PROPAGATION OF SINGULARITIES FOR A HYPERBOLIC SYSTEM WITH DOUBLE CHARACTERISTICS

Wataru ICHINOSE

(Received April 22, 1980)

0. Introduction

Consider the Cauchy problem for a hyperbolic operator

$$
L=D_{t}+\left(\begin{array}{cc}
\lambda_{1} & 0 \tag{0.1}\\
0 & \lambda_{2}
\end{array}\right)\left(t, X, D_{x}\right)+\left(\begin{array}{cc}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right)\left(t, X, D_{x}\right) \quad \text { on }[0, T] \times R^{n}
$$

where D_{t} denotes $-\sqrt{-1} \partial_{t}$, functions $\lambda_{i}(t, x, \xi)$ are real valued and belong to $B^{\infty}\left([0, T] ; S^{1}\right)$ and $b_{j k}(t, x, \xi)$ belong to $B^{\infty}\left([0, T] ; S^{0}\right)$. Throughout this paper we assume that

$$
\begin{array}{r}
\left\{\tau+\lambda_{i},\left\{\tau+\lambda_{j}, \tau+\lambda_{k}\right\}\right\}(t, x, \xi)=0 \quad \text { on }[0, T] \times R_{x, \xi}^{2 n}, \tag{0.2}\\
(i, j, k=1,2)
\end{array}
$$

where for $f, g \in C^{1}\left(R_{t, x, \tau, \xi}^{2(n+1)}\right)\{f, g\}(t, x ; \tau, \xi)$ denotes the Poisson bracket: $\left(\partial_{\tau} f \partial_{t} g-\partial_{t} f \partial_{\tau} g+\nabla_{\xi} f \cdot \nabla_{x} g-\nabla_{x} f \cdot \nabla_{\xi} g\right)(t, x ; \tau, \xi)$.

Recently, using Fourier integral operators with multi-phase functions, Kumano-go -Taniguchi-Tozaki in [10] and Kumano-go -Taniguchi in [11] constructed the fundamental solution for a hyperbolic system with diagonal principal part (Theorem 3.1 in [11]). In these papers the propagation of singularities of solutions was investigated by using an infinite number of phase functions (Theorem 3.4 in [11] or Theorem 3.1 in the present paper).

In the present paper we prove that the propagation of singularities can be described by means of five phase functions $\phi_{1}, \phi_{2}, \phi_{1} \# \phi_{2}, \phi_{2} \# \phi_{1}$ and $\phi_{1} \# \phi_{2} \# \phi_{1}$, when the assumption (0.2) is satisfied (Theorem 3.2). We note that the characteristic roots satisfying (0.2) are not necessarily involutive. For examples, $\lambda_{1}=-t \xi$ and $\lambda_{2}=t \xi$ for $n=1$ satisfy (0.2), but

$$
\left\{\tau+\lambda_{1}, \tau+\lambda_{2}\right\}(=2 \xi) \neq 0 \quad(\xi \neq 0)
$$

Other examples will be given in Section 2.
The propagation of singularities of solutions has been investigated by
many authors [1], [2], [3], [4], [6], [8], [12], [13], [14], [15], [16], [17], [18], [19] etc.. In particular, in [2], [6], [14], [15], [16], [17], [19] operators with involutive characteristics are treated. Alinhac in [1] and Taniguchi-Tozaki in [18] give the precise descriptions for singularities of solutions for operators on R_{x}^{1} with principal part $\partial_{t}^{2}-t^{2 l} \partial_{x}^{2}$ (l is a positive integer) which are not involutive.

In Section 1 we exhibit main results on the theory of Fourier integral operators in [10] and [11] needed later. In Section 2 under the assumption (0.2) we contract the multi-product $\Phi_{j_{1}, \cdots, j_{\nu+1}}\left(t_{0}, \cdots, t_{\nu+1} ; x, \xi\right)\left(j_{k}=1,2\right)$ of phase functions $\phi_{j_{k}}(t, s ; x, \xi)\left(j_{k}=1,2\right)$ (see (1.11)), which are the solutions of the eiconal equations for $\tau+\lambda_{j_{k}}(t, x, \xi)$ (see (1.10)) (Theorem 2.4). In Section 3 we prove the main theorem (Theorem 3.2).

The author would like to express his sincere gratitude to Professor H. Kumano-go for his advice and encouragements.

1. Fourier integral operators

For a multi-index $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right)$ of non-negative integers α_{j} and points $x=\left(x_{1}, \cdots, x_{n}\right) \in R^{n}, y=\left(y_{1}, \cdots, y_{n}\right) \in R^{n}$ we use the usual notation:

$$
\begin{aligned}
& |\alpha|=\alpha_{1}+\cdots+\alpha_{n}, \partial_{x}^{\alpha}=\partial_{x_{1}}^{\alpha_{1}} \cdots \partial_{x_{n}^{n}}^{\alpha_{n}}, \partial_{x_{j}}=\frac{\partial}{\partial x_{j}}, \\
& D_{x}^{\alpha}=D_{x_{1}}^{\alpha_{1}} \cdots D_{x_{n}^{n}}^{\alpha_{n}}, D_{x_{j}}=-\sqrt{-1} \partial_{x_{j}}, \nabla_{x}=\left(\partial_{x_{1}}, \cdots, \partial_{x_{n}}\right), \\
& \langle x\rangle=\left(1+|x|^{2}\right)^{1 / 2}, x \cdot y=x_{1} y_{1}+\cdots+x_{n} y_{n} .
\end{aligned}
$$

For $f(x)=\left(f_{1}, \cdots, f_{n}\right)\left(f_{j}(x) \in C^{1}\left(R^{n}\right)\right)$ we denote

$$
\partial_{x} f=\nabla_{x} f=\left(\partial_{x_{k}} f_{j} ; \underset{k \rightarrow}{j \downarrow} 1, \cdots, n\right) .
$$

Let $\&$ on R^{n} denote the Schwartz space of rapidly decreasing functions and let δ^{\prime} denote the dual space of $\&$. For $u \in \oiint_{x}$ the Fourier transform $\hat{u}(\xi)=$ $F[u](\xi)$ is defined by

$$
F[u](\xi)=\int e^{-i x \cdot \xi} u(x) d x
$$

and then, for $\hat{u}(\xi) \in \mathscr{S}_{\xi}$ the inverse Fourier transform $\bar{F}[\hat{u}](x)$ is defined by

$$
\bar{F}[\hat{u}](x)=\int e^{i x \cdot \xi} \hat{u}(\xi) d \xi, d \xi=(2 \pi)^{-n} d \xi .
$$

For real s we define the Sobolev space H_{s} as the completion of $\&$ in the norm $\|u\|_{s}=\left\{\int\langle\xi\rangle^{2 s}|\hat{u}(\xi)|^{2} d \xi\right\}^{1 / 2}$.

