TOTALLY REAL SUBMANIFOLDS AND SYMMETRIC BOUNDED DOMAINS

Hiroo NAITOH*) and Masaru TAKEUCHI

(Received October 25, 1980)

Introduction. Let $P_{n}(c)$ denote the complex projective n-space endowed with the Kählerian metric of constant holomorphic sectional curvature $c>0$. We consider an n-dimensional complete totally real submanifold M of $P_{n}(c)$ with parallel second fundamental form σ. The first named author [6] reduced the classification of such submanifolds to that of certain cubic forms of n-variables, and he classified completely those without Euclidean factor among such submanifolds. (Note that such a submanifold is always locally symmetric.)

In this note we shall give another way of the classification of these submanifolds. Let $D \subset C^{n+1}$ be a symmetric bounded domain of tube type realized by the Harish-Chandra imbedding. We imbed the Shilov boundary \hat{M} of D into the hypersphere $S^{2 n+1}(c / 4)$ of the radius $2 / \sqrt{c}$ with respect to a suitable hermitian inner product of \boldsymbol{C}^{n+1}. Let $M \subset P_{n}(c)$ be the image of \hat{M} under the Hopf fibering $\pi: S^{2 n+1}(c / 4) \rightarrow P_{n}(c)$. Then M is an n-dimensional complete totally real submanifold with parallel second fundamental form (Theorem 2.1), and conversely such a submanifold is obtained in this way (Theorem 3.1). The crucial point in the argument is that $M \subset P_{n}(c)$ has the parallel second fundamental form if and only if $\hat{M}=\pi^{-1}(M) \subset S^{2 n+1}(c / 4)$ has the parallel second fundamental form (Lemma 1.1). Thus we may use the classification (Ferus [3], Takeuchi [10]) of submanifolds in spheres with parallel second fundamental form.

As an application, we give a characterization of an n-dimensional compact totally real minimal submanifold M of $P_{n}(c)$ with $\|\sigma\|^{2}=n(n+1) c / 4(2 n-1)$. (Recall that $\|\sigma\|^{2}<n(n+1) c / 4(2 n-1)$ implies $\sigma=0$. cf. Chen-Ogiue [1].) Such a submanifold M is unique and nothing but the flat isotropic surface $M_{0}^{2} \subset P_{2}(c)$ with parallel second fundamental form constructed in Naitoh [5] (Theorem 4.5).

1. Hopf fiberings

Let \boldsymbol{R}^{n+1} be the real Cartesian $(n+1)$-space with the standard inner pro-

[^0]duct \langle,$\rangle . For a constant k>0$, we denote by $S^{n}(k)$ the hypersphere of \boldsymbol{R}^{n+1} with the radius $1 / \sqrt{k}$ endowed with the Riemannian metric \hat{g} induced from \langle,$\rangle .$

Now we fix a positive integer m and a constant $c>0$, and denote by $P_{m}(c)$ the complex projective m-space $P_{m}(\boldsymbol{C})$ endowed with the Kählerian metric g of constant holomorphic sectional curvature c. We regard the complex Cartesian ($m+1$)-space \boldsymbol{C}^{m+1} as a Euclidean ($2 m+2$)-space by the inner product: $\langle z, w\rangle$ $=R e^{t} z \bar{w}$ for $z, w \in \boldsymbol{C}^{m+1}$. Then the Hopf fibering $\pi: S^{2 m+1}(c / 4) \rightarrow P_{m}(c)$ defined by $\pi(z)=[z],[z]$ being the point of $P_{m}(\boldsymbol{C})$ with the homogeneous coordinate z, is a Riemannian submersion in the sense of O'Neill [7]. The complex structure tensors on \boldsymbol{C}^{m+1} and $P_{m}(\boldsymbol{C})$ are denoted by J. We write $S=S^{2 m+1}(c / 4)$. Define a unit normal vector field ν for the imbedding $S \hookrightarrow \boldsymbol{C}^{m+1}$ by $\nu_{q}=(\sqrt{c} / 2) q$ for $q \in S$, and put $V_{q}=\boldsymbol{R}\left(J \nu_{q}\right)$ and

$$
H_{q}=\left\{z \in C^{m+1} ;\langle z, q\rangle=\left\langle z, J \nu_{q}\right\rangle=0\right\}
$$

for $q \in S$. Then the subbundles $V(S)=\bigcup_{q \in S} V_{q}$ and $H(S)=\bigcup_{q \in S} H_{q}$ of the tangent bundle $T S$ of S are the vertical and the horizontal distributions for the Riemannian submersion π, respectively, and thus we have an orthogonal Whitney sum: $T S=V(S) \oplus H(S)$. The complex structure J on C^{m+1} leaves each H_{q} invariant and $J_{q} \mid H_{q}$ corresponds to $J_{\pi(q)}$ on $P_{m}(\boldsymbol{C})$ under the linear isometry $\pi_{*}: H_{q} \rightarrow T_{\pi(q)} P_{m}(c)$. For a vector field X on S, its $V(S)$-component and $H(S)$-component will be denoted by $U X$ and $\not A X$, respectively. If $V X=$ X (resp. $\not \forall X=X$), X is said to be vertical (resp. horizontal). If X is horizontal and projectable to a vector field X_{*} on $P_{m}(C)$, it is called the horizontal lift of X_{*} and denoted by $X=h . l . X_{*}$. The Riemannian connections of S and $P_{m}(c)$ are denoted by ∇^{s} and $\bar{\nabla}$, respectively. Let A and T be the fundamental tensors for the Riemannian submersion π defined in O'Neill [7]. Then we have $T=0$, since each fibre of the Hopf fibering π is totally geodesic in S. For such a Riemannian submersion we have the following identities:
(1.1) $\nabla_{V}^{s} X=\not / \nabla_{V}^{S} X$,
(1.3) $\quad \nabla_{X}^{S} Y=\not \nabla_{X}^{S} Y+A_{X} Y$
for horizontal vector fields X, Y and a vertical vector field V on S. If further $X=h . l . X_{*}$ and $Y=h . l . Y_{*}$, then we have

$$
\begin{align*}
& \not \sharp \nabla_{V}^{S} X=A_{X} V \tag{1.4}\\
& \not \sharp \nabla_{X}^{S} Y=h . l . \bar{\nabla}_{X *} Y_{*} . \tag{1.5}
\end{align*}
$$

The fundamental tensor A for our Hopf fibering π is given by

$$
\begin{align*}
& A_{X}(J \nu)=(\sqrt{c} / 2) J X \tag{1.6}\\
& A_{X} Y=(\sqrt{c} / 2)\langle X, J Y\rangle J \nu
\end{align*}
$$

for horizontal vector fields X, Y on S. For these identities (1.1)~(1.7), we refer the reader to O'Neill [7].

