TOTALLY REAL SUBMANIFOLDS AND SYMMETRIC BOUNDED DOMAINS

HIROO NAITOH*) AND MASARU TAKEUCHI

(Received October 25, 1980)

Introduction. Let $P_n(c)$ denote the complex projective *n*-space endowed with the Kählerian metric of constant holomorphic sectional curvature c>0. We consider an *n*-dimensional complete totally real submanifold M of $P_n(c)$ with parallel second fundamental form σ . The first named author [6] reduced the classification of such submanifolds to that of certain cubic forms of *n*-variables, and he classified completely those without Euclidean factor among such submanifolds. (Note that such a submanifold is always locally symmetric.)

In this note we shall give another way of the classification of these submanifolds. Let $D \subset \mathbb{C}^{n+1}$ be a symmetric bounded domain of tube type realized by the Harish-Chandra imbedding. We imbed the Shilov boundary \hat{M} of D into the hypersphere $S^{2n+1}(c/4)$ of the radius $2/\sqrt{c}$ with respect to a suitable hermitian inner product of \mathbb{C}^{n+1} . Let $M \subset P_n(c)$ be the image of \hat{M} under the Hopf fibering $\pi: S^{2n+1}(c/4) \to P_n(c)$. Then M is an n-dimensional complete totally real submanifold with parallel second fundamental form (Theorem 2.1), and conversely such a submanifold is obtained in this way (Theorem 3.1). The crucial point in the argument is that $M \subset P_n(c)$ has the parallel second fundamental form if and only if $\hat{M} = \pi^{-1}(M) \subset S^{2n+1}(c/4)$ has the parallel second fundamental form (Lemma 1.1). Thus we may use the classification (Ferus [3], Takeuchi [10]) of submanifolds in spheres with parallel second fundamental form.

As an application, we give a characterization of an n-dimensional compact totally real minimal submanifold M of $P_n(c)$ with $||\sigma||^2 = n(n+1)c/4(2n-1)$. (Recall that $||\sigma||^2 < n(n+1)c/4(2n-1)$ implies $\sigma = 0$. cf. Chen-Ogiue [1].) Such a submanifold M is unique and nothing but the flat isotropic surface $M_0^2 \subset P_2(c)$ with parallel second fundamental form constructed in Naitoh [5] (Theorem 4.5).

1. Hopf fiberings

Let R^{n+1} be the real Cartesian (n+1)-space with the standard inner pro-

^{*)} Partially supported by the Yukawa Foundation.

duct \langle , \rangle . For a constant k>0, we denote by $S^n(k)$ the hypersphere of \mathbb{R}^{n+1} with the radius $1/\sqrt{k}$ endowed with the Riemannian metric \hat{g} induced from \langle , \rangle .

Now we fix a positive integer m and a constant c>0, and denote by $P_m(c)$ the complex projective m-space $P_m(C)$ endowed with the Kählerian metric g of constant holomorphic sectional curvature c. We regard the complex Cartesian (m+1)-space C^{m+1} as a Euclidean (2m+2)-space by the inner product: $\langle z,w\rangle = \mathcal{R}e^tz\overline{w}$ for $z,w\in C^{m+1}$. Then the Hopf fibering $\pi\colon S^{2m+1}(c/4)\to P_m(c)$ defined by $\pi(z)=[z]$, [z] being the point of $P_m(C)$ with the homogeneous coordinate z, is a Riemannian submersion in the sense of O'Neill [7]. The complex structure tensors on C^{m+1} and $P_m(C)$ are denoted by J. We write $S=S^{2m+1}(c/4)$. Define a unit normal vector field v for the imbedding $S\hookrightarrow C^{m+1}$ by $v_q=(\sqrt{c}/2)q$ for $q\in S$, and put $V_q=R(Jv_q)$ and

$$H_a = \{z \in \mathbb{C}^{m+1}; \langle z, q \rangle = \langle z, J \nu_a \rangle = 0\}$$

for $q \in S$. Then the subbundles $V(S) = \bigcup_{q \in S} V_q$ and $H(S) = \bigcup_{q \in S} H_q$ of the tangent bundle TS of S are the vertical and the horizontal distributions for the Riemannian submersion π , respectively, and thus we have an orthogonal Whitney sum: $TS = V(S) \oplus H(S)$. The complex structure J on C^{m+1} leaves each H_q invariant and $J_q | H_q$ corresponds to $J_{\pi(q)}$ on $P_m(C)$ under the linear isometry $\pi_* \colon H_q \to T_{\pi(q)} P_m(c)$. For a vector field X on S, its V(S)-component and H(S)-component will be denoted by $\mathcal{V}X$ and $\mathcal{H}X$, respectively. If $\mathcal{V}X = X$ (resp. $\mathcal{H}X = X$), X is said to be vertical (resp. horizontal). If X is horizontal and projectable to a vector field X_* on $P_m(C)$, it is called the horizontal lift of X_* and denoted by $X = h.l. X_*$. The Riemannian connections of S and $P_m(c)$ are denoted by ∇^S and ∇ , respectively. Let A and A be the fundamental tensors for the Riemannian submersion A defined in O'Neill [7]. Then we have A is since each fibre of the Hopf fibering A is totally geodesic in A. For such a Riemannian submersion we have the following identities:

$$(1.1) \quad \nabla_{\mathbf{v}}^{\mathbf{s}} X = \mathcal{A} \nabla_{\mathbf{v}}^{\mathbf{s}} X,$$

$$(1.2) \quad \nabla_{V}^{S}V = A_{Y}V + \mathcal{V}\nabla_{X}^{S}V.$$

$$(1.3) \quad \nabla_X^{s} Y = \mathcal{A} \nabla_X^{s} Y + A_x Y$$

for horizontal vector fields X, Y and a vertical vector field V on S. If further $X=h.l. X_*$ and $Y=h.l. Y_*$, then we have

$$(1.4) \quad \mathscr{A} \nabla_{V}^{S} X = A_{X} V,$$

$$(1.5) \quad \mathcal{A}\nabla_X^S Y = h.l. \, \overline{\nabla}_{X*} Y_*.$$

The fundamental tensor A for our Hopf fibering π is given by

(1.6)
$$A_X(J\nu) = (\sqrt{c}/2)JX$$
,

(1.7)
$$A_X Y = (\sqrt{c}/2)\langle X, JY \rangle J \nu$$

for horizontal vector fields X, Y on S. For these identities $(1.1)\sim(1.7)$, we refer the reader to O'Neill [7].