Definition 1.1. We say that a C^{∞}-function $p(x, \xi)$ in $R^{2 n}=R_{x}^{n} \times R_{\xi}^{n}$ belongs to the class $S^{m}(-\infty<m<\infty)$, when

$$
\begin{equation*}
\left|p_{(\beta)}^{(\alpha)}(x, \xi)\right| \leqq C_{a, \beta}\langle\xi\rangle^{m-|\infty|}, \tag{1.1}
\end{equation*}
$$

where $p_{(\beta)}^{(\alpha)}(x, \xi)=\partial_{\xi}^{\alpha} D_{x}^{\beta} p(x, \xi)$.
The class S^{m} makes a Fréchet space with semi-norms

$$
|p|_{l^{m}}^{(m)}=\max _{|\alpha+\beta| \leq l} \sup _{x, \xi}\left\{\left|p_{(\beta)}^{(\alpha)}(x, \xi)\right| \mid\langle\xi\rangle^{m-|\alpha|}\right\} \quad(l=0,1,2, \cdots)
$$

We set $S^{-\infty}=\bigcap_{-\infty<m<\infty} S^{m}$ and $S^{\infty}=\bigcup_{-\infty<m<\infty} S^{m}$.
The pseudo-differential operator $p\left(X, D_{x}\right) \in S^{m}$ with symbol $p(x, \xi) \in S^{m}$ is defined by

$$
\begin{align*}
p\left(X, D_{x}\right) u & =0_{s}-\iint_{R^{2 n}} e^{i\left(x-x^{\prime}\right) \cdot \xi} p(x, \xi) u\left(x^{\prime}\right) d x^{\prime} d \xi \tag{1.2}\\
& =\lim _{\xi \rightarrow 0} \iint_{R^{2 n}} e^{i\left(x-x^{\prime}\right) \cdot \xi} \chi\left(\varepsilon x^{\prime}, \varepsilon \xi\right) p(x, \xi) u\left(x^{\prime}\right) d x^{\prime} d \xi
\end{align*}
$$

where $\chi(x, \xi) \in \mathscr{S}\left(R^{2 n}\right)$ such that $\chi(0,0)=1$ (c.f. [7]).
Now we state definitions and theorems in Kumano-go-Taniguchi-Tozaki [10] and Kumano-go-Taniguchi [11] without proofs (see also [5]).

Definition 1.2. If $0 \leqq \tau<1$, we denote by $\mathscr{P}(\tau)$ the set of real valued C^{∞}-functions $\phi(x, \xi)$ in $R^{2 n}$ such that $J(x, \xi)=\phi(x, \xi)-x \cdot \xi$ belongs to S^{1} and

$$
\begin{equation*}
\sum_{|\alpha+\beta| \leq 2} \sup _{x, \xi}\left\{\left|J_{(\beta)}^{\alpha(\alpha)}(x, \xi)\right|\langle\xi\rangle^{1-|\alpha|} \mid\right\} \leqq \tau \tag{1.3}
\end{equation*}
$$

Remark 1.1. In [10] $\mathscr{P}(\tau)$ denoted the class of C^{2}-functions. The above definition is due to [11].

We define the Fourier integral operator $p_{\phi}\left(X, D_{x}\right)$ with symbol $p(x, \xi) \in S^{m}$ and phase function $\phi(x, \xi) \in \mathcal{P}(\tau)$ by

$$
\begin{equation*}
p_{\phi}\left(X, D_{x}\right) u(x)=\int_{R^{n}} e^{i \phi(x, \xi)} p(x, \xi) \hat{u}(\xi) d \xi, \quad u \in \& \tag{1.4}
\end{equation*}
$$

Definition 1.3. Let $\phi_{j} \in \mathscr{P}\left(\tau_{j}\right), j=1, \cdots, \nu+1, \cdots, \bar{\tau}_{\infty} \equiv \sum_{j=1}^{\infty} \tau_{j} \leqq \tau_{0}$ for a sufficiently small fixed τ_{0} with $0<\tau_{0} \leqq 1 / 8$. We define the multi-product $\Phi_{\nu+1}(x, \xi)=\left(\phi_{1} \# \cdots \# \phi_{\nu+1}\right)(x, \xi)$ of phase functions $\phi_{j}(x, \xi)(j=1, \cdots, \nu+1)$ by

$$
\begin{align*}
\Phi_{\nu+1}\left(x^{0}, \xi^{\nu+1}\right)=\sum_{j=1}^{\nu}\left(\phi_{j}\left(X_{v}^{j-1}, \Xi_{\nu}^{j}\right)-X_{v}^{j} \cdot \Xi_{v}^{j}\right)+\phi_{\nu+1}\left(X_{\nu}^{\nu}, \xi^{\nu+1}\right) & \tag{1.5}\\
& \left(X_{\nu}^{0}=x^{0}\right),
\end{align*}
$$

where $\left\{X_{v}^{j}, \Xi_{i}^{j}\right\}_{j=1}^{\nu}\left(x^{0}, \xi^{v+1}\right)$ is defined as the solution of the equation

$$
\left\{\begin{array}{l}
x^{j}=\nabla_{\xi} \phi_{j}\left(x^{j-1}, \xi^{j}\right), \tag{1.6}\\
\xi^{j}=\nabla_{x} \phi_{j+1}\left(x^{j}, \xi^{j+1}\right), \quad j=1, \cdots, \nu
\end{array}\right.
$$

Proposition 1.4 (Theorem 1.8 and Theorem 1.9 in [10]). Let $\phi_{j} \in \mathscr{P}\left(\tau_{j}\right)$, $j=1, \cdots, \nu+1, \cdots, \tau_{\infty} \leqq \tau_{0} \leqq 1 / 8$. Then, $\Phi_{\nu+1}(x, \xi)$ of (1.5) is well defined and belongs to $\mathscr{P}\left(c_{0} \bar{\tau}_{\nu+1}\right), \bar{\tau}_{\nu+1}=\tau_{1}+\cdots+\tau_{\nu+1}$, with a constant $c_{0}>0$ independent of ν and τ_{0}. We also get

$$
\begin{align*}
& \left\{\begin{array}{l}
\nabla_{x} \Phi_{\nu+1}\left(x^{0}, \xi^{\nu+1}\right)=\nabla_{x} \phi_{1}\left(x^{0}, \Xi_{\nu}^{1}\left(x^{0}, \xi^{\nu+1}\right)\right), \\
\nabla_{\xi} \Phi_{\nu+1}\left(x^{0}, \xi^{\nu+1}\right)=\nabla_{\xi} \phi_{\nu+1}\left(X_{\nu}^{\nu}\left(x^{0}, \xi^{\nu+1}\right), \xi^{\nu+1}\right),
\end{array}\right. \tag{1.7}\\
& \phi_{1} \# \phi_{2} \# \phi_{3}=\left(\phi_{1} \# \phi_{2}\right) \# \phi_{3}=\left(\phi_{1} \# \phi_{2} \# \phi_{3}\right) . \tag{1.8}
\end{align*}
$$

Consider a hyperbolic equation

$$
\begin{align*}
\left(D_{t}+\lambda\left(t, X, D_{x}\right)\right) & =0 \quad \text { on }[0, T] \tag{1.9}\\
(\lambda(t, x, \xi) & \left.\in B^{\infty}\left([0, T] ; S^{1}\right), \text { real valued }\right) .
\end{align*}
$$

Let $\phi=\phi(t, s)=\phi(t, s ; x, \xi)$ be the solution of the eiconal equation

$$
\left\{\begin{array}{l}
\partial_{t} \phi+\lambda\left(t, x, \nabla_{x} \phi\right)=0 \quad \text { on }[0, T], \tag{1.10}\\
\left.\phi\right|_{t=s}=x \cdot \xi .
\end{array}\right.
$$

Then, we have
Proposition 1.5 (Theorem 3.1 in [9]). For a small $T_{0}\left(0<T_{0} \leqq T\right)$ we get $\phi(t, s) \in \mathscr{P}(c(t-s))\left(0 \leqq s \leqq t \leqq T_{0}\right)$ with a constant $c>0$.

