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1. Introduction

Let X be a connected compact complex manifold, and assume that a closed
complex subgroup G of the group of holomorphic automorphisms, Aut(JQ, has an
open orbit Ω in X. Then Ω is a dense open connected complex submanifold
of X and its complement E: =X\Ω is a proper analytic subset of X, possibly
empty. Such manifolds are called almost-homogeneous and they arise quite
naturally in many different settings. For example, if a manifold possesses
enough holomorphic vector fields to span the tangent space at some point, then
it is almost-homogeneous. Equivariant compactifications of complex homoge-
neous manifolds form another important example of this class of manifolds.
Recently, A. Borel [9] has shown that every compact symmetric manifoldυ is
almost-homogeneous; in fact, the automorphism group has only finitely many
orbits!

In this paper we are interested in almost-homogeneous manifolds which
are Kάhler. In this case, the albanese map X->A(X) of X into a compact
complex torus is actually a surjective, locally trivial fiber bundle whose fiber, F,
is a simply-connected almost-homogeneous projective algebraic manifold, [37],
[34]. With a further assumption on the exceptional set E, we can give a more
precise description (Theorem 5.2):

If E is a connected complex hypersurface orbit of G, then
M

(1) F is a projective rational manifold which fibers equίvarίantly F-+Q over

a homogeneous projective rational manifold Q with fiber M^Pn

y the

n-dίmensional quadric Qn

y the Grassmann manifold G2>2w, or the ex-

ceptional manifold EΠI (see Table 2.6).

(2) One of the following holds:

(2.1) Xc*FxA(X).
(2.2) There exist equivariant 2-to-l coverings T->A(X) and X->X such

that X:^Fx T. In this case M^ Qn.

1) A manifold X is symmetric if every point of X is an isolated fixed point of some involution
ofX.
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(2.3) X^QxB where Q is a homogeneous protective rational manifold and
B is an almost-homogeneous Pl-bundle over A(X) with structure group

C. In this case F^P1 X Q.

This theorem can be viewed as an analogue of the Borel-Remmert theorem

for the homogeneous compact Kahler case, [10].
Note that one can always equivariantly modify an arbitrary compact almost-

homogeneous manifold so that E has pure codimension 1 [22], and then pass to
an equivariant desingularization [16]. This shows that the important assumption
on E is that it is also homogeneous with respect to G. It implies, for instance,
that equivariant meromorphic maps of X are holomorphic (Lemma 2.3), and
that equivariant projective algebraic compactifications of Ω are unique (Lemma

2.5).

The above theorem also gives a good description of the compact homo-
geneous Cauchy-Riemann Hypersurfaces2) which can be equivariantly imbedded
in a compact Kahler manifold, since these manifolds are almost-homogeneous
and can always be modified to contain a complex hypersurface orbit (Theorem

6.2).

We note in passing that one can consider the more general question of

classifying Ω—G/H where a maximal compact subgroup of the complex Lie
group G has real hypersurface orbits. These hypersurface orbits can be thought
of as providing a natural "homogeneous" exhaustion for the homogeneous

manifold Ω. The only case in which Ω cannot be equivariantly compactified is
when the normalizer fibration G/H->G/NG(H°) realizes Ω as a compact torus
bundle over an algebraic example where again a maximal compact subgroup
has real hypersurface orbits. The question is whether such a bundle extends to
the natural equivariant compactification of the base. The treatment of this
question, however, goes beyond the scope of this paper. Even when a com-
pactification exists, there are complicated problems arising in the non-Kahler

case.

The contents of this paper is as follows:
Notations and definitions are collected in §2, along with some useful lemmas.

General references to this material are [35], [21], [23],

In §3 we classify those almost-homogeneous compact Kahler manifolds
whose exceptional set is not connected (Theorem 3.2). These manifolds are
actually linked to special cases studied in later sections.

The important case of almost-homogeneous projective algebraic manifolds
whose exceptional sets are complex hypersurface orbits (i.e. the albanese fiber)
is the subject of §4. Similar results in this algebraic setting were recently

2) Here we must assume that the hypersurface is homogeneous with respect to a compact
Lie group.
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announced by Ahiezer [2] during the period in which the present paper was

being prepared. The reader should note that a more detailed description of the
algebraic groups involved can be found there.

We put the pieces together in §5, showing that the complex hypersurface

orbit assumption on E implies the albanese fibration has the restricted structure
mentioned in the above theorem.

In §6 we show how any compact Kahler manifold with a real hypersurface
orbit can be modified to satisfy the conditions of §5. We also collect several of
the preceding results to show that the Remmert-van de Ven conjecture is true
in several special situations.

Although most of our results are proven for manifolds, it is primarily a

technical matter to adjust them to apply to irreducible complex spaces. For

example, if (Xy G)Q is an almost-homogeneous irreducible compact Kahler space
whose exceptional set E is a connected complex hypersurface orbit of G, then the
equivariant normalization X of X, v: (X, G)@-*(X, G)̂ , must be an almost-

homogeneous compact Kahler manifold whose exceptional set E=v~\E) has at

most two components, each of which is a complex hypersurface orbit of G.

Thus, either

1) έ^E and the singular set of X is exactly E (i.e. X is "pinched" along

If), or
2) jέ is two disjoint copies of E and X is a P^bundle over Λ(X) X Q with

structure group C* (see Theorem 3.2). In this case, X is obtained from X by
identifying the zero and infinity sections.

2. Preliminaries

Let X be a complex space and let G be a Lie group. We say that G acts on

X if there exists a real analytic map

μ:GxX-*X, g(x): =μ(g, x)', x<=Xy £6ΞG,

which induces a continuous homomorphism G—>Aut(X). Here Aut(X) denotes

the topological group of biholomorphic maps of X onto itself with the usual

compact-open topology. We write (X, G) to denote such a real analytic action.

If G is a complex Lie group and if μ is a holomorphic map, then we write

(X, G)Q. Finally, if X is an algebraic variety, G an algebraic group, and μ a

morphism of varieties, then we write (X, G) .̂ In most cases it will be clear

what type of group action is under discussion and we will simply say that G

acts on X or that X is a G-space. For any point x^X, we always have a natural
identification (in the appropriate category) of the orbit of x, G(x): = {g(x) \g^G},

with the coset space G\GX where Gx denotes the isotropy subgroup of x,

Gx: = {g^G\g(x)=x}. The group G is said to act transitively on Xif G(x)=X

for all # e X, and we say that X is homogeneous with respect to G.
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Let (X, G)Q be an irreducible complex space. If G has an open orbit in X,

then we say that X is almost-homogeneous with respect to G. We usually denote

the open orbit by Ω=G(x) for some x^X. Its complement, denoted E: =X\Ω,

is called the exceptional set of X. Since X is irreducible it is easy to see that Ω

is connected and dense, and that E is a proper (not necessarily connected) analytic

subvariety of X.