Now let $f:(M, g) \rightarrow P_{m}(c)$ be an isometric immersion of a Riemannian manifold (M, g) into $P_{m}(c)$. The complex structure and the connection on the pull back $f^{-1} T\left(P_{m}(\boldsymbol{C})\right)$ induced from J and $\bar{\nabla}$ are also denoted by J and $\bar{\nabla}$. Let \hat{M} be the total space of the pull back $f^{-1} S$ of the principal $U(1)$-bundle $\pi: S \rightarrow$ $P_{m}(\boldsymbol{C})$. The $U(1)$-bundle map $\hat{f}: \hat{M} \rightarrow S$ which covers f is also an immersion, and so we may define a Riemannian metric \hat{g} on \hat{M} in such a way that $\hat{f}:(\hat{M}, \hat{g}) \rightarrow S$ is an isometric immersion. Then the projection $\pi:(\hat{M}, \hat{g}) \rightarrow(M, g)$ is also a Riemannian submersion with $T=0$. Note that we have an orthogonal Whitney sum: $\hat{f}^{-1}(T S)=\hat{f}^{-1} V(S) \oplus \hat{f}^{-1} H(S)$. The connection on $\hat{f}^{-1}(T S)$ induced from ∇^{s} on $T S$ and the complex structure on $\hat{f}^{-1} H(S)$ induced from J on $H(S)$ are also denoted by ∇^{s} and J, respectively. We define $V(\hat{M})=\hat{f}^{-1} V(S)$, which is the vertical distribution for the Riemannian submersion $\pi:(\hat{M}, \hat{g}) \rightarrow(M, g)$. Then the section $J \nu$ of $V(S)$ induces a section of $V(\hat{M})$, which will be also denoted by $J \nu$. Furthermore, regarding $T \hat{M}$ as a subbundle of $\hat{f}^{-1}(T S)$, we define $H(\hat{M})=T \hat{M} \cap \hat{f}^{-1} H(S)$, which is the horizontal distribution for π. Thus we have an orthogonal Whitney sum: $T \hat{M}=V(\hat{M}) \oplus H(\hat{M})$. The second fundamental forms of $f:(M, g) \rightarrow P_{m}(c)$ and $\hat{f}:(\hat{M}, \hat{g}) \rightarrow S$ will be denoted by σ and $\hat{\sigma}$, respectively.

The isometric immersion $f:(M, g) \rightarrow P_{m}(c)$ is said to be totally real if $\left\langle J\left(T_{p} M\right), T_{p} M\right\rangle=\{0\}$ for each $p \in M$. This is the case if and only if

$$
\begin{equation*}
\left\langle J H_{q}(\hat{M}), H_{q}(\hat{M})\right\rangle=\{0\} \tag{1.8}
\end{equation*}
$$

for each $q \in \hat{M}$, where $H_{q}(\hat{M})$ denotes the fibre of $H(\hat{M})$ over q.
Lemma 1.1. Let $f:(M, g) \rightarrow P_{m}(c)$ be a totally real isometric immersion and $\hat{f}:(\hat{M}, \hat{g}) \rightarrow S$ the isometric immersion induced from f in the above way. Then

1) f is minimal if and only if \hat{f} is minimal;
2) (M, g) is complete if and only if (\hat{M}, \hat{g}) is complete;
3) $f(M)$ is not contained in any complex hyperplane of $P_{m}(\boldsymbol{C})$ if and only if $\hat{f}(\hat{M})$ is not contained in any real hyperplane of \boldsymbol{C}^{m+1};
4) Both $V(\hat{M})$ and $H(\hat{M})$ are parallel subbundles of $T \hat{M}$, i.e., they are invariant under the parallel translation of ($\hat{M}, \hat{g})$ along any curve of \hat{M};
5) Assume that the linear span $N_{p}^{1}(M)$ of $\sigma\left(T_{p} M, T_{p} M\right)$ is contained in $J\left(T_{p} M\right)$ for each $p \in M$. Then, σ is parallel if and only if $\hat{\sigma}$ is parallel.

Proof. We shall prove first the following: Let ∇ and $\hat{\nabla}$ denote the Riemannian connections of (M, g) and (\hat{M}, \hat{g}), respectively. Let X, Y be vector fields on
\hat{M} which are horizontal lifts of vector fields X_{*}, Y_{*} on M, respectively. Then
(1.9) $\quad \hat{\nabla}_{X} Y=$ h.l. $\nabla_{X *} Y_{*} ;$
(1.10) $\hat{\sigma}(X, Y)=$ h.l. $\sigma\left(X_{*}, Y_{*}\right)$;
(1.11) $\hat{\nabla}_{X}(J \nu)=\nu \nabla_{X}^{S}(J \nu)$;
(1.12) $\hat{\sigma}(X, J \nu)=(\sqrt{\bar{c}} / 2) J X$;
(1.13) $\hat{\nabla}_{J \nu} X=0$;
(1.14) $\hat{\nabla}_{J \nu}(J \nu)=0$;
$(1.15) \hat{\sigma}(J \nu, J \nu)=0$.
We have

$$
\begin{aligned}
\nabla_{X}^{S} Y & =\not \Delta \nabla_{X}^{S} Y+A_{X} Y & & \text { by (1.3) } \\
& =\not 4 \nabla_{X}^{S} Y+(\sqrt{ } \bar{c} / 2)\langle X, J Y\rangle J \nu & & \text { by (1.7) } \\
& =\not \Delta \nabla_{X}^{S} Y=\text { h.l. } \bar{\nabla}_{X *} Y_{*} & & \text { by (1.8), (1.5) }
\end{aligned}
$$

This implies (1.9), (1.10). We have

$$
\begin{aligned}
\nabla_{X}^{s}(J \nu) & =A_{X}(J \nu)+थ \nabla_{X}^{S}(J \nu) & & \text { by }(1.2) \\
& =(\sqrt{c} / 2) J X+थ \nabla_{X}^{s}(J \nu) & & \text { by }(1.6) .
\end{aligned}
$$

This together with (1.8) implies (1.11), (1.12). We have

$$
\nabla_{J \nu}^{s} X=\not \subset \nabla_{J \nu}^{s} X=A_{X}(J \nu) \quad \text { by (1.1), (1.4) }
$$

Thus, by (1.6) we obtain
(1.16) $\nabla_{J V}^{s} X=(\sqrt{c} / 2) J X$.

This together with (1.8) implies (1.13). The equalities (1.14), (1.15) follow from $\nabla_{J \nu}^{S}(J \nu)=0$.

1) Let η and $\hat{\eta}$ denote the mean curvature vectors of f and \hat{f}, respectively. Let $\operatorname{dim} M=n$ and so $\operatorname{dim} \hat{M}=n+1$. For an arbitrary $q \in \hat{M}$, choose an orthonormal basis $\left\{x_{1}, \cdots, x_{n}\right\}$ of $H_{q}(\hat{M})$ and put $x_{i *}=\pi_{*} x_{i}, 1 \leqq i \leqq n$. Extend each $x_{i *}$ to a vector field $X_{i *}$ on M and let $X_{i}=$ h.l. $X_{i *}$. Then, by (1.10), (1.15) we have

$$
\begin{aligned}
(n+1) \hat{\eta}_{q} & =\sum_{i=1}^{n} \hat{\sigma}\left(X_{i}, X_{i}\right)_{q}+\hat{\sigma}(J \nu, J \nu)_{q} \\
& =\sum_{i=1}^{n}\left(h . l . \sigma\left(X_{i *}, X_{i *}\right)\right)_{q}=n(h . l . \eta)_{q} .
\end{aligned}
$$

This implies the assertion 1).
2) This follows from the compactness of the fibre $U(1)$ of π.
3) Assume that $\hat{f}(\hat{M})$ is contained in a real hyperplane of \boldsymbol{C}^{m+1}. Then
there exist $a \in \boldsymbol{C}^{m+1}-\{0\}$ and $k \in \boldsymbol{R}$ and that $\langle\hat{f}(\hat{M}), a\rangle=\{k\}$. Take a point $q \in \hat{M}$ and let ${ }^{t}(\hat{f}(q)) a=r e^{\nu-1 \phi}$ so that $k=r \cos \phi$. For each $\varepsilon=e^{\nu-1 \theta} \in U(1)$, $\theta \in \boldsymbol{R}$, we have

$$
\begin{aligned}
k & =\langle\hat{f}(q \varepsilon), a\rangle=\langle\hat{f}(q) \varepsilon, a\rangle=\operatorname{Re}\{t(\hat{f}(q)) a \varepsilon\} \\
& =\operatorname{Re}\left(r e^{\imath-1(\phi+\theta)}\right)=r \cos (\phi+\theta)
\end{aligned}
$$