We fix such a T_{0} in what follows. Take $\lambda_{j}(j=1, \cdots, \nu+1, \cdots)$ as λ of (1.9) such that $\left\{\lambda_{j}\right\}_{j=1}^{\infty}$ is bounded in $B^{\infty}\left([0, T] ; S^{1}\right)$ and let ϕ_{j} be the solutions of (1.10) corresponding to λ_{j}. We define $\Phi=\Phi_{1,2, \cdots, \nu+1}\left(t_{0}, \cdots, t_{\nu+1} ; x^{0}, \xi^{\nu+1}\right)$ $\left(0 \leqq t_{v+1} \leqq \cdots \leqq t_{0} \leqq T_{0} \leqq T\right)$ by

$$
\begin{equation*}
\Phi\left(t_{0}, \cdots, t_{v+1}\right)=\phi_{1}\left(t_{0}, t_{1}\right) \# \cdots \# \phi_{v+1}\left(t_{v}, t_{v+1}\right), \tag{1.11}
\end{equation*}
$$

and define $\left\{X_{\nu}^{j}, \Xi_{\nu}^{j}\right\}_{j=1}^{\nu}\left(t_{0}, \cdots, t_{\nu+1} ; x^{0}, \xi^{\nu+1}\right)$ as the solution of

$$
\left\{\begin{array}{l}
x^{j}=\nabla_{\xi} \phi_{j}\left(t_{j-1}, t_{j} ; x^{j-1}, \xi^{j}\right), \tag{1.12}\\
\xi^{j}=\nabla_{x} \phi_{j+1}\left(t_{j}, t_{j+1} ; x^{j}, \xi^{j+1}\right), \quad j=1, \cdots, \nu,
\end{array}\right.
$$

where $T_{0}>0$ is a constant independent of ν in Proposition 1.4 and Proposition 1.5. Then, we have

Proposition 1.6 (Theorem 2.3 in [10]). $\Phi\left(t_{0}, \cdots, t_{\nu+1}\right)$ of (1.11) satisfies
1^{0}.

$$
\begin{aligned}
& \partial_{t_{j}} \Phi=\lambda_{j}\left(t_{j}, X_{v}^{j}, \Xi_{v}^{j}\right)-\lambda_{j+1}\left(t_{j}, X_{v}^{j}, \Xi_{\nu}^{j}\right) \\
& \left(j=0, \cdots, \nu+1, \lambda_{0}=\lambda_{\nu+2}=0, X_{v}^{0}=x^{0}, \Xi_{v}^{0}=\nabla_{x}{ }^{0} \Phi,\right. \\
& \left.\quad X_{\nu}^{\nu+1}=\nabla_{\xi^{\nu+1}} \Phi, \Xi_{\nu}^{\nu+1}=\xi^{\nu+1}\right) .
\end{aligned}
$$

2^{0}. If $t_{j}=t_{j+1}$ for some j, we have

$$
\begin{aligned}
& \Phi_{1,2, \cdots, \nu+1}\left(t_{0}, \cdots, t_{j}, t_{j+1}, \cdots, t_{v+1}\right) \\
& =\Phi_{1,2, \cdots, j, j+2, \cdots, v+1}\left(t_{0}, \cdots, t_{j}, t_{j+2}, \cdots, t_{v+1}\right)
\end{aligned}
$$

30. If $\lambda_{j}=\lambda_{j+1}$ for some j, we have

$$
\begin{aligned}
& \Phi_{1,2, \cdots, v+1}\left(t_{0}, \cdots, t_{\nu+1}\right) \\
& =\Phi_{1,2, \cdots, j-1, j+1, \cdots, \nu+1}\left(t_{0}, \cdots, t_{j-1}, t_{j+1}, \cdots, t_{\nu+1}\right) .
\end{aligned}
$$

Now let $(q, p)(t, s ; y, \eta)=\left(\left(q_{1}, \cdots, q_{n}\right),\left(p_{1}, \cdots, p_{n}\right)\right)(t, s ; y, \eta)(0 \leqq s \leqq t \leqq T)$ be the bicharacteristic strip for (1.9), that is, $(q, p)(t, s)$ is the solution of

$$
\left\{\begin{array}{l}
\frac{d q}{d t}=\nabla_{\xi} \lambda(t, q, p) \tag{1.13}\\
\frac{d p}{d t}=-\nabla_{x} \lambda(t, q, p),\left.\quad(q, p)\right|_{t=s}=(y, \eta)
\end{array}\right.
$$

Then, we can solve (1.13) in full interval $s \leqq t \leqq T$ by the Gronwall inequality, since $\left|\nabla_{\xi} \lambda(t, q, p)\right| \leqq C_{1}$ and $\left|\nabla_{x} \lambda(t, q, p)\right| \leqq C_{1}\langle p\rangle(0 \leqq t \leqq T)$ for a constant $C_{1}>0$. We state propositions on the bicharacteristic strips.

Lemma 1.7. Let $\phi(x, \xi) \in \mathscr{P}(\tau)$. Then, for any $y, \eta \in R^{2 n}$ (resp. $\left.(x, \xi)\right)$ there exists a point $(x, \xi) \in R^{2 n}$ (resp. $\left.(y, \eta)\right)$ such that

$$
\begin{equation*}
y=\nabla_{\xi} \phi(x, \eta), \xi=\nabla_{x} \phi(x, \eta) \tag{1.14}
\end{equation*}
$$

Proof. Set $F(x)=F(x ; y, \eta)=-\nabla_{\xi} \phi(x, \eta)+x+y$. We have

$$
\left|F\left(x^{\prime}\right)-F(x)\right| \leqq \int_{0}^{1}| | \nabla_{x} \nabla_{\xi} \phi\left(x+\theta\left(x^{\prime}-x\right), \eta\right)-I| | d \theta\left|x^{\prime}-x\right| \leqq \tau\left|x^{\prime}-x\right|
$$

where I is a unit matrix and for a matrix $A=\left(a_{i j} ; \underset{j}{i} \downarrow 1, \cdots, n\right)$ the norm $\|A\|$ is defined by $\left\{\sum_{i, j}\left|a_{i j}\right|^{2}\right\}^{1 / 2}$. Then, we can apply the fixed point theorem, and $x=x(y, \eta)$ satisfying $y=\nabla_{\xi} \phi(x, \eta)$ is determined as the fixed point. Then, $\xi(y, \eta)$ is determined by $\nabla_{x} \phi(x(y, \eta), \eta)$.

Similarly, $(y(x, \xi), \eta(x, \xi))$ is determined.
Q.E.D.

Lemma 1.8. Let $(q, p)(t, s ; y, \eta)(0 \leqq s \leqq t \leqq T)$ be the bicharacteristic strip defined by (1.13) and $\phi(t, s ; x, \xi)\left(0 \leqq s \leqq t \leqq T_{0}\right)$ be the solution of the eiconal equation (1.10). Then, it follows that

$$
\begin{align*}
y=\nabla_{\xi} \phi(t, s ; q(t, s), \eta), \quad p(t, s)=\nabla_{x} \phi(t, s ; q(t, s), \eta) \tag{1.15}\\
\left(0 \leqq s \leqq t \leqq T_{0}\right)
\end{align*}
$$

Proof. By Lemma 1.7 we can define $\left(q^{\prime}, p^{\prime}\right)(t, s ; y, \eta)\left(0 \leqq s \leqq t \leqq T_{0}\right)$ by

$$
\begin{equation*}
y=\nabla_{\xi} \phi\left(t, s ; q^{\prime}(t, s), \eta\right), p^{\prime}(t, s)=\nabla_{x} \phi\left(t, s ; q^{\prime}(t, s), \eta\right) \tag{1.16}
\end{equation*}
$$

Differentiate both sides of (1.16) in t, respectively. Then, using (1.10) we get

$$
\left\{\begin{array}{l}
\frac{d q^{\prime}}{d t}(t, s)=\nabla_{\xi} \lambda\left(t, q^{\prime}(t, s), p^{\prime}(t, s)\right), \\
\frac{d p^{\prime}}{d t}(t, s)=-\nabla_{x} \lambda\left(t, q^{\prime}(t, s), p^{\prime}(t, s)\right) .
\end{array}\right.
$$

Since $q^{\prime}(s, s)=y$ and $p^{\prime}(s, s)=\eta$ from (1.16), we can see that $q^{\prime}(t, s)=q(t, s)$ and $p^{\prime}(t, s)=p(t, s)\left(0 \leqq s \leqq t \leqq T_{0}\right)$.
Q.E.D.

