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1. Introduction. The development of transmutation > theory initiated

in Carroll [8 9] has proved to be very productive and we continue this line of

investigation here (see [8] for extensive references). Let us think of P(D) and
Q(D) as (usually second order) linear differential operators acting in spaces E

and jF. An operator B: E-*F> usually some kind of integral operator, trans-
mutes P into Q if QB=BP acting on suitable objects. In [8; 10] we displayed
a framework of spaces and maps linking the various transforms arising from P

and Q together with JB, B"1, β*, etc. In this series of papers (I and II) we will

deploy this framework in developing further the ideas of [8; 9], and proving some

results announced in [10], as well as generating, in a sort of canonical way, some
general Parseval formulas of Gasymov-Marcenko type (cf. [26; 27; 37]). Our

framework also guided us to formulate the link between some of Fadeev's scatter-
ing technique in [24] and various connecting formulas for special functions

involving Riemann-Liouville and Weyl type integrals (cf. [31]) and we have

written this up as joint work in [12; 13]. Further extension of this scattering

technique allows us also to give versions of the Gelfand-Levitan and Marcenko
equations in a context based on harmonic analysis in symmetric spaces (see

[11] and cf. also [29]): such Gelfand-Levitan equations are also derivable via

a technique indicated here in Part II in our general transmutation framework.

2. General formulas. One way of finding a transmutation operator
B: P-+Q is to consider a Cauchy problem (*) P(D^)φ(x)y) = Q(Dy}φ(x)y)

with φ(x, 0)=f(x) and φy(x, 0)=0, where / is extended to (— oo, 0) as an even

function for example; then, given a unique solution to such problems, Bf(y)
can be defined as 9>(0,j>) (cf. Lions [35]). A Cauchy problem is not always

suitable here and unique solutions can often be assured by an appropriate com-
bination β of data at y = 0 plus growth conditions on φ. When Q = P we

speak of a generalized translation associated with P and write φ(x,y)—Tlf(x)\

similarly for P=Q we write φ(x,y)=Sϊf(x) so that P~T and Q~S. It is

important to note that not all transmutations need arise in the above manner

(cf. [11; 13; 24]). As in Carroll [8; 9] let us consider generalized eigenfunctions

of the form
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(2.1) P(Dx)H(x, μ) = μH(x, μ) 9

Q(Dy)Θ(y, p) = v@(y, „); Θ(0, *) = 1;

(2.2) P*(Z>,)Ω(*,,0

Q*(D,W(y> Ό =
where P* and Q* denote formal adjoints. Here we are using #e[0, oo) and

3>e[0, oo) as a model situation but other intervals (e.g. (— °°, °°)) can also be
envisioned. We will proceed somewhat formally at first. Thus assume what-
ever requirements RH or /?Θ of the form Dk

xH(Q, μ) — 0 or Dk

yΘ(Q, μ)=Q plus
possible growth conditions are necessary in order to make H and Θ unique in
suitable spaces £ and F. This is discussed in [8: 9] and examples are given;
in the present situation simply take H'(Q, μ) = Q and Θ'(0, v) = Q as a model

(for higher order operators see e.g. [4; 5; 6; 7; 22; 33; 38; 41 42; 46; 47; 48]).
Similarly we will define bracket operations <M(x, μ),f(x)y and (H(x, μ), F(μ)y
for example without spelling out details. The first bracket is usually a (weighted)
distribution pairing and the second a spectral type integral involving a suitable
measure (see Section 3 for examples). Then define

(2.3) β(y, x) = <Ω(*, μ), θ(y, μ)\ .

Note here that μ and v may be different in (2.2) and the σ pairing refers basically
to a measure or distribution over the spectrum σ(P) of P. In order for ex-

pressions such as (2.3) to make sense and be useful we must have some coin-
cidence of σ(P) and σ(Q). Our examples in Section 3 below are illustrative
here and provide situations where μ=—\2—p2

P and v=— λ2— p|; the pairing
involves a measure dσ over a λ range (0, oo). Also in such a case we shift
notation and speak of transmuting P(D)=P(D)+p2

P into Φ(D)=Q(D)+ρ2

Q and

then the two spectra σ(P) and σ(Q) are identical; we basically assume this kind
of situation holds here in general. It could be interesting to study cases where
the two spectra are substantially different but we have not done this. Now
let U(x, ξ) be the solution of