Now let $f:(M,g) \to P_m(c)$ be an isometric immersion of a Riemannian manifold (M,g) into $P_m(c)$. The complex structure and the connection on the pull back $f^{-1}T(P_m(C))$ induced from J and $\overline{\nabla}$ are also denoted by J and $\overline{\nabla}$. Let \hat{M} be the total space of the pull back $f^{-1}S$ of the principal U(1)-bundle $\pi: S \to \mathbb{R}$ $P_m(C)$. The U(1)-bundle map $\hat{f}: \hat{M} \to S$ which covers f is also an immersion, and so we may define a Riemannian metric \hat{g} on \hat{M} in such a way that $\hat{f}: (\hat{M}, \hat{g}) \rightarrow S$ is an isometric immersion. Then the projection $\pi: (\hat{M}, \hat{g}) \to (M, g)$ is also a Riemannian submersion with T=0. Note that we have an orthogonal Whitney sum: $\hat{f}^{-1}(TS) = \hat{f}^{-1}V(S) \oplus \hat{f}^{-1}H(S)$. The connection on $\hat{f}^{-1}(TS)$ induced from ∇^S on TS and the complex structure on $\hat{f}^{-1}H(S)$ induced from J on H(S) are also denoted by ∇^{S} and J, respectively. We define $V(\hat{M}) = \hat{f}^{-1}V(S)$, which is the vertical distribution for the Riemannian submersion $\pi: (\hat{M}, \hat{g}) \to (M, g)$. Then the section $J\nu$ of V(S) induces a section of $V(\hat{M})$, which will be also denoted by $J\nu$. Furthermore, regarding $T\hat{M}$ as a subbundle of $\hat{f}^{-1}(TS)$, we define $H(\hat{M}) = T\hat{M} \cap \hat{f}^{-1}H(S)$, which is the horizontal distribution for π . Thus we have an orthogonal Whitney sum: $T\hat{M} = V(\hat{M}) \oplus H(\hat{M})$. The second fundamental forms of $f: (M,g) \to P_m(c)$ and $\hat{f}: (\hat{M},\hat{g}) \to S$ will be denoted by σ and à, respectively.

The isometric immersion $f: (M,g) \to P_m(c)$ is said to be totally real if $\langle J(T_pM), T_pM \rangle = \{0\}$ for each $p \in M$. This is the case if and only if

$$(1.8) \quad \langle JH_{\mathfrak{g}}(\hat{M}), H_{\mathfrak{g}}(\hat{M}) \rangle = \{0\}$$

for each $q \in \hat{M}$, where $H_a(\hat{M})$ denotes the fibre of $H(\hat{M})$ over q.

Lemma 1.1. Let $f: (M,g) \to P_m(c)$ be a totally real isometric immersion and $\hat{f}: (\hat{M}, \hat{g}) \to S$ the isometric immersion induced from f in the above way. Then

- 1) f is minimal if and only if \hat{f} is minimal;
- 2) (M,g) is complete if and only if (\hat{M}, \hat{g}) is complete;
- 3) f(M) is not contained in any complex hyperplane of $P_m(C)$ if and only if $\hat{f}(\hat{M})$ is not contained in any real hyperplane of C^{m+1} ;
- 4) Both $V(\hat{M})$ and $H(\hat{M})$ are parallel subbundles of $T\hat{M}$, i.e., they are invariant under the parallel translation of (\hat{M}, \hat{g}) along any curve of \hat{M} ;
- 5) Assume that the linear span $N_p^1(M)$ of $\sigma(T_pM, T_pM)$ is contained in $J(T_pM)$ for each $p \in M$. Then, σ is parallel if and only if $\hat{\sigma}$ is parallel.

Proof. We shall prove first the following: Let ∇ and $\hat{\nabla}$ denote the Riemannian connections of (M,g) and (\hat{M},\hat{g}) , respectively. Let X,Y be vector fields on

 \hat{M} which are horizontal lifts of vector fields X_*, Y_* on M, respectively. Then

$$(1.9) \quad \hat{\nabla}_X Y = h.l. \, \nabla_{X*} Y_*;$$

(1.10)
$$\hat{\sigma}(X,Y) = h.l.\sigma(X_*,Y_*);$$

$$(1.11) \quad \hat{\nabla}_{x}(J\nu) = \mathcal{V}\nabla_{x}^{s}(J\nu);$$

(1.12)
$$\hat{\sigma}(X, J\nu) = (\sqrt{c}/2)JX;$$

$$(1.13) \quad \hat{\nabla}_{J\nu}X = 0;$$

(1.14)
$$\hat{\nabla}_{J\nu}(J\nu) = 0;$$

(1.15)
$$\partial(J\nu, J\nu) = 0$$
.

We have

$$\nabla_{X}^{S}Y = \mathcal{H}\nabla_{X}^{S}Y + A_{X}Y \qquad \text{by (1.3)}$$

$$= \mathcal{H}\nabla_{X}^{S}Y + (\sqrt{c}/2)\langle X, JY \rangle J\nu \qquad \text{by (1.7)}$$

$$= \mathcal{H}\nabla_{X}^{S}Y = \mu.\ell. \overline{\nabla}_{X*}Y_{*} \qquad \text{by (1.8), (1.5)}.$$

This implies (1.9), (1.10). We have

$$\nabla_{x}^{s}(J\nu) = A_{x}(J\nu) + \mathcal{V}\nabla_{x}^{s}(J\nu) \qquad \text{by (1.2)}$$
$$= (\sqrt{c}/2)IX + \mathcal{V}\nabla_{x}^{s}(J\nu) \qquad \text{by (1.6)}.$$

This together with (1.8) implies (1.11), (1.12). We have

$$\nabla_{J\nu}^{s}X = \mathcal{A}\nabla_{J\nu}^{s}X = A_{x}(J\nu)$$
 by (1.1), (1.4).

Thus, by (1.6) we obtain

(1.16)
$$\nabla_{I}^{s}X = (\sqrt{c}/2)JX$$
.

This together with (1.8) implies (1.13). The equalities (1.14), (1.15) follow from $\nabla_{J\nu}^{s}(J\nu)=0$.

1) Let η and $\hat{\eta}$ denote the mean curvature vectors of f and \hat{f} , respectively. Let dim M=n and so dim $\hat{M}=n+1$. For an arbitrary $q \in \hat{M}$, choose an orthonormal basis $\{x_1, \dots, x_n\}$ of $H_q(\hat{M})$ and put $x_{i*} = \pi_* x_i$, $1 \le i \le n$. Extend each x_{i*} to a vector field X_{i*} on M and let $X_i = h \cdot l \cdot X_{i*}$. Then, by (1.10), (1.15) we have

$$(n+1)\hat{\eta}_q = \sum_{i=1}^n \hat{\sigma}(X_i, X_i)_q + \hat{\sigma}(J\nu, J\nu)_q$$

= $\sum_{i=1}^n (\lambda. l. \sigma(X_{i*}, X_{i*}))_q = n(\lambda. l. \eta)_q$.