We have therefore $r=0$, and hence $\langle\hat{f}(\hat{M}), a\rangle=\{0\}$. Now for each $\varepsilon \in U(1)$ we have $\langle\hat{f}(\hat{M}), a \varepsilon\rangle=\langle\hat{f}(\hat{M}) \bar{\varepsilon}, a\rangle=\langle\hat{f}(\hat{M} \bar{\varepsilon}), a\rangle=\{0\}$. Thus $f(M)$ is contained in the complex hyperplane $\left\{[z] \in P_{m}(\boldsymbol{C}) ;{ }^{t} z a=0\right\}$ of $P_{m}(\boldsymbol{C})$. If conversely $f(M)$ is contained in a complex hyperplane $\left\{[z] \in P_{m}(C) ;{ }^{t_{z}} z=0\right\}, a \in C^{m+1}-\{0\}$, then $\hat{f}(\hat{M})$ is contained in the real hyperplane $\left\{z \in \boldsymbol{C}^{m+1} ;\langle z, a\rangle=0\right\}$ of \boldsymbol{C}^{m+1}.
4) Equalities (1.11), (1.14) and (1.9), (1.13) imply that $V(\hat{M})$ and $H(\hat{M})$ are invariant, respectively, under the covariant differentiation by any vector field on M. Thus the assertion 4) follows.
5) Let ∇^{\perp} and $\hat{\nabla}^{\perp}$ be the normal connections on the normal bundles $N M$ and $N \hat{M}$, respectively, and let ∇^{*} and $\hat{\nabla}^{*}$ be the coveriant derivations on $T^{*} M \otimes$ $T^{*} M \otimes N M$ and $T^{*} \hat{M} \otimes T^{*} \hat{M} \otimes N \hat{M}$, respectively, where $T^{*} M$ and $T^{*} \hat{M}$ denote the cotangent bundles. Let X, Y, Z be the horizontal lifts of vector fields X_{*}, Y_{*}, Z_{*} on M, respectively. Then
(a) $\left(\hat{\nabla}^{*} \hat{\sigma}\right)(J \nu, J \nu, J \nu)=\hat{\nabla}_{J \nu}^{\perp} \hat{\sigma}(J \nu, J \nu)-2 \hat{\sigma}\left(\hat{\nabla}_{J \nu}(J \nu), J \nu\right)$

$$
=0 \quad \text { by }(1.15),(1.14)
$$

(b) $\left(\hat{\nabla}^{*} \hat{\sigma}\right)(X, J \nu, J \nu)=\hat{\nabla}_{\frac{1}{x}}^{\hat{\sigma}}(J \nu, J \nu)-2 \hat{\sigma}\left(\hat{\nabla}_{X}(J \nu), J \nu\right)$

$$
\begin{array}{ll}
=-2 \hat{\sigma}\left(\nu \nabla_{X}^{S}(J \nu), J \nu\right) & \text { by (1.15), (1.11) } \\
=0 & \text { by }(1.15)
\end{array}
$$

$$
\begin{aligned}
\left(\hat{\nabla}^{*} \hat{\sigma}\right)(J \nu, X, Y) & =\hat{\nabla}_{{ }_{\nu}}^{\perp} \hat{\sigma}(X, Y)-\hat{\sigma}\left(\hat{\nabla}_{J \nu} X, Y\right)-\hat{\sigma}\left(X, \hat{\nabla}_{J \nu} Y\right) \\
& =\hat{\nabla}_{J_{\nu}}^{\perp} \hat{\sigma}(X, Y)
\end{aligned}
$$

Here $\hat{\sigma}(X, Y)=$ h.l. $\sigma\left(X_{*}, Y_{*}\right)$ by (1.10). Therefore we have

$$
\nabla_{J \nu}^{s} \hat{\sigma}(X, Y)=(\sqrt{\bar{c}} / 2) J \hat{\sigma}(X, Y)=(\sqrt{\bar{c}} / 2) k . l \cdot J \sigma\left(X_{*}, Y_{*}\right),
$$

since (1.16) holds also for the horizontal lift X of a vector field X_{*} on $P_{m}(\boldsymbol{C})$. Now the assumption $N_{p}^{1}(M) \subset J\left(T_{p}(M)\right)$ implies that $J \sigma\left(X_{*}, Y_{*}\right)$ is tangent to M, and hence $\nabla_{J_{\nu}}^{S} \hat{\sigma}(X, Y)$ is tangent to $H(M)$. Thus $\hat{\nabla}_{J_{\nu}}^{\perp} \hat{\sigma}(X, Y)=0$, and hence
(c) $\left(\hat{\nabla}^{*} \hat{\sigma}\right)(J \nu, X, Y)=0$.

Moreover, by (1.9),(1.10) we have

$$
\begin{aligned}
\left(\hat{\nabla}^{*} \hat{\sigma}\right)(X, Y, Z) & =\hat{\nabla}^{\frac{1}{X}} \hat{\sigma}(Y, Z)-\hat{\sigma}\left(\hat{\nabla}_{X} Y, Z\right)-\hat{\sigma}\left(Y, \hat{\nabla}_{X} Z\right) \\
& =\hat{\nabla}^{\frac{1}{x}} \hat{\sigma}(Y, Z)-h . l . \sigma\left(\nabla_{X *} Y_{*}, Z_{*}\right)-h . l . \sigma\left(Y_{*}, \nabla_{X *} Z_{*}\right)
\end{aligned}
$$

Here $\hat{\sigma}(Y, Z)=h . l . \sigma\left(Y_{*}, Z_{*}\right)$ by (1.10), and thus $\nabla_{X}^{S} \hat{\sigma}(Y, Z)=h . l . \bar{\nabla}_{X *} \sigma\left(Y_{*}, Z_{*}\right)$ by (1.5). Therefore $\hat{\nabla}_{\frac{1}{x}} \hat{\sigma}(Y, Z)=h . \ell . \nabla \frac{\bar{x}_{*}}{\perp} \sigma\left(Y_{*}, Z_{*}\right)$. Thus we obtain
(d) $\left(\hat{\nabla}^{*} \hat{\sigma}\right)(X, Y, Z)=$ h.l. $\left(\nabla^{*} \sigma\right)\left(X_{*}, Y_{*}, Z_{*}\right)$.

Now (a), (b), (c), (d) imply the assertion 5), since $\hat{\nabla}^{*} \hat{\sigma}$ is symmetric trilinear in virtue of the Codazzi equation.
q.e.d.

2. Shilov boundaries of symmetric bounded domains of tube type

We fix a positive integer n and a constant $c>0$. Let us consider an object $\delta=\left(D_{1}, \cdots, D_{s} ; c_{1}, \cdots, c_{s}\right), s \geqq 1$, where
(i) $D_{i}, 1 \leqq i \leqq s$, is an irreducible symmetric bounded domain of tube type, and $\Sigma_{i} \operatorname{dim}_{C} D_{i}=n+1$;
(ii) $c_{i}, 1 \leqq i \leqq s$, is a positive constant, and $\Sigma_{i} 1 / c_{i}=1 / c$.

We shall associate to such an object \mathfrak{d} a totally real isometric imbedding f : $(M, g) \rightarrow P_{m}(c)$ of an n-dimensional complete connected Riemannian manifold (M, g) with parallel second fundamental form.