(2.4) P(DX)U = P(Z>f)ff; U(x, 0) =/(*)

so that U(x, f)= Tjf(x) (with C7(0, f)=/(f)). Then formally

(2.5) φ(*,y) = <£(y,£), U(x, ζ»

satisfies (*) with φ(x, 0)=/(*) and from φ(0,y)=(Bf)(y)=<β(y,ξ),f(ξ)y we
have β(y, ξ) desplayed as the kernel of B. This can be made rigorous by
assuming

(2.6) <Ω(*, /*), l>σ = δ(*)

which is known to be true in many abstract and concrete situations (cf. Section
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3). If one writes further

(2.7) /(μ) = <Ω(*, μ), /(*)> = Pf(μ)

then rearranging (2.5) it can be shown that

(2.8) φ(x, y) = <θ(y, μ), /(/*)#(*, μ)>,

which is in a form generally associated with separation of variables techniques

for (*) and this implies, setting j—0,

(2.9) /(*) = </(/,), H(x, μ)\ = Pf(x)

while the transmutation operator B is displayed as (setting x—Q)

Thus assuming R and RR we can state (cf. Carroll [8 9])

Theorem 2.1. Given (2.6) £λe fcerae/ of B is given by β(y, x) of (2.3) and

φ is given by (2.5) or (2.8). ίWrffer P—P'1 am/ B=2P.

Proof. That φ satisfies (*) follows from (2.6) and the uniqueness insured

by R gives a well defined B with kernel β (provided the φ of (2.5) satisfies /?).

The rearrangement of (2.5) involves looking at <Xl(£, μ), U(x, f)^ = ψ(λ, μ)
and RH will give ty(x, μ)=f(μ)H(x, μ) (provided ψ( , μ)e£). The inversion
formula (2.9) is then immediate and (2.10) defines 2. Q.E.D.

REMARK 2.2. This presentation is somewhat "neater" than that of Carroll

[8; 9] and shows that the inversion (2.9) can be based on the uniqueness insured

by R and RH.

Let us assume also that, working in suitable spaces, B is 1-1 with inverse j8

which can be then characterized as follows. Let V(y, η)=SξBf(η) (=S*Bf(y))

satisfy

(2.11) Q(D,)V = Q(DJV; V(y, 0) = Bf(y).

(so that F(0, η)—Bf(η)}. Consider, in analogy with (2.3), but with a generally

different bracket operation (cf. Section 3)

(2.12) J(x, y) = <H(x, „), W(y, v)\ .

Then we can show that

(2.13) φ(x, y) = <γ(x, η), V(y, o?)> = φ(x, y).

The brackets here involve generally different pairings than (2.3) and (2.5) (e.g.

a different spectral measure arises in (2.12)). Indeed P(Z),)φ = <P(Z),)<y, F>
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while Q(Z),)$ = <r,Q(Z),)F> = <y, Q(Z),)F> = <ί?*(Z)1,)γ> F> and P(DX)Ύ =
so that φ satisfies (*) with

(2.14) φ(0, y) = <γ(0, ,), V(y, ,)> = «1, W^, »)>„,

) = fifty)

where it is required that (cf. (2.6))

(2.15) <W(y, V), 1>. =

Now if Bf is extended suitably for y<0 and natural conditions /?, compatible
with /?, can be imposed on Dp

xφ(Q,y) which together with possible growth
conditions guarantee a unique solution of (1.1) for #>0 with data Bf(y) then

φ— φ as asserted (provided φ as constructed, and φ, satisfy /?). Since F(0, η)=

Bf(η) we have then

(2.16) φ(X, 0) = <J(X, η)V(0, rj)y = /(*) = <•/(*, ,),

= <H(X, V), <W(η, v),

which we display as

(2.17) B/0) = <W(η, v),

(2.18) f(x) =

so that ft—PQ (P involves a different pairing than P in general). Further from

Q(D,KW(y, v), V(y, ,)>= V<W(rj, v\ V(y, ,)> with <ίF(J?) »), Γ(0, v)> = Bf(v)
s^/

and the condition /?Θ one has by uniqueness ζW( η,v), V(y,η)y=Bf(v)@(y>v)
provided <W(η, v), V(y, ,)>eF. Hence (cf. (2.8)-(2.9)) from (2.13) we obtain

(2.19) φ(x, y) = <H(x, v), Bf(v)&(y, v)\

and as inversion for Q set Λ;=0 to get (with a different bracket than for 2)

(2.20) Bf(y) = <βf(v\ θ(y, v)\ = &Bf(y) .

