum scattering theory, Uspekhi Mat.
Nauk 14 (1959), 57-119.

M. Flensted-Jensen: Paley-Wiener type theorems for a differential operator con-
nected with symmetric spaces, Ark. Mat. 10 (1972), 143-162.

M. Gasymov: The expansion in eigenfunctions of a nonselfadjoint second order
differential operator with a singularity at zero, Trudy Letne;. Sk. Spektral. Teorii
Operator. ..., Izd. Elm, Baku, 1975, 20—45.

M. Gasymov: On the eigenfunction expansion of a nonselfadjoint boundary pro-
blem for a differential equation with a singularity at zero, Dokl. Akad. Nauk SSSR
165 (1965), 261-264.

I. Gelfand and G. Silov: Generalized functions, Vols. 1-3, Moscow, 1958.
J. Geronimo and K. Case: Scattering theory and polynomials orthogonal on the
real line, Trans. Amer. Math. Soc. 258 (1980), 467-494.

V. Hutson and J. Pym: Generalized translations associated with a differential
operator, Proc. London Math. Soc. 24 (1972), 548-576.

T. Koornwinder: A mew proof of a Paley-Wiener type theorem for the Jacobi
transform, Ark Mat. 31 (1975)., 145-159.

N. Leblanc: Algébres de Banach associées a un opérateru diff érentiel de Sturm-
Liouville, Springer Lect. Notes 336, 1973, 40-50.

B. Levitan: The theory of generalized translation operators, Izd. Nauka, Mos-
cow, 1973.

B. Levitan: The expansion in Bessel functions for Fourier series and integrals, Us-
pekhi Mat. Nauk 6 (1951), 102-143.

J. Lions: Opérateurs de Delsarte et problémes mixtes, Bull. Soc. Math. France 84
(1956), 9-95.

W. Magnus, F. Oberhettinger, and R. Soni: Formulas and theorems for the
special functions of mathematical physics, Springer, N.Y., 1966.

V. Mar€enko: Sturm-Liouville operators and their applications, Izd. Nauk.
Dumka, Kiev, 1977,

J. McLaughlin: An inverse eigenvalue problem of fourth order, SIAM J. Math.
Anal. 7 (1976), 646-661.

R. Newton: Scattering theory of waves and particles, McGraw-Hill, N.Y.,
1966.

A. Povzner: Differential equations of Sturm-Liouville type on a half axis, Mat.
Sb. 23 (1948), 3-52.

L. Sakhnovic: The inverse problem for differential operators of order n>2 with
analytic coefficients, Mat. Sb. 46 (1958), 61-76.

L. Sakhnovié¢: The method of the transformation operator for equations of higher
order, Mat. Sb. 55 (1961), 347-360.



[43]

[44]
[45]

[46]
[47]
(48]

[49]

TBANSMUTATION, GENBRALIZED TRANSLATION 11 831

L. Schwartz: Théorie des distributions, Edition “Papillon”’, Hermann, Paris,
1966.

J. Siersma: On a class of singular Cauchy problems, Thesis, Groningen, 1979.
V. Staevskaya: The inverse problem of spectral analysis for a certain class of
differential equations, Dokl. Akad. Nauk SSSR 93 (1953), 409—412.

W. Symes: An integral representation for eigenfunctions of linear ordinary dif-
ferential equations, J. Math. Anal. Appl. 70 (1979), 101=110.

V. Tkatenko: On a transformation operator in spaces of entire functions of finite
order, Theory of functions, functional anal. and appl. 22 (1975), 154-159.

V. Tka&enko: Transformation operators in spaces of entire functions, Sibirsk. Mat.
Z. 20 (1979), 152-163.

V. Volk: On inversion formulas for differential operators with a singularity at x=0,
Uspekhi Mat. Nauk 8 (1953), 141-151.

Department of Mathematics
University of Illinois

at Urbana-Champaign
Urbana, Illinois 61801
U.S.A.