Let $D=D_{1} \times \cdots \times D_{s}$ be the direct product of the $D_{i}{ }^{\prime} s, 1 \leqq i \leqq s$. It is also a symmetric bounded domain of tube type. Note that $\operatorname{dim}_{c} D=n+1$ in virtue of (i). The identity component G of the group of holomorphisms of D is semisimple and with the trivial center. Therefore it is identified with the group of inner automorphisms of $g=\operatorname{Lie} G$, the Lie algebra of G, and hence it is also identified with a closed subgroup of the group G_{C} of inner automorphisms of the complexification g_{c} of g. Fix a point $o \in D$ and put

$$
K=\{\phi \in G ; \phi o=o\}, \quad \mathfrak{i}=\operatorname{Lie} K
$$

Then the subspace

$$
\mathfrak{p}=\{X \in \mathfrak{g} ; B(X, \mathfrak{t})=\{0\}\}
$$

of \mathfrak{g}, where B denotes the Killing form of g_{c}, is invariant under the adjoint action of K, and it is identified with the tangent space $T_{o} D$ of D at o. Let H be the unique element of the center of \mathfrak{t} such that ad $H \mid \mathfrak{p}$ coincides with the complex structure J of D on $\mathfrak{p}=T_{o} D$. Then the complexification \mathfrak{p}_{c} of \mathfrak{p} is decomposed to the direct sum: $\mathfrak{p}_{\boldsymbol{C}}=\mathfrak{p}_{\boldsymbol{C}}^{+}+\mathfrak{p}_{\boldsymbol{C}}^{-}$of K-invariant subspaces $\mathfrak{p}_{\boldsymbol{C}}^{ \pm}$defined by

$$
\mathfrak{p}_{c}^{ \pm}=\left\{X \in \mathfrak{p}_{c} ;[H, X]= \pm \sqrt{-1} X\right\}
$$

Note that the linear map $\iota: \mathfrak{p} \rightarrow \mathfrak{p}_{c}^{+}$defined by $\iota(X)=(1 / 2)(X-\sqrt{-1}[H, X])$ is a K-equivariant C-linear isomorphism of (\mathfrak{p}, J) onto \mathfrak{p}_{C}^{+}. Denoting by τ the complex conjugation of g_{c} with respect to the compact real form $g_{u}=$ $\mathfrak{f}+\sqrt{-1} \mathfrak{p}$, we define a K-invariant hermitian inner product $(,)_{\tau}$ on $\mathfrak{p}_{\boldsymbol{C}}^{+}$by
$(X, Y)_{\tau}=-B(X, \tau Y)$ for $X, Y \in \mathfrak{p}_{C}^{+}$. We define then a K-invariant inner product \langle,$\rangle on \mathfrak{p}_{C}^{+}$, regarded as a real vector space, by $\langle X, Y\rangle=2 \operatorname{Re}(X, Y)_{\tau}$ for $X, Y \in \mathfrak{p}_{C}^{+}$. Then we have

$$
\begin{equation*}
\langle\iota X, \iota Y\rangle=B(X, Y) \quad \text { for } \quad X, Y \in \mathfrak{p} \tag{2.1}
\end{equation*}
$$

Let $c \in G_{u}, G_{u}$ being the connected subgroup of G_{C} generated by g_{u}, denote the standard Cayley transform for D (cf. Takeuchi [9]), and define an involutive automorphism θ of G_{C} by $\theta(x)=c^{2} x c^{-2}$ for $x \in G_{C}$. The differential $A d c^{2}$ of θ will be also denoted by θ. Then we have $\theta \tau=\tau \theta, \theta \mathbf{t}=\boldsymbol{f}$ and $\theta H=-H$. We may define an anti-linear endomorphism $X \rightarrow \bar{X}$ of \mathfrak{p}_{c}^{+}by $\bar{X}=\tau \theta X$, so that

$$
\mathfrak{p}^{+}=\left\{X \in \mathfrak{p}_{C}^{+} ; \bar{X}=X\right\}
$$

is a real form of \mathfrak{p}_{C}^{+}. Let now $F: D \hookrightarrow \mathfrak{p}_{C}^{+}$be the Harish-Chandra imbedding for D, and $S \subset \partial D \subset \mathfrak{p}_{C}^{+}$the Shilov boundary of D. The groups G, K or $\mathfrak{g}, \mathfrak{\ell}$, $\mathfrak{p}, \mathfrak{p}_{C}^{+}$etc. are the direct products or the direct sums of respective objects for D_{i}, $1 \leqq i \leqq s$, which will be denoted by the same notation but with the suffix i. Then F is the product imbedding $F_{1} \times \cdots \times F_{s}$ of Harish-Chandra imbeddings $F_{i}: D_{i} \hookrightarrow \mathfrak{p}_{i c}^{+}$for D_{i}, and S is the direct product $S_{1} \times \cdots \times S_{s}$ of Shilov boundaries $S_{i} \subset \partial D_{i} \subset \mathfrak{p}_{i}^{+}$of D_{i}. The group K acts transitively on S and S is a compact connected manifold with $\operatorname{dim} S=\operatorname{dim}_{c} D=n+1$. Let $X_{i}^{0} \in S_{i}$ be the standard base point of S_{i} (cf. Takeuchi [9]). Then
(2.2) eigenvalues of $\operatorname{ad}\left(\iota^{-1}\left(\sqrt{-1} X_{i}^{0}\right)\right)$ on \mathfrak{g}_{i} are $0,2,-2$.

Put $X^{0}=X_{1}^{0}+\cdots+X_{s}^{0} \in S$ and

$$
K_{0}=\left\{k \in K ; k X^{0}=X^{0}\right\}
$$

Then $\left(K, K_{0}\right)$ is a symmetric pair with respect to θ and S is identified with the quotient manifold K / K_{0}. If we set

$$
\mathfrak{B}=\{X \in \mathfrak{f} ; \theta X=-X\}
$$

and $\psi(X)=\left[X, \sqrt{-1} X^{0}\right]$ for $X \in \mathfrak{Z}$, then ψ defines a linear isomorphism of \mathfrak{B} onto \mathfrak{p}^{+}. In particular, we have

$$
\begin{equation*}
\left[\mathfrak{z}, \sqrt{-1} X^{0}\right]=\mathfrak{p}^{+} . \tag{2.3}
\end{equation*}
$$

For these properties of symmetric bounded domains of tube type, we refer the reader to Korányi-Wolf [4], Takeuchi [9].

Now let $\operatorname{dim}_{C} D_{i}=n_{i}+1$ and put $a_{i}=1 / \sqrt{2 c_{i}\left(n_{i}+1\right)}, 1 \leqq i \leqq s$. We define an ($n+1$)-dimensional compact connected submanifold \hat{M} of \mathfrak{p}_{C}^{+}by

$$
\hat{M}=a_{1} S_{1} \times \cdots \times a_{s} S_{s}
$$

and endow it with the Riemannian metric \hat{g} induced from \langle,$\rangle . We write$
$\hat{M}_{i}=a_{i} S_{i} \subset \mathfrak{p}_{i}^{+}, 1 \leqq i \leqq s$. If we put $E_{i}=\sqrt{-1} a_{i} X_{i}^{0} \in \mathfrak{p}_{i c}^{+}$and $E=E_{1}+\cdots+$ $E_{s} \in \mathfrak{p}_{C}^{+}$, then E_{i} belongs to \hat{M}_{i}, since each D_{i} is a circular domain in $\mathfrak{p}_{i c}^{+}$, and hence E belongs to \hat{M}. Thus we have $\hat{M}_{i}=K_{i} E_{i}$ and $\hat{M}=K E$. Note that we have also

$$
\begin{equation*}
K_{0}=\{k \in K ; k E=E\} \tag{2.4}
\end{equation*}
$$

and hence \hat{M} is identified with K / K_{0}. Moreover, (2.1), (2.2) imply

$$
\left\langle\sqrt{-1} X_{i}^{0}, \sqrt{-1} X_{i}^{0}\right\rangle=4 \operatorname{dim} \mathfrak{p}_{i}=8 \operatorname{dim}_{C} D_{i}=8\left(n_{i}+1\right)
$$

and hence $\left\langle E_{i}, E_{i}\right\rangle=4 / c_{i}$, thus $\langle E, E\rangle=\Sigma_{i}\left\langle E_{i}, E_{i}\right\rangle=\Sigma_{i} 4 / c_{i}=4 / c$ in virtue of (ii). Therefore, identifying \mathfrak{p}_{i}^{+}with $\boldsymbol{C}^{n_{i}+1}$ by an orthonormal basis of \mathfrak{p}_{i}^{+}with respect to $2(,)_{\tau}$, and thus identifying \mathfrak{p}_{C}^{+}with \boldsymbol{C}^{n+1}, we have

$$
\hat{M}_{i} \subset S^{2 n_{i}+1}\left(c_{i} / 4\right), \quad 1 \leqq i \leqq s
$$

and

$$
\hat{M}=\hat{M}_{1} \times \cdots \times \hat{M}_{s} \subset S^{2 n+1}(c / 4)
$$