This implies the assertion 1).

- 2) This follows from the compactness of the fibre U(1) of π .
- 3) Assume that $\hat{f}(\hat{M})$ is contained in a real hyperplane of C^{m+1} . Then

there exist $a \in \mathbb{C}^{m+1} - \{0\}$ and $k \in \mathbb{R}$ and that $\langle \hat{f}(\hat{M}), a \rangle = \{k\}$. Take a point $q \in \hat{M}$ and let ${}^{t}(\hat{f}(q))a = re^{\nu - 1\phi}$ so that $k = r\cos\phi$. For each $\varepsilon = e^{\nu - 1\phi} \in U(1)$, $\theta \in \mathbb{R}$, we have

$$k = \langle \hat{f}(q\varepsilon), a \rangle = \langle \hat{f}(q)\varepsilon, a \rangle = \Re \{ {}^{t}(\hat{f}(q))a\varepsilon \}$$
$$= \Re (re^{\sqrt{-1}(\phi+\theta)}) = r \cos(\phi+\theta).$$

We have therefore r=0, and hence $\langle \hat{f}(\hat{M}), a \rangle = \{0\}$. Now for each $\varepsilon \in U(1)$ we have $\langle \hat{f}(\hat{M}), a\varepsilon \rangle = \langle \hat{f}(\hat{M})\overline{\varepsilon}, a \rangle = \langle \hat{f}(\hat{M}\overline{\varepsilon}), a \rangle = \{0\}$. Thus f(M) is contained in the complex hyperplane $\{[z] \in P_m(C); {}^tza=0\}$ of $P_m(C)$. If conversely f(M) is contained in a complex hyperplane $\{[z] \in P_m(C); {}^tza=0\}$, $a \in C^{m+1} - \{0\}$, then $\hat{f}(\hat{M})$ is contained in the real hyperplane $\{z \in C^{m+1}; \langle z, a \rangle = 0\}$ of C^{m+1} .

- 4) Equalities (1.11), (1.14) and (1.9), (1.13) imply that $V(\hat{M})$ and $H(\hat{M})$ are invariant, respectively, under the covariant differentiation by any vector field on M. Thus the assertion 4) follows.
- 5) Let ∇^{\perp} and $\hat{\nabla}^{\perp}$ be the normal connections on the normal bundles NM and $N\hat{M}$, respectively, and let ∇^* and $\hat{\nabla}^*$ be the coveriant derivations on $T^*M\otimes T^*M\otimes NM$ and $T^*\hat{M}\otimes T^*\hat{M}\otimes N\hat{M}$, respectively, where T^*M and $T^*\hat{M}$ denote the cotangent bundles. Let X,Y,Z be the horizontal lifts of vector fields X_* , Y_*,Z_* on M, respectively. Then

(a)
$$(\mathring{\nabla}^* \mathring{\sigma})(J\nu, J\nu, J\nu) = \mathring{\nabla}_{J\nu}^{\perp} \mathring{\sigma}(J\nu, J\nu) - 2\mathring{\sigma}(\mathring{\nabla}_{J\nu}(J\nu), J\nu)$$

 $= 0$ by (1.15), (1.14).
(b) $(\mathring{\nabla}^* \mathring{\sigma})(X, J\nu, J\nu) = \mathring{\nabla}_{X}^{\perp} \mathring{\sigma}(J\nu, J\nu) - 2\mathring{\sigma}(\mathring{\nabla}_{X}(J\nu), J\nu)$
 $= -2\mathring{\sigma}(\mathscr{V}\nabla_{X}^{S}(J\nu), J\nu)$ by (1.15), (1.11)
 $= 0$ by (1.15).
 $(\mathring{\nabla}^* \mathring{\sigma})(J\nu, X, Y) = \mathring{\nabla}_{J\nu}^{\perp} \mathring{\sigma}(X, Y) - \mathring{\sigma}(\mathring{\nabla}_{J\nu}X, Y) - \mathring{\sigma}(X, \mathring{\nabla}_{J\nu}Y)$
 $= \mathring{\nabla}_{J\nu}^{\perp} \mathring{\sigma}(X, Y)$ by (1.13).

Here $\hat{\sigma}(X,Y) = h.l. \sigma(X_*,Y_*)$ by (1.10). Therefore we have

$$abla_{J
u}^{S}\delta(X,Y)=(\sqrt{c}/2)J\delta(X,Y)=(\sqrt{c}/2)\mu.l.J\sigma(X_{*},Y_{*})$$
 ,

since (1.16) holds also for the horizontal lift X of a vector field X_* on $P_m(C)$. Now the assumption $N^1_p(M) \subset J(T_p(M))$ implies that $J\sigma(X_*,Y_*)$ is tangent to M, and hence $\nabla^s_{J\nu}\delta(X,Y)$ is tangent to H(M). Thus $\mathring{\nabla}^t_{J\nu}\delta(X,Y)=0$, and hence

(c)
$$(\mathring{\nabla}^*\hat{\sigma})(J\nu,X,Y)=0$$
.

Moreover, by (1.9), (1.10) we have

$$\begin{split} (\mathring{\nabla}^* \hat{\sigma}) \left(X, Y, Z \right) &= \mathring{\nabla}_X^{\perp} \hat{\sigma} (Y, Z) - \hat{\sigma} (\mathring{\nabla}_X Y, Z) - \hat{\sigma} (Y, \mathring{\nabla}_X Z) \\ &= \mathring{\nabla}_X^{\perp} \hat{\sigma} (Y, Z) - \ell \ell \ell . \sigma (\nabla_{X_*} Y_*, Z_*) - \ell \ell \ell . \sigma (Y_*, \nabla_{X_*} Z_*) \,. \end{split}$$

Here $\hat{\sigma}(Y,Z) = \text{\mathbb{A}.$} l. \sigma(Y_*,Z_*)$ by (1.10), and thus $\nabla_X^S \hat{\sigma}(Y,Z) = \text{\mathbb{A}.$} l. \nabla_{X*} \sigma(Y_*,Z_*)$ by (1.5). Therefore $\hat{\nabla}_X^\perp \hat{\sigma}(Y,Z) = \text{\mathbb{A}.$} l. \nabla_{X*}^\perp \sigma(Y_*,Z_*)$. Thus we obtain

(d)
$$(\hat{\nabla}^*\hat{\sigma})(X,Y,Z) = h.l.(\nabla^*\sigma)(X_*,Y_*,Z_*)$$
.

Now (a), (b), (c), (d) imply the assertion 5), since $\hat{\nabla}^*\hat{\sigma}$ is symmetric trilinear in virtue of the Codazzi equation. q.e.d.

