A SPLITTING PROPERTY OF ORIENTED HOMOTOPY EQUIVALENCE FOR A HYPERELEMENTARY GROUP

Masaharu MORIMOTO

(Received December 5, 1980)

1. Introduction

Let G be a finite group. In this paper a G-space means a complex G representation space of finite dimension. For a G-space V we denote by $S(V)$ its unit sphere with respect to some G-invariant inner product. After tom Dieck [1] and [2] we call two G-spaces V and W oriented homotopy equivalent if there exists a G-map $f: S(V) \rightarrow S(W)$ such that for each subgroup H of G the induced map $f^{H}: S(V)^{H} \rightarrow S(W)^{H}$ on the H-fixed point sets has degree one with respect to the coherent orientations which are inherited from the complex structures on V^{H} and W^{H}. Let $R(G)$ be the complex G-representation ring, $R_{h}(G)$ the additive subgroup of $R(G)$ consisting of $x=V-W$ such that V and W are oriented homotopy equivalent, and $R_{0}(G)$ the additive subgroup of $R(G)$ consisting of $x=V-W$ such that $\operatorname{dim} V^{H}=\operatorname{dim} W^{H}$ for all the subgroups H of G. We denote by $j(G)$ the quotient group $R_{0}(G) / R_{h}(G)$.

If G has a normal cyclic subgroup A and a Sylow p-subgroup H such that G is the semidirect product of H by A, we call G a hyperelementary group. Especially if G is the direct product of A and H, we call G an elementary group. tom Dieck showed that for an arbitrary finite group G the restriction homomorhpism from $j(G)$ to the direct sum of $j(K)$ is injective, where K runs over the hyperelementary subgroups of G ([1; Proposition 5.1]). Our purpose of this paper is to consider oriented homotopy equivalence for hyperelementary groups and to give a sufficient condition for a hyperelementary group to have a splitting property defined below.

Choose an integer m which is a multiple of the orders of the elements of G, and let $Q(m)$ be the field obtained by adjoining the m-th roots of unity to Q, where Q is the field of rational numbers. The Galois group $\Gamma=\Gamma(m)$ of $Q(m)$ over Q acts on $R(G)$ via its action on character value. Actually Γ acts on the set $\operatorname{Irr}(G)$ of isomorphism classes of irreducible G-spaces. Let $Z[\Gamma]$ be the integral group ring of Γ, and $I(\Gamma)$ its augmentation ideal. Then we have $R_{0}(G)=I(\Gamma) R(G)$. We put $R_{1}(G)=I(\Gamma) R_{0}(G)$. According to [3] we have $R_{1}(G) \subset R_{h}(G)$. Let us say that G has Property 1 if $R_{1}(G)$ coincides with $R_{h}(G)$.

For example the abelian groups and the p-groups have Property 1 , and some hyperelementary groups do not have Property 1 (see [1] and [6]). In section 3 we obtain other groups which have Property 1.

For each orbit $C \in X(G)=\operatorname{Irr}(G) / \Gamma$, we let $F(C)$ be the free abelian group on elements of C. Then we have $R(G)=\oplus_{c \in X(G)} F(C)$. Let f_{c} be the canonical projection from $R(G)$ to $F(C)$. Let us say that G has Property 2 (we called this a splitting property) if for each element x of $R_{k}(G)$ and each element C of $X(G) f_{c}(x)$ belongs to $R_{h}(G)$. This property is of our interest. If G has Property 1, then G has Property 2; the converse is not true. It is remarkable that $R_{h}(G)$ is determined by oriented homotopy equivalence between the irreducible G-spaces if G has Property 2.

Our main results are Theorems 6.11 and 6.12, and the latter indicates the importance of Property 2. Additionally we give a counter example to [1; Proposition 5.2] in section 7.

The author wishes to express his hearty thanks to Professor M. Nakaoka and Professor K. Kawakubo for their kind advice.

2. Preparation

Let $S(G)$ the set of normal subgroups of G. If a G-space V is given we write $V=\oplus_{H \in S(G)} V(H)$, where $V(H)$ collects the faithful irreducible G / H-subspaces (see [2; p. 252]).

Lemma 2.1 ([2]). If $x=V-W \in R_{h}(G)$, then for all $H \in S(G)$ we have $x(H)=V(H)-W(H) \in R_{h}(G)$.

Let V and W be G-spaces. If f is an $N_{G}(H)$-map from $S(V)^{H}$ to $S(W)^{H}$ and g is an element of G, then there uniquely exists an $N_{G}\left(g \mathrm{Hg}^{-1}\right)$-map h from $S(V)^{g H g^{-1}}$ to $S(W)^{g H g^{-1}}$ such that the following diagram is commutative:

where g_{*} are the maps canonically given by the actions of g.
Proposition 2.2. Let V and W be G-spaces. We have $V^{H}-W^{H} \in$ $R_{h}\left(N_{G}(H)\right)$ if and only if we have $V^{g^{-1}}-W^{g^{g} g^{-1}} \in R_{h}\left(N_{G}\left(g \mathrm{~g}^{-1}\right)\right)$.

Proof. This proposition follows from the fact that each g_{*} of the above diagram preserves the orientation of the sphere.

Let V and W be G-spaces such that $\operatorname{dim} V^{H}=\operatorname{dim} W^{H}$ for all subgroups H of G (i.e. $\left.V-W \in R_{0}(G)\right)$. We put $n=\operatorname{dim} V(=\operatorname{dim} W)$. If g is an element of
G, g has n eigenvalues $a_{1}(g), \cdots, a_{n}(g)$ (resp. $\left.b_{1}(g), \cdots, b_{n}(g)\right)$ with respect to its action on V (resp. W). We reorder $\left(a_{j}(g)\right)$ and $\left(b_{j}(g)\right)$ as follows: there is an integer k such that for each $j<k$ we have $a_{j}(g)=b_{j}(g)=1$ and for each $j \geqq k$ we have $a_{j}(g) \neq 1$ and $b_{j}(g) \neq 1$. We get an algebraic integer $z(g)$ defined by

$$
z(g)=\prod_{j=1}^{n}\left(1-b_{j}(g)\right) /\left(1-a_{j}(g)\right)
$$

where we put $\left(1-b_{j}(g)\right) /\left(1-a_{j}(g)\right)=1$ for $j<k$. Summing up these algebraic integers $z(g)$ over the elements g of G we have an integer $P=P(G ; W-V)$, that is,

$$
P(G ; W-V)=\sum_{z \in G} z(g)
$$

Lemma 2.3 (due to T. Petrie). Let V and W be G-spaces as above. V and W are oriented homotopy equivalent if and only if the following two conditions (i) and (ii) are satisfied.
(i) For each non-trivial subgroups H of G (i.e. $H \neq\{1\}$), we have $V^{H}-W^{H} \in$ $R_{h}\left(N_{G}(H)\right)$.
(ii) It holds that $P(G ; W-V) \equiv 0 \bmod |G|$.

Provided (i), then (ii) is equivalent to the condition: $P(G ; V-W) \equiv$ $0 \bmod |G|$.