Furthermore, the property (2.2) implies that each inclusion $\hat{M}_{i} \hookrightarrow S^{2 n_{i}+1}\left(c_{i} / 4\right)$ is a standard minimal isometric imbedding of an irreducible symmetric R-space \hat{M}_{i} in the sense of Takeuchi [10]. Thus, by Takeuchi [10] the inclusion \hat{f} : $(\hat{M}, \hat{g}) \rightarrow S^{2 n+1}(c / 4)$ is an isometric imbedding with parallel second fundamental form such that $\hat{f}(\hat{M})$ is not contained in any real hyperplane of \boldsymbol{C}^{n+1}. Here the identity component $I^{0}(\hat{M})$ of the group of isometries of (\hat{M}, \hat{g}) may be identified with K. Moreover, \hat{f} is minimal if and only if
(2.5) $\quad c_{i}\left(n_{i}+1\right)=c(n+1) \quad$ for each $i, 1 \leqq i \leqq s$.

Now let $\pi: S^{2 n+1}(c / 4) \rightarrow P_{n}(c)$ be the Hopf fibering and put $M=\pi(\hat{M})$. It is a compact connected submanifold of $P_{n}(\boldsymbol{C})$ since it is a K-orbit in $P_{n}(\boldsymbol{C})$. We endow M with the Riemannian metric g induced from that of $P_{n}(c)$, and denote by $f:(M, g) \rightarrow P_{n}(c)$ the inclusion. Since the connected subgroup Z of K generated by $\boldsymbol{R} H$ acts on $\mathfrak{p}_{\boldsymbol{C}}^{+}$by $U(1)=\{\varepsilon I ; \varepsilon \in \boldsymbol{C},|\varepsilon|=1\}$, we have $\pi^{-1}(M)=\hat{M}$. Therefore we have $\operatorname{dim} M=n$. Thus we are in the position of $\mathbf{1}$ with $m=n$.

Theorem 2.1. Let $f:(M, g) \rightarrow P_{n}(c)$ be the isometric imbedding associated to $\mathfrak{d}=\left(D_{1}, \cdots, D_{s} ; c_{1}, \cdots, c_{s}\right)$ in the above way. Then

1) f is totally real and has the parallel second fundamental form. In particular, (M, g) is locally symmetric;
2) f is minimal if and only if $c_{i} \operatorname{dim}_{c} D_{i}=c(n+1)$ for each $i, 1 \leqq i \leqq s$;
3) The dimension of the Euclidean factor of the locally symmetric space (M, g) is equal to $s-1$;
4) (M, g) has no Euclidean factor if and only if $s=1$ and $\operatorname{dim}_{C} D_{1} \geqq 2$. In
this case, (M, g) is irreducible and f is minimal;
5) (M, g) is flat if and only if $s=n+1$ and $\operatorname{dim}_{C} D_{i}=1$, i.e., D_{i} is the unit disk, for each $i, 1 \leqq i \leqq n+1$.

Proof. We prove first that f is totally real. Since K acts on $P_{n}(c)$ as isometric holomorphisms of $P_{n}(c), f$ is K-equivariant and M is a K-orbit, we need only to prove the property (1.8) for $q=E$. By (2.4) the tangent space $T_{E} \hat{M}$ is identified with $\mathfrak{3}$. Moreover, by (2.3) we have $[\mathfrak{B}, E]=\mathfrak{p}^{+}$, and hence $T_{E} \hat{M}$ is identified with \mathfrak{p}^{+}. In particular we have $\sqrt{-1} E=[H, E] \in \mathfrak{p}^{+}$, since $H \in \mathfrak{3}$. Thus, if we put

$$
\mathfrak{h}=\left\{X \in \mathfrak{p}^{+} ;\langle X, \sqrt{-1} E\rangle=\{0\}\right\},
$$

it is identified with $H_{E}(\hat{M})$. Now $\left\langle\mathfrak{p}^{+}, \sqrt{-1} \mathfrak{p}^{+}\right\rangle=\{0\}$ implies $\langle\mathfrak{h}, \sqrt{-1} \mathfrak{h}\rangle$ $=\{0\}$. We have therefore the required property: $\left\langle H_{E}(\hat{M}), J H_{E}(\hat{M})\right\rangle=\{0\}$.

The assertion that σ is parallel is an immediate consequence of Lemma $1.1,5)$, since $N M=J(T M)$ in our case. The assertion 2) follows from Lemma $1.1,1$) and (2.5). The assertions 3),4),5), except for the minimality for f in 4), follow from the following observations:
(a) the dimension of Euclidean factor of $M=$ the one of $\hat{M}-1$;
(b) the dimension of Euclidean factor of $\hat{M}_{i}=1$;
(c) the number of irreducible factors of $\hat{M}_{i}= \begin{cases}1 & \text { if } \operatorname{dim}_{C} D_{i} \geqq 2, \\ 0 & \text { if } \operatorname{dim}_{C} D_{i}=1 .\end{cases}$

The minimality of f in 4) follows from 2).
q.e.d.

3. Classification of totally real submanifolds with parallel second fundamental form

Let $\mathfrak{d}=\left(D_{1}, \cdots, D_{s} ; c_{1}, \cdots, c_{s}\right)$ and $\mathfrak{D}^{\prime}=\left(D_{1}^{\prime}, \cdots, D_{t}^{\prime} ; c_{1}^{\prime}, \cdots, c_{t}^{\prime}\right)$ satisfy conditions (i), (ii) in 2. They are said to be equivalent, denoted by $\mathfrak{D} \sim \mathcal{D}^{\prime}$, if $s=t$ and there exists a permutation p of s-letters $\{1,2, \cdots, s\}$ such that $D_{p(i)}^{\prime}$ is isomorphic to D_{i} and $c_{p(i)}^{\prime}=c_{i}$ for each $i, 1 \leqq i \leqq s$. The set of all equivalence classes of $\mathfrak{D}=\left(D_{1}, \cdots, D_{s} ; c_{1}, \cdots, c_{s}\right)$ with (i), (ii) will be denoted by $\mathscr{D}_{n, c}$. Let $\operatorname{Aut}\left(P_{n}(c)\right)$ denote the group of isometric holomorphisms of $P_{n}(c)$. It is isomorphic to the projective unitary group $P U(n+1)$ of degree $n+1$ in the natural way. We denote by $\&_{n, c}$ the set of all $\operatorname{Aut}\left(P_{n}(c)\right)$-congruence classes of n-dimensional complete connected totally real submanifolds M of $P_{n}(c)$ with parallel second fundamental form. Then from the naturality of Harish-Chandra imbedding our correspondence $\mathfrak{D} \rightarrow M$ in 2 induces a map $\mathscr{D}_{n, c} \rightarrow \oiint_{n, c}$.