A holomorphic (or meromorphic) map f:(X, G)->(Y, G') is said to be

equivariant if there exists a continuous homomorphism/^ .G^G' such that the

graph of/is invariant under the induced action of G on the product space X X Y,

(x,y)t-*(g(x)yf*(g)(y)) We reserve the special notation (-XT, G)χ to mean that G
is an algebraic group and that there exists an equivariant imbedding (X, G)̂ ->

(Pn, Aut(Pn))j[. Given a G-space Y, we say that a compact space X is a G-
equivariant compactificatίon of Y if there exists a G-action on -XT and an equivariant

imbedding i: (Y, G)->(J£", G) such that i(Y) is an open subspace of X which

intersects each component of X.

A locally trivial fiber bundle f:(X, G)-»( Y, G) is called a homogeneous bundle
when / is equivariant and G acts transitively on Y. Given a homogeneous

manifold (Y, G)@ with isotropy subgroup H, a complex space F, and a continuous

representation p: Jϊ-»Aut(F), then one can build a homogeneous bundle over

Y with fiber F:

GxHF: = GxF/~; fe, ^-fe/Γ1, p(Λ)*).

The projection map GX HF~* Y is given by (g, z)t-*gH^G/H£* Y. Any map of

coset spaces of complex Lie groups, G/H-+G/J with fiber ////, has such a
representation.

A parabolic subgroup P of a complex Lie group G is any subgroup of G which
contains a maximal solvable subgroup of G. The quotient space G/P is always a

compact simply connected projective rational manifold. Conversely, any

homogeneous compact projective rational manifold is the quotient of a complex

Lie group by a parabolic subgroup, [8].

If G is a real Lie group contained in a complex Lie group G', then we define
the complex hull of G, denoted Gc, to be the smallest complex Lie subgroup of

G' which contains G.

Let K be a compact Lie group and let (X, K) be an irreducible compact

complex space. There exists a desingularization π:J!L-*X of X such that -X"is a

ίΓ-space and π is equivariant, [16], On the compact manifold Jΐ, K has at most
a finite number of orbit types, that is, a finite number of conjugacy classes of

isotropy subgroups (Kx) for #e-X", [21]. Thus, there exists an orbit type (Kx)
for which K(x)=K/Kx has maximal dimension. Such orbits are called generic

.K-orbits and their union forms a connected open and dense set in j?, [21]. One

of the basic tools for working with compact Lie group actions is the "Differ-
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entiable Slice Theorem" which states that for each orbit K(x), #eJ?, there

exists a .^-invariant neighborhood Z7cJ?"of K(x) such that every orbit K(y),

3; e U, fibers equivariantly over K(x).3) Note that since π is Jf-equivariant, the
corresponding statements also hold for X .

A useful application of these notions is the following :

Lemma 2.1. Let K be a compact Lie group and let (X, K) be an irreducible

compact complex space. Suppose there exists a K-invariant proper analytic subset
E of X. Then, for a dense set of points y^E, there exists a generic K-orbit in Xy

K(x) for some xξΞX, such that

y E— diniβ K(y) <dimΛ X— dimΛ K(x) .

Proof. Let y be a manifold point of E. Choose an open ^-invariant
neighborhood U of y small enough so that we can identify U with a complex
subspace of an open domain in the complex (Zariski) tangent space to X at y
where the action of Ky on U is linear, [22]. Since Ky stabilizes E, the represen-

tation Ky-*GL(Ty(X)) reduces to K,-+GL(Ty(E))+GL(V) where Fis a com-

plementary subspace to Ty(E) in Ty(X). Since y is a manifold point of E,
dimyE= dim Ty(E), and thus dim Uf] F=dim X— dim, £>0. Now, for an
open set of points x in U Π V we have an equivariant fibration

and thus the estimate

dimRK(x) =

= dimR K(y)+dimR X— dimΛ yE .

Since the set of generic ./^-orbits forms an open dense subset of X, it is clear
that for a dense set of manifold points y in E there will be points x^. U fl V such

that K(x) is a generic .K-orbit. Π

An immediate consequence of this lemma is

Lemma 2.2. Let G be a connected complex Lie subgroup of Aut(^Q and let

(X, G)o be an irreducible compact complex space. If a compact subgroup K of G
has a real hyper surf ace orbit in X, i.e. if dimRK(x)=dimRX— I for some x^X,

then (X, G)o is almost-homogeneous and K acts transitively on each connectivity

component of the exceptional set of X.

Proof. It is clear that G has an open orbit in X since G(x) is a complex
manifold containing K(x). Also, K stabilizes the exceptional set of X, so the

3) In fact, this neighborhood U can be realized differentiably as a /^-invariant neighborhood
of the zero-section in the normal bundle of K(x) in ,̂ [21].
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above lemma applies. Π

REMARK. Since Aut(-X") is a complex Lie group when X is compact [24], we

need only assume that there is a compact Lie group K acting holomorphically on

X with a real hypersurface orbit in the above lemma: Just define G to be Kc'.

For equivariant maps and compactifications we have the following lemmas:

Lemma 2.3. Let X be an irreducible normal complex space and let f:

(X, G)#->(Y, G'}o be an equivariant meromorphic map. If, for all x^X,
dimcG(#)>dimc.X— 1, then f is holomorphic.

Proof. The indeterminancy set of/ has codimension at least 2 and must
be stabilized by G. Since the G-orbits have at most codimension 1, the indeter-
minancy set must be empty and / is holomorphic. Π

Lemma 2.4. Let (Ω, G)JI be an algebraic manifold on which G acts transi-

tively. Then any G-equivariant compactίficatίon of (Ω, G)jι to an irreducible
protective algebraic variety is unique up to bίratίonal equivalence.

Proof. Let (X, G)JI and (Xf, G)jι be two irreducible compact projective
algebraic G-spaces such that Ω is biregularly equivalent to G(x)C.X and G(xr)

dX' respectively. Then there is a biregular equivariant map /: G(x)->G(x')
whose graph FdXx X1 is the orbit of the point (#, x') under the algebraic action
of G on the product space. Thus, F is Zariski-open in its closure F, and G

stabilizes F. Therefore, F defines a birational G-equivariant map from X to X''.