2. Shilov boundaries of symmetric bounded domains of tube type

We fix a positive integer n and a constant c>0. Let us consider an object $b=(D_1,\dots,D_s;c_1,\dots,c_s)$, $s\geq 1$, where

- (i) D_i , $1 \le i \le s$, is an irreducible symmetric bounded domain of tube type, and $\Sigma_i \dim_{\mathbf{C}} D_i = n+1$;
 - (ii) c_i , $1 \le i \le s$, is a positive constant, and $\Sigma_i 1/c_i = 1/c$.

We shall associate to such an object b a totally real isometric imbedding f: $(M,g) \rightarrow P_m(c)$ of an n-dimensional complete connected Riemannian manifold (M,g) with parallel second fundamental form.

Let $D=D_1\times\cdots\times D_s$ be the direct product of the D_i 's, $1\leq i\leq s$. It is also a symmetric bounded domain of tube type. Note that $\dim_{\mathbb{C}} D=n+1$ in virtue of (i). The identity component G of the group of holomorphisms of D is semi-simple and with the trivial center. Therefore it is identified with the group of inner automorphisms of g=Lie G, the Lie algebra of G, and hence it is also identified with a closed subgroup of the group G_C of inner automorphisms of the complexification g_C of g. Fix a point $o\in D$ and put

$$K = \{ \phi \in G; \phi o = o \}$$
, $\mathfrak{k} = \text{Lie } K$.

Then the subspace

$$\mathfrak{p} = \{X \in \mathfrak{g}; B(X,\mathfrak{k}) = \{0\}\}$$

of g, where B denotes the Killing form of \mathfrak{g}_c , is invariant under the adjoint action of K, and it is identified with the tangent space T_oD of D at o. Let H be the unique element of the center of \mathfrak{k} such that $ad H | \mathfrak{p}$ coincides with the complex structure J of D on $\mathfrak{p}=T_oD$. Then the complexification \mathfrak{p}_c of \mathfrak{p} is decomposed to the direct sum: $\mathfrak{p}_c = \mathfrak{p}_c^+ + \mathfrak{p}_c^-$ of K-invariant subspaces \mathfrak{p}_c^+ defined by

$$\mathfrak{p}_{c}^{\pm} = \{X \in \mathfrak{p}_{c}; [H, X] = \pm \sqrt{-1} X\}.$$

Note that the linear map $\iota: \mathfrak{p} \to \mathfrak{p}_c^+$ defined by $\iota(X) = (1/2)(X - \sqrt{-1}[H, X])$ is a K-equivariant C-linear isomorphism of (\mathfrak{p}, J) onto \mathfrak{p}_c^+ . Denoting by τ the complex conjugation of \mathfrak{g}_c with respect to the compact real form $\mathfrak{g}_u = \mathfrak{k} + \sqrt{-1} \mathfrak{p}$, we define a K-invariant hermitian inner product $(,)_{\tau}$ on \mathfrak{p}_c^+ by

 $(X,Y)_{\tau}=-B(X,\tau Y)$ for $X,Y\in\mathfrak{p}_{c}^{+}$. We define then a K-invariant inner product \langle , \rangle on \mathfrak{p}_{c}^{+} , regarded as a real vector space, by $\langle X,Y\rangle=2\,\text{Re}(X,Y)_{\tau}$ for $X,Y\in\mathfrak{p}_{c}^{+}$. Then we have

$$(2.1) \quad \langle \iota X, \iota Y \rangle = B(X, Y) \quad \text{for} \quad X, Y \in \mathfrak{p} .$$

Let $c \in G_u$, G_u being the connected subgroup of G_c generated by \mathfrak{g}_u , denote the standard Cayley transform for D(cf. Takeuchi [9]), and define an involutive automorphism θ of G_c by $\theta(x) = c^2xc^{-2}$ for $x \in G_c$. The differential Adc^2 of θ will be also denoted by θ . Then we have $\theta \tau = \tau \theta$, $\theta = t$ and $\theta = H$. We may define an anti-linear endomorphism $X \to X$ of \mathfrak{p}_c^+ by $X = \tau \theta X$, so that

$$\mathfrak{p}^{\scriptscriptstyle +} = \{X \!\in\! \mathfrak{p}_{\scriptscriptstyle C}^{\scriptscriptstyle +}; \bar{X} = X\}$$

is a real form of \mathfrak{p}_c^+ . Let now $F: D \hookrightarrow \mathfrak{p}_c^+$ be the Harish-Chandra imbedding for D, and $S \subset \partial D \subset \mathfrak{p}_c^+$ the Shilov boundary of D. The groups G, K or $\mathfrak{g}, \mathfrak{k}, \mathfrak{p}, \mathfrak{p}_c^+$ etc. are the direct products or the direct sums of respective objects for D_i , $1 \leq i \leq s$, which will be denoted by the same notation but with the suffix i. Then F is the product imbedding $F_1 \times \cdots \times F_s$ of Harish-Chandra imbeddings $F_i: D_i \hookrightarrow \mathfrak{p}_{ic}^+$ for D_i , and S is the direct product $S_1 \times \cdots \times S_s$ of Shilov boundaries $S_i \subset \partial D_i \subset \mathfrak{p}_{ic}^+$ of D_i . The group K acts transitively on S and S is a compact connected manifold with dim $S = \dim_C D = n + 1$. Let $X_i^0 \in S_i$ be the standard base point of S_i (cf. Takeuchi [9]). Then

(2.2) eigenvalues of $ad(\iota^{-1}(\sqrt{-1}X_i^0))$ on \mathfrak{g}_i are 0,2,-2.

Put $X^0 = X_1^0 + \cdots + X_s^0 \in S$ and

$$K_0 = \{k \in K; kX^0 = X^0\}$$
.

Then (K, K_0) is a symmetric pair with respect to θ and S is identified with the quotient manifold K/K_0 . If we set

$$\mathbf{S} = \{X \mathbf{\in} \mathbf{f}; \theta X = -X\}$$
 ,

and $\psi(X) = [X, \sqrt{-1} X^0]$ for $X \in \mathcal{S}$, then ψ defines a linear isomorphism of \mathcal{S} onto \mathfrak{P}^+ . In particular, we have

(2.3)
$$[\mathfrak{s}, \sqrt{-1} X^0] = \mathfrak{p}^+$$
.

For these properties of symmetric bounded domains of tube type, we refer the reader to Korányi-Wolf [4], Takeuchi [9].