Theorem 3.1. 1) The map $\mathscr{D}_{n, c} \rightarrow \oiint_{n, c}$ is a bijection.
2) Let $f:(M, g) \rightarrow P_{n}(c)$ be a totally real isometric immersion of an n-dimensional complete connected Riemannian manifold (M, g) with parallel second fundamental
form. Then there exist an n-dimensional complete connected totally real submanifold $\iota: M^{\prime} \hookrightarrow P_{n}(c)$ with parallel second fundamental form and an isometric covering $f^{\prime}: M \rightarrow M^{\prime}$ such that $f=\iota \circ f^{\prime}$.

Proof. 1) Surjectivity: Let $M \subset P_{n}(c)$ be an n-dimensional complete connected totally real submanifold with parallel second fundamental form. We use the notation in 1 with $m=n$. Then, by Lemma $1.1 \hat{M}=\pi^{-1}(M) \subset$ $S^{2 n+1}(c / 4)$ is complete, connected, with parallel second fundamental form and not contained in any real hyperplane of C^{n+1}. Moreover we have $\pi(\hat{M})=M$. Thus, by Theorem 4.1 of Takeuchi [10]

$$
\hat{M}=\hat{M}_{1} \times \cdots \times \hat{M}_{s} \subset S^{m_{1}}\left(c_{1} / 4\right) \times \cdots \times S^{m_{s}}\left(c_{s} / 4\right) \subset S^{2 n+1}(c / 4),
$$

where each $\hat{M}_{i} \subset S^{m_{i}}\left(c_{i} / 4\right), c_{i}>0$, is an irreducible symmetric R-space, $\Sigma_{i} m_{i}+s$ $=2 n+2$ and $\Sigma_{i} 1 / c_{i}=1 / c$. Here the group $K=I^{0}(\hat{M})$ is identified with the identity component of the group $\left\{\phi \in O\left(C^{n+1}\right) ; \phi \hat{M}=\hat{M}\right\}$. Since \hat{M} is invariant under the subgroup $Z=\{\varepsilon I ; \varepsilon \in \boldsymbol{C},|\varepsilon|=1\}$ of $O\left(\boldsymbol{C}^{n+1}\right), Z$ is a closed subgroup of K. Let $p: \tilde{M} \rightarrow \hat{M}$ be the universal Riemannian covering of \hat{M}. Then, by Lemma $1.1,4$) \tilde{M} is the Riemannian product $\tilde{V} \times \tilde{H}$ of maximal integral submanifolds \tilde{V} and \tilde{H} in \tilde{M} of distributions $p^{-1} V(\hat{M})$ and $p^{-1} H(\hat{M})$, respectively. Since \tilde{V} is a flat line, it is contained in the Euclidean part of \tilde{M}. Thus, if we identify Lie $I^{0}(\hat{M})$ with a Lie subalgebra of $\operatorname{Lie} I^{0}(\tilde{M})$, Lie $Z=\operatorname{Lie} I^{0}(\tilde{V})$ is contained in the center of Lie $I^{0}(\hat{M})=$ Lie K. Therefore Z is contained in the center of K, which implies that K is a subgroup of the unitary group $U(n+1)$. It follows that each irreducible symmetric pair ($\mathfrak{g}_{i}, \hat{l}_{i}$) associated to \hat{M}_{i} is of hermitian type. Moreover, each \mathfrak{g}_{i} has a semi-simple element E_{i} such that $a d E_{i}$ has just three distinct real eigenvalues. This is the case if and only if each irreducible symmetric bounded domain D_{i} associated to (g_{i}, t_{i}) is of tube type. Here we have $2 \operatorname{dim}_{c} D_{i}=m_{i}+1$, and hence $\Sigma_{i} \operatorname{dim}_{c} D_{i}=n+1$. Therefor, $M \subset P_{n}(c)$ is obtained from $\delta=\left(D_{1}, \cdots, D_{s} ; c_{1}, \cdots, c_{s}\right)$ by the construction in 2. This proves the surjectivity of our map.

Injectivity: Let $M \subset P_{n}(c)$ and $M^{\prime} \subset P_{n}(c)$ be associated to $\mathfrak{D}=\left(D_{1}, \cdots, D_{s}\right.$; $\left.c_{1}, \cdots, c_{s}\right)$ and $\mathfrak{D}^{\prime}=\left(D_{1}^{\prime}, \cdots, D_{t}^{\prime} ; c_{1}^{\prime}, \cdots, c_{t}^{\prime}\right)$, respectively. Various objects in the construction of M^{\prime} will be denoted by the same notation as for M but with primes. Suppose that there exists $\phi \in \operatorname{Aut}\left(P_{n}(c)\right)=P U(n+1)$ with $\phi M=M^{\prime}$. Then we have a \boldsymbol{C}-linear isometry $\hat{\phi}: \mathfrak{p}_{\boldsymbol{C}}^{+} \rightarrow \mathfrak{p}_{\boldsymbol{C}}^{\prime+}$ with respect to \langle,$\rangle and \langle,\rangle^{\prime}$ such that $\hat{\phi} \hat{M}=\hat{M}^{\prime}$ and $\hat{\phi}$ induces ϕ. Then the homomorphism $\hat{\phi}_{K}: K=I^{0}(\hat{M}) \rightarrow$ $K^{\prime}=I^{0}\left(\hat{M}^{\prime}\right)$ defined by $\hat{\phi}_{K}(k)=\hat{\phi} \circ k \circ \hat{\phi}^{-1}$ is an isomorphism. The differential $\left(\hat{\phi}_{K}\right)_{*}: \mathfrak{t} \rightarrow \mathfrak{t}^{\prime}$ of $\hat{\phi}_{K}$ will be denoted by $\hat{\phi}_{\mathbf{r}} \quad$ Moreover, the \boldsymbol{C}-linear isomorphism $\hat{\phi}_{\mathfrak{p}}:(\mathfrak{p}, J) \rightarrow\left(\mathfrak{p}^{\prime}, J^{\prime}\right)$ with $\hat{\phi}^{\circ} \iota=\iota^{\prime} \circ \hat{\phi}_{\mathfrak{p}}$ is a linear isometry with respect to B and B^{\prime}, and it satisfies

$$
\begin{equation*}
\hat{\phi}_{p}(k X)=\hat{\phi}_{K}(k)\left(\hat{\phi}_{\mathfrak{p}} X\right) \quad \text { for } \quad k \in K, X \in \mathfrak{p} \tag{3.1}
\end{equation*}
$$

We define an \boldsymbol{R}-linear isomorphism $\Phi: \mathfrak{g}=\mathfrak{f}+\mathfrak{p} \rightarrow \mathrm{g}^{\prime}=\mathfrak{f}^{\prime}+\mathfrak{p}^{\prime}$ by $\Phi=\hat{\phi}_{\mathfrak{t}}+\hat{\phi}_{\mathfrak{p}}$. Then (3.1) implies

$$
\begin{equation*}
\Phi \circ a d X=(a d \Phi X) \circ \Phi \quad \text { for } \quad X \in \mathfrak{l} \tag{3.2}
\end{equation*}
$$

We shall show that Φ is actually a Lie isomorphism. Since (3.2) holds, we need only to show

$$
\begin{equation*}
\Phi[X, Y]=[\Phi X, \Phi Y] \quad \text { for } \quad X, Y \in \mathfrak{p} . \tag{3.3}
\end{equation*}
$$

For each $Z \in \mathcal{F}$ we have

$$
\begin{aligned}
& B^{\prime}([\Phi X, \Phi Y], \Phi Z)=B^{\prime}(\Phi X,[\Phi Y, \Phi Z]) \\
& \quad=B^{\prime}(\Phi X, \Phi[Y, Z]) \quad \text { by (3.2) } \\
& \quad=B^{\prime}\left(\hat{\phi}_{p} X, \hat{\phi}_{p}[Y, Z]\right)=B(X,[Y, Z]) \\
& \quad=B([X, Y], Z)=B^{\prime}(\Phi[X, Y], \Phi Z) \quad \text { by (3.2). }
\end{aligned}
$$