D

These two lemmas give us the following "uniqueness lemma" which will
be of particular use in later proofs.

Lemma 2.5. (Uniqueness of compactification). Let (Ω, G)jι be an alge-
braic manifold on which G acts transitively y and let (X, G)^ be a G-equivariant com-

pactification of (Ω, G)jι to a compact projective algebraic manifold. If -X"\Ω has
pure codimension 1, and if the connectivity components of X\Ω are homogeneous

with respect to G, then (X, G)jι is unique up to G-equivariant biregular equivalence.

It is perhaps worth noting that this lemma is not true if (X, G)Q is a compact

projective algebraic manifold on which G acts only holomorphically. For example,
let Ω=C* χC*=G. Then Ω can be algebraically compactified to (P1 X P1, G)̂ .
However, Ω also fibers equivariantly over an elliptic curve Ω->T: = G/{(ez, eiz) \
#eC} with fiber C. Therefore, Ω can be compactified holomorphically and
G-equivariantly to an almost-homogeneous P^bundle over T which is algebraic
but not biregularly equivalent to P1 X P1!

In this paper we shall often be concerned with (compact) complex manifolds
X on which a compact Lie group K acts with at least one real hypersurface orbit,
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=K(x) for some x^X. For convenience we call such manifolds (compact)
H^Σ-manifolds. Obviously, if X is compact, the generic .K-orbits are all real
hypersurfaces. In fact, all but at most two ^-orbits are real hyper surf aces, [31],
[33], It follows that X must be almost-homogeneous and that the exceptional
set of X has at most two components, each of which must be homogeneous
(Lemma 2.2). Since HΣ is homogeneous, the Levi-curvature of £ΓΣ in X has
constant signature. Whenever this signature is maximal (i.e. the eigenvalues
all have the same sign), we write simply H2+.

The ίίΣ+-manifolds have been studied in various contexts. For example,
in [30], Morimoto and Nagano show that a /ϊ2+-manifold Ω which is Stein is
either the ball Bn, Cn, or Jf£-equivariantly diίfeomorphic to the tangent bundle of
a compact symmetric space A of rank 1. In this latter case, if2 is a unit sphere
bundle over A4) If Kc (abstract complexification) acts holomorphically on Ω,
then Ω^CΛ, or Ω^KC/LC and A^K/L is realized as a totally real subamanifold
of fϊ. In either case Ω is affine algebraic and Kc acts on Ω as a linear algebraic
group. Let (X, Kc) be a compact projective algebraic manifold which is a
.Kc-equivariant compactification of Ω. Then, since Ω is Stein (affine algebraic),
E:=X\Ω has complex codimension 1. By Lemma 2.2, E is homogeneous
under K. Lemma 2.5 then shows that

X is unique up to K-equίvariant biregular equivalence.

We list all of the possible Stein ί/Σ+-manifolds M and their projective
algebraic .K-equivariant compactifications X in the following table. We take K
to be the full connected isometry group of A (where applicable), although in
some cases a smaller compact group acts transitively (cf. [2]). For this
classification see [2], [19]. In [19] it is shown that the manifolds X\A classify-
all non-compact strictly pseudoconcave homogeneous manifolds (which are not
homogeneous cones or Pn\Bn). Note, in particular, that X is always homo-
geneous.

Table 2.6:

X

pn

Q«υ

pn

p»χpn

G2l2nv

EIΠV

M

C"

QCΌ 2)

P"\Q"-ι

P"XP*\EV

SpfaO/Sp&i-l.O

Ff/Spin(9,C)

A

—

S"

RP"

*v>
Qp»6)

F4/Spin(9)8>

K

SU(n+l)

SO(n+l)

S0(n+l)

ί(A,A)\AeSU(n+l)y

Sp(n)

F*

1) 0"-{MePw+1|^=0}; 2) OW=^ec"+1|'**=l}; 3) £={([*], Γw])|'w=0>;

4) •PjR=='KM> IXDIIXI^ f*".}; 5) Grassman manifold; 6) Quaternionic projective
space 7) EΠI=E6/Spm(\Q) X SO(2) 8) Cayley projective plane.

4) In [30], HΣ is assumed to be simply-connected, although one need only require that
be finite, [39]. In fact, it was later proved that TΓ^HΣ) is always finite, [12].
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Finally, we state a lemma which will be useful in later structure theorems.

Lemma 2.7. Let X and Y be connected compact Kahler manifolds. If

Hl(X, 0)=0, then

H\XX Y, 0*)^πfH\X, O*)®πmι(Y, 0*)

where πly π2 are the natural projections.

Proof. Hodge theory and the Runneth formulas along with Hl(X, O)= 0

imply that/!,/2 and/3 are isomorphisms in the following diagram (cf. [14]):

0 0

J /. i
H\Xx y, 0) -^ H\X, O) ®H\Y, O)

H\Xx y, 0*) - *H\X, O*)®H\Y, 0*)

1 f \
H2(Xx y, Z) ~^H2(X, Z) @H\Y, Z)

H\Xx y, 0} -A H\X, O) ®H\Y, O) .

The lemma then follows by the Five-Lemma. Q

3. Compact almost-homogeneous Kahler manifolds with dis-
connected exceptional set

Let (X, G)o be a compact almost-homogeneous Kahler manifold. The
exceptional set E of X can have at most two connectivity components, [4]. We

devote this section to collecting some results for the case when E does in fact

have two components.
In the algebraic setting we have the following (cf. [1], [13]).

Proposition 3.1. If (X, G)_c is an almost homogeneous compact projective

algebraic manifold with a disconnected exceptional set E, then the open orbit Ω— G/H

can be realized as a principal C*-bundle over a compact homogeneous rational

manifold Q,

C*
Ω - >Q.

This bundle induces an almost homogeneous Pl-bundle

which defines a G-equivariant projective algebraic modification of X,
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In addition, the two components of the exceptional set £ in J£ are both ίsomorphic
to Q and fiber equίvariantly over the corresponding components of E.