Let s be a positive integer, and V a G-space of dimension n. We are going to define an element $Q(s ; V)$ of $R(G)$. Let $x(1), \cdots, x(n)$ be indeterminates, and $y(i)$ the elementary symmetric polynomial of degree i for each $1 \leqq i \leqq n$. We define a polynomial Q of $y(1), \cdots, y(n)$ by

$$
Q(y(1), \cdots, y(i), \cdots, y(n))=\prod_{j=1}^{n}\left(1+x(j)+\cdots+x(j)^{s-1}\right) .
$$

We define $Q(s ; V)$ by

$$
Q(s ; V)=Q\left(V, \cdots, \Lambda^{j} V, \cdots, \Lambda^{n} V\right),
$$

where $\Lambda^{j} V$ is the j-fold exterior power of V. By the usual identification we let $Q(s ; V)(g)$ stands for trace $(g ; Q(s ; V))$. Then it holds that

$$
\begin{equation*}
Q(s ; V)(g)=\prod_{j=1}^{n}\left(1+a_{j}(g)+\cdots+a_{j}(g)^{s-1}\right), \tag{2.4}
\end{equation*}
$$

where $a_{1}(g), \cdots, a_{n}(g)$ are all the eigenvalues of g on V. Since $Q(s ; V) \in R(G)$, we have

$$
\begin{equation*}
\sum_{h \in H} Q(s ; V)(h) \equiv 0 \bmod |H| \tag{2.5}
\end{equation*}
$$

for each subgroup H of G.

3. A few remasks about Property 1

Let L be a finite abelian group. We denote the integral group ring of L by $Z[L]$, the augmentation ideal of $Z[L]$ by $I(L)$, i.e.

$$
I(L)=\left\{\sum_{x \in L} z(x) x: z(x) \in Z, \text { and } \sum_{x \in L} z(x)=0\right\}
$$

where Z is the ring of integers.
Proposition 3.1. We have the following.
(i) For $x, x^{\prime} \in L$, it holds that $x x^{\prime}-x \equiv x^{\prime}-1 \bmod I(L)^{2}$.
(ii) For $x \in L$ and $z \in Z$, it holds that $z x-z 1 \equiv x^{2}-1 \bmod I(L)^{2}$.
(iii) $I(L) / I(L)^{2}$ is isomorphic to L.

Since the proof is straightforward, we omit it.
Let G be a direct product $H \times K$ as finite group. We denote by ϕ the Euler function, that is, for a positive integer $n \phi(n)$ is the number of the units of $Z_{n}=Z /(n)$.

Proposition 3.2. Let V be an irreducible H-space, and W an irreducible K space. Assume $(\phi(|H|), \operatorname{dim} W)=(\phi(|K|), \operatorname{dim} V)=1$. Then for an element

$$
x=\sum_{\gamma \in \Gamma} z(\gamma) \gamma(V \otimes W) \in R_{0}(G),
$$

x belongs to $R_{1}(G)$ if and only if $\operatorname{Res}_{H}^{G} x \in R_{1}(H)$ and $\operatorname{Res}_{K}^{G} x \in R_{1}(K)$, where $z(\gamma)$ are integers.

Proof. The only if part is clear. We are going to prove the if part. Γ acts on the orbits $\Gamma(V \otimes W), \Gamma V$ and ΓW which are subsets of $\operatorname{Irr}(G), \operatorname{Irr}(H)$ and $\operatorname{Irr}(K)$ respectively. Let $\Gamma_{V \otimes W}, \Gamma_{V}$ and Γ_{W} be the isotropy subgroups of $V \otimes W, V$ and W respectively. We have $\Gamma_{V \otimes W}=\Gamma_{V} \cap \Gamma_{W}$. Put $M=\Gamma / \Gamma_{V}$ and $N=\Gamma / \Gamma_{W}$. The order of M (resp. N) divides $\phi(|H|)$ (resp. $\phi(|K|)$). Since $x \in R_{0}(G)$, there exists $\mu \in \Gamma$ such that

$$
x \equiv(\mu-1)(V \otimes W) \bmod R_{1}(G)
$$

We put $y=(\mu-1)(V \otimes W) . \quad \operatorname{Res}_{H}^{G} x \in R_{1}(H)$ and $\operatorname{Res}_{K}^{G} x \in R_{1}(K)$ are equivalent to $\operatorname{Res}_{H}^{G} y \in R_{1}(H)$ and $\operatorname{Rcs}_{K}^{G} y \in R_{1}(K)$ respectively. We have $\operatorname{Res}_{H}^{G} y=(\operatorname{dim} W)$ $(\mu-1) V$. By Proposition 3.1 (ii) it holds that

$$
\operatorname{Res}_{H}^{G} y \equiv\left(\mu^{\mathrm{dim} W}-1\right) V \bmod R_{1}(H)
$$

$\operatorname{Res}_{H}^{G} y \in R_{1}(H)$ implies $\mu^{\operatorname{dim} W} \in \Gamma_{V}$. Since $(|M|$, $\operatorname{dim} W)=1$, we have $\mu \in \Gamma_{V}$. In the same way we obtain $\mu \in \Gamma_{W}$. Therefore we have $\mu \in \Gamma_{V \otimes W}$; this means $y=0$ in $R(G)$. Consequently x belongs to $R_{1}(G)$.

For a group G we denote by $C(G)$ its center. Since the dimensions of the
irreducible G-spaces divide $|G / C(G)|$, we have the following proposition.
Proposition 3.3. If both H and K have Property 1 and if it holds that $(|H / C(H)|, \phi(|K|))=(|K / C(K)|, \phi(|H|))=1$, then $G=H \times K$ has Property 1.

As the abelian groups and the p-groups have Property 1, we have the following.

Corollary 3.4. Let H be an abelian group, and K a p-group. Provided $(\phi(|H|), p)=1$, then $G=H \times K$ has Property 1 .

Corollary 3.5. Let H be a p-group and K a q-group. $\operatorname{Provided~}(p, q)=$ $(p, q-1)=(q, p-1)=1$, then $G=H \times K$ has Property 1 .

4. The irreducible spaces of the hyperelementary group

Let G have a normal cyclic subgroup A and a Sylow p-subgroup H such that G is the semidirect product of H by A, that is, G is a hyperelementary group. The irreducible representations of G can be constructed by the method of little group of Wigner and Mackey (see [7; 8.2]).

Since A is cyclic, its irreducible representations form a group Y. The group G acts on Y by

$$
(g \chi)(a)=\chi\left(g^{-1} a g\right)
$$

for $g \in G, \chi \in Y, a \in A$. This action induces the action of G on the set $\operatorname{Irr}(A)$ of irreducible A-spaces. For $V \in \operatorname{Irr}(A)$ and $g \in G$, we have an irreducible A space $g_{*} V$ by this action. Let $\{V(i): i \in Y \mid H\}$ be a system of representatives for the orbits of H. For each $i \in Y \mid H$, let $H(i)$ be the subgroup of H consisting of those elements h such that $h_{*} V(i)=V(i)$, and let $G(i)=A H(i)$ be the corresponding subgroup of G. We can canonically extend $V(i)$ to the $G(i)$ space, that is, $h \in H(i)$ acts trivially on $V(i)$. Let W be an irreducible $H(i)$-space; W can be extended to $G(i)$-space, too. By taking the tensor product of $V(i)$ and W we obtain an irreducible $G(i)$-space $V(i) \otimes W$. Then $\operatorname{Ind}_{G(i)}^{c} V(i) \otimes W$ is irreducible, moreover each irreducible G-space is obtained in this way ($[7$; Proposition 25]).