Theorem 2.3. Given /? and ββ as indicated plus (2.15) it follows that
β=PQ has the kernel γ(x,y) of (2.12) with S=B~1 and φ is given by (2.13) or
(2.19). Further Q=Q'1.

Let us define next the transforms

(2.21) Pf(μ] = <H(x, μ), f(φ PF(x) =

(2.22) 2f(v)

Now (cf. Carroll [8; 9]) the eigenfunctions Θ of Q(D) can be characterized as
θ(y, v) = B[H(x,v)](y) since if one looks at w(x, y, v) = H(x, v)@(y, v) then
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P(Dx)w = Q(Dy)w with w(x, 0, v} = H(x,v). Given that w satisfies /?, which
involves some compatibility of βH and /?@ with /?, it follows that w(Q, j, z>) =
θ(y*1/) = B[«'(^Oί

ι;)](y) Given that B has the kernel β(y,*) of (2.3) we
have then

(2.23) θ(y, v) = <β(y, ξ), H(ξ, „)> = Pβ(y, ) (v)

whereas the form of β says that

(2.24) β(y,x) = P®(y, }(x)

so that APΘ — θ. Suppose -2:^->^ is an isomorphism for suitably large

spaces ̂  and ̂ . Then for/e^ one has

(2.25) AP/ = <PPΘ(y, v\ /(j,)> = / .

On the other hand β=PPβ so that for g=B*f=(β(y, #),/(y)> we have

(2.26) P/>£ = <P/^/3( Ĵ Λ), /(y)> = g .

But we observe that

(2.27) £*/(*) = </3(y> *)> /(y)> = <Ω(^^ ^)> <Θ(J, ̂ ), /(y)»σ = ^/W

so g<=pJ and PpJ^J by (2.25). Thus /?: pJ-*J and P: J-*pJ 'are inverse.

Theorem 2.4. Let :̂ Λ-*ί be an isomorphism. Then
V V V

and P: <= -̂>P^ are inverses. Similarly let /?: XT— >y£ be an isomorphism. Then
V V V V

XΓ and Q: /T->QXΓ are inverses.

Proof. Only the last part remains and we observe first that from

(2.16) M(x) = <fγ(x, 77), %» with

(2.28) j8*Λ(y) = <PF(y, ^), <H(*, z^), *(*)». - Q (̂̂ ) .

Now by (2.12) rγ = QH while upon using the function w(x,y, v) =

H(oc, v)®(y> v) again and assuming it satisfies fi we obtain H(x, v)=βθ( , v)(x)

so that H=2γ. Hence H=2QH and 7 = Q^2j. Consequently for Ae/C

^βA=<:2Qff, A>=A while for ̂ = J8*/, Q2g=<Q27,f>=g with ^eQ/. Thus

as before 2\ Qk-^k and Q: /^->Q/C are inverse. Q.E.D.

3. Models based on selfadjointness. There are numerous examples

where all of this fits together. Classical cases are P(D)=D2—q(x) and Q(D)=
D2, or vice versa, which arise in quantum mechanics (cf. [15; 16; 17; 24; 33;

37; 39]). More generally one deals in quantum mechanics with D2— (m2— %)/o?.
with or without a potential q(x), and we prefer to treat this in the form D2-\-
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[(2m+l)lx]D (cf. [1; 2; 8; 9; 10; 17; 24; 26; 27; 34; 35; 39;44;45;49]). Indeed,
treated in this manner it provides a natural link to many other intersting
operators which arise in the context of harmonic analysis on symmetric spaces
(cf. [8; 9; 18; 19; 25; 31]); we have studied this latter situation in more detail in

[11; 12; 13] but will give some information here to give body to the general
theory.