Now let $\dim_C D_i = n_i + 1$ and put $a_i = 1/\sqrt{2c_i(n_i + 1)}$, $1 \le i \le s$. We define an (n+1)-dimensional compact connected submanifold \hat{M} of \mathfrak{p}_C^+ by

$$\hat{M} = a_1 S_1 \times \cdots \times a_s S_s$$
,

and endow it with the Riemannian metric \hat{g} induced from \langle , \rangle . We write

 $\hat{M}_i = a_i S_i \subset \mathfrak{p}_{iC}^+$, $1 \le i \le s$. If we put $E_i = \sqrt{-1} a_i X_i^0 \in \mathfrak{p}_{iC}^+$ and $E = E_1 + \cdots + E_s \in \mathfrak{p}_C^+$, then E_i belongs to \hat{M}_i , since each D_i is a circular domain in \mathfrak{p}_{iC}^+ , and hence E belongs to \hat{M} . Thus we have $\hat{M}_i = K_i E_i$ and $\hat{M} = KE$. Note that we have also

(2.4)
$$K_0 = \{k \in K; kE = E\}$$
,

and hence \hat{M} is identified with K/K_0 . Moreover, (2.1), (2.2) imply

$$\langle \sqrt{-1}X_i^0, \sqrt{-1}X_i^0 \rangle = 4\dim \mathfrak{p}_i = 8\dim_{\mathbb{C}}D_i = 8(n_i+1)$$

and hence $\langle E_i, E_i \rangle = 4/c_i$, thus $\langle E, E \rangle = \sum_i \langle E_i, E_i \rangle = \sum_i 4/c_i = 4/c$ in virtue of (ii). Therefore, identifying \mathfrak{p}_{iC}^+ with C^{n_i+1} by an orthonormal basis of \mathfrak{p}_{iC}^+ with respect to 2(,), and thus identifying \mathfrak{p}_{C}^+ with C^{n+1} , we have

$$\hat{M}_i \subset S^{2n_i+1}(c_i/4), \quad 1 \leq i \leq s,$$

and

$$\hat{M} = \hat{M}_1 \times \cdots \times \hat{M}_s \subset S^{2n+1}(c/4)$$
.

Furthermore, the property (2.2) implies that each inclusion $\hat{M}_i \hookrightarrow S^{2n_i+1}(c_i/4)$ is a standard minimal isometric imbedding of an irreducible symmetric R-space \hat{M}_i in the sense of Takeuchi [10]. Thus, by Takeuchi [10] the inclusion \hat{f} : $(\hat{M}, \hat{g}) \to S^{2n+1}(c/4)$ is an isometric imbedding with parallel second fundamental form such that $\hat{f}(\hat{M})$ is not contained in any real hyperplane of C^{n+1} . Here the identity component $I^0(\hat{M})$ of the group of isometries of (\hat{M}, \hat{g}) may be identified with K. Moreover, \hat{f} is minimal if and only if

(2.5)
$$c_i(n_i+1) = c(n+1)$$
 for each $i, 1 \le i \le s$.

Now let $\pi: S^{2n+1}(c/4) \to P_n(c)$ be the Hopf fibering and put $M=\pi(\hat{M})$. It is a compact connected submanifold of $P_n(C)$ since it is a K-orbit in $P_n(C)$. We endow M with the Riemannian metric g induced from that of $P_n(c)$, and denote by $f: (M,g) \to P_n(c)$ the inclusion. Since the connected subgroup Z of K generated by RH acts on \mathfrak{p}_C^+ by $U(1) = \{ \varepsilon I; \ \varepsilon \in C, \ |\varepsilon| = 1 \}$, we have $\pi^{-1}(M) = \hat{M}$. Therefore we have dim M=n. Thus we are in the position of 1 with m=n.

Theorem 2.1. Let $f:(M,g) \rightarrow P_n(c)$ be the isometric imbedding associated to $\mathfrak{b}=(D_1,\dots,D_s;c_1,\dots,c_s)$ in the above way. Then

- 1) f is totally real and has the parallel second fundamental form. In particular, (M,g) is locally symmetric;
 - 2) f is minimal if and only if $c_i \dim_C D_i = c(n+1)$ for each i, $1 \le i \le s$;
- 3) The dimension of the Euclidean factor of the locally symmetric space (M,g) is equal to s-1;
 - 4) (M,g) has no Euclidean factor if and only if s=1 and $\dim_{\mathbb{C}} D_1 \geq 2$. In

this case, (M,g) is irreducible and f is minimal;

5) (M,g) is flat if and only if s=n+1 and $\dim_{\mathbb{C}} D_i=1$, i.e., D_i is the unit disk, for each $i, 1 \le i \le n+1$.

Proof. We prove first that f is totally real. Since K acts on $P_n(c)$ as isometric holomorphisms of $P_n(c)$, f is K-equivariant and M is a K-orbit, we need only to prove the property (1.8) for q=E. By (2.4) the tangent space $T_E\hat{M}$ is identified with \mathfrak{S} . Moreover, by (2.3) we have $[\mathfrak{S},E]=\mathfrak{p}^+$, and hence $T_E\hat{M}$ is identified with \mathfrak{p}^+ . In particular we have $\sqrt{-1}E=[H,E]\in\mathfrak{p}^+$, since $H\in\mathfrak{S}$. Thus, if we put

$$\mathfrak{h} = \{X \in \mathfrak{p}^+; \langle X, \sqrt{-1}E \rangle = \{0\}\},$$

it is identified with $H_E(\hat{M})$. Now $\langle \mathfrak{p}^+, \sqrt{-1} \mathfrak{p}^+ \rangle = \{0\}$ implies $\langle \mathfrak{h}, \sqrt{-1} \mathfrak{h} \rangle = \{0\}$. We have therefore the required property: $\langle H_E(\hat{M}), JH_E(\hat{M}) \rangle = \{0\}$.

The assertion that σ is parallel is an immediate consequence of Lemma 1.1,5), since NM=J(TM) in our case. The assertion 2) follows from Lemma 1.1,1) and (2.5). The assertions 3),4),5), except for the minimality for f in 4), follow from the following observations:

- (a) the dimension of Euclidean factor of M=the one of $\hat{M}-1$;
- (b) the dimension of Euclidean factor of $\hat{M}_i=1$;
- (c) the number of irreducible factors of $\hat{M}_i = \begin{cases} 1 & \text{if } \dim_C D_i \geq 2, \\ 0 & \text{if } \dim_C D_i = 1. \end{cases}$ The minimality of f in 4) follows from 2).