Proof. Since Ω has two ends, it follows from [1], [13] that Ω is a principal

(7*-bundle over a compact homogeneous rational manifold Q. Let (-X", G)_c
be the natural G-equivariant algebraic compactification of this C* -bundle

obtained by adding two sections. Then J? is an almost-homogeneous P1-
bundle over Qy and we denote its exceptional set by E. Now, either this Pr

bundle is trivial or a maximal compact subgroup of G has real hypersurface

orbits in Jζ. In either case, it follows that the two components of E are both

complex hypersurface orbits of G isomorphic to Q (see Lemma 2.2). Then, by
Lemmas 2.3 and 2.4, there exists a G-equivariant birational holomorphic map

(Jζ G)χ-*(X, G)χ, i.e. J?is a G-equivariant projective algebraic modification of

X. D

REMARK. If Q is minimal (i.e. the quotient of a semisimple complex Lie
group by a maximal parabolic subgroup), then either the modification map is
trivial, J£=X, or a component of E is blown down to a point, because Q cannot be

equivariantly fibered. In this latter case X must be Pw, [36]. In all other cases

nontrivial modification maps exist. The Levi-curvature of the line bundle

structure of J£ (equivalently, the signature of the invariant Chern form) reveals

the extent to which a component of B can be (partially) blown down. For the
more general Kahler case, we make use of the albanese map which is a holo-

F
morphic map a: X^>A(X) of a compact Kahler manifold X into a compact com-

plex torus A(X) with dimcA(X)=^-bl(X). In addition, if τ:X-+T is a
Δι

holomorphic map of X into a compact complex torus, then there exists a holo-
morphic map σ: A(X)-*T such that τ=σ a. If G is a closed connected com-

plex Lie subgroup of Aut°(Jf), and if (X, G)o is a compact almost-homogeneous
Kahler manifold with exceptional set E, then a is a G-equivariant holomorphic

fiber bundle inducing a surjective homomorphism a*: G-+A.utn(A(X))^A(X),

and a surjective holomorphic map a\E: E->A(X)y [37]. Moreover, the fiber

(F> &).C is a compact almost-homogeneous simply-connected projective algebraic

manifold, where G: =kerα^. is a linear algebraic group, [4].

Theorem 3.2. I f ( X , G)o is an almost-homogeneous compact Kahler manifold

with disconnected exceptional set E, then the open orbit Ω=G//ί can be realized as

a principal C* -bundle over the product of a compact homogeneous rational manifold

Q and the albanese torus A(X) of X,

C*
Ω - >QxA(X).
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This bundle induces an almost homogeneous Pl-bundle

which defines a G-equivarίant modification of X,

In addition, the two components of the exceptional set βof Jΐare both biholomorphίc

to QχA(X) and fiber equivariantly over the corresponding components of E.

Proof. Let a: X-*A(X) be the albanese bundle with fiber Fx: =a~\a(x)).

Since a\E: E-*A(X) is surjective, it follows from the equivariance of a that

Ex: =FX Π E is disconnected. Since (FX9 G)j;is a compact almost-homogeneous

projective algebraic manifold with disconnected exceptional set Ex, the previous

proposition implies that there exists an algebraic (^-equivariant modification

where FX->QX is the almost-homogeneous P*-bundle compactifying the principal
C*-bundle Ωx: =G/H-*QX: = £/P, Ωxc:Fχy Fx. Since v is £-equivariant, we

can define a holomorphic fiber bundle space

and a holomorphic map

which is clearly a G-equivariant modification of X. Note that J? is also a G-

equivariant almost-homogeneous P*-bundle over G/P, which is just the usual

G-equivarint compactification of the C* -bundle Ω=GIH-+G/P. In addition,

any equivariant imbedding (FX9 G)χ-+(PN, Aut(PN))χ defin esan imbedding of

Jfinto a P^-bundle over A(X) which is Kahler, [25]. Therefore, ^"is Kahler,

and G/P being the proper image of a Kahler manifold must also be Kahler (cf.

[6]). Thus, the albanese map of G/P,

G/P-*GIG = A(X) with fiber

splits into a product, GIP=QxxA(X), [10]. Finally, since ^is just the disjoint

union of two sections added to this C*-bundle, the components of E are bi-

holomorphic to Qx X A(X). Π

We now describe the bundle structure of these manifolds.

Corollary 3.3. There exist principal C*-bundles L^Q and L2-^A(X)



ALMOST-HOMOGENEOUS KAHLER MANIFOLDS 773

with L2 topologίcally trivial such that

ΩβarfίLOΘarίίZ*),

where π^ π2 are the natural projections.

Proof. By Lemma 2.7 we have Ω,^πf(L1)®πf(L2). To see that L2 is
topologically trivial we need only note that the holomorphic fibration Ω-»<2
is a map of coset spaces, so that L2 is equivalent to a homogeneous principal C*-
bundle over a compact complex torus and therefore is topologically trivial,

[27]. D

REMARK. Since any such C*-bundles L^Q, L2-> T (L2 topologically trivial)
P1

are homogeneous, they always give rise to an example, X-^QxT.

From this structure theorem we easily deduce the following

Corollary 3.4. Let El9 E2 be the components of E. Then

4. The algebraic case

We now restrict our attention to the case where G is a complex linear al-
gebraic group and (Xy G)_£ is an almost-homogeneous projective algebraic mani-

fold whose exceptional set E is a complex hypersurface orbit, E=G(xQ). (See
§3 if E is not connected.)

In this section we wish to prove a fibration theorem for such manifolds,

but first we present two preparatory lemmas.

Lemma 4.1. Let S be a reductive linear algebraic complex Lie group and

H a closed algebraic subgroup of S. If S/H is not Stein, then H is contained in a
proper parabolic subgroup of S, i.e. there exists a homogeneous fibration, S/H->S/P,
where S/P is a non-trivial compact projective rational manifold.

Proof. If S/H is not Stein, then H is not reductive, [28], so that the uni-
potent radical, RU(H), of H is non-trivial. Then the increasing sequence of

subgroups JVoC JViC ••• c JV,C -where ΛΓ0: =NS(RU(H)) and N< : =Ns(Ru(Ni.1))y

must stabilize with a proper parabolic subgroup of S (see e.g. [20]). Π

Lemma 4.2. Let (X, G)χ be a compact almost-homogeneous projective
algebraic manifold with dim X>1. Assume that the open orbit Ω is Stein (i.e.
affine algebraic) and that the exceptional set E of X is a (necessarily connected)
complex hypersurface orbit of G. Then the generic orbit of a maximal compact

subgroup K of G is a real hypersurface orbit in X, i.e. X is an equivariant projective
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algebraic compactification of a Stein HΣ+-manifold (see Table 2.6).