Take $\lambda_{j}(j=1, \cdots, \nu+1)$ as λ of (1.9) and define $\Phi=\Phi_{1, \cdots, \nu+1}\left(t_{0}, \cdots, t_{\nu+1}\right.$; $x, \xi)\left(0 \leqq t_{\nu+1} \leqq \cdots \leqq t_{0} \leqq T_{0} \leqq T\right)$ by (1.11) corresponding to $\left\{\lambda_{j}\right\}_{j=1}^{\nu+1}$. For a set $\left\{t_{0}^{\prime}, \cdots, t_{\nu+1}^{\prime}\right\} \subset\left[0, T_{0}\right]$ such that $t_{0}^{\prime} \geqq t_{1}^{\prime} \geqq \cdots \geqq t_{\nu+1}^{\prime}$ (resp. $t_{0}^{\prime} \leqq t_{1}^{\prime} \leqq \cdots \leqq t_{\nu+1}^{\prime}$) we define a trajectory $(Q, P)(\sigma)=\left(Q_{1, \cdots, \nu+1}, P_{1, \cdots, \nu+1}\right)\left(\sigma ; t_{0}^{\prime}, \cdots, t_{\nu+1}^{\prime} ; y, \eta\right)$ in $t_{0}^{\prime} \geqq \sigma \geqq$ $t_{\nu+1}^{\prime}$ (resp. $\left.t_{0}^{\prime} \leqq \sigma \leqq t_{v+1}^{\prime}\right)$ as follows: $(Q, P)(\sigma)$ are continuous functions on $\left[t_{\nu+1}^{\prime}, t_{0}^{\prime}\right]$ (resp. $\left[t_{0}^{\prime}, t_{v+1}^{\prime}\right]$) such that $(Q, P)\left(t_{v+1}^{\prime}\right)=(y, \eta)$ and for $\sigma \in\left(t_{k}^{\prime}, t_{k-1}^{\prime}\right)$ (resp. $\sigma \in$ $\left.\left(t_{k-1}^{\prime}, t_{k}^{\prime}\right)\right)(Q, P)(\sigma)$ satisfy

$$
\begin{equation*}
\frac{d Q}{d \sigma}=\nabla_{\xi} \lambda_{k}(\sigma, Q, P), \quad \frac{d P}{d \sigma}=-\nabla_{x} \lambda_{k}(\sigma, Q, P) \tag{1.17}
\end{equation*}
$$

Then, we obtain
Proposition 1.9. Let $T \geqq T_{0} \geqq t_{0} \geqq \cdots \geqq t_{\nu+1} \geqq 0$. Using Lemma 1.7, for any point (y, η) take a point x satisfying

$$
\begin{equation*}
y=\nabla_{\xi} \Phi_{1}, \cdots, \nu+1,\left(t_{0}, \cdots, t_{\nu+1} ; x, \eta\right) . \tag{1.18}
\end{equation*}
$$

Then, we have

$$
\begin{align*}
& \left(Q_{1, \cdots, \nu+1}, P_{1, \cdots, \nu+1}\right)\left(t_{k} ; t_{0}, \cdots, t_{\nu+1} ; y, \eta\right) \tag{1.19}\\
& =\left(X_{\nu}^{k}, \Xi_{\nu}^{k}\right)\left(t_{0}, \cdots, t_{\nu+1} ; x, \eta\right) \quad(k=0, \cdots, \nu+1),
\end{align*}
$$

where $\left\{X_{\nu}^{j}, \Xi_{\nu}^{j}\right\}_{j=1}^{\nu}$ is the solution of (1.12) corresponding to $\Phi=\Phi_{1, \cdots, \nu+1}$ and

$$
\left\{\begin{array}{l}
X_{\nu}^{0}=x, \Xi_{\nu}^{0}=\nabla_{x} \Phi_{1, \cdots, \nu+1}\left(t_{0}, \cdots, t_{\nu+1} ; x, \eta\right), \tag{1.20}\\
X_{\nu}^{\nu+1}=y, \Xi_{\nu}^{\nu+1}=\eta
\end{array}\right.
$$

Proof. Relation (1.7) in Proposition 1.4 shows that

$$
\left\{\begin{aligned}
\nabla_{\xi} \Phi\left(t_{0}, \cdots, t_{\nu+1} ; x, \eta\right) & =\nabla_{\xi} \phi_{\nu+1}\left(t_{\nu}, t_{\nu+1} ; X_{\nu}^{\nu}, \eta\right), \\
\nabla_{x} \Phi\left(t_{0}, \cdots, t_{\nu+1} ; x, \eta\right) & =\nabla_{x} \phi_{1}\left(t_{0}, t_{1} ; x, \Xi_{\nu}^{1}\right) .
\end{aligned}\right.
$$

Together with (1.12) and (1.18) we get

$$
\left\{\begin{array}{l}
X_{v}^{k}=\nabla_{\xi} \phi_{k}\left(t_{k-1}, t_{k} ; X_{v}^{k-1}, \Xi_{v}^{k}\right), \tag{1.21}\\
\Xi_{v}^{k-1}=\nabla_{x} \phi_{k}\left(t_{k-1}, t_{k} ; X_{v}^{k-1}, \Xi_{v}^{k}\right), \quad k=1, \cdots, \nu+1 .
\end{array}\right.
$$

Now when $k=\nu+1$, (1.19) is valid. From the definition of $(Q, P)(\sigma)=$ $\left(Q_{1, \cdots, \nu+1}, P_{1, \cdots, \nu+1}\right)(\sigma)$ and by Lemma 1.8 we have

$$
\left\{\begin{array}{l}
y=\nabla_{\xi} \phi_{\nu+1}\left(t_{v}, t_{\nu+1} ; Q\left(t_{v}\right), \eta\right), \\
P\left(t_{v}\right)=\nabla_{x} \phi_{\nu+1}\left(t_{v}, t_{\nu+1} ; Q\left(t_{v}\right), \eta\right) .
\end{array}\right.
$$

Compare the above relation with X_{ν}^{ν} and Ξ_{ν}^{ν} of (1.21). Setting $X_{\nu}^{\nu+1}=y, \Xi_{\nu}^{\nu+1}=\eta$, we get by Lemma 1.7

$$
Q\left(t_{v}\right)=X_{v}^{\nu}, \quad P\left(t_{v}\right)=\Xi_{\nu}^{\nu} .
$$

In a similar way we can prove (1.19), inductively.
Q.E.D.

2. Contraction of multi-phase functions

Let $\lambda_{j}(t, x, \xi) \in B^{\infty}\left([0, T] ; S^{1}\right)(j=1,2)$ and be real valued functions. Throughout this section we assume that

$$
\begin{gather*}
\left\{\tau+\lambda_{i},\left\{\tau+\lambda_{j}, \tau+\lambda_{k}\right\}\right\}(t, x, \xi)=0 \quad \text { on }[0, T] \times R_{x, \xi}^{2 n} \tag{*}\\
(i, j, k=1,2),
\end{gather*}
$$

where for $f, g \in C^{1}\left(R_{t, x, \tau, \xi}^{2(n+1)}\right)\{f, g\}(t, x ; \tau, \xi)$ denotes the Poisson bracket

$$
\begin{equation*}
\{f, g\}(t, x ; \tau, \xi)=\left(\partial_{\tau} f \partial_{t} g-\partial_{t} f \partial_{\tau} g+\nabla_{\xi} f \cdot \nabla_{x} g-\nabla_{x} f \cdot \nabla_{\xi} g\right)(t, x ; \tau, \xi) \tag{2.1}
\end{equation*}
$$