3. Classification of totally real submanifolds with parallel second fundamental form

Let $\mathfrak{b}=(D_1,\cdots,D_s;c_1,\cdots,c_s)$ and $\mathfrak{b}'=(D_1',\cdots,D_1';c_1',\cdots,c_1')$ satisfy conditions (i), (ii) in 2. They are said to be equivalent, denoted by $\mathfrak{b}\sim\mathfrak{b}'$, if s=t and there exists a permutation p of s-letters $\{1,2,\cdots,s\}$ such that $D_{p(i)}'$ is isomorphic to D_i and $c_{p(i)}'=c_i$ for each $i, 1\leq i\leq s$. The set of all equivalence classes of $\mathfrak{b}=(D_1,\cdots,D_s;c_1,\cdots,c_s)$ with (i), (ii) will be denoted by $\mathcal{D}_{n,c}$. Let $\operatorname{Aut}(P_n(c))$ denote the group of isometric holomorphisms of $P_n(c)$. It is isomorphic to the projective unitary group PU(n+1) of degree n+1 in the natural way. We denote by $\mathcal{D}_{n,c}$ the set of all $\operatorname{Aut}(P_n(c))$ -congruence classes of n-dimensional complete connected totally real submanifolds M of $P_n(c)$ with parallel second fundamental form. Then from the naturality of Harish-Chandra imbedding our correspondence $\mathfrak{b}\to M$ in 2 induces a map $\mathcal{D}_{n,c}\to\mathcal{D}_{n,c}$.

Theorem 3.1. 1) The map $\mathcal{D}_{n,c} \to \mathcal{S}_{n,c}$ is a bijection.

2) Let $f:(M,g) \to P_n(c)$ be a totally real isometric immersion of an n-dimensional complete connected Riemannian manifold (M,g) with parallel second fundamental

form. Then there exist an n-dimensional complete connected totally real submanifold $\iota: M' \hookrightarrow P_n(c)$ with parallel second fundamental form and an isometric covering $f': M \to M'$ such that $f = \iota \circ f'$.

Proof. 1) Surjectivity: Let $M \subset P_n(c)$ be an *n*-dimensional complete connected totally real submanifold with parallel second fundamental form. We use the notation in **1** with m=n. Then, by Lemma 1.1 $\hat{M}=\pi^{-1}(M)\subset S^{2n+1}(c/4)$ is complete, connected, with parallel second fundamental form and not contained in any real hyperplane of C^{n+1} . Moreover we have $\pi(\hat{M})=M$. Thus, by Theorem 4.1 of Takeuchi [10]

$$\hat{M}=\hat{M_1} imes\cdots imes\hat{M_s}\subset S^{m_1}(c_1/4) imes\cdots imes S^{m_s}(c_s/4)\subset S^{2n+1}(c/4)$$
 ,

where each $\hat{M}_i \subset S^{m_i}(c_i/4)$, $c_i > 0$, is an irreducible symmetric R-space, $\Sigma_i m_i + s$ =2n+2 and $\sum_{i} 1/c_{i}=1/c$. Here the group $K=I^{0}(\hat{M})$ is identified with the identity component of the group $\{\phi \in O(C^{n+1}); \phi \hat{M} = \hat{M}\}$. Since \hat{M} is invariant under the subgroup $Z = \{ \mathcal{E}I; \mathcal{E} \in \mathbb{C}, |\mathcal{E}| = 1 \}$ of $O(\mathbb{C}^{n+1})$, Z is a closed subgroup of K. Let $p: \tilde{M} \to \hat{M}$ be the universal Riemannian covering of \hat{M} . Then, by Lemma 1.1,4) \tilde{M} is the Riemannian product $\tilde{V} \times \tilde{H}$ of maximal integral submanifolds \tilde{V} and \tilde{H} in \tilde{M} of distributions $p^{-1}V(\hat{M})$ and $p^{-1}H(\hat{M})$, respectively. Since \tilde{V} is a flat line, it is contained in the Euclidean part of \tilde{M} . Thus, if we identify Lie $I^0(\hat{M})$ with a Lie subalgebra of Lie $I^0(\tilde{M})$, Lie $Z = \text{Lie } I^0(\tilde{V})$ is contained in the center of Lie $I^0(\hat{M})$ =Lie K. Therefore Z is contained in the center of K, which implies that K is a subgroup of the unitary group U(n+1). It follows that each irreducible symmetric pair $(\mathfrak{g}_i, \mathfrak{t}_i)$ associated to \hat{M}_i is of hermitian type. Moreover, each g_i has a semi-simple element E_i such that ad E_i has just three distinct real eigenvalues. This is the case if and only if each irreducible symmetric bounded domain D_i associated to (g_i, f_i) is of tube type. Here we have $2\dim_{\mathbf{C}} D_i = m_i + 1$, and hence $\Sigma_i \dim_{\mathbf{C}} D_i = n + 1$. Therefor, $M \subseteq P_n(c)$ is obtained from $\mathfrak{b} = (D_1, \dots, D_s; c_1, \dots, c_s)$ by the construction in This proves the surjectivity of our map.

Injectivity: Let $M \subset P_n(c)$ and $M' \subset P_n(c)$ be associated to $\mathfrak{b} = (D_1, \dots, D_s; c_1, \dots, c_s)$ and $\mathfrak{b}' = (D'_1, \dots, D'_t; c'_1, \dots, c'_t)$, respectively. Various objects in the construction of M' will be denoted by the same notation as for M but with primes. Suppose that there exists $\phi \in \operatorname{Aut}(P_n(c)) = PU(n+1)$ with $\phi M = M'$. Then we have a C-linear isometry $\hat{\phi} \colon \mathfrak{p}_c^+ \to \mathfrak{p}'_c^+$ with respect to $\langle \cdot, \cdot \rangle$ and $\langle \cdot, \cdot \rangle'$ such that $\hat{\phi} \hat{M} = \hat{M}'$ and $\hat{\phi}$ induces ϕ . Then the homomorphism $\hat{\phi}_R \colon K = I^0(\hat{M}) \to K' = I^0(\hat{M}')$ defined by $\hat{\phi}_K(k) = \hat{\phi} \circ k \circ \hat{\phi}^{-1}$ is an isomorphism. The differential $(\hat{\phi}_K)_* \colon \mathring{t} \to \mathring{t}'$ of $\hat{\phi}_K$ will be denoted by $\hat{\phi}_T$. Moreover, the C-linear isomorphism $\hat{\phi}_p \colon (\mathfrak{p}, J) \to (\mathfrak{p}', J')$ with $\hat{\phi} \circ \iota = \iota' \circ \hat{\phi}_{\mathfrak{p}}$ is a linear isometry with respect to B and B', and it satisfies

(3.1)
$$\hat{\phi}_{\mathfrak{p}}(kX) = \hat{\phi}_{\kappa}(k) (\hat{\phi}_{\mathfrak{p}}X)$$
 for $k \in K, X \in \mathfrak{p}$.

We define an R-linear isomorphism $\Phi: g = t + p \rightarrow g' = t' + p'$ by $\Phi = \hat{\phi}_t + \hat{\phi}_p$. Then (3.1) implies

(3.2)
$$\Phi \circ ad X = (ad \Phi X) \circ \Phi$$
 for $X \in \mathfrak{k}$.