We denote by $C_{H}(A)$ the centralizer of A in H, i.e.

$$
C_{H}(A)=\left\{g \in H: g^{-1} a g=a \quad \text { for all } a \in A\right\}
$$

Proposition 4.1. If the kernel of $\operatorname{Ind}_{G(i)}^{G} V(i) \otimes W$ is $\{1\}$, then the kernel of the A-space $V(i)$ is $\{1\}$, and $H(i)=C_{H}(A)$.

Proof. This comes from the fact that ker $V(i) \subset \operatorname{ker} \operatorname{Ind}_{G(i)}^{G}\{V(i) \otimes W\}$.
Since $C_{H}(A)$ is normal in H, H acts on $\operatorname{Ir}\left(C_{H}(A)\right)$ by

$$
\left(\chi_{g * W}\right)(h)=\chi_{W}\left(g^{-1} h g\right),
$$

where $g \in H, h \in H$, and χ_{W} is the corresponding character to $W \in \operatorname{Irr}\left(C_{H}(A)\right)$.
Proposition 4.2. Put $K=C_{H}(A)$, and let V be an irreducible A-space with the trivial kernel, W an irreducible K-space and h an element of H. Then we have

$$
\operatorname{Ind}_{A K}^{G} V \otimes\left(h_{*} W\right)=\operatorname{Ind}_{A K}^{G}\left(h^{-1}{ }^{-1} V\right) \otimes W
$$

Proof. If we identify the representation spaces with the corresponding characters, by direct calculation we have

$$
\left\{\operatorname{Ind}_{A K}^{G} V \otimes\left(h_{*} W\right)\right\}(g)=\operatorname{Ind}_{A K}^{G}\left\{\left(h^{-1}{ }^{G} V\right) \otimes W\right\}(g) \quad \text { for each } \mathrm{g} \in G .
$$

Proposition 4.3. We have the following.

(i) $\gamma \operatorname{Ind}_{G(i)}^{G} V(i) \otimes W=\operatorname{Ind}_{G(i)}^{G}(\gamma V(i)) \otimes(\gamma W)$ for $\gamma \in \Gamma$.
(ii) $\operatorname{Res}_{H}^{G} \operatorname{Ind}_{G(i)}^{G} V(i) \otimes W=\operatorname{Ind}_{H(i)}^{H} W$.
(iii) $\operatorname{Res}_{A}^{G} \operatorname{Ind}_{G(i)}^{G} V(i) \otimes W=\operatorname{dim} W \underset{[t] \in H / H(i)}{ } h_{*} V(i)$

Proof. (i): This holds clearly.
(ii): Since $H \backslash G / G(i)$ consists of the only one coset, (ii) follows from the Mackey decomposition.
(iii): Since $A \backslash G / G(i)$ can be identified with $H / H(i)$, we have (iii) by the Mackey decomposition.
(iv): Put $U=\operatorname{Ind}_{G(i)}^{G} V(i) \otimes W$ and $U^{\prime}=\operatorname{Ind}_{G(j)}^{G} V(j) \otimes W^{\prime}$. From ker $U=$ $\operatorname{ker} U^{\prime}$ we have $\operatorname{ker} \operatorname{Res}_{A}^{G} U=\operatorname{ker} \operatorname{Res}_{A}^{G} U^{\prime}$. By (iii) we have ker $V(i)=\operatorname{ker} V(j)$. This implies $H(i)=H(j)$.

Proposition 4.4. Put $K=C_{H}(A)$, and let V be an irreducible A-space with the trivial kernel, U and W irreducible K-spaces. Set $M=\operatorname{Ind}_{A K}^{G} V \otimes U$ and $N=\operatorname{Ind}_{A K}^{G} V \otimes W$. Provided $\Gamma M \neq \Gamma N$ as subset of $\operatorname{Irr}(G)$, then we have

$$
\left\langle\Gamma \operatorname{Res}_{K}^{G} M, \Gamma \operatorname{Res}_{K}^{G} N\right\rangle_{K}=\{0\} .
$$

Proof. For $\gamma \in \Gamma$ we have

$$
\gamma \operatorname{Res}_{K}^{G} M=\underset{[h\rfloor \in \in / K}{ } \gamma h_{*} U
$$

by Proposition 4.3 (ii). Proposition 4.2 implies $\operatorname{Ind}_{A K}^{G} V \otimes\left(h_{*} U\right) \in \Gamma M$. Since $\Gamma M \neq \Gamma N$, we have

$$
\left\langle\gamma h_{*} U, \gamma^{\prime} h^{\prime}{ }_{*} W\right\rangle_{K}=0
$$

for each $\gamma \in \Gamma, \gamma^{\prime} \in \Gamma,[h] \in H / K$ and $\left[h^{\prime}\right] \in H / K$. This relation yields the consequence of Propoitions 4.4.

Proposition 4.5. Let L be a subgroup of H, then we have $N_{G}(L)=C_{A}(L) N_{H}(L)$.
Proof. Let a and h are elements of A and H respectively. If $a h \in N_{G}(L)$, we have $(a h)^{-1} L a h=L$, consequently $a^{-1} L a=h L h^{-1}$. For each $g \in L$, there exists $h^{\prime} \in H$ such that $a^{-1} g a=h^{\prime}$. Then we have $a^{-1}\left(g_{g} g^{-1}\right)=h^{\prime} g^{-1} \in A \cap H$. This means that $a^{-1} g a g^{-1}=1$ and $h^{\prime} g^{-1}=1$. Therefore we have $g a=a g$, that is, we have $a \in C_{A}(L)$. This yields $L=h L h^{-1}$. We obtain $h \in N_{H}(L)$. The above argument shows $N_{G}(L) \subset C_{A}(L) N_{H}(L)$. On the other hand $N_{G}(L) \supset C_{A}(L) N_{H}(L)$ holds obviously. Hence we have $N_{G}(L)=C_{A}(L) N_{H}(L)$.

Let h be an element of H, then h acts on the generators a of A by

$$
h \cdot a=h a h^{-1} .
$$

Let L be the subset of H consisting of elements h such that

$$
T(h)=\prod_{b \in\langle h\rangle>a} b
$$

is not equal to the unit element 1 of G, where a is a fixed generator of A, and $\langle h\rangle \cdot a$ is the orbit of a with respect to the above action of the group $\langle h\rangle$ generated by $h . L$ is defined independently of the choice of a.

Proposition 4.6. The above L is a subgroup of H.
Proof. If $h \in K=C_{H}(A)$, we have $\langle h\rangle \bullet a=\{a\}$. This implies $T(h) \neq 1$. We get $L \supset K$, moreover we see that L is the union of several cosets of H / K. We remark that H / K is a cyclic p-group. If we can show that $h \in L$ implies $h^{m} \in L$ for $1 \leqq m \leqq p$, we see that L is a subgroup of H.

Suppose $1 \leqq m<p$. Since $\langle h\rangle \cdot a=\left\langle h^{m}\right\rangle \cdot a, h \in L$ implies $h^{m} \in L$.
Let h be an element of $H-K$, then we have the disjoint sum such that

$$
\langle h\rangle \bullet a=\prod_{j=0}^{p-1} h^{j}\left\langle h^{p}\right\rangle \bullet a .
$$

If $T\left(h^{p}\right)=1$, we have

$$
T(h)=\prod_{j=0}^{p-1} h^{j} T\left(h^{p}\right) h^{-j}=1 .
$$

Therefore $h^{p} \notin L$ implies $h \notin L$; this means that $h \in L$ implies $h^{p} \in L$. This completes the proof of Proposition 4.6.