Let $\phi_{j}(t, s ; x, \xi)\left(j=1,2,0 \leqq s \leqq t \leqq T_{0}\right)$ be the solutions of the eiconal equation (1.10) corresponding to λ_{j} and define $\Phi=\Phi_{j_{1}, \cdots, j_{\nu+1}}\left(t_{0}, \cdots, t_{\nu+1}\right) \in$ $\mathcal{P}\left(c_{0}\left(t_{0}-t_{\nu+1}\right)\right)\left(0 \leqq t_{\nu+1} \leqq \cdots \leqq t_{0} \leqq T_{0}, j_{k}=1,2\right)$ by $\Phi=\phi_{j_{1}}\left(t_{0}, t_{1}\right) \# \cdots \# \phi_{j_{v+1}}\left(t_{\nu}, t_{\nu+1}\right)$, where $c_{0}>0$ and $T_{0}>0$ are constants independent of ν (see Proposition 1.4 and Proposition 1.5). We fix such a T_{0} in what follows. It is easy to see that

Lemma 2.1. Let $H(t, x, \xi) \in C^{1}\left(R^{2 n+1}\right)$ and $(q, p)(t)=(q, p)(t, s ; y, \eta)$ $\left(0 \leqq s \leqq t \leqq T_{0}\right)$ be the bicharacteristic strip defined by (1.13) for $\tau+\lambda(t, x, \xi)$ of (1.9). Then, we have

$$
\begin{equation*}
\frac{d}{d \sigma} H(\sigma, q(\sigma), p(\sigma))=-\{H, \tau+\lambda\}(\sigma, q(\sigma), p(\sigma)) \quad\left(s \leqq \sigma \leqq T_{0}\right) \tag{2.2}
\end{equation*}
$$

Lemma 2.2. For $J=\left(j_{1}, \cdots, j_{\nu+1}\right)\left(j_{k}=1,2\right)$ and a set $\left\{t_{0}, \cdots, t_{\nu+1}\right\}(T \geqq$ $\left.t_{0} \geqq \cdots \geqq t_{\nu+1} \geqq 0\right)$ let $(Q, P)(\sigma)=\left(Q_{j_{1}, \cdots, j_{v+1}}, P_{j_{1}, \cdots, j_{v+1}}\right)\left(\sigma ; t_{0}, \cdots, t_{\nu+1} ; y, \eta\right)$ be the solution of (1.17) corresponding to $\left\{\lambda_{j_{k}}\right\}_{k=1}^{\nu+1}$. Set

$$
\begin{equation*}
v(\sigma)=\left(\lambda_{2}-\lambda_{1}\right)(\sigma, Q(\sigma), P(\sigma)) \quad\left(t_{\nu+1} \leqq \sigma \leqq t_{0}\right) \tag{2.3}
\end{equation*}
$$

Then, we get

$$
\begin{equation*}
\frac{d}{d \sigma} v(\sigma)=\left\{\tau+\lambda_{1}, \tau+\lambda_{2}\right\}(\sigma, Q(\sigma), P(\sigma)) \quad\left(t_{\nu+1} \leqq \sigma \leqq t_{0}\right) \tag{2.4}
\end{equation*}
$$

Proof. For $\sigma \in\left(t_{k}, t_{k-1}\right)$ it follows from Lemma 2.1 that

$$
\begin{aligned}
\frac{d}{d \sigma} v(\sigma) & =-\left\{\lambda_{2}, \tau+\lambda_{j_{k}}\right\}+\left\{\lambda_{1}, \tau+\lambda_{j_{k}}\right\} \\
& =-\left\{\tau+\lambda_{2}, \tau+\lambda_{j_{k}}\right\}+\left\{\tau+\lambda_{1}, \tau+\lambda_{j_{k}}\right\} .
\end{aligned}
$$

Then, we get (2.4) in both cases $j_{k}=1$ and 2.
Q.E.D.

Lemma 2.3. Assume that the assumption (*) holds. Then, for $v(\sigma)$ defined by (2.3) we get

$$
\begin{equation*}
v(\sigma)=a \sigma+b \quad\left(t_{\nu+1} \leqq \sigma \leqq t_{0}\right), \tag{2.5}
\end{equation*}
$$

where $a=\left\{\tau+\lambda_{1}, \tau+\lambda_{2}\right\}\left(t_{\nu+1}, y, \eta\right)$ and $b=\left(\lambda_{2}-\lambda_{1}\right)\left(t_{\nu+1}, y, \eta\right)-a t_{\nu+1}$.
Proof. We can see from Lemma 2.2 that $v(\sigma)$ belongs to $C^{1}\left(\left[t_{\nu+1}, t_{0}\right]\right)$. From (2.4) and Lemma 2.1 it follows that

$$
\frac{d^{2}}{d \sigma^{2}} v(\sigma)=-\left\{\left\{\tau+\lambda_{1}, \tau+\lambda_{2}\right\}, \tau+\lambda_{j_{k}}\right\}=0 \quad\left(t_{k}<\sigma<t_{k-1}\right) .
$$

Hence, we get (2.5).
Q.E.D.

Remark 2.1. If the assumption $(*)$ is satisfied, $v(\sigma)$ defined by (2.3) depends only on $\sigma, t_{\nu+1}, y$ and η, and is independent of the choice of $\boldsymbol{J}=\left(j_{1}, \cdots\right.$, $\left.j_{\nu+1}\right)(\nu=1,2 \cdots)$ and $\left\{t_{0}, \cdots, t_{\nu}\right\}$.

Theorem 2.4. Assume that the assumption (*) holds. For $\left\{t, t_{1}, t_{2}, s\right\}$ $\left(0 \leqq s<t_{2}<t_{1}<t \leqq T_{0}\right)$ we define functions $\left(\psi_{1}, \psi_{2}\right)\left(t, t_{1}, t_{2}, s\right)$ by

$$
\left\{\begin{array}{l}
\psi_{1}\left(t, t_{1}, t_{2}, s\right)=t-\frac{\left(t_{1}-t_{2}\right)\left(t_{2}-s\right)}{t-t_{1}+t_{2}-s} \tag{2.6}\\
\psi_{2}\left(t, t_{1}, t_{2}, s\right)=t_{1}-t_{2}+s-\frac{\left(t_{1}-t_{2}\right)\left(t_{2}-s\right)}{t-t_{1}+t_{2}-s}
\end{array}\right.
$$

Then, we obtain

$$
\begin{equation*}
\Phi_{1,2,1}\left(t, \psi_{1}, \psi_{2}, s ; x, \xi\right)=\Phi_{2,1,2}\left(t, t_{1}, t_{2}, s ; x, \xi\right) . \tag{2.7}
\end{equation*}
$$

Proof. We shall determine $\psi_{j}\left(t, t_{1}, t_{2}, s\right)(j=1,2)$ of (2.6) as the functions satisfying (2.7). From Proposition 1.6 we get $\Phi_{2,1,2}\left(t, t_{1}, t_{2}, s ; x, \xi\right)$ as the solution of

$$
\left\{\begin{array}{l}
\partial_{t} \Phi_{2,1,2}+\lambda_{2}\left(t, x, \nabla_{x} \Phi_{2,1,2}\right)=0 \\
\left.\Phi_{2,1,2}\right|_{t=t_{1}}=\Phi_{1,2}\left(t_{1}, t_{2}, s ; x, \xi\right)
\end{array}\right.
$$