We shall show that Φ is actually a Lie isomorphism. Since (3.2) holds, we need only to show

(3.3)
$$\Phi[X,Y] = [\Phi X, \Phi Y]$$
 for $X,Y \in \mathfrak{p}$.

For each $Z \in \mathfrak{k}$ we have

$$B'([\Phi X, \Phi Y], \Phi Z) = B'(\Phi X, [\Phi Y, \Phi Z])$$

= $B'(\Phi X, \Phi[Y, Z])$ by (3.2)
= $B'(\hat{\phi}_{\mathfrak{p}}X, \hat{\phi}_{\mathfrak{p}}[Y, Z]) = B(X, [Y, Z])$
= $B([X, Y], Z) = B'(\Phi[X, Y], \Phi Z)$ by (3.2).

This implies (3.3). Now the naturality of Harish-Chandra imbedding implies $b \sim b'$. This proves the injectivity of our map.

2) Construct an isometric immersion $\hat{f}: (\hat{M}, \hat{g}) \to S^{2n+1}(c/4)$ from f in the same way as in 1. Then, by Lemma 1.1 (\hat{M}, \hat{g}) is complete and \hat{f} has the parallel second fundamental form. Thus, by Theorem 4.1 of Takeuchi [10] the image $\hat{M}' = \hat{f}(\hat{M})$ is a complete submanifold of $S^{2n+1}(c/4)$ and the map $\hat{f}': \hat{M} \to \hat{M}'$ induced by \hat{f} is an isometric covering. Therefore $M' = \pi(\hat{M}')$ is an n-dimensional complete connected submanifold of $P_n(c)$ and the induced map $f': M \to M'$ is an isometric covering. It is clear that M' is a totally real submanifold of $P_n(c)$ with parallel second fundamental form. This completes the proof. q.e.d.

EXAMPLE. Let D be the irreducible symmetric bounded domain of type (IV) with $\dim_{\mathcal{C}} D = n+1$, $n \geq 2$. Then the submanifold $M \subset P_n(c)$ corresponding to $\mathfrak{b} = (D; c)$ is the naturally imbedded real projective n-space $P^n(c/4)$ with constant sectional curvature c/4, which is totally geodesic in $P_n(c)$.

We define a convex subset $F_{n,c}$ of \mathbb{R}^n by

$$F_{n,c} = \{\alpha = (\alpha_i) \in \mathbb{R}^n; \alpha_i \geq 0 (1 \leq i \leq n), \alpha_1 + 2\alpha_2 + \cdots + n\alpha_n < 1/c\}$$
.

For each $\alpha \in F_{n,c}$ we define constants c_1, \dots, c_{n+1} with $0 < c_1 \le c_2 \le \dots \le c_{n+1}$ by the relations

(3.4)
$$\alpha_i = 1/c_i - 1/c_{i+1} \ (1 \le i \le n)$$
 and $\Sigma_i \ 1/c_i = 1/c$,

and put

$$\hat{M}_{\alpha}^{n+1} = S^{1}(c_{1}/4) \times \cdots \times S^{1}(c_{n+1}/4) \subset S^{2n+1}(c/4)$$
.

Then, by Theorem 2.1,5) $M_{\omega}^{n} = \pi(\hat{M}_{\omega}^{n+1}) \subset P_{n}(c)$ is an *n*-dimensional complete

connected flat totally real submanifold with parallel second fundamental form. Let $\mathcal{F}_{n,c}$ denote the set of all $\operatorname{Aut}(P_n(c))$ -congruence classes of such submanifolds. Then the correspondence $\alpha \to M_{\alpha}^n$ induces a map $F_{n,c} \to \mathcal{F}_{n,c}$.

Theorem 3.2. 1) The map $F_{n,c} \to \mathcal{F}_{n,c}$ is a bijection.

- 2) An n-dimensional complete connected flat totally real minimal submanifold of $P_n(c)$ with parallel second fundamental form is unique up to the congruence relative to the group $Aut(P_n(c))$, and it is given by $M_0^n \subset P_n(c)$.
- Proof. 1) By Theorem 2.1,5) and Theorem 3.1, $\mathcal{F}_{n,c}$ corresponds one to one to the set of all (n+1)-tuples (c_1, \dots, c_{n+1}) with $0 < c_1 \le c_2 \le \dots \le c_{n+1}$ and $\Sigma_i 1/c_i = 1/c$. But the latter set corresponds one to one to the set $F_{n,c}$ by the relations (3.4).
- 2) By Theorem 2.1,2), $M_{\alpha}^{n} \subset P_{n}(c)$ is minimal if and only if $c_{i} = c(n+1)$ for each $i, 1 \le i \le n$. This is the case if and only if $\alpha = 0$. q.e.d.

REMARK. The norm $||\sigma_{\alpha}||$ of the second fundamental form σ_{α} of $M_{\alpha}^{n} \subset P_{n}(c)$ is given by

$$||\sigma_{\alpha}||^2 = \{\Sigma_i c_i - (3n+1)c\}/4$$
.

In particular, we have $||\sigma_0||^2 = n(n-1)c/4$.

4. Characterization of a flat totally real surface in $P_2(c)$

Let $f:(M,g)\to (\overline{M},g)$ be an isometric immersion of an n-dimensional Riemannian manifold (M,g) into an (n+q)-dimensional Riemannian manifold (\overline{M},g) with $q\geq 1$. The inner product and the norm of tensors defined by Riemannian metrics are denoted by \langle , \rangle and $|| \ ||$, respectively. We denote by σ the second fundamental form of f, and by S_{ξ} the shape operator of f. They are related by $\langle S_{\xi}X,Y\rangle = \langle \sigma(X,Y),\xi\rangle$ for vector fields X,Y on M and a normal vector field ξ . We define a section σ of the bundle $\mathrm{End}(NM)$ of endomorphisms of the normal bundle NM by $\sigma = \sigma \circ^t \sigma$, regarding σ as a homomorphism from $TM\otimes TM$ to NM. Moreover, we define a homomorphism S^\perp from $TM\otimes TM$ to TM to TM by TM to TM TM to

Lemma 4.1 (Simons [8], Chern-do Carmo-Kobayashi [2]). Let p be an arbitrary point of M. Then we have an inequality

$$||\tilde{\sigma}_p||^2 + ||S_p^{\perp}||^2 \leq (2 - 1/q)||\sigma_p||^4.$$

If the equality holds, then either $\sigma_p=0$ or $\sigma_p \neq 0$, $N_p^1(M)=N_pM$ and $q\leq 2$.