Proposition 4.7. Put $K=C_{H}(A)$, and let V be an irreducible A space with the trivial kernel, W a K-space, a a generator of A and h an element of H. We have the following.
(i) Provided $h \in H-L$, the all eigenvalues of ah on $\operatorname{Ind}_{A K}^{G} V \otimes W$ are determined independently of the choice of the generator a of A.
(ii) Provided $h \in L$, ah does not have 1 as its eigenvalue on $\operatorname{Ind}_{A K}^{G} V \otimes W$. Here L is the group defined above.

As we can prove this by direct calculation, we omit the proof.

5. On the case: G is generated by two elements

In this section $G=A H$ will be a hyperelementary group such that H is cyclic.

Remark 5.1. Let K be a subgroup of H, then K is normal in H. If W is a K-space, then for any $h \in H$ we have $h_{*} W=W$.

Proposition 5.2. We have the following.
(i) Let $U=\operatorname{Ind}_{G(i)}^{G} V(i) \otimes W$ be an irreducible G-space. Then $\operatorname{ker} U=$ $(\operatorname{ker} V(i))(\operatorname{ker} W)$ holds, where $\operatorname{ker} V(i) \subset A$ and $\operatorname{ker} W \subset H(i)$.
(ii) If irreducible G-spaces U and U^{\prime} have the same kernel, $\Gamma U=\Gamma U^{\prime}$ holds.
(iii) G has Property 2.

Proof. (i): By the definition of the induced representation and Remark 5.1 we obtain $\operatorname{ker} U=(\operatorname{ker} V(i))(\operatorname{ker} W)$.
(ii): Suppose $U=\operatorname{Ind}_{G_{(i)}}^{G} V(i) \otimes W$ and $U^{\prime}=\operatorname{Ind}_{G(j)}^{G} V(j) \otimes W^{\prime}$, then by (i) we have $\operatorname{ker} V(i)=\operatorname{ker} V(j)$ and $\operatorname{ker} W=\operatorname{ker} W^{\prime}$ (see Proposition 4.3 (iv)). Since both A and $H(i)=H(j)$ are cyclic, we have $\Gamma V(i)=\Gamma V(j)$ and $\Gamma W=\Gamma W^{\prime}$. From Proposition 4.3 (i) we obtain $\Gamma U=\Gamma U^{\prime}$.
(iii): Lemma 2.1 and above (ii) imply (iii).

Proposition 5.3. Let $V(i)$ be an irreducible A-space as before, W an $H(i)$ space and γ an element of Γ. Put $x=\operatorname{Ind}_{G(i)}^{G}\{(\gamma V(i)) \otimes W-V(i) \otimes W\}$. Then x belongs to $R_{h}(G)$ if and only if $\operatorname{Res}_{G(i)}^{G} x$ belongs to $R_{h}(G(i))$.

Proof. The only if part is clear. We will prove the if part by induction on $|G|$. If $|A|=1$ or $|H|=1$ then Proposition 5.3 is trivial. Make the inductive hypothesis: for each hyperelementary group of the same type as G has and of smaller order than $|G|$ Proposition 5.3 is valid.

We assume that $\operatorname{Res}_{G(i)}^{G} x$ belongs to $R_{h}(G(i))$. By Lemma 2.1 and the inductive hypothesis it is sufficient to prove the proposition in the case: $V(i)(\{1\})=V(i)$ and $W(\{1\})=W$. In this case we have $x^{L}=0$ in $R\left(N_{G}(L)\right)$ for each non-trivial subgroup L of G. By Lemma 2.3 we complete the proof if we show $P=P(G ; x) \equiv 0 \bmod |G|$. Choose a positive integer s such that

$$
\gamma(\exp (2 \pi \sqrt{-1} /|A|))=\exp (2 \pi s \sqrt{-1} /|A|) \text { and } s \equiv 1 \bmod |H|
$$

By (2.4) and (2.5) we have

$$
\begin{aligned}
P & \equiv \sum_{g \in G}\left\{z(g)-Q\left(s ; \operatorname{Ind}_{G(i)}^{G} V(i) \otimes W\right)(g)\right\} \bmod |G| \\
& =1-s^{n}
\end{aligned}
$$

where $n=\operatorname{dim} \operatorname{Ind}_{G(i)}^{G} V(i) \otimes W$. Since $s \equiv 1 \bmod |H|$, we have $P \equiv 0 \bmod |H|$. On the other hand $\operatorname{Res}_{G(i)}^{G} x \in R_{h}(G(i))$ implies $\operatorname{Res}_{A}^{G} x \in R_{h}(A)$; we have $P\left(A ; \operatorname{Res}_{A}^{G} x\right) \equiv 0 \bmod |A|$. From (2.5) we obtain

$$
\sum_{g \in A}\left\{z(g)-Q\left(s ; \operatorname{Ind}_{G(i)}^{G} V(i) \otimes W\right)(g)\right\} \equiv 0 \bmod |A|
$$

The left hand side of the above relation is equal to $1-s^{n}$. This means that $P \equiv 0$ $\bmod |A|$. Consequently we have $P \equiv 0 \bmod |G|$. This completes the proof.

Proposition 5.4. Let $V(i)$ be an irreducible A-space as before, and U and $W H(i)$-spaces. Put $x=\operatorname{Ind}_{G(i)}^{G}(V(i) \otimes U-V(i) \otimes W)$. Then x belongs to $R_{k}(G)$ if and only if $\operatorname{Res}_{H}^{G} x$ belongs to $R_{h}(H)$.

Proof. The only if part is clear. We will prove the if part by induction on $|G|$. If $|A|=1$ or $|H|=1$ then Proposition 5.4 is trivial. Make the inductive hypothesis: for each hyperelementary group of the same type as G and of smaller order than $|G|$ Proposition 5.4 is valid.

We assume that $\operatorname{Res}_{H}^{G} x$ belongs to $R_{h}(H)$. By Lemma 2.1 and the inductive hypothesis it is sufficient to prove the proposition in the case: $V(i)(\{1\})=V(i)$, $U(\{1\})=U$ and $W(\{1\})=W$. Since $K=C_{H}(A)$ is cyclic, those conditions imply

$$
U-W \equiv \gamma W_{0}-W_{0} \bmod R_{1}(K)
$$

where W_{0} is some irreducible K-space with the trivial kernel and γ is some element of Γ. Without loss of generality we may assume that $W=W_{0}$ and $U=\gamma W_{0}$. By this assumption we have $x^{L}=0$ for each non-trivial subgroup L of G. If we show that $P=P(G ; x) \equiv 0 \bmod |G|$, by Lemma 2.4 we obtain Proposition 5.4. Choose a positive integer s such that

$$
\gamma(\exp (2 \pi \sqrt{-1} /|H|))=\exp (2 \pi s \sqrt{-1} /|H|) \text { and } s \equiv 1 \bmod |A|
$$

By (2.4) and (2.5) we have

$$
\begin{gathered}
P \equiv \sum_{g \in G}\left\{z(g)-Q\left(s ; \operatorname{Ind}_{G(i)}^{G} V(i) \otimes W\right)(g)\right\} \bmod |G| \\
=1-s^{n},
\end{gathered}
$$

where $n=\operatorname{dim} \operatorname{Ind}_{G(i)}^{G} V(i) \otimes W$. Since $s \equiv 1 \bmod |A|$, we have $P \equiv 0 \bmod |A|$. On the other hand, $\operatorname{Res}_{H}^{G} x \in R_{h}(H)$ implies $P\left(H ; \operatorname{Res}_{H}^{G} x\right) \equiv 0 \bmod |H|$. From (2.5) we obtain

$$
\sum_{s \in G}\left\{z(g)-Q\left(s ; \operatorname{Ind}_{G(i)}^{G} V(i) \otimes W\right)(g)\right\} \equiv 0 \bmod |H|
$$

The left hand side of the above relation is equal to $1-s^{n}$. This means that $P \equiv 0 \bmod |H| . \quad$ Consequently we have $P \equiv 0 \bmod |G|$.