So, we have only to determine $\psi_{j}(j=1,2)$ depending only on t, t_{1}, t_{2} and s such that for $\Phi_{1,2,1}\left(t, t_{1}, t_{2}, s\right)=\Phi_{1,2,1}\left(t, t_{1}, t_{2}, s ; x, \xi\right)$

$$
\left\{\begin{array}{l}
\partial_{t}\left(\Phi_{1,2,1}\left(t, \psi_{1}, \psi_{2}, s\right)\right)+\lambda_{2}\left(t, x, \nabla_{x} \Phi_{1,2,1}\left(t, \psi_{1}, \psi_{2}, s\right)\right)=0 \tag{2.8}\\
\left.\Phi_{1,2,1}\left(t, \psi_{1}, \psi_{2}, s\right)\right|_{t=t_{1}}=\Phi_{1,2}\left(t_{1}, t_{2}, s ; x, \xi\right)
\end{array}\right.
$$

holds.
Suppose that for $\psi_{j}(j=1,2)(2.7)$ holds. Set $\Delta=\left(t, \psi_{1}, \psi_{2}, s ; x, \xi\right)$ and $\psi_{j}^{\prime}=\partial_{t} \psi_{j}(j=1,2)$. Then, from (2.8) and Proposition 1.6 we have

$$
\begin{align*}
0= & \left(\partial_{t} \Phi_{1,2,1}\right)(\Delta)+\left(\partial_{t_{1}} \Phi_{1,2,1}\right)(\Delta) \psi_{1}^{\prime}+ \tag{2.9}\\
& \quad\left(\partial_{t_{2}} \Phi_{1,2,1}\right)(\Delta) \psi_{2}^{\prime}+\lambda_{2}\left(t, x, \nabla_{x} \Phi_{1,2,1}(\Delta)\right) \\
= & \left(\lambda_{2}-\lambda_{1}\right)\left(t, x, \nabla_{x} \Phi_{1,2,1}(\Delta)\right)- \\
& \quad\left(\lambda_{2}-\lambda_{1}\right)\left(\psi_{1}, X_{2}^{1}(\Delta), \Xi_{2}^{1}(\Delta)\right) \psi_{1}^{\prime}+\left(\lambda_{2}-\lambda_{1}\right)\left(\psi_{2}, X_{2}^{2}(\Delta), \Xi_{2}^{2}(\Delta)\right) \psi_{2}^{\prime},
\end{align*}
$$

where $\left\{X_{2}^{i}, \Xi_{2}^{i}\right\}_{i=1}^{2}\left(t_{0}, t_{1}, t_{2}, t_{3} ; x, \xi\right)$ is the solution of

$$
\begin{gathered}
x^{k}=\nabla_{\xi} \phi_{j_{k}}\left(t_{k-1}, t_{k} ; x^{k-1}, \xi^{k}\right), \xi^{k}=\nabla_{x} \phi_{j_{k+1}}\left(t_{k}, t_{k+1} ; x^{k}, \xi^{k+1}\right) \\
\left(k=1,2, x^{0}=x, \xi^{3}=\xi, j_{1}=1, j_{2}=2, j_{3}=1\right)
\end{gathered}
$$

Take a point y such that

$$
y=\nabla_{\xi} \Phi_{1,2,1}(\Delta)=\nabla_{\xi} \Phi_{1,2,1}\left(t, \psi_{1}, \psi_{2}, s ; x, \xi\right) .
$$

Let $(Q, P)(\sigma)=\left(Q_{1,2,1}, P_{1,2,1}\right)\left(\sigma ; t, \psi_{1}, \psi_{2}, s ; y, \xi\right)$ be the solution of (1.17) and set

$$
v(\sigma)=\left(\lambda_{2}-\lambda_{1}\right)(\sigma, Q(\sigma), P(\sigma)) .
$$

Then, by Proposition 1.9 we can write (2.9) in the form

$$
\begin{equation*}
0=v(t)-v\left(\psi_{1}\right) \psi_{1}^{\prime}+v\left(\psi_{2}\right) \psi_{2}^{\prime} \tag{2.9}
\end{equation*}
$$

Take account of the assumption (*). Since from Lemma $2.3 v(\sigma)$ has the form $a \sigma+b$, we get

$$
\begin{align*}
0 & =(a t+b)-\left(a \psi_{1}+b\right) \psi_{1}^{\prime}+\left(a \psi_{2}+b\right) \psi_{2}^{\prime} \tag{2.9}\\
& =-a\left(\psi_{1} \psi_{1}^{\prime}-\psi_{2} \psi_{2}^{\prime}-t\right)-b\left(\psi_{1}^{\prime}-\psi_{2}^{\prime}-1\right) .
\end{align*}
$$

Now we take ψ_{j} such that ψ_{j} satisfy

$$
\begin{equation*}
\psi_{1}^{\prime}-\psi_{2}^{\prime}=1, \quad \psi_{1} \psi_{1}^{\prime}-\psi_{2} \psi_{2}^{\prime}=t \tag{2.10}
\end{equation*}
$$

If $\left.\psi_{1}\right|_{t=t_{1}}=t_{2}$ and $\left.\psi_{2}\right|_{t=t_{1}}=s$, the second equality of (2.8) is also satisfied by Proposition 1.6. Hence, we obtain

$$
\begin{equation*}
\psi_{1}-\psi_{2}=t-t_{1}+t_{2}-s, \quad \psi_{1}^{2}-\psi_{2}^{2}=t^{2}-t_{1}^{2}+t_{2}^{2}-s^{2} . \tag{2.11}
\end{equation*}
$$

Solving (2.11), we get the functions of (2.6) satisfying (2.7).
Q.E.D.

REMARK 2.2. For real constants a_{j} and $b_{j} \lambda_{1}=-\sum_{i=1}^{n} a_{i} \xi_{i}$ and $\lambda_{2}=-2 t \sum_{i=1}^{n} b_{i} \xi_{i}$ on $R_{x, \xi}^{2 n}$ satisfy the assumption (*). Then, we have

$$
\left\{\begin{array}{l}
\Phi_{1,2,1}\left(t, t_{1}, t_{2}, s ; x, \xi\right)=\sum_{i=1}^{n}\left\{a_{i}\left(t-t_{1}+t_{2}-s\right)+b_{i}\left(t_{1}^{2}-t_{2}^{2}\right)\right\} \xi_{i}+x \cdot \xi \\
\Phi_{2,1,2}\left(t, t_{1}, t_{2}, s ; x, \xi\right)=\sum_{i=1}^{n}\left\{a_{i}\left(t_{1}-t_{2}\right)+b_{i}\left(t^{2}-t_{1}^{2}+t_{2}^{2}-s^{2}\right)\right\} \xi_{i}+x \cdot \xi
\end{array}\right.
$$

From these multi-phase functions we see that $\psi_{j}(j=1,2)$ of (2.6) are uniquely determined functions which satisfy (2.7) for any a_{j} and b_{j}.

Remark 2.3. Set $\Delta_{2}=\left\{\left(t_{1}, t_{2}\right) ; 0 \leqq s<t_{2}<t_{1}<t \leqq T_{0}\right\}$. Consider the mapping $M: \Delta_{2} \ni\left(t_{1}, t_{2}\right) \rightarrow\left(\psi_{1}, \psi_{2}\right)$ with (t, s) as a parameter. It is clear that the image of the mapping M is included in Δ_{2}. Since from (2.11)

$$
t_{1}-t_{2}=t-\psi_{1}+\psi_{2}-s, t_{1}^{2}-t_{2}^{2}=t^{2}-\psi_{1}^{2}+\psi_{2}^{2}-s^{2}
$$

$M^{2}=I$ (identity map) holds. This implies that the mapping $M: \Delta_{2} \rightarrow \Delta_{2}$ is one to one and onto. Make the change of variables with (t, s) as a parameter

$$
t_{1}^{\prime}=\psi_{1}\left(t, t_{1}, t_{2}, s\right), \quad t_{2}^{\prime}=\psi_{2}\left(t, t_{1}, t_{2}, s\right)
$$

Then, we get

$$
\begin{aligned}
& \int_{s}^{t} \int_{s}^{t_{1}} \exp \left\{i \Phi_{2,1,2}\left(t, t_{1}, t_{2}, s ; x, \xi\right)\right\} d t_{2} d t_{1} \\
= & \int_{s}^{t} \int_{s}^{t_{1}^{\prime}} \exp \left\{i \Phi_{1,2,1}\left(t_{,}, t_{1}^{\prime}, t_{2}^{\prime}, s ; x, \xi\right)\right\} \frac{t_{1}^{\prime}-t_{2}^{\prime}}{t-t_{1}^{\prime}+t_{2}^{\prime}-s} d t_{2}^{\prime} d t_{1}^{\prime} .
\end{aligned}
$$

We note that the functions ψ_{1}, ψ_{2} and $\left(t_{1}-t_{2}\right) /\left(t-t_{1}+t_{2}-s\right)$ have singular points $\left(t_{1}=t, t_{2}=s\right)$. So it seems that it is not easy to construct the fundamental solution by using Fourier integral operators with a finite number of phase functions, if we only follow the method in [10], [11], [15] and [17].