EXAMPLE 3.1. Consider P(D)u=(Au')ΊA where A has properties, spelled
out in [13], modeled on the radial part of the Laplace-Beltrami operator on a
noncompact Riemannian symmetric space of rank one. In particular one can
takeA(x)=ΔP(x)=Δaβ(x)=(ex-e-χ)2*+\ex+e-χ)2β+1 withpA=a+β+l orA(x)=
Δpq(x) = (ex—e~xγ(e2x—e-2x)9 with ρA=^(p+2q). The relevant eigenfunction
equation is P(D)u=(—\2—ρ2

A)u where ρA=i limA'/A as x-*°°. At this point
let us shift to P=P-\-ρ2A and speak of transmutations P->Q—Q+p! etc. Thus
P(D)u=—\2u is the eigenfunction equation for P. Note for A(x)=x2m+1 we
get D2 + ((2m+l)/x)D with ρA = Q. Let φ£(x) be a "spherical function",

<P\(ty=l, and Dxφ£(Q)=Qy satisfying the eigenfunction equation for P so that
= H(x, μ) for μ = -\2. Set ^(x)=ΔP(x)φ^(x)] P*(Z>)Ωf=μΩf where

(A(^IAyy for A=ΔP. Thus Ω£(#)=Ω(*, μ) in the notation of Sec-
tion 2. For example when Δp=Δaβ then φl (x)=φ"β(x)=F(%(ρA+i\), i(p^—ίλ)ι
tf+1, —sh2x) is a Jacobi function of the first kind (cf. [23]). The case A(x) =
sh2m+1xwithA'/A=(2m+l)cothx arises in working with SL(2,R)/SO(2) and

is particularly useful for illustrative purposes. Operators P(D) as indicated are
selfadjoint in L2(Adx) but we prefer to work in E=EA= {f\Al/2f<=L2} with
P*(Z>) acting in EA= {/; A~~1/2f^L2}. In fact our general framework of spaces
and maps in [3; 5] was based upon "spreading out" a selfadjoint situation in
this manner (cf. Section 4 for some further remarks on these spaces). For P
of this type we write dvp for the associated spectral measure (z>~σ in Section
2). Let us remark also that explicit formulas for dvp exist in terms of |^(λ)| ~2

where c(\) is the Harish-Chandra (or Jost) function (see [7; 8; 9] for details).

Then write with a slight change of notation (/(λ) in place ofj(μ), etc.)

(3.1) /(λ) = P/(λ) = \~ f(X)φΐ(x)ΔP(X)dX;
Jo

Let Q(D) arise from ΔQ(x)=B(x) as above so we have φ\(y)r*j®(y, μ) (i.e.

and $(D)φi = -λV? so v λ2) and W(y,v)~
Q and Q will have a form similar to (3.1), which we can

write also as g(\) = Qg(\)=<g(y},ClQκ(yϊ> and QG(j) = <G(λ), φl(y)\\ ω of
Section 2 corresponds here to rfωe(λ). The ^ and 2 transforms are written
then as flF(x)=<F(\), φζ(x)\ and 2G(y)=<G(\), φQ

λ(y)\ while Pf(\)=<f(x\
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£>£(#)>, PF(*)=<F(λ),Ωλ(Λ)>v, etc. The various inversions P^P"1 etc. from
Section 2 are then also known from results in [13 18; 23] for example. We note

that such inversions based on uniqueness requirements (#, £H) and (/?, #Θ) provide
new derivations of integral transforms such as Hankel, generalized Mehler, etc.
modulo the spectral pairings.

Now using this background we can generalize some results of [8; 10] as
follows. First let us recall from [8; 18; 19; 21; 30; 31; 32; 40] that if Ty

x is
the generalized translation associated with P(D)y or equivalently with P(D)

(!) then formally Ty=H(y, P) = I H(y> μ)dEμ, where dEμ is a spectral resolu-

tion of / over σ(P) (λe(0, <χ>), μ=-λ2), and Ty

xH(x, μ) = H(yy μ)H(x, μ).
Further [Tϊf(x)]*(μ)=H(y, μ)f(μ) which we also write in our altered notation
as [T%f(x)]*(λ)=φ£(y)f(\). A generalized convolution is defined by (f*g)(x)=

CO

Ty

xf(x)g(y)A(y)dy and we note that φ in (2.5) can be written as (Tξf(x) =

(3.2) φ(*,y)

~ , μ)\Tlf(x)dξ = [f( )*β(y,

where β(y, ξ)=<H(ξ, μ), θ(y, /ί)>v. Now define 8A(x)=8(x)IA(x) (working on
suitable functions). Then 8A(\)=<,8A(x), Ωf(*)>=<δ(*), φζ(x)y= 1 and 8A(x)=
<9>λ(»), 1> (i.e. <Ωf(*), l>=δ(«) as desired in (2.6) for example). Further
[Tϊ8A(x)y=φΐ(y) and similarly for Q arising from B(x), $B(\)=<8B(y), Ω?(y)>=
<δ(y),9>?0')> = l with 8*(y)=<9>?00,l> and [SJδX*)]^^?^). Then from
Bf(y)=<β(y,x),f(x)> with /9(y,*)=<Ωf(*),9)?(y)>v (cf. (2.3)) we have (recall
B:P-4)