Proof. Since Ω is Stein, E must be connected, [40]. Since G acts linearly,

algebraically and transitively on E, E is a compact homogeneous projective

rational manifold, [15]. Thus, if K is a maximal compact subgroup of G, K

acts transitively on E also. Therefore, the generic J^-orbits in X have real

codimension 1 or 2.

If the generic J^-orbit has codimension 2, then the normal (complex line)

bundle of E in X is topologically trivial. This follows from the fact that one can

always smoothly and .fiΓ-equivariantly realize a neighborhood Nc:X of E as a

neighborhood of the zero section in the normal bundle of E in such a way that

K(p)-*E is a homogeneous fibration for p e JV, [21]. This fibration is a diffeomor-

phism because E is simply connected.
We now show that this is a contradiction. Let ( X f , G)χ be an equivariant

compactification of the affine algebraic manifold Ω to a projective algebraic

variety such that E':= X'\Ω is a connected hyperplane section (see [5]). It

follows from Lemmas 2.3, 2.4 that there exists a holomorphic equivariant bira-

tional map v : X-+X', showing that E' is homogeneous under G. Equivariance

also implies that v is 1-to-l (X is the G-equivariant normalization of XΊ). If

H denotes the hyperplane section bundle on X', then v*H | E is isomorphic to

a power of the normal bundle of E in X and clearly has non-constant sections.

Therefore, the normal bundle of E cannot be topologically trivial. Π

Theorem 4.3. Let (X, G)χ be an almost-homogeneous connected compact

projective algebraic manifold with open orbit £l=GIH. Assume that the exceptional

set E=X\Ω is a connected complex hypersurface orbit of G. Then there is a G-

equivariant fibration of X

where Q=G/P is a compact projective rational manifold, P is any minimal parabolic

subgroup of G containing H, and the fiber M is bίregularly equivalent to Pn, Qn

9

G2>2Λ, or EIΠ (see Table 2.6).

Proof. Let P be any minimal parabolic subgroup of G which contains H.
Then we have an equivariant fibration Ω->G/P= : Q. Let M be the P-equi-
variant compactification of the fiber PjH in X. By blowing up EM: =M\(P/H)

and passing to an equivariant desingularization of M, we may assume that M

is a manifold and that EM has pure codimension 1 (see §1). We define

X': =GxPM. Then (Xr, G)χis an almost-homogeneous projective algebraic

manifold with open orbit Ω. Lemma 2.4 implies that X' is equivariantly

birationally equivalent to X. Since E':=X'\Ω has pure codimension 1, equi-

variance implies that the components of E' are homogeneous. Lemma 2.5
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then implies that X'^X. Thus, we obtain an equivariant fibration of X,
M

X-+Q. Note that the induced equivariant fibration E->Q shows that EM=
E Π M is homogeneous and connected.

If dim M<dim X, then an induction argument on dimension4) implies
M'

that there exists an equivariant fibration of M, M—+Q'y as in the statement

of the theorem, where Qf=PjPf. By the minimality of P we have P=P' and

M=M', and the theorem is true.

Therefore, we may assume that M=Xy i.e. that any minimal parabolic

subgroup of G which contains H must be G itself. In this case we claim that Ω is

Stein, which by Lemma 4.2 implies that X is an equivariant compactification of

a Stein jF/2+-manifold (Table 2.6). Let K be a maximal compact subgroup of

G and let S=KC. Recall that the generic .SΓ-orbits in X have real codimension

at most 2. We then have the following possibilities:

1) S has a compact orbit in Ω with complex codimension 1, S(x)=K(x).

2) S has an open Stein orbit S(x).

or 3) S has an open orbit which is not Stein, S(x).

In case 2) we have S(x)=Ω—unless S(x)=C* and Ω = C, since a Stein

manifold has only one "end" in dimensions greater than 1, [40]—showing that

Ω is Stein as claimed.

Case 1) can only occur when X=P1. To see this, let G—RUS where Ru

is the unipotent radical of G, [20]. Then, since G acts algebraically on Xy the

orbits of Ru are Zariski-open in their closures, and hence we obtain an equivariant
p

fibration of Ω, Ω=G//f->G/JRJf2'. It follows from Lie's Theorem that, since

it is solvable and acting algebraically, the ̂ -orbits are holomorphically separable.

Since such an orbit intersects S(x) in a compact analytic set, this intersection

must be finite. Thus the fibration S(x)-^G/RuH is finite, and thus the base

G/RUH is a homogeneous rational manifold having the same dimension as S(x).

In fact, they intersect in exactly one point since S(x) is a compact simply-con-

nected projective rational manifold, and thus GIRuHs*S(x). The above as-

sumption on G implies that RUH=G, so that S(x) reduces to a point. Therefore,

X, being a compact connected 1-dimensional almost-homogeneous manifold of a

linear algebraic group, must be biregularly equivalent to JP1.

Finally, we show that case 3) implies that X^Pn and Ω^Cn. Let S(x)=

SISΓ\Hbe the open 5-orbit in X which is not Stein. There are two cases

which we handle separately:

(a) X\S(x) is connected,

or (b) X\S(x) is not connected.

5) If dim X=19 the theorem is trivial.
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In (a), we apply Lemma 4,1 to obtain a proper parabolic subgroup P0 of S
which contains S f| Hy and the corresponding equivariant fibration S(x)->SJPQ=
:Qo Just as in the beginning of the proof, if MQ denotes an equivariant
compactification of the fiber to a projective algebraic manifold, then X is biregu-

larly equivalent to the almost-homogeneous manifold SXp0M0y since E is homo-

geneous with respect to S and has complex codimension 1. We thus obtain a
fibratipn of X, X-*Q^ which is equivariant with respect to G since the fiber is
compact and connected, [38]. Therefore, ^0=G/P' where P' is a parabolic
subgroup of G containing H. By our assumption on G, we have G=P' so that

S=PO» contradicting the fact that P0isaproper subgroup of S. This shows that
(a) does not occur.