Let $\left(Q_{j_{1}, \cdots, j_{v+1}}, P_{j_{1}, \cdots, j_{v+1}}\right)\left(\sigma ; t_{0}, \cdots, t_{\nu+1} ; y, \eta\right)$ be the solution of (1.17) corresponding to $\left\{\lambda_{j_{k}}\right\}_{k=1}^{\nu+1}$ and a set $\left\{t_{0}, \cdots, t_{\nu+1}\right\} \subset\left[0, T_{0}\right]$.

Corollary 2.5. Assume that $(*)$ holds. Then, for any $\nu(\geqq 2),\left\{j_{1}, \cdots, j_{v+1}\right\}$ $\left(j_{k}=1,2, j_{k} \neq j_{k+1}\right)$ and $\left\{t_{0}, \cdots, t_{\nu+1}\right\} \quad\left(T_{0} \geqq t_{0}>\cdots>t_{\nu+1} \geqq 0\right)$ we get

$$
\begin{align*}
& \Phi_{j_{1}, \cdots, j_{v+1}}\left(t_{0}, \cdots, t_{v+1} ; x, \xi\right) \tag{2.12}\\
& =\Phi_{1,2,1}\left(t_{0}, t_{1}^{\prime}, t_{2}^{\prime}, t_{v+1} ; x, \xi\right),
\end{align*}
$$

for some $t_{j}^{\prime}\left(j=1,2, t_{0}>t_{1}^{\prime}>t_{2}^{\prime}>t_{\nu+1}\right)$ independent of x and ξ. By using the same $t_{j}^{\prime}(j=1,2)$ we also get

$$
\begin{align*}
& \left(Q_{j_{1}, \cdots, j_{v+1}}, P_{j_{1}, \cdots j_{v+1}}\right)\left(t_{0} ; t_{0}, \cdots, t_{v+1} ; y, \eta\right) \tag{2.13}\\
& =\left(Q_{1,2,1}, P_{1,2,1}\right)\left(t_{0} ; t_{0}, t_{1}^{\prime}, t_{2}^{\prime}, t_{v+1} ; y, \eta\right)
\end{align*}
$$

for any point $(y, \eta) \in R^{2 n}$.

Proof. We can get (2.12) by Proposition 1.6 and Theorem 2.4, inductively. Then, we obtain (2.13) by using (2.12) and Proposition 1.9.
Q.E.D.

Remark 2.4. For $\lambda_{j}(t, x, \xi)(j=1,2)$ in Remark 2.2 we have

$$
\left\{\begin{array}{l}
\phi_{1}(t, s)=\sum_{i=1}^{n} a_{i}(t-s) \xi_{i}+x \cdot \xi \tag{2.14}\\
\phi_{2}(t, s)=\sum_{i=1}^{n} b_{i}\left(t^{2}-s^{2}\right) \xi_{i}+x \cdot \xi \\
\Phi_{1,2}\left(t, t_{1}, s\right)=\sum_{i=1}^{n}\left\{a_{i}\left(t-t_{1}\right)+b_{i}\left(t_{1}^{2}-s^{2}\right)\right\} \xi_{i}+x \cdot \xi \\
\Phi_{2,1}\left(t, t_{1}, s\right)=\sum_{i=1}^{n}\left\{a_{i}\left(t_{1}-s\right)+b_{i}\left(t^{2}-t_{1}^{2}\right)\right\} \xi_{i}+x \cdot \xi
\end{array}\right.
$$

Comparing (2.14) with $\Phi_{1,2,1}$ and $\Phi_{2,1,2}$ in Remark 2.2, we can see that we can gererally contract $\Phi_{1,2,1}\left(t, t_{1}, t_{2}, s\right)$ and $\Phi_{2,1,2}\left(t, t_{1}, t_{2}, s\right)\left(t>t_{1}>t_{2}>s\right)$ no more. Furthermore, from Proposition 1.9 we can also see that we can generally contract $\left(Q_{1,2,1}, P_{1,2,1}\right)\left(t, t_{1}, t_{2}, s\right)$ and $\left(Q_{2,1,2}, P_{2,1,2}\right)\left(t, t_{1}, t_{2}, s\right)\left(t>t_{1}>t_{2}>s\right)$ no more.

Examples. .We give examples of $\lambda_{k}(t, x, \xi)(k=1,2)$ satisfying ($*$) on $[0, T] \times R_{x, \xi}^{6}$ except λ_{k} in Remark 2.2 below. They are not involutive, since $\left\{\tau+\lambda_{1}, \tau+\lambda_{2}\right\}(t, x, \xi)$ doe snot identically vanish on a set $\left\{(t, x, \xi) ; \lambda_{1}(t, x, \xi)=\right.$ $\left.\lambda_{2}(t, x, \xi)\right\}$.

1. $\lambda_{1}(t, x, \xi)=\xi_{1}, \lambda_{2}(t, x, \xi)=x_{1} \xi_{2}+\xi_{3}$.
2. $\lambda_{1}(t, x, \xi)=x_{1} \xi_{1}, \lambda_{2}(t, x, \xi)=t \xi_{2}$.
3. $\lambda_{1}(t, x, \xi)=x_{2} \xi_{1}+\xi_{3}, \lambda_{2}(t, \lambda, \xi)=-x_{3} \xi_{1}+\xi_{2}$.

3. Propagation of singularities

Consider a hyperbolic system with diagonal principal part

$$
\begin{align*}
& L=D_{t}+\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)\left(t, X, D_{x}\right)+\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right)\left(t, X, D_{x}\right) \tag{3.1}\\
& \\
& \text { on }[0, T] \times R^{n} \quad\left(\lambda_{j}(t, x, \xi) \in B^{\infty}\left([0, T] ; S^{1}\right),\right. \\
& \\
& \left.\quad \text { real valued, } b_{j k}(t, x, \xi) \in B^{\infty}\left([0, T] ; S^{0}\right)\right) .
\end{align*}
$$

We assume that for a constant $M>0$ we have

$$
\begin{equation*}
\lambda_{j}(t, x, \delta \xi)=\delta \lambda_{j}(t, x, \xi) \quad(|\xi| \geqq M, \delta \geqq 1) \tag{3.2}
\end{equation*}
$$

We also assume that (*) of Section 2 holds.
We study the Cauchy problem

$$
\left\{\begin{array}{l}
L U(t, x)=0 \quad \text { on }[0, T] \tag{3.3}\\
\left.U\right|_{t=0}=G(x)
\end{array}\right.
$$

where $U(t, x)={ }^{t}\left(u_{1}(t, x), u_{2}(t, x)\right)$ and $G(x)={ }^{t}\left(g_{1}(x), g_{2}(x)\right)\left(g_{k}(x) \in H_{-\infty}=\bigcup_{\sigma} H_{\sigma}\right)$. Let $\phi_{j}(t, s ; x, \xi)\left(0 \leqq s \leqq t \leqq T_{0} \leqq T\right)$ be the solutions of the eiconal equations (1.10) corresponding to λ_{j} and define $\Phi=\Phi_{j_{1}, \cdots, j_{v+1}}\left(t_{0}, \cdots, t_{\nu+1}\right)\left(j_{k}=1,2\right)$ by $\Phi=\phi_{j_{1}}\left(t_{0}, t_{1}\right) \# \cdots \# \phi_{j_{v+1}}\left(t_{\nu}, t_{\nu+1}\right)$ (see (1.11)).