(3.3) β(y, x) = A(x) Γ φζ(x)φQ, (y)dvp(\) =
Jo

A(x) Γ (T$A(?j)\S$B(ξ))~dVp(\) .
Jo

Similarly βg(x)=(y(xj y),g(y)y where j(x, y) is given by (2.12) as

(3.4) y(*. y) = B(y)
Jo

B(y)
Jo

Note here in (3.3) that formally [®(y,P,)δA(x)]*=θ(y, μ)&A=®(y, μ)=φϊ(y)
while in (3.4) [H(x, Qf)8B(y)]~=φΐ(x). Hence formally

(3.5) β(y, x) = A(x)θ(y, P,)8Λ(x)
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Theorem 3.2. Given P~A = ΔP and φ~β = ΔQ as above the^ kernels β

and 7 are given by (3.3)-(3.4) and (3.5) holds formally (B: P-»& %: 0~»P).

REMARK 3.3. Note that if brackets Bf(y)=<βA(y, x),f(x)>= ( βA(y, *)/(•*)

χA(x)dx and βg(x) = <^B(x, y), g(y)y = (" ΎB(x, y)g(j)B(y)dy are used then
Jo

βA(y,x)=β(y,x)IA(x) and JB(x,y)=Ί(x,y)IB(y) are respectively given by the

formulas <?>£(«), <P\(y)\ and <?>£(*), 9?λ(;y)>ω.
Let us observe next that (cf. (2.8)), in the present context.

(3.6) T'ftx) = <H(y, μ), f(μ)H(x, μ)\ = φ(x, y)

since this φ satisfies P(Dx)φ = P(Dy)φ with φ(x, 0) = <1, f(μ)H(x, μ)\ =
<f(μ),H(x,μ)\=PPf(x)=f(x) while φ(0,y) = <H(y,μ),f(μ)\=f(y) so that

U(χ,y)=φ(Xty). Similarly (cf. (2.19); μ=v=-\z)

(3.7) S*,g(y) = V(x, y) = <θ(«, /,), g(μ)θ(y,

Writing C7(^^)=T^)=</3(^ j, f),/(|)>and F(*
we obtain formally

(3.8) β(χ, y,ξ) = H(x, μ)H(y, μ)Ω(ξ, μ)dv

(3.9) Ύ(χ, y,τ,) = Θ(X, μ)θ(y, μ)W( η, μ)dω .

We record this in

Theorem 3.4. The generalised translation operators Ty, and S*y have kernels
β(x,y, ξ) and j(x,y, ξ) given by (3.8) and (3.9).

EXAMPLE 3.5. Consider (3.8) with H and Ω given by

(3.10) H(x, μ] = 2mΓ(m+l)(\xΓ°'Jm(\x) = frm(x, λ)

ίX*. μ) = 2-2mT(m+l)-\\x)2m+lH(x, μ) .

This is the standard example from [8 ;9] and we note that Ω is chosen differently
than before; this was done for symmetry and is explained in Section 4. Then
we have

(3.11) β(χ, y, ξ) = 2mΓ(m+l)(xy)-mξm+^ .

By known formulas (cf. [3; 36]) one has then β(x,y, ξ)=Q for 0<|< \x— y\ and
ξ>x-+-y while for \x—y\<ξ<x+y

(3.12) β(χ, y, ξ) =v w . j , v
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where Z=(x2+y2-ξ2)/2xy. Thus

(3.13) T'f(x)=\*+' f(ς)β(x,y,ς)dξ
J\x-y\y\

and hence we can write

(3.14) T'fίx) = — - (\-z2γ-l/2f(ξ}dz
V ' A ; ' JW

with ξ = \/x

2-)Γy
2—2χyz. This is a new derivation of a formula of Copson-

Erdelyi [20] and Levitan [34].