Now assume that $(\overline{M}, \overline{g})$ is a Kählerian manifold $M_m(c)$ of constant holomorphic sectional curvature c with $\dim_C M_m(c) = m$, and that f is totally real in the

sense that $\langle J(T_pM), T_pM \rangle = \{0\}$ for each $p \in M$, where J denotes the complex structure tensor of $M_m(c)$. Then we have an orthogonal Whitney sum: $NM = J(TM) \oplus J(TM)^+$, where $J(TM)^+$ denotes the orthogonal complement of J(TM) in NM. We define a homomorphism σ_J from $TM \otimes TM$ to NM by $\sigma_J(X,Y) = J(TM)$ -component of $\sigma(X,Y)$ with respect to the above decomposition, for vector fields X,Y on M. Let $\Delta = Tr_g \nabla^{*2}$ denote the Laplacian on NM. Then, from Simons' formula (Simons [8]) which describes $\Delta \sigma$ for a general minimal isometric immersion, we have the following lemma.

Lemma 4.2. Let $f:(M,g)\to M_m(c)$ be a totally real minimal isometric immersion. Then

(4.1)
$$\langle \Delta \sigma, \sigma \rangle = (n||\sigma||^2 + ||\sigma_I||^2)c/4 - ||\tilde{\sigma}||^2 - ||S^{\perp}||^2$$
.

Proposition 4.3. Let $f: (M,g) \to M_m(c)$, $c \le 0$, be a totally real minimal isometric immersion with parallel second fundamental form. Then f is totally geodesic.

Proof. Since $\nabla^* \sigma = 0$, we have by Lemma 4.2

$$(n||\sigma||^2+||\sigma_I||^2)c/4=||\sigma||^2+||S^{\perp}||^2 \text{ with } c\leq 0.$$

This implies $\sigma=0$, and hence $\sigma=0$.

q.e.d.

Lemma 4.4. Let $f:(M,g) \to M_n(c)$ be a totally real minimal isometric immersion of an n-dimensional Riemannian manifold (M,g). Then

- 1) We have an inequality
- (4.2) $-\langle \Delta \sigma, \sigma \rangle \leq \{(2-1/n)||\sigma||^2 (n+1)c/4\} ||\sigma||^2;$
- 2) If furthermore M is compact, then we have

$$(4.3) \quad \int_{M} ||\nabla^*\sigma||^2 v_g \leq \int_{M} \{(2-1/n)||\sigma||^2 - (n+1)c/4\} \, ||\sigma||^2 v_g \,,$$

where v_g denotes the Riemannian measure of (M,g).

Proof. 1) Since J(TM)=NM in our case, we have $\sigma_J=\sigma$. Thus the equality (4.1) reduces to $\langle \Delta \sigma, \sigma \rangle = (n+1)c||\sigma||^2/4 - ||\sigma||^2 - ||S^{\perp}||^2$. Now (4.2) follows from Lemma 4.1.

2) Integrating the equality: $(1/2)\Delta(||\sigma||^2) = \langle \Delta\sigma, \sigma \rangle + ||\nabla^*\sigma||^2$, we obtain

$$\int_{M}\!\!||\nabla^{*}\sigma||^{2}v_{\mathrm{g}}=-\!\!\int_{M}\!\!\langle\Delta\sigma,\sigma\rangle\!v_{\mathrm{g}}\,.$$

Thus (4.2) implies (4.3).

q.e.d.

Theorem 4.5. Let $f:(M,g) \to P_n(c)$, c>0, be a totally real minimal isometric immersion of a compact connected Riemannian manifold (M,g) with dim M=

 $n \ge 2$. Suppose that the second fundamental form σ of f satisfies an inequality

$$||\sigma||^2 \le n(n+1)c/4(2n-1)$$

everywhere on M. Then either f is totally geodesic and it is an isometric covering to the naturally imbedded real projective n-space in $P_n(c)$, or n=2, $||\sigma||^2=c/2$ (=n(n+1)c/4(2n-1)) everywhere on M and f is an isometric covering to the flat surface $M_0^2 \subset P_2(c)$ defined in G (up to the congruence relative to $Aut(P_n(c))$).

Proof. We have

$$(2-1/n)||\sigma||^2-(n+1)c/4=(2-1/n)\{||\sigma||^2-n(n+1)c/4(2n-1)\}\leq 0$$

from the assumption. It follows from (4.3) that

$$\{||\sigma||^2-n(n+1)c/4(2n-1)\}||\sigma||^2=0$$

everywhere and that σ is parallel. Assume that f is not totally geodesic. Then $||\sigma||^2 = n(n+1)c/4(2n-1)$ everywhere, and hence n=2 by Lemma 4.1. Now we see from Theorem 3.1 that a 2-dimensional complete connected totally real minimal submanifold M' of $P_2(c)$ with parallel second fundamental form is congruent to M_0^2 unless it is totally geodesic. On the other hand, the second fundamental form σ_0 of $M_0^2 \subset P_2(c)$ satisfies $||\sigma_0||^2 = c/2$ (cf. Remark in 3). Thus we get the theorem.

REMARK. Our $M_0^2 \subset P_2(c)$ is nothing but the flat isotropic surface in $P_2(c)$ with parallel second fundamental form constructed in Naitoh [5].

References

- [1] B.Y. Chen-K. Ogiue: On totally real submanifolds, Trans. Amer. Math. Soc. 193 (1974), 257-266.
- [2] S.S. Chern-M. do Carmo-S. Kobayashi: Minimal submanifolds of a sphere with second fundamental form of constant length, Functional Analysis and Related Fields, ed. by F.E. Browder, Springer, 1970, 59-75.
- [3] D. Ferus: Immersions with parallel second fundamental form, Math. Z. 140 (1974), 87-93.
- [4] A. Korányi-J.A. Wolf: Realization of hermitian symmetric spaces as generalized half-planes, Ann. of Math. 81 (1965), 265-288.
- [5] H. Naitoh: Isotropic submanifolds with parallel second fundamental forms in P^m(c),
 Osaka J. Math. 18 (1981), 427-464.
- [6] ——: Totally real parallel submanifolds in Pⁿ(C), Tokyo J. Math. 4 (1981), 279-306.
- [7] B.O'Neill: The fundamental equations of submersion, Michigan Math. J. 13 (1966), 459-469.
- [8] J. Simons: Minimal varieties in riemannian manifolds, Ann. of Math. 88 (1968),

- 62-105.
- [9] M. Takeuchi: Polynomial representations associated with symmetric bounded domains, Osaka J. Math. 10 (1973), 441-475.
- [10] ———: Parallel submanifolds of space forms, Manifolds and Lie Groups, in honor of Yozô Matsushima, ed. by J. Hano et al., Birkhäuser, Boston, 1981, 429-447.

Hiroo Naitoh Department of Mathematics Yamaguchi University Yamaguchi 753 Japan

Masaru Takeuchi Department of Mathematics College of General Education Toyonaka, Osaka 560 Japan