Proposition 5.5. Let $V(i)$ be an irreducible A-space as before, W an irreducible $H(i)$-space, and γ and γ^{\prime} elements of Γ. Put $x=\operatorname{Ind}_{G(i)}^{G}\left\{\gamma(V) \otimes\left(\gamma^{\prime} W\right)\right.$ $-V \otimes W\}$. Then x belongs to $R_{h}(G)$ if and only if $\operatorname{Res}_{G_{(i)}}^{G} x \in R_{h}(G(i))$ and $\operatorname{Res}_{H}^{G} x \in R_{h}(H)$.

Proof. The only if part is clear. We prove the if part. Put

$$
\begin{aligned}
& y=\operatorname{Ind}_{G(i)}^{G}\left\{(\gamma V(i)) \otimes\left(\gamma^{\prime} W\right)-(\gamma V(i)) \otimes W\right\} \text { and } \\
& z=\operatorname{Ind}_{G(i)}^{G}\{(\gamma V(i)) \otimes W-V(i) \otimes W\}
\end{aligned}
$$

We have $x=y+z$; we have $\operatorname{Res}_{H}^{G} x=\operatorname{Res}_{H}^{G} y$. $\operatorname{Res}_{H}^{G} x \in R_{h}(H)$ means that $\operatorname{Res}_{H}^{G} y \in R_{h}(H)$. By Proposition 5.4 we have $y \in R_{h}(G)$. This and $\operatorname{Res}_{G(i)}^{G} x \in$ $R_{h}(G(i))$ imply $\operatorname{Res}_{G(i)}^{G} z \in R_{h}(G(i))$. By Proposition 5.3 we have $z \in R_{h}(G)$. Consequently we have $x=y+z \in R_{h}(G)$.

6. Hyperelementary groups and Property 2

In this section $G=A H$ will be a hyperelementary group such that all the elementary subgroups of the quotient groups of the subgroups of G have Property 2.

Remark. If an elementary group $K=A \times H$ satisfies one of the conditions: (i) $(\phi(|A|), p)=1$, (ii) $|H| \leqq p^{4}$ and (iii) H is metacyclic, then K has Property 2.

Let $R(G, f)$ be the subgroup of $R(G)$ built from the irreducible G-spaces which yield faithful A-spaces when they are restricted to A. Put $R_{h}(G, f)=$ $R(G, f) \cap R_{k}(G)$, and $R_{0}(G, f)=R(G, f) \cap R_{0}(G)$.

Proposition 6.1. Let x be an element of $R_{h}(G, f), B$ a subgroup of A and K a subgroup of $C_{H}(B)$. Then for each $C \in X(G)=\operatorname{Irr}(G) / \Gamma$ we have $\operatorname{Res}_{B K}^{G} f_{C}(x) \in$ $R_{h}(B K)$.

Proof. It is sufficient to prove the proposition in the case that $K=C_{H}(B)$. In this case we have $K \subset C_{H}(A)$. Put $L=C_{H}(A)$. Let V be an irreducible A space with the trivial kernel, and U and W irreducible L-spaces. If $\Gamma \operatorname{Ind}_{A L}^{G} V \otimes U \neq \Gamma \operatorname{Ind}_{A L}^{G} V \otimes W$, we have

$$
\left\langle\Gamma \operatorname{Res}_{B K}^{G} \operatorname{Ind}_{A L}^{G} V \otimes U, \Gamma \operatorname{Res}_{B K}^{G} \operatorname{Ind}_{A L}^{G} V \otimes W\right\rangle_{B K}=\{0\}
$$

by Proposition 4.4. Since $B K$ has Property 2 by the assumption, we have $\operatorname{Res}_{B K}^{G} f_{C}(x) \in R_{h}(B K)$ for each $C \in X(G)$.

Proposition 6.2. Put $K=C_{H}(A)$, and let V be an irreducible A-space with
the trivial kernel, W a K-space and γ an element of Γ. Put $x=\operatorname{Ind}_{A K}^{G}\{(\gamma V) \otimes W-$ $V \otimes W\}$. Then x belongs to $R_{h}(G)$ if and only if for each subgroup B of A and $L=C_{H}(B)$ we have $\operatorname{Res}_{B L}^{G} x \in R_{h}(B L)$.

Proof. The only if part is clear. We will prove the if part by induction on $|G|$. If $|A|=1$ or $|H|=1$, then Proposition 6.2 is trivial. Make the inductive hypothesis: for each hyperelementary group which satisfies the same condition as G satisfies and whose order is smaller than $|G|$ Proposition 6.2 is valid.

Assume that for each $B \subset A$ and $L=C_{H}(B)$ we have $\operatorname{Res}_{B L}^{G} x \in R_{h}(B L)$. Firstly we get $x \in R_{0}(G)$. By Propositions 3.1, 4.3, 4.4 and 6.1 it is sufficient to prove the proposition in the case that there exist a positive integer r, an irreducible K-space U and elements $h(m)$ of $H, 1 \leqq m \leqq r$, such that

$$
W={\underset{m=1}{\oplus}}_{\dot{\varphi}} h(m)_{*} U
$$

By Propositions 3.1 and 4.2 we have
$\operatorname{Ind}_{A K}^{G}\left\{(\gamma V) \otimes h(m)_{*} U-V \otimes h(m)_{*} U\right\} \equiv \operatorname{Ind}_{A K}^{G}\{(\gamma V) \otimes U-V \otimes U\} \bmod R_{1}(G)$.
This enables us to assume that W itself is irreducible.
Assertion 6.3. Let $M \neq\{1\}$ be a subgroup of $G \quad$ We have $x^{M} \in R_{h}\left(N_{G}(M)\right)$.
Proof. If $A \cap M \neq\{1\}$, then we have $x^{M}=0$ in $R\left(N_{G}(M)\right)$. We assume $A \cap M=\{1\}$. In this case M is conjugate to a subgroup of H. By Proposition 2.2 we may assume $M \subset H$. By Proposition 4.5 we have $N_{G}(M)=C_{A}(M) N_{H}(M)$. The proof is divided into the following three cases.