4. Explicit formulas for a model case. Let us record some formulas
here for a model problem based on Pm(D)=D2-\-((2m+l)lx)D. This operator
will be used in developing the framework for general Parseval formulas in Part
II based on which analogous results for other operators P(D)u=(Au')'/A will

follow (here A=sfm+1). Thus recall (3.10) for H and Ω (satisfying Pm(D)u=
-\2u). One can write Pf(\)=(\m+1/2/2mΓ(m+l))Hm[xm+1'2f(x)] and PF(x)=
(2mΓ(m+l)lxm+l/2)Hm[\-m-1/2F(\)] where Hm denotes a Hankel transform. We
emphasize that Ω is not AH here so P is not the same as in Section 3. Standard
theorems on Hankel transforms say that Hm : L2— »L2 is a selfinverse isometric
isomorphism for suitable m and here, modulo constants, xm+l/2f(x)<r-*\~m~l/2f(\)

under Hm. Thus the choice of E= EA = {f;xm+1/2f(x)<=L2} is indicated (cf.
Example 3.1) and we take &=PE= {/; λ-*-1/2/(λ)eL2} (recall also E'=E. The

basic duality between E and &'=E is expressed as </,/> = (°β/(λ)/(λ)έ/λ
ΛΛ AA /\Λ v O

(J5;={/;λWί+1/2/(λ)eL2}). Note here that for this model l/2π\c(\)\2=c2

m\2m+1

=RQ where ^=1/2^(^+1) (cf. [11; 13]); this can be written dvP=RQd\ where
Rl/2=cm\m+l/2. Now in (3.10) a normalizing factor involving λ has been inserted
into Ω (i.e. ΩΦΔ/f). In fact what we have is exactly the relation Ω(#, μ) =
RQ(\)A(X)H(X, μ)\ Hence it was possible in [8; 9; 10] to omit the measures dv

and set for example Pj(χ)=[ f(\)H(x, μ)d\ with P0/(λ)=/(λ)= ( f(x)Ω(x, μ)dx
Jo Jo

since P0/=#o(λ)P/ and Pj=\Rt(\)PfHd\=\PfHdv=PPf=f.

REMARK 4.1. The procedure just indicated could be followed more gener-

ally when dv=v2(\)d\ (which will not usually be the case when a potential is

present) by choosing Ω(Λ, μ)=Ωχ(x)=v2(λ,)Δp(x)φ£ (x). Then a certain sym-
metry could be introduced into the spaces £", E, etc. in which P, P, etc. are

taken to have their "basic" action. The symmetry in E=EA and EA was in-
dicated in Example 3.1. For έA we could take now EA= {/; ύ~\\)f^L2} with

tf} . Then r >/=ί(λ) Γ ΔX/ιfa=ί(λ) ί" Δ'/V((Δy2/)^ and
Jo Jo



824 R. CARROLL

one is in the position of asking that the kernel v(\)Δy2(x)φ[(x) map L2->ZA

In our model this is ^λw+1/2Λiw+1/2^1(λ^)-Vm(λ^)=(λ^)1/2Λ(λ^) which is the
standard Hankel form. One expects this situation to prevail more generally but

we leave this for now.

REMARK 4.2. In general an emphasis on symmetry of the form discussed
in Remark 4.1 for EA, £A, etc. is probably misdirected effort. The operators
P, P, etc. with Ω=AH will have realizations in various spaces (e.g. one will
want to talk about PTX, Pβ(y, •), etc. and deal with various distribution spaces).
Also in general the spectral pairings will be effected by means of a generalized
spectral function (cf. Part II and [5; 26; 27; 37]) so a weight function z>2(λ) does
not exist. Thus at this stage we will concentrate more on the form of our
operators and not on their domains.

Now retaining the formula (3.10) for Ω and the spaces £", E, etc. take

Q(D) = D2 in L2(0, 00) = ̂  with θ(y, μ) = Cos λy (satisfying D2Θ=μθ for

μ=— λ2). Then W(y,μ)= — Cm\y so that -2=7, and Q = ?71 where 7,
7Γ

denotes the Fourier cosine transform. It is natural to take F=L2(Q, oo), F=

L2(0, oo </λ), and F=F\ here we will identify F and F'9 etc. Let us write out
B as

(4.1) 2Pf(y] = (~/(λ) Cos \ydμ = (° \m+1/2F(\) Cos \yd\
Jo Jo

where F(λ)eZλ Then it is natural to take D(2)= {f^£'J^L2

λ}=£r\F so
that map 2 will into F. Similarly consider β=PQ written as

(4.2) βfr) = β F(\)m(X, \)d\ = PF(X) =

where F(\) = Q/(λ) e L2 = F. In order to insure that R(fl)c:E we take
D(P)= {FfΞF; \-m~l/2F(X)eLl} =F Π A Observe also