This implies (3.3). Now the naturality of Harish-Chandra imbedding implies $\mathfrak{D} \sim \mathcal{D}^{\prime}$. This proves the injectivity of our map.
2) Construct an isometric immersion $\hat{f}:(\hat{M}, \hat{g}) \rightarrow S^{2 n+1}(c / 4)$ from f in the same way as in 1 . Then, by Lemma $1.1(\hat{M}, \hat{g})$ is complete and \hat{f} has the parallel second fundamental form. Thus, by Theorem 4.1 of Takeuchi [10] the image $\hat{M}^{\prime}=\hat{f}(\hat{M})$ is a complete submanifold of $S^{2 n+1}(c / 4)$ and the map $\hat{f}^{\prime}: \hat{M} \rightarrow \hat{M}^{\prime}$ induced by \hat{f} is an isometric covering. Therefore $M^{\prime}=\pi\left(\hat{M}^{\prime}\right)$ is an n-dimensional complete connected submanifold of $P_{n}(c)$ and the induced map $f^{\prime}: M \rightarrow M^{\prime}$ is an isometric covering. It is clear that M^{\prime} is a totally real submanifold of $P_{n}(c)$ with parallel second fundamental form. This completes the proof. q.e.d.

Example. Let D be the irreducible symmetric bounded domain of type (IV) with $\operatorname{dim}_{C} D=n+1, n \geqq 2$. Then the submanifold $M \subset P_{n}(c)$ corresponding to $\mathfrak{d}=(D ; c)$ is the naturally imbedded real projective n-space $P^{n}(c / 4)$ with constant sectional curvature $c / 4$, which is totally geodesic in $P_{n}(c)$.

We define a convex subset $\boldsymbol{F}_{n, c}$ of \boldsymbol{R}^{n} by

$$
\boldsymbol{F}_{n, c}=\left\{\alpha=\left(\alpha_{i}\right) \in \boldsymbol{R}^{n} ; \alpha_{i} \geqq 0(1 \leqq i \leqq n), \alpha_{1}+2 \alpha_{2}+\cdots+n \alpha_{n}<1 / c\right\} .
$$

For each $\alpha \in \boldsymbol{F}_{n, c}$ we define constants c_{1}, \cdots, c_{n+1} with $0<c_{1} \leqq c_{2} \leqq \cdots \leqq c_{n+1}$ by the relations

$$
\begin{equation*}
\alpha_{i}=1 / c_{i}-1 / c_{i+1}(1 \leqq i \leqq n) \text { and } \Sigma_{i} 1 / c_{i}=1 / c \tag{3.4}
\end{equation*}
$$

and put

$$
\hat{M}_{a}^{n+1}=S^{1}\left(c_{1} / 4\right) \times \cdots \times S^{1}\left(c_{n+1} / 4\right) \subset S^{2 n+1}(c / 4) .
$$

Then, by Theorem 2.1,5) $M_{a}^{n}=\pi\left(\hat{M}_{a}^{n+1}\right) \subset P_{n}(c)$ is an n-dimensional complete
connected flat totally real submanifold with parallel second fundamental form. Let $\mathscr{F}_{n, c}$ denote the set of all $\operatorname{Aut}\left(P_{n}(c)\right)$-congruence classes of such submanifolds. Then the correspondence $\alpha \rightarrow M_{a}^{n}$ induces a map $\boldsymbol{F}_{n, c} \rightarrow \mathcal{F}_{n, c}$.

Theorem 3.2. 1) The map $\boldsymbol{F}_{n, c} \rightarrow \mathcal{F}_{n, c}$ is a bijection.
2) An n-dimensional complete connected flat totally real minimal submanifold of $P_{n}(c)$ with parallel second fundamental form is unique up to the congruence relative to the group $\operatorname{Aut}\left(P_{n}(c)\right)$, and it is given by $M_{0}^{n} \subset P_{n}(c)$.

Proof. 1) By Theorem 2.1,5) and Theorem 3.1, $\mathcal{F}_{n, c}$ corresponds one to one to the set of all $(n+1)$-tuples $\left(c_{1}, \cdots, c_{n+1}\right)$ with $0<c_{1} \leqq c_{2} \leqq \cdots \leqq c_{n+1}$ and $\Sigma_{i} 1 / c_{i}$ $=1 / c$. But the latter set corresponds one to one to the set $F_{n, c}$ by the relations (3.4).
2) By Theorem 2.1,2), $M_{\alpha}^{n} \subset P_{n}(c)$ is minimal if and only if $c_{i}=c(n+1)$ for each $i, 1 \leqq i \leqq n$. This is the case if and only if $\alpha=0$. q.e.d.

Remark. The norm $\left\|\sigma_{\alpha}\right\|$ of the second fundamental form σ_{∞} of $M_{\alpha}^{n} \subset$ $P_{n}(c)$ is given by

$$
\left\|\sigma_{\sigma}\right\|^{2}=\left\{\Sigma_{i} c_{i}-(3 n+1) c\right\} / 4
$$

In particular, we have $\left\|\sigma_{0}\right\|^{2}=n(n-1) c / 4$.

4. Characterization of a flat totally real surface in $\boldsymbol{P}_{\mathbf{2}}(\boldsymbol{c})$

Let $f:(M, g) \rightarrow(\bar{M}, g)$ be an isometric immersion of an n-dimensional Riemannian manifold (M, g) into an ($n+q$)-dimensional Riemannian manifold (\bar{M}, \bar{g}) with $q \geqq 1$. The inner product and the norm of tensors defined by Riemannian metrics are denoted by \langle,$\rangle and \| \|, respectively. We denote by \sigma$ the second fundamental form of f, and by S_{ξ} the shape operator of f. They are related by $\left\langle S_{\xi} X, Y\right\rangle=\langle\sigma(X, Y), \xi\rangle$ for vector fields X, Y on M and a normal vector field ξ. We define a section $\tilde{\sigma}$ of the bundle $\operatorname{End}(N M)$ of endomorphisms of the normal bundle $N M$ by $\tilde{\sigma}=\sigma^{\circ} \sigma$, regarding σ as a homomorphism from $T M \otimes T M$ to $N M$. Moreover, we define a homomorphism S^{\perp} from $T M \otimes T M$ to $\operatorname{End}(N M)$ by $S^{\perp}(X, Y) \xi=\sigma\left(X, S_{\xi} Y\right)-\sigma\left(Y, S_{\xi} X\right)$ for vector fields X, Y on M and a normal vector field ξ. Then we have the following

Lemma 4.1 (Simons [8], Chern-do Carmo-Kobayashi [2]). Let p be an arbitrary point of M. Then we have an inequality

$$
\left\|\tilde{\sigma}_{p}\right\|^{2}+\left\|S_{p}^{\perp}\right\|^{2} \leqq(2-1 / q)\left\|\sigma_{p}\right\|^{4} .
$$

If the equality holds, then either $\sigma_{p}=0$ or $\sigma_{p} \neq 0, N_{p}^{1}(M)=N_{p} M$ and $q \leqq 2$.
Now assume that ($\bar{M}, g)$ is a Kählerian manifold $\boldsymbol{M}_{\boldsymbol{m}}(c)$ of constant holomorphic sectional curvature c with $\operatorname{dim}_{\boldsymbol{C}} \boldsymbol{M}_{m}(c)=m$, and that f is totally real in the
sense that $\left\langle J\left(T_{p} M\right), T_{p} M\right\rangle=\{0\}$ for each $p \in M$, where J denotes the complex structure tensor of $\boldsymbol{M}_{\boldsymbol{m}}(c)$. Then we have an orthogonal Whitney sum: $N M=$ $J(T M) \oplus J(T M)^{\perp}$, where $J(T M)^{\perp}$ denotes the orthogonal complement of $J(T M)$ in $N M$. We define a homomorphism σ_{J} from $T M \otimes T M$ to $N M$ by $\sigma_{J}(X, Y)$ $=J(T M)$-component of $\sigma(X, Y)$ with respect to the above decomposition, for vector fields X, Y on M. Let $\Delta=T r_{g} \nabla^{* 2}$ denote the Laplacian on $N M$. Then, from Simons' formula (Simons [8]) which describes $\Delta \sigma$ for a general minimal isometric immersion, we have the following lemma.