Case 1. $\quad C_{A}(M) \neq A$
Put $B=C_{A}(M), L=C_{H}(B)$ and $y=\operatorname{Res}_{B H}^{G} x$. We have

$$
y=\operatorname{Ind}_{B K}^{B H}\left\{\left(\gamma \operatorname{Res}_{B}^{A} V\right) \otimes W-\left(\operatorname{Res}_{B}^{A} V\right) \otimes W\right\}
$$

By Proposition 25 of [7; 8.2] we have y in another form as follows:

$$
y=\operatorname{Ind}_{B L}^{B H}\left\{\left(\gamma \operatorname{Res}_{B}^{A} V\right) \otimes U-\left(\operatorname{Res}_{B}^{A} V\right) \otimes U\right\},
$$

where U is an L-space. For a subgroup C of B, we put $N=C_{H}(C)$; we have $\operatorname{Res}_{C N}^{B H} y=\operatorname{Res}_{C_{N}}^{G} x \in R_{h}(C N)$ by the assumption. By the inductive hypothesis y belongs to $R_{h}(B H)$. This implies $x^{M}=y^{M} \in R_{h}\left(N_{G}(M)\right)$.

Case 2. $\quad C_{A}(M)=A$ and $N_{H}(M) \neq H$
Put $N=N_{G}(M), D=H \cap N, E=K \cap N$ and $y=\operatorname{Res}_{N}^{G} x$, then we have

$$
y=\sum_{[h] \in H \mid D K} \operatorname{Ind}_{A E}^{N}\left\{\left(\gamma h_{*} V\right) \otimes\left(\operatorname{Res}_{E}^{K} h_{*} W\right)-\left(h_{*} V\right) \otimes\left(\operatorname{Res}_{E}^{K} h_{*} W\right)\right\}
$$

By Proposition 3.1 we have

$$
\begin{gathered}
y \equiv \sum_{t h] \in A \mid D K} \operatorname{Ind}_{A E}^{N}\left\{(\gamma V) \otimes\left(\operatorname{Res}_{E}^{K} h_{*} W\right)-V \otimes\left(\operatorname{Res}_{E}^{K} h_{*} W\right) \bmod R_{1}(N)\right. \\
=\operatorname{Ind}_{A E}^{N}\{(\gamma V) \otimes U-V \otimes U\}
\end{gathered}
$$

where

$$
U=\underset{[h] \in B / D K}{\oplus} \operatorname{Res}_{E}^{K} h_{*} W
$$

For a subgroup B of A and $L=C_{D}(B)$ we have $\operatorname{Res}_{B L}^{N} y=\operatorname{Res}_{B L}^{G} x \in R_{h}(B L)$. We have $y \in R_{h}\left(N_{G}(M)\right)$ by the inductive hypothesis. This implies $x^{M}=y^{M} \in$ $R_{h}\left(N_{G}(M)\right)$.

Case 3. $N_{G}(M)=G$

We have reduced the problem to the case that W is irreducible. In this case $\operatorname{Ind}_{A X}^{G}(\gamma V) \otimes W$ and $\operatorname{Ind}_{A K}^{G} V \otimes W$ are irreducible. If $\left(\operatorname{Ind}_{A K}^{G} V \otimes W\right)^{M} \neq$ $\{0\}$, then we have $\left(\operatorname{Ind}_{A K}^{G} V \otimes W\right)^{M}=\operatorname{Ind}_{A K}^{G} V \otimes W$. We get ker $\operatorname{Ind}_{A X}^{G} V \otimes W$ $\supset M$. By the inductive hypothesis we have $x \in R_{h}(G)$. This completes the proof of Assertion 6.3.

If we show $P=P(G ; x) \equiv 0 \bmod |G|$, we complete the proof of Proposition 6.2. Choose a positive integer s such that

$$
\gamma(\exp (2 \pi \sqrt{-1} /|A|))=\exp (2 \pi s \sqrt{-1}| | A \mid) \text { and } s \equiv 1 \bmod |H|
$$

By (2.4) and (2.5) we have

$$
P \equiv \sum_{g \in G}\left\{z(g)-Q\left(s ; \operatorname{Ind}_{A K}^{G} V \otimes W\right)(g)\right\} \bmod |G|
$$

Since $s \equiv 1 \bmod |H|$, we have $F \equiv 0 \bmod |H|$. On the other hand there exist integers n_{C} for the cyclic subgroups C of H such that

$$
P=\sum_{\sigma<H: \text { cyclic }} n_{C} P\left(G ; \operatorname{Res}_{A C}^{G} x\right)
$$

If we can show $P\left(G ; \operatorname{Res}_{A C}^{G} x\right) \equiv 0 \bmod |A|$, we see that $P \equiv 0 \bmod |A|$; consequently we obtain $P \equiv 0 \bmod |G| . \quad P\left(G ; \operatorname{Res}_{A C}^{G} x\right) \equiv 0 \bmod |A|$, follows from the following assertion.

Assertion 6.4. For each cyclic subgroup C of H, we have $\operatorname{Res}_{A C}^{G} x \in R_{h}(A C)$.
Proof. Put $y=\operatorname{Res}_{A C}^{G} x$ and $M=C \cap K$. We have

$$
\begin{gathered}
y=\sum_{[h] \in H / \sigma K} \operatorname{Ind}_{A M}^{A C}\left\{\left(\gamma h_{*} V\right) \otimes\left(\operatorname{Res}_{M}^{K} h_{*} W\right)-\left(h_{*} V\right) \otimes\left(\operatorname{Res}_{M}^{K} h_{*} W\right)\right\} \\
\equiv \sum_{[h] \in B / C_{K}} \operatorname{Ind}_{A M}^{A C}\left\{(\gamma V) \otimes\left(\operatorname{Res}_{M}^{K} h_{*} W\right)-V \otimes\left(\operatorname{Res}_{M}^{K} h_{*} W\right)\right\} \bmod R_{1}(A C) \\
=\operatorname{Ind}_{A M}^{A C}\{(\gamma V) \otimes U-V \otimes U\},
\end{gathered}
$$

where

$$
U=\underset{[h] \in B / \sigma K}{ } \operatorname{Res}_{M}^{K} h_{*} W
$$

Since we have $\operatorname{Res}_{A M}^{A C} y=\operatorname{Res}_{A M}^{G} x \in R_{h}(A M)$ by the assumption, we have $\operatorname{Res}_{A C}^{G} x$ $=y \in R_{h}(A C)$ by Proposition 5.3. This completes the proof of Assertion 6.4.

Proposition 6.5. Put $K=C_{H}(A)$, and let V be an irreducible A-space with the trivial kernel, W a K-space and γ an element of $\Gamma . \quad$ Put $x=\operatorname{Ind}_{A}^{G}\{V \otimes(\gamma W)-$ $V \otimes W\}$. Then x belongs to $R_{h}(G)$ if and only if $\operatorname{Res}_{H}^{G} x$ belongs to $R_{h}(H)$.

Proof. The only if part is clear. We will prove the if part by induction on $|G|$. If $|A|=1$ or $|H|=1$, then the proposition is trivial. Make the inductive hypothesis: for each hyperelementary group which satisfies the condition stated at the beginning of this section and whose order is smaller than $|G|$ Proposition 6.5 is valid.