For (b), we apply Proposition 3.1 to show there exists an S-equivariant

algebraic modification of Xy μ: JfL-^X, where π:X^>Q' is an almost-homo-
geneous P!-bundle over a homogeneous projective rational manifold Qr with
structure group C*. Let E— £ΌU£Όo be the exceptional set of Jΐ, i.e. the zero
and infinity sections of the PJ-bundle. By Proposition 3.1 we know E^E^^Q'
and that E^ (say) is biholorriorphic to E, while ̂ 0-»^(£Γ

0)= :Q" is an equivariant
fibration of E0 onto another compact homogeneous projective rational manifold

Q"c.X. We now construct a holomorphic map from X to Q" as follows:

X Λ_> JT-^Q> J*+ Q» m

Note that μ~l is only a meromorphic map so that π':=μ°π°μ~l is a priori only
a meromorphic map. However, due to the equivariance of the maps involved, it
is easy to see that π is well-defined and continuous, and therefore holomorphic.
Since the fiber is compact and connected, this map is equivariant with respect
to G, [38], Thus, Q"=GIP" where P" is a parabolic subgroup of G containing
H. Once again, this means that.<?=P//, so that Q" reduces to a point. Therefore,
X can be realized as a compact almost-homogeneous manifold (with respect to
S) whose exceptional set contains an isolated fixed point. A theorem of E.
Oeljeklaus [36] implies that X^Pn and S(x)^Cn\{0}. Therefore, Ω^C" as
claimed.

To conclude the proof, we need only check Table 2.6 to see that, since P
is minimal, the possibility that M^PnXPn cannot occur. Q

We now list a few consequences of this theorem which further describe
the properties of X.

Corollary 4.4. πΊ(Ω)=0 or Z2.

Proof. This follows from the homotopy sequence πγ(M Π Ω)-»7r1(Ω)-^τr0(^)
and Table 2.6. Π
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Corollary 4.5. Unless X=plχ E and every K-orbit is biregularly equivalent

to E, the generic orbit of a maximal compact subgroup K of G is a real hypersurface

orbit in X.

. M
Proof. By the theorem, X has a G-equivariant fibration X-*Q. Lemma

4.2 applied to M shows that K has real hypersurface orbits in X unless dimc M= 1.

In this case M=P1. Now, if K does not have real hypersurface orbits in X, then
the generic K-orbit must have real codimension 2, as before. These ^-orbits

show that the affine or line bundle structure of X is topologically trivial. Since
H1(Q9O)=Oy it follows that the bundle structure is in fact holomorphically

trivial and X=PlxQ=PlxE. Π

Corollary 4.6. The manifold M cannot be P-equivariantly and non-trivially

fiber ed with positive dimensional fiber.

Proof. If M-> Y is a P-equivariant fibration of M with positive dimensional

fiber Z, then the open Stein orbit P/H also fibers onto an open homogeneous

submanifold of Y. Since P/H is Stein, the fiber Z must intersect EΓ\M By

equivariance, P/H then fibers onto Y so that Y=P/P' is a compact homogeneous

projective rational manifold. By minimality of P, Y must reduce to a point. Π

Corollary 4.7. If the generic K-orbit is a real hypersurface in X, then the

ίsotropy subgroup H has at most index 2 in JVG(Zϊ0), i.e. either H—NG(H°) or

H<lNG(H°) and NG(H°)/H^Z2. This latter possibility can only occur when

M=Qn, a projective quadric hypersurface.

Proof. We first show that NG(H°)IH is finite. If the orbits of NG(HQ)

are positive dimensional in G/H, then they each intersect a fixed generic real
hypersurface orbit of K. Since G is acting linearly, it follows that these orbits

cannot be compact. Therefore, GING(H°) is compact and indeed a projective

rational manifold so that NG(HQ) is parabolic. We choose P to be a minimal
parabolic subgroup of G containing H which is contained in NG(H°). Then W

is a normal subgroup of P and therefore fixes every point in the Stein manifold

P/H=(PIH°)/(H/H°) which is now group theoretically parallelizable. This can

only happen when P/ίf— Ck or C* (see Table 2.6), and the latter possibility is

eliminated by our assumption that E is connected. Thus, H=H° and PJH^Ck

is an abelian complex Lie group. But then no maximal compact subgroup of

P can have real hypersurface orbits in P/H. This contradiction implies that the

orbits of NG(H°) are 0-dimensional. Thus, since NG(H°) is an algebraic group^

NG(H°)/H is finite.

Now consider the G-equivariant finite covering X-+X' of X onto the orbit

space X' of the action of NG(H°) on X. Thisjmap is given by Π=G/H->ίl': =

GING(H°) on β and is a biholomorphism of E onto E': =X'\Ω' since E is
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simply connected. It is clear that K still has real hypersurface orbits in X'
and that E' is a complex hypersurface orbit in X' (cf. Lemma 2.2. The con-
struction of X' is also given by Theorem 6.1). It follows that the G-equivariant
normalization j£ of X' is a manifold satisfying the conditions of the theorem.
Therefore, there exists a parabolic subgroup P' of G containing NG(H°). We now
choose P to be a minimal parabolic subgroup containing H which is contained in
P'. However, since the above map is finite, it follows that P—P' and NG(H°)
=NP(Hΰ). Table 2.6 shows that NP(H°)=H unless M=Q* in which case
NP(H°)IH=Z2. Π

Corollary 4.8. X is a projective rational manifold.

Proof. Let B be a Borel subgroup of G. Then B has an open orbit in E
isomorphic to C*~l (n=dim X) since E is a compact homogeneous projective
rational manifold. According to [26], X is birationally equivalent to Pn~1X V,
where V is a 1-dimensional compact projective algebraic variety. Theorem 4.3
shows that b1(X) = Q, and since this is a birational invariant it follows that
ft^F^O, i.e. V=P1. Therefore, X is rational. D

5. The compact Kahler case

In [10], Borel-Remmert prove that the albanese fibration α: X-*A(X) of a
compact homogeneous Kahler manifold X splits X into a product X=QxA(X)
where Q is a compact homogeneous projective rational manifold.

In general, this kind of splitting does not occur when X is a compact almost-
homogeneous Kahler manifold. However, in this section we prove that if the
exceptional set E of X is a connected complex hypersurface orbit, then with two
exceptions the albanese fibration does split X into a product X=FxA(X). In
any case, the complex hypersurface orbit assumption implies that (F, G)χ is
always a compact almost-homogeneous projective rational manifold as described in
§4. Of course, we must take Gc Aut°(.ΛΓ) in order to guarantee that ό is linear
algebraic (see §3).