(4-3) <P/, ̂ > = J

for example which displays P as P*: έ' ^ E' (E^ E). Similarly for eeD(2)
and suitable /'

(4.4) <.2e, /'> = < e(\)θ(y, μ)d\, /'

= j e(\)<θ(y, μ),f(y)

provided we have F'=F so that f'~fι=F and 2j'~2f^ F which we want to



TRANSMUTATION, GENERALIZED TRANSLATION I 825

intersect E=E' so that 2f<^Eϊ\F. Then (4.4) says 2* =2. Let us obser-

ve also in equation (4.4) that eG&Γ\F with 2f^EΓ\F=&{}F' and one has

<έ, 2f>= ί λ-*-^λ)λ"+1/2-2/(λ)έ/λ= ( £(λ)-2f(λXλ=<έ, 2fy. For P we have

a formula analogous to (4.4) for f^D(ft)C.F and e'~e^E with

F ' f t f r , namely

(4.5) </*/; O = < J

J /(

This displays P as ^* and as above for 2 one has <(/, fiey=

The above example furnishes a typical model of a transform theory linked
to transmutation which we display in the following diagram.

(4.6)

Theorem 4.3. The diagram (4.6) indicates the relations P=P~1,Q=Q"1,
P=P~l, Q=2-\ P*=P, Q*=Q, P*=P, 2*=2, B*=(2P)*=P-2, and ̂ *=

A ~~ SS\ T—, A ^, .

(PQ)* = QP. Here D(2) = D(P) = E Π F and R(2*), R(P*)C .ETC F=E' Π F'.

From β=pQ=B-l=(2Pyι=P-l2-1 we obtain 2 ^PPQ and p-l=
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REMARK 4.4. As a further guide to understanding D(P) and D(2), or

equivalently D(β) and D(B\ recall that from Bf(y) = <β(y, #),/(#)> with

#)— <Ω(#, μ), 0(y, μ))> one obtains

(4.7) β(y, X) = M *.[λ +* Cos λy]

and this was examined in Carroll [8; 9]. Using a technique of Lions [35] an

explicit formula for β(y) x) was obtained as a distribution having a determina-

tion for — l/2<m<n— 1/2 of the form β(y, x)-=βn

m(y, x) with

(4.8) <#• (y, *), /(*)> = jr2"*1 Σ c*<jί-+*(?-*)7 + -*, £>*-y(*)>+ .

Thus in particular one needs n derivatives of /in order to define B/. Similarly

for $g(x) = <?Y(x,y),g(y}> with Ύ(x,y) = <H(x, μ), W(y, μ)> one can write
γ(^:y)=JRj(^:y)=2J!?w(Λ;^)e6>ί where Λw is the resolvant distribution of EPD

theory (cf. Carroll-Showalter [14]) which can be displayed in the form

(4.9) Rm(x, y) =
^ J l y)

(cf. Carroll [8]). We can actually obtain however a somewhat nicer expression

for β by recalling a formula used in the solution of Euler-Poisson-Darboux

equations (cf. Carroll-Showalter [14]). Thus for —l/2<m<n—l/2

(4.10) Cos \y = 7tt

my(— DyJ[y2"-1 ^ β.m(ξy, λ)^+1(l-?2)M^"3/2^]

where rl=Γ(l/2)/2"-1Γ(ifi+l)Γ(Λ-ifi~l/2) and &m(ξy, \)=H(ξy, μ) for μ=
— λ2. This can be rewritten as

(4.1 1) θ(y, μ) - 7n

my ~

Then since Θ=BH we have

(4.12) Bφ(y) = Ύn

my(-Dy
\ y

REMARK 4.5. In Part II it will be necessary to deal with Bφ for φ =

S(x)/x2m+1 and it seems appropriate to make a few preliminary observations
here. From (4.12) we have formally

(4.13) Bφ(y) =

= [2Γ(l/2)/Γ(m+l)Γ(-l/2-m)]3;-2--2 .
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Now β(y, x) = ci J (\»γ +1H(x, μ) Cos λjrfλ with tf/Q/) = </%, *),/(*)> and
thus