We assume $\operatorname{Res}_{H}^{G} x \in R_{h}(H)$ and $|A| \neq 1$. Firstly we have $x \in R_{0}(G)$. By Propositions 3.1, 4.3, 4.4 and 6.1 it is sufficient to 'prove the proposition in the case that there exist a positive integer r, an irreducible K-space U and elements $h(m)$ of $H, 1 \leqq m \leqq r$, such that

$$
W=\oplus_{m=1}^{\oplus} h(m)_{*} U .
$$

By Propositions 3.1 and 4.2 we have

$$
\operatorname{Ind}_{A K}^{G}\left\{V \otimes\left(\gamma h(m)_{*} U\right)-V \otimes\left(h(m)_{*} U\right)\right\} \equiv \operatorname{Ind}_{A K}^{G}\{V \otimes(\gamma U)-V \otimes U\} \bmod R_{1}(G) .
$$

This enables us to assume that W itself is irreducible.
Assertion 6.6. Let L be a non-trivial subgroup of G. We have $x^{L} \in$ $R_{h}\left(N_{G}(L)\right)$.

Proof. Since A acts freely on $\operatorname{Ind}_{A K}^{G} V \otimes \gamma W$ and on $\operatorname{Ind}_{A K}^{G} V \otimes W$ except the origins, it is sufficient to prove the assertion in the case that $L \cap A=\{1\}$. In this case L is conjugate to a subgroup of H. By Proposition 2.2 we may assume $L \subset H$. Then we have $N_{G}(L)=C_{A}(L) N_{H}(L)$ by Proposition 4.5. We divide the proof into the following three cases.

Case 1. $\quad C_{A}(L) \neq A$
We put $B=C_{A}(L)$ and $y=\operatorname{Res}_{B H}^{G} x$. We have

$$
y=\operatorname{Ind}_{B K}^{B H}\left\{\left(\operatorname{Res}_{B}^{A} V\right) \otimes(\gamma W)-\left(\operatorname{Res}_{B}^{A} V\right) \otimes W\right\}
$$

Put $M=C_{H}(B)$, then we have

$$
y=\operatorname{Ind}_{B M}^{B H}\left\{\left(\operatorname{Res}_{B}^{A} V\right) \otimes\left(\gamma \operatorname{Ind}_{K}^{M} W\right)-\left(\operatorname{Res}_{B}^{A} V\right) \otimes\left(\operatorname{Ind}_{K}^{M} W\right)\right\}
$$

On the other hand we have $\operatorname{Res}_{B}^{B H} y=\operatorname{Res}_{H}^{G} x \in R_{h}(H)$. By the inductive hypothesis we have $y \in R_{h}(B H)$. This implies $x^{L}=y^{L} \in R_{h}\left(N_{G}(L)\right)$.

Case 2. $\quad C_{A}(L)=A$ and $N_{H}(L) \neq H$
Put $M=N_{H}(L), N=N_{G}(L), D=K \cap M$ and $y=\operatorname{Res}_{N}^{G} x$. We have $N=A M$ and

$$
\begin{aligned}
y & =\sum_{[h] \in H \mid K M} \operatorname{Ind}_{A D}^{N}\left\{\left(h_{*} V\right) \otimes\left(\gamma \operatorname{Res}_{D}^{K} h_{*} W\right)-\left(h_{*} V\right) \otimes\left(\operatorname{Res}_{D}^{K} h_{*} W\right)\right\} \\
& \equiv \sum_{[n] \in H \mid K M} \operatorname{Ind}_{A D}^{N}\left\{V \otimes\left(\gamma \operatorname{Res}_{D}^{K} h_{*} W\right)-V \otimes\left(\operatorname{Res}_{D}^{K} h_{*} W\right)\right\} \bmod R_{1}(N) \\
& =\operatorname{Ind}_{A D}^{N}\{V \otimes(\gamma U)-V \otimes U\},
\end{aligned}
$$

where

$$
U=\underset{[h] \in \mathbb{I} \mid \mathbb{K} \boldsymbol{U}}{ } \operatorname{Res}_{D}^{K} h_{*} W
$$

Since we have $\operatorname{Res}_{M}^{N} y=\operatorname{Res}_{M}^{G} x \in R_{h}(M)$, by the inductive hypothesis we get $y \in R_{h}(N)$. This implies $x^{L}=y^{L} \in R_{h}\left(N_{G}(L)\right)$.

Case 3. $N_{G}(L)=G$
When W is irreducible, $\operatorname{Ind}_{A K}^{G} V \otimes W$ and $\operatorname{Ind}_{A R}^{G} V \otimes \gamma W$ are irreducible. This implies that $x^{L}=x$ or 0 in $R(G)$. If $x^{L}=0$, Assertion 6.6 is clearly valid. If $x^{L}=x$, then L is included in the kernel of x. By the inductive hypothesis we obtain $x \in R_{h}(G)$. This completes the proof of Assertion 6.6.

If we show $P=P(G ; x) \equiv 0 \bmod |G|$, we complete the Proof of Proposition 6.5. As usual choose a positive integer s such that

$$
\gamma(\exp (2 \pi \sqrt{-1} /|H|))=\exp (2 \pi s \sqrt{-1} /|H|) \text { and } s \equiv 1 \bmod |A|
$$

By (2.5) we have

$$
P \equiv \sum_{g \in G}\left\{z(g)-Q\left(s ; \operatorname{Ind}_{A K}^{G} V \otimes W\right)(g)\right\} \bmod |G|
$$

By the inductive hypothesis, for each proper subgroup B of A we have $\operatorname{Res}_{B H}^{G} x \in R_{h}(B H)$. This implies $P\left(B H ; \operatorname{Res}_{B H}^{G} x\right) \equiv 0 \bmod |B H|$. Therefore we have

$$
P \equiv \sum_{a h \in A} \sum_{A:\langle a\rangle=A}\left\{z(a h)-Q\left(s ; \operatorname{Ind}_{A K}^{G} V \otimes W\right)(a h)\right\} \bmod |H|
$$

By Propositions 4.6 and 4.7 we have

$$
\begin{aligned}
P & \equiv \sum_{\substack{a \in A:\langle a\rangle=\Lambda \\
h \in H-L}}\left\{z(a h)-Q\left(s ; \operatorname{Ind}_{A K}^{G} V \otimes W\right)(a h)\right\} \bmod |H| \\
& \equiv \phi(|A|) \sum_{h \in U-L}\left\{z(h)-Q\left(s ; \operatorname{Ind}_{A K}^{G} V \otimes W\right)(h)\right\} \bmod |H|,
\end{aligned}
$$

where L is the group given in Proposition 4.6, ϕ is the Euler function. $\operatorname{Res}_{L}^{G} x \in R_{h}(L)$ and (2.5) imply

$$
\sum_{h \in L}\left\{z(h)-Q\left(s ; \operatorname{Ind}_{A K}^{G} V \otimes W\right)(h)\right\} \equiv 0 \bmod |L| .
$$

Since $\phi(|A|)$ is a multiple of $|H| K \mid$ and $|L|$ a multiple of $|K|$, we have

$$
P \equiv \phi(|A|) \sum_{h \in H}\left\{z(h)-Q\left(s ; \operatorname{Ind}_{A K}^{G} V \otimes W\right)(h)\right\} \bmod |H|
$$

From $\operatorname{Res}_{H}^{G} x \in R_{h}(H)$, we have $P \equiv 0 \bmod |H|$. On the other hand for the cyclic subgroups C of H there exist integers n_{C} such that

$$
P=\sum_{\sigma<B: \text { cyclic }} n_{C} \sum_{g \in A \sigma} z(g)
$$

We obtain $P \equiv 0 \bmod |A|$ from the following assertion; consequently we get $P \equiv 0 \bmod |G|$.