We begin with the following

Proposition 5.1. Let Gbea closed connected complex Lie subgroup of Auf (X)
and let (X,G)o be a compact almost-homogeneous Kahler manifold whose exceptional
set E is a connected complex hypersurface orbit of G. Let (F, G)_£ be the fiber of the
albanese fibration a: X-*A(X). Assume that a maximal compact subgroup of ό
has a real hypersurface orbit in F. Then there exists a compact complex central
subgroup ΓcG such that either

1) GezOxT, or
2) Gs^όx T/J where J: = {(*, aΓ1) |*e(z Π T] is a finite group of order

two.
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Proof. We first assume that G is the connected component of the stabilizer
of E in Aut(X). Let H be the isotropy subgroup of a point x in the open G-
orbit, ΛJ<ΞΩ, and set Fx: =a~1(a(x))9 Ωx: =ΩΓ(FX. Then,

NG(H°)(x) Π Ω, = (NG(HQ)IH) n (£/#) = NG(H^H

which is at most two points by Corollary 4.7. Therefore, the equivariance of
the albanese fibration implies that

is a 1-to-l or 2-to-l equivariant covering map. Thus, since H acts trivially on
A(X), H acts trivially on the component of NG(H°)(x) which contains x. Also,
there are at most two components of NG(H°)(x) so that H must act trivially on
all of NG(H°)(x). This shows that H is normal in NG(H°) and that T: =
NG(H°)IH=NG(H°)(x) is a compact complex torus, perhaps with two com-
ponents.

We now define a holomorphic action of T on Ω in the following way: Let
and *eΩ. Then t=nH^NG(H°)IH and x=gH^G/H. Define

This is a v^ell-defined holomorphic action since if is normal in NG(HQ) and T
is abelian.

We wish to extend the action of T to all of X. To do this, we must inspect
both the albanese fibration, a: X-*A(X), and the fibration

β: Ω = GjH -> Y: =

By [17], β extends to a G-equivariant meromorphic map

where Y is an appropriate compactification of Y to a complex space. Lemma
2.3 implies that $ is holomorphic. Since β is also a proper map, we can find a
bounded Stein neighborhood Z of β(xQ)y xQ^Ey such that V: =β~1(Z) is /3-
saturated, β~1(β(V))=V. This implies that V\E is invariant under the action
of T. Note that the restricted albanese map

a: Ω= Gin -+ A(X) = GfO

is also T-equivariant when the action of T on A(X) is defined via left multiplica-
tion of cosets by elements of NG(H°). Fix t^T. By the above remarks it
follows that there exists a small coordinate neighborhood U of a(xQ) in A(X)
such that W: = VΓ\ (X'^U) is a bounded coordinate neighborhood of x0 and
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where a~l(tU) Γl V is also a bounded coordinate neighborhood. The action of
/ o n W\E is now given by bounded holomorphic functions and therefore t ex-
tends to all of H^and indeed to all of X. We thus obtain a holomorphic Lie
group monomorphism

p:T°->G

whose image we denote by T0.
We claim that T0 is a central subgroup of G. To see this let t=nH^ T°,

n e NG(H°) and t0 : = p(ΐ) . Then, we have for gH <Ξ G/H= Ω

togH = P(ί)gH = t(gH) = gnH = gtfl

since ρ(t)H=nH. Therefore, tQg=gtQ for all g^G, tQ^T0 because G acts
effectively on Ω. Consider the complex Lie group homomorphism

whose kernel is /: = {(#, z'1) | #e 0 Π T0} . Since dim T0=dim A(X), it follows
that the image of this homomorphism is open and hence all of G. Now

ό n TQ = ό n TO/H n TO = (O/H) n TO(*) = ΩΛ n NG(H*)(X)
which we have already seen consists of at most two points. Therefore, J^ {1}
or Z2.

Finally, we note that if G' is any closed subgroup of G acting transitively
on Ω and E, then G=OχT0 or OxT0/J as above. Let Γ'=ker (/3*|G')=
G'nker/3^. Then, since T acts transitively on A(X), it follows that
dim A(X) < dim T < dim ker β* = dim Γ0 = dim A(X). In particular, Γ0 c Γ',
so that G'=G'xTQ or 0' xTJJ', where O'-ker (α* IG'^G'ΠG and 7'=

Γo}. D
We now prove our main structure theorem.

Theorem 5.2. Let (X, G)$ be a compact almost-homogeneous Kahler
manifold whose exceptional set is a connected complex hypersurface orbit of G. Let

F
X -> A(X) be the albanese fibratίon of X. Then

(1) F is an almost-homogeneous compact rational manifold which fibers
:M.

equivarίantly, F-+Q, over a compact homogeneous rational manifold Q
with fiber M^P", Q", G2>2n, or E III (see Table 2.6)

and '(2) One of the following holds:
(2.1) XcχFxA(X).
(2.2) There exists an equivariant 2-to-l covering of A(X)>
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and an equivariant 2-to-l covering of X,

X-+X

such that X^Fx T. In this case Ms*Q".
(2.3) XszQxB, where Q is a compact homogeneous projective rational mani-

fold and B is an almost homogeneous Pl~bundle over A(X) with structure
group C. In this case, F^P^X Q>

REMARK. A maximal compact subgroup of G has a real hypersurface orbμi;
in X only in cases (2.1) and (2.2), and we have G^GxA(X) and G^OX T/J,
J= {(#, 3Γ1) I Z^L ό Π T} , respectively (see Proposition 5.1).

Proof. We have already noted that statement (1) is true. Let (F,ό).j;'be
the fiber of the albanese fibration. We consider two cases: 1) A maximal
compact subgroup of ό has a real hypersurface orbit in F, or 2) there are no such
real hypersurface orbits.

1): By the previous proposition we know G^όxToτ ox T/J. Consider
the holomorphic map

v:FxT->X, (*,f)ι->f(*).

If G^όxT, then this map is biholomorphic since T acts trivially on F and
transitively on A(X). In this case it is clear that T ̂  A (X), proving (2.1). If
G=OX Γ//, then v defines a 2-to-l map since every orbit of GΓl T in F consists
of two points. Corollary 4.7 implies that M=Qn, proving (2.2).

2): If there are no real hypersurface orbits, then Corollary 4.5 implies
that F^P1 XQ. In fact, OIH-*OIP=Q is a trivial C-bundle and F is its com-
pact ification. The fibration

is therefore an affine C-bundle and X is its compactification to a P^bundle.
Let L denote the principal C*-bundle associated to this affine C-bundle.