(4.14) χ-2m-lβ(y, x) -* ci (" λ2"+1 Cos
Jo

as #->(). Hence Bφ should equal c2

m I λ2wι+1 Cos λ^yrfλ. To see that this makes

sense we can use the appropriate pseudofunctions following Gelfand-Silov
[28] and Schwartz [43]. Thus recall

(4.15) O« , φy = Γ Aφ(x)- Σ φ(l\0)
Jo L /-o /I

for — ra— l<Reα<— n (so Re(w+tf)> — l) Since

(4.16) j" Xaφ(X)dx = j" X*[φ(X)- g ^"(O)

one can write <ΛJ?, φy as

(4.17) <P/(*Λ), <?>> = lim ΓΓ x*φ(x)dx+ Σ3V(/)(0)£β+'+1//!(α+/+l)l
s->o LJε /=o J -

This distributions Yβ^Ά^ are defined by yβ = (l/Γ(/8))ίy(Λβ"1) for
negative integer or zero with Y_n=δ ( n ) for n>0 an integer. One has Yp*Yq=
Yp+q and DmT=Y_m*T with /WΓ=FW*Γ. The Fourier transforms of these

pseudofunctions are given in Gelfand-Silov [28]. First recall that xtL=\x\*
for #<0 and is 0 for #>0; then

(4.18)

The distributions (x±iO)a are defined by

(4.19)

The following formulas then apply

(4.20) 7()£) = ieia*/2Γ(a

In particular since

(4.21) 7y(W

Now we can write
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(4.22) Γ λ* Cos \yd\ = ±- ΓΓ λV*Λι+ ί° (-μ)«eiμydμ\

—

Consider the identification y"Λ"1=|>ΐβl~1+ιyIΛ"1] and set &,= 2Γ(l/2)/Γ(w+l)

XΓ(— 1/2— m). Then for α=2w+l we compare (from (4.22)) — <£Γ(2m+2)

Sin (n? + l/2)π with &,. Now recall that (cf. [36]) Γ(2m + 2) = 22m+1Γ(m + 1)

xΓίm+S^/v7^ while l/Γ(l/2-ι»)=Γ(w+3/2) Sin (m+ l/2)π/π(m+l/2) so

we have — <£Γ(2w+2) Sin (m+l/2)τr=— 2Γ(m+3/2) Sin(w+l/2)τr/Γ(w+l)\/^

while ySm- -(2w+l)Γ(l/2)/Γ(w+l)Γ(l/2-iff) = -2(ιιι+ l/2)Γ(l/2)Γ(w+3/2)
Sin(m+l/2)7r/Γ(m+l)τr(m+l/2)= -2Γ(m+3/2) Sin (m+ l/2)τr/Γ(ifi+ l)/\/V.

Thus we have proved

Theorem 4.6. The formula (4.13) /or £>(*) = δ(Λ;)/^2w+1 w vβ/ίrf m

/orm έe/ozί; αnrf ^9? ^ represent able as indicated (2m^p integer)

(4.23)

\2m+1 Cos \yd\ = (RQ, θ(y,

REMARK 4.7. The model diagram (4.6) was constructed via the model

operator Pm(D) and the choice (3.10) for Ω. Let us point out that the same

kind of diagram holds more generally if we take Ω=AH as in Section 3. Thus

consider an equation such as (4.3) and recall (3.1) etc. for the operators P, P,

etc. Let us write

(4.24)

Thus take E=PE~L2(\',dv) and έ' = E~E. It would probably be most

natural to couple this with E~L\Adx) but this would be contrary to our desire

to "spread out" a selfadjoint situation using P*(Z)) in L2(dx) etc. This direc-

tive is of course founded in the fact that when complex potentials q(x) are pre-

sent for example we do not have a selfadjoint situation and in general dv will

be replaced by a generalized spectral function R acting on suitable elements.

This is examined in Part II. Note also here that an equation like β* =

(2P)*=PJ2 involves the kernel β*(y, x) where β(y,x) = <Ω*(x),φ%(y)>v =



TRANSMUTATION, GENERALIZED TRANSLATION I 829

(Ωί(*)0>?(y)<Mλ) arises from 2P (Bf(y)==<β(y,x),f(x)>). But P2f(χ) =

^f(y)^λ(y)y=\^\(x)^f(y)yψλ(y)y^:=^β(y^),f(y)y so everything fits to-

gether.
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