Assertion 6.7. For each cyclic subgroup C of H, we have $\operatorname{Res}_{A}^{G} c x \in R_{h}(A C)$.
Proof. Put $y=\operatorname{Res}_{A}^{G} x$ and $D=C \cap K$, then we have

$$
\begin{aligned}
y & =\sum_{[h] \in H / C K} \operatorname{Ind}_{A D}^{A C}\left\{\left(h_{*} V\right) \otimes\left(\gamma \operatorname{Res}_{D}^{K} h_{*} W\right)-\left(h_{*} V\right) \otimes\left(\operatorname{Res}_{D}^{K} h_{*} W\right)\right\} \\
& \equiv \sum_{\operatorname{Ln]}^{H} H / \sigma K} \operatorname{Ind}_{A D}^{A C}\left\{V \otimes\left(\gamma \operatorname{Res}_{D}^{K} h_{*} W\right)-V \otimes\left(\operatorname{Res}_{D}^{K} h_{*} W\right)\right\} \bmod R_{1}(A C) \\
& =\operatorname{Ind}_{A D}^{A} C(V \otimes \gamma U-V \otimes U),
\end{aligned}
$$

where

$$
U=\underset{[h] \in H / C K}{\oplus} \operatorname{Res}_{D}^{K} h_{*} W
$$

Moreover we have $\operatorname{Res}_{C}^{A C} y=\operatorname{Res}_{c}^{G} x \in R_{h}(C)$. By Proposition 5.4 we have $y \in R_{h}(A C)$. This completes the proof of Assertion 6.9 consequently completes the proof of Proposition 6.5.

Proposition 6.10. Put $K=C_{H}(A)$, and let V be an irreducible A-space with the trivial kernel, W a K-space and γ an element of $\Gamma . \quad$ Put $x=\operatorname{Ind}_{A K}^{G}\{\gamma(V \otimes W)-$ $V \otimes W\}$. Then x belongs to $R_{h}(G)$ if and only if for each subgroup B of A and $L=C_{H}(B)$ we have $\operatorname{Res}_{B L}^{G} x \in R_{h}(B L)$.

Proof. The only if part is clear. We prove the if part. Put $y=$ $\operatorname{Ind}_{A K}^{G}\{\gamma(V \otimes W)-(\gamma V) \otimes W\}$ and $z=\operatorname{Ind}_{A K}^{G}\{(\gamma V) \otimes W-V \otimes W\}$, then we have $x=y+z$. Since $\operatorname{Res}_{H}^{G} z=0$, we have $\operatorname{Res}_{H}^{G} y \in R_{h}(H)$ by the assumption. From Proposition 6.5 we obtain $y \in R_{h}(G)$. This yields that

$$
\operatorname{Res}_{B L}^{G} z=\operatorname{Res}_{B L}^{G} x-\operatorname{Res}_{B L}^{G} y \in R_{h}(B L) .
$$

Proposition 6.2 implies $z \in R_{h}(G)$. Hence we conclude that $x \in R_{h}(G)$.
Theorem 6.11. Let G be a hyperelementary group such that all the elementary subgroups of the quotient groups of the subgroups of G have Property 2. Then G has Property 2.

Proof. We prove it by induction on $|G|$. If $|A|=1$ or $|H| \leqq p$, we are aware that G has Property 2. Make the inductive hypothesis: each hyperelementary group which satisfies the same condition as G satisfies and whose order is smaller than $|G|$ has Property 2.

Let x be an elemant of $R_{h}(G)$. By Lemma 2.1 and the inductive hypothesis we may assume $x(\{1\})=x$. This implies $x \in R_{h}(G, f)$. Put $K=C_{H}(A)$. For a fixed element C of $X(G)$, there exist $\gamma \in \Gamma$, an irreducible A-space V and an irreducible K-space W such that

$$
f_{c}(x) \equiv \operatorname{Ind}_{A K}^{G}\{\gamma(V \otimes W)-V \otimes W\} \bmod R_{1}(G)
$$

By Propositions 6.1 and 6.10 we get $f_{c}(x) \in R_{h}(G)$.
For a subgroup B of A, we get an elementary subgroup $B C_{H}(B)$ of G. Varying B, we obtain several elementary groups. Let $E(G)$ be the set of all those elementary groups. Lemma 2.1 and Propositions 6.1 and 6.10 yield the following theorem.

Theorem 6.12. In the same situation as in Theorem 6.11

$$
\text { Res: } R_{0}(G, f) / R_{h}(G, f) \rightarrow \underset{K \in B(G)}{\bigoplus_{j}} j(K)
$$

is injective. Therefore we obtain a naturally defined injection

$$
j(G) \rightarrow \underset{B}{\oplus} \underset{K \in B(G / B)}{ } j(K)
$$

where B runs over the subgroups of A.

7. A closing example

Let A (resp. H) be the cyclic group of order 7 (resp. 5) which consists of the 7-th (resp. 5-th) roots of unity, and G the direct product of A and H. For each integer i (resp. j) with $0 \leqq i \leqq 6$ (resp. $0 \leqq j \leqq 4$) define the A-(resp. H-) representation $v_{i}\left(\right.$ resp. $\left.w_{j}\right)$ by

$$
\begin{gathered}
v_{i}(z)=z^{i} \text { for } z \in A \\
\left(\text { resp. } w_{j}(z)=z^{j} \text { for } z \in H\right) .
\end{gathered}
$$

We denote by V_{i} (resp. W_{j}) the corresponding representation space to v_{i} (resp. w_{j}). Define an element x of $R(G)$ by

$$
x=V_{2} \otimes W_{1}+V_{2} \otimes W_{0}+V_{2} \otimes W_{0}-V_{1} \otimes W_{1}-V_{1} \otimes W_{0}-V_{1} \otimes W_{0}
$$

Then we have $x \in R_{0}(G) \cap R(G, f)$; moreover we have $\operatorname{Res}_{A}^{G} x \in R_{h}(A)$ and $\operatorname{Res}_{H}^{G} x \in R_{h}(H)$. The x does not, however, belong to $R_{h}(G)$. This is a counter example to [1; Proposition 5.2].

References

[1] T. tom Dieck: Homotopy-equivalent group representations, J. Reine Angew. Math. 298 (1978), 182-195.
[2] T. tom Dieck: Transformation groups and representation theory, Lecture notes in mathematics 766, Springer, Berlin-Heidelberg New-York, 1979.
[3] T. tom Dieck and T. Petrie: Geometric modules over the Burnside ring, Invent. Math. 47 (1978), 273-287,
[4] S. Kakutani: On the groups $J_{z_{m}, q}(*)$, Osaka J. Math. 17 (1980), 512-534.
[5] K. Kawakubo: Equivariant homotopy equivalence of group representations, J. Math. Soc. Japan 32 (1980), 105-118.
[6] M. Morimoto: On the groups $J_{G}(*)$ for $G=S L(2, p)$, Osaka J. Math. 19 (1982), 57-78.
[7] J.-P. Serre: Linear representations of finite groups, Graduate texts in mathematics, Springer, Berlin-Heidelberg-New York, 1977.

Department of Mathematics Osaka University
Toyonaka, Osaka 560, Japan