Lemma 4.2. Let $f:(M, g) \rightarrow M_{m}(c)$ be a totally real minimal isometric immersion. Then

$$
\begin{equation*}
\langle\Delta \sigma, \sigma\rangle=\left(n\|\sigma\|^{2}+\left\|\sigma_{J}\right\|^{2}\right) c / 4-\|\tilde{\sigma}\|^{2}-\left\|S^{\perp}\right\|^{2} . \tag{4.1}
\end{equation*}
$$

Proposition 4.3. Let $f:(M, g) \rightarrow M_{m}(c), c \leqq 0$, be a totally real minimal isometric immersion with parallel second fundamental form. Then f is totally geodesic.

Proof. Since $\nabla^{*} \sigma=0$, we have by Lemma 4.2

$$
\left(n\|\sigma\|^{2}+\left\|\sigma_{J}\right\|^{2}\right) c / 4=\|\tilde{\sigma}\|^{2}+\left\|S^{\perp}\right\|^{2} \quad \text { with } \quad c \leqq 0 .
$$

This implies $\tilde{\sigma}=0$, and hence $\sigma=0$.
Lemma 4.4. Let $f:(M, g) \rightarrow M_{n}(c)$ be a totally real minimal isometric immersion of an n-dimensional Riemannian manifold (M, g). Then

1) We have an inequality

$$
\begin{equation*}
-\langle\Delta \sigma, \sigma\rangle \leqq\left\{(2-1 / n)\|\sigma\|^{2}-(n+1) c / 4\right\}\|\sigma\|^{2} ; \tag{4.2}
\end{equation*}
$$

2) If furthermore M is compact, then we have

$$
\begin{equation*}
\int_{M}\left\|\nabla^{*} \sigma\right\|^{2} v_{g} \leqq \int_{M}\left\{(2-1 / n)\|\sigma\|^{2}-(n+1) c / 4\right\}\|\sigma\|^{2} v_{g}, \tag{4.3}
\end{equation*}
$$

where v_{g} denotes the Riemannian measure of (M, g).
Proof. 1) Since $J(T M)=N M$ in our case, we have $\sigma_{J}=\sigma$. Thus the equality (4.1) reduces to $\langle\Delta \sigma, \sigma\rangle=(n+1) c\|\sigma\|^{2} / 4-\|\sigma\|^{2}-\left\|S^{\perp}\right\|^{2}$. Now (4.2) follows from Lemma 4.1.
2) Integrating the equality: $(1 / 2) \Delta\left(\|\sigma\|^{2}\right)=\langle\Delta \sigma, \sigma\rangle+\left\|\nabla^{*} \sigma\right\|^{2}$, we obtain

$$
\int_{M}\left\|\nabla^{*} \sigma\right\|^{2} v_{g}=-\int_{M}\langle\Delta \sigma, \sigma\rangle v_{g}
$$

Thus (4.2) implies (4.3).
q.e.d.

Theorem 4.5. Let $f:(M, g) \rightarrow P_{n}(c), c>0$, be a totally real minimal isometric immersion of a compact connected Riemannian manifold (M, g) with $\operatorname{dim} M=$
$n \geqq 2$. Suppose that the second fundamental form σ of f satisfies an inequality

$$
\|\sigma\|^{2} \leqq n(n+1) c / 4(2 n-1)
$$

everywhere on M. Then either f is totally geodesic and it is an isometric covering to the naturally imbedded real projective n-space in $P_{n}(c)$, or $n=2,\|\sigma\|^{2}=c / 2$ $(=n(n+1) c / 4(2 n-1))$ everywhere on M and f is an isometric covering to the flat surface $M_{0}^{2} \subset P_{2}(c)$ defined in $\mathbf{3}$ (up to the congruence relative to $\operatorname{Aut}\left(P_{n}(c)\right)$).

Proof. We have

$$
(2-1 / n)\|\sigma\|^{2}-(n+1) c / 4=(2-1 / n)\left\{\|\sigma\|^{2}-n(n+1) c / 4(2 n-1)\right\} \leqq 0
$$

from the assumption. It follows from (4.3) that

$$
\left\{\|\sigma\|^{2}-n(n+1) c / 4(2 n-1)\right\}\|\sigma\|^{2}=0
$$

everywhere and that σ is parallel. Assume that f is not totally geodesic. Then $\|\sigma\|^{2}=n(n+1) c / 4(2 n-1)$ everywhere, and hence $n=2$ by Lemma 4.1. Now we see from Theorem 3.1 that a 2 -dimensional complete connected totally real minimal submanifold M^{\prime} of $P_{2}(c)$ with parallel second fundamental form is congruent to M_{0}^{2} unless it is totally geodesic. On the other hand, the second fundamental form σ_{0} of $M_{0}^{2} \subset P_{2}(c)$ satisfies $\left\|\sigma_{0}\right\|^{2}=c / 2$ (cf. Remark in 3). Thus we get the theorem. q.e.d.

Remark. Our $M_{0}^{2} \subset P_{2}(c)$ is nothing but the flat isotropic surface in $P_{2}(c)$ with parallel second fundamental form constructed in Naitoh [5].

References

[1] B.Y. Chen-K. Ogiue: On totally real submanifolds, Trans. Amer. Math. Soc. 193 (1974), 257-266.
[2] S.S. Chern-M. do Carmo-S. Kobayashi: Minimal submanifolds of a sphere with second fundamental form of constant length, Functional Analysis and Related Fields, ed. by F.E. Browder, Springer, 1970, 59-75.
[3] D. Ferus: Immersions with parallel second fundamental form, Math. Z. 140 (1974), 87-93.
[4] A. Korányi-J.A. Wolf: Realization of hermitian symmetric spaces as generalized half-planes, Ann. of Math. 81 (1965), 265-288.
[5] H. Naitoh: Isotropic submanifolds with parallel second fundamental forms in $P^{m}(c)$, Osaka J. Math. 18 (1981), 427-464.
[6] —: Totally real parallel submanifolds in $P^{n}(C)$, Tokyo J. Math. 4 (1981), 279-306.
[7] B.O'Neill: The fundamental equations of submersion, Michigan Math. J. 13 (1966), 459-469.
[8] J. Simons: Minimal varieties in riemannian manifolds, Ann. of Math. 88 (1968),

62-105.
[9] M. Takeuchi: Polynomial representations associated with symmetric bounded domains, Osaka J. Math. 10 (1973), 441-475.
[10] —: Parallel submanifolds of space forms, Manifolds and Lie Groups, in honor of Yozô Matsushima, ed. by J. Hano et al., Birkhäuser, Boston, 1981, 429-447.

Hiroo Naitoh
Department of Mathematics
Yamaguchi University
Yamaguchi 753
Japan
Masaru Takeuchi
Department of Mathematics College of General Education Toyonaka, Osaka 560
Japan

[^0]: *) Partially supported by the Yukawa Foundation.