By Lemma 2.7 we have that L=πf(L1)®π$(L2), where L^+Q and L2-»A(X)
are principal C*-bundles. In addition, since the restricted affine C-bύndles
over Qx {t}, t^A(X), are trivial, Zq is the trivial bundle. Thus, the structure

group of the affine C-bundle Ω-*QxA(X) has the form (̂  *(*' *)\ ?eg,

t^A(X). Now the restricted affine C-bundles over {q} xA(X)y g.e.g,- are
homogeneous (they are the fibers of the map of coset spaces Ω->£)). Therefore,
it follows from [29] that for fixed q this group can be further reduced to either

(^0 ̂  l) wίth c(l> *)φ !> or (θ d^ί ^) The first P°ssibίlίty is eliminated by

our assumption that the exceptional set is connected (Ω has one end). This
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shows that L2 is also the trivial bundle, and hence Ω is a principal C-bundle.

The structure group is now equivalent to (Q { ) t^A(X), since H*(Qχ

A(X), O) « H\Q, O)®H\A(X), O) « H\A(X), O). Thus, Ω ̂  Q X Ω' where

Ω' is a principal C-bundle over A(X), and X^ Q xB as claimed. Π

It is quite easy to illustrate the phenomenon of (2.2) in the above theorem:

Let jΓ=C"7Γ and let p: Γ-*Z2: ={l,σ} be a non-trivial representation. We

identify σ with the involution of QmdPm+1

y [#0: ̂ : ••• : #OT+ι]->[— #0

: #ι: "' : #»+ι]
Then we define X: =QχTI~, where (9, t)~(ρ(γ)q, t+γ) for γeΓ. This
example is also presented in [4], where it is shown among other things that the

structure group of the albanese fibration can always be reduced to a finite

group when X is an almost-homogeneous compact Kahler manifold. Of course,

M
we can construct similar examples using any equivariant fibration F-* Q as in

(1) with fiber M^Q". This is because σ commutes with the structure group of

the bundle and hence acts on F.

6. Compact Kahler manifolds with real hypersurface orbits

In this section we consider a compact Kahler manifold X on which a compact

Lie group K acts with at least one real hypersurface orbit, H'Σ=K(x), for some
x^X. Recall from §2 that such an Xis called a compact (Kahler) 7/2-manifold

and is almost-homogeneous with respect to S: =KC (we may as well assume that

K is a closed subgroup of Aut(-X)). In addition, the connectivity components of
the exceptional set E of X are homogeneous under K and S.

As usual, we begin with a proposition for the algebraic case. The proof uses

the same argument as in Theorem 4.3.

Proposition 6.1. Let (Xy S)χbe a compact projective algebraic HΣ-manίfold.

Then there exists an equivariant algebraic modification of Xy

such that the connectivity components of the exceptional set E of X are complex

hypersurface orbits of S.

Proof. First note that we may assume the exceptional set E is connected,

since otherwise we apply Proposition 3.1. If S(x)=S/H is Stein, we refer
directly to §2 and Table 2.6. If S/H is not Stein, then there exists a proper
minimal parabolic subgroup P of S which contains H by Lemma 4.1. Thus,

Plf-f
we obtain a non-trivial fibration S/H -+-+ S/P=: Q. The fiber P/H has
real hypersurface orbits with respect to P Π K (for appropriately chosen K in

S). Therefore, SP: =(P Π K)c has an open orbit in P/H, say SP(x). As in the
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proof of Theorem 4.3, it follows from the minimality of P that SP(x) is Stein.

Let M be the equivariant compactification of SP(x) in X. Then the complex
hypersurface M\SP(x) is an orbit of SP by Lemma 2.1. Hence the equivariant
normalization of My which we again denote by Λf, is an almost-homogeneous
projective algebraic manifold whose exceptional set is a complex hypersurface
orbit. Define

Then J£ is an almost homogeneous projective algebraic manifold whose
exceptional set is a complex hypersurface orbit. Now S(x)=SjH is a dense
open orbit of both J?and X so that Lemmas 2.3 and 2.4 imply that there exists an
equivariant holomorphic and birational map Jf-^-X", i.e. X is an equivariant
algebraic modification of Jζ, Π

We now prove the corresponding Theorem for the compact Kahler case
using the albanese fibration.

Theorem 6.2. Let (Xy S)o be a compact Kahler HΣ-manίfold. Then
there exists an equivariant modification of JSC,

such that Xis a compact almost-homogeneous Kahler manifold whose exceptional set

is a complex hypersurface orbit of S.

Proof. Again we may assume that the exceptional set E is connected for
otherwise we apply Theorem 3.2. Let (F, S)_£ be the fiber of the albanese map

F
X-*A(X)=SIS. Then KΓ\S has real hypersurface orbits in F. By Pro-
position 6.1, there exists an equivariant algebraic modification

P: (F, (KKS)^-* (F, (Kn$)c)j;.

Note that S=(Kf] S)c since SI§=KIKr\S is a compact complex torus. Now,

X: = Sx $F -> Sx §F = X; (s, z) h-> (s, *(*)) ,

defines an S-equivariant modification of X, and the exceptional set I? of J? is a
complex hypersurface orbit of S since EΓi F is a complex hypersurface orbit of
o. The same argument as in the proof of Theorem 3.2 shows that J?" is Kahler.

D

Theorem 5.2 can now be used to understand any compact Kahler
manifold, and to give a classification of the real hypersurface HΣ by means of
the above theorem. The reader may wish to compare [11] for a classification of
P" as an //Σ-manifold.
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As a final remark we would like to mention a conjecture attributed to

Remmert and van de Ven (see [34]) that any almost-homogeneous compact

Kahler manifold X with b1(X)=0 should be a projective rational manifold,6)

i.e. bimeromorphically equivalent to Pn. In our special case of exceptional sets

as complex hypersurface orbits, we can show that this conjecture is true:

Theorem 6.3. Let (X, G)@ be an almost homogeneous compact Kάhler

manifold with b1(X)=0. Assume any one of the following is true:

1) The exceptional set of X is disconnected.

2) The exceptional set of X is a connected complex hypersurface orbit of G.

3) A maximal compact subgroup of G has a real hypersurface orbit in X.

Then X is a projective rational manifold.

Proof. Case 1) follows from Theorem 3.2 and the fact that equivariant

compactifications of homogeneous rational cones are rational (see e.g. [19]).

Case 2) follows from Theorem 5.2 and case 3) from Theorems 6.2 and 5.2. Π
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