If we apply Theorem 3.1 in Kumano-go-Taniguchi [11] to L of (3.1), then, for a small $T_{0}\left(0<T_{0} \leqq T\right)$ we can get the fundamental solution $E(t, s)(0 \leqq s \leqq$ $t \leqq T_{0}$) of L (i.e. $L E(t, s)=0$ on $\left[0, T_{0}\right]$ and $E(s, s)=I$ (unit matrix)), which is represented by means of Fourier integral operators with multi-phase functions $\Phi_{j_{1}, \cdots, j_{\nu+1}}(\nu=0,1, \cdots)$. We fix such a T_{0} in what follows. We will apply the theory in [11] for the propagation of singularities of solutions (Theorem 3.4 in [11]) to the Cauchy problem (3.3).

For $\lambda_{j_{1}}, \cdots, \lambda_{j_{v+1}},(y, \eta)$ and a fixed $0 \leqq \varepsilon<1$ we define an ε-station chain $\left\{t_{1}, \cdots, t_{\nu}\right\}$ as the point $t>t_{1}>\cdots>t_{\nu}>0$ such that for $k=1, \cdots, \nu$

$$
\begin{align*}
& \left|\lambda_{j_{k}}\left(t_{k}, x^{k}, \xi^{k}\right)-\lambda_{j_{k+1}}\left(t_{k}, x^{k}, \xi^{k}\right)\right| \leqq \varepsilon\left\langle\xi^{k}\right\rangle \tag{3.4}\\
& \quad \text { at }\left(x^{k}, \xi^{k}\right)=\left(Q_{j_{1}, \cdots, j_{\nu+1}}, P_{j_{1}, \cdots, j_{\nu+1}}\right)\left(t_{k} ; t, t_{1}, \cdots, t_{\nu}, 0 ; y, \eta\right),
\end{align*}
$$

where $\left(Q_{j_{1}, \cdots, j_{v+1}}, P_{j_{1}, \cdots, j_{v+1}}\right)\left(\sigma ; t_{0}, \cdots, t_{\nu}, 0 ; y, \eta\right)$ is the solution of (1.17) corresponding to $\left\{\lambda_{j_{k}}\right\}_{k=1}^{\nu+1}$ and $\left\{t_{0}, \cdots, t_{\nu+1}\right\}\left(t_{0}=t, t_{\nu+1}=0\right)$. Define the ε-station set $\Lambda_{\varepsilon, j_{1}, \cdots, j_{\nu+1}}(t ; y, \eta)$ by the set of all ε-station chains $\left\{t_{1}, \cdots, t_{\nu}\right\}$.

We set $W F(G)=\bigcup_{j=1}^{2} W F\left(g_{j}\right)$ for the wave front set $W F\left(g_{j}\right)$ of g_{j}. For $\boldsymbol{J}=\left(j_{1}, \cdots, j_{\nu+1}\right)$ we set

$$
\begin{align*}
& \Lambda_{\varepsilon}^{J}(t ; y, \eta)=\left\{\left(Q_{j_{1}, \cdots, j_{\nu+1}},\right.\right.\left.P_{j_{1}, \cdots, j_{\nu+1}}\right)\left(t ; t, t_{1}, \cdots, t_{\nu}, 0 ; y, \eta\right) ; \tag{3.5}\\
&\left\{t_{1}, \cdots, t_{\nu}\right\} \in \Lambda_{\varepsilon}, j_{1}, \cdots, j_{\nu+1} \\
&(t ; y, \eta)\},
\end{align*}
$$

and set

$$
\begin{gather*}
\Gamma_{t, \mathrm{~s}}=\left\{\delta \Lambda_{\mathrm{e}}^{J}(t ; y, \eta) ;(y, \eta) \in W F_{\mathrm{e}}(G), \boldsymbol{J}=\left(j_{1}, \cdots, j_{\nu+1}\right),\right. \\
\left.j_{k}=1,2, \nu=0,1, \cdots, \delta>0,|\eta| \geqq M_{0}\right\} \tag{3.6}\\
\quad\left(W F_{\mathrm{e}}(G)=\left\{(y, \eta) ; \operatorname{dis}\left\{\left(y,|\eta|^{-1} \eta\right), W F(G)\right\} \leqq \varepsilon\right\}\right),
\end{gather*}
$$

for a large constant $M_{0}>0$ depending on M of (3.2). Then, Theorem 3.4 in [11] says without the assumption (*)

Theorem 3.1. $\bigcap_{0<8<1} \Gamma_{t, \mathrm{e}}$ is closed and for the solution $U(t, x)$ of the Cauchy problem (3.3) we have

$$
\begin{equation*}
W F(U(t)) \subset \bigcap_{0<\varepsilon<1} \Gamma_{t, \mathrm{e}} \quad\left(0 \leqq t \leqq T_{0}\right) \tag{3.7}
\end{equation*}
$$

If we add the assumption (*), then, setting

$$
\begin{align*}
& \widetilde{\Gamma}_{t, 0}=\left\{\delta \Lambda_{0}^{J}(t ; y, \eta) ;(y, \eta) \in W F(G), \delta>0\right. \tag{3.8}\\
&\left.|\eta| \geqq M_{0}, J=(1),(2),(1,2),(2,1),(1,2,1)\right\}
\end{align*}
$$

we get the main theorem.
Theorem 3.2. Assume that the assumption (*) holds. Then, for the solution $U(t, x)$ of the Cauchy problem (3.3) we get

$$
\begin{equation*}
W F(U(t)) \subset \widetilde{\Gamma}_{t, 0} \quad\left(0 \leqq t \leqq T_{0}\right) \tag{3.9}
\end{equation*}
$$

Proof. By Theorem 3.1 we have only to prove that

$$
\begin{equation*}
\bigcap_{0<\mathrm{e}<1} \Gamma_{t, \mathrm{e}}=\widetilde{\Gamma}_{t, 0} \tag{3.10}
\end{equation*}
$$

It is easy to see that $\bigcap_{0<\varepsilon<1} \Gamma_{t, e} \supset \widetilde{\Gamma}_{t, 0}$. So, we prove that

$$
\bigcap_{0<\varepsilon<1} \Gamma_{t, \mathrm{e}} \subset \widetilde{\Gamma}_{t, 0}
$$

We fix $0<t \leqq T_{0}$ and take a point $\left(x^{0}, \xi^{0}\right) \in \bigcap_{0<\varepsilon<1} \Gamma_{t, \varepsilon}$ and fix it. If we take $\left|\xi^{0}\right|$ sufficiently large, then, setting $\xi^{k}=P_{j_{\nu+1}, \cdots, j_{1}}\left(t_{k} ; 0, t_{\nu}, \cdots, t_{0} ; x^{0}, \xi^{0}\right)(k=1, \cdots$, $\nu+1, t_{\nu+1}=0$), we have

$$
\begin{equation*}
C^{-1} \leqq\left|\xi^{k}\right| \leqq C \quad(k=0, \cdots, \nu+1) \tag{3.11}
\end{equation*}
$$

Here, the positive constant C is independent of the choice of $J=\left(j_{1}, \cdots, j_{\nu+1}\right)$ and a set $\left\{t_{0}, \cdots, t_{\nu}\right\} \subset[0, t]$. Since $\left(x^{0}, \xi^{0}\right)$ belongs to $\bigcap_{0<\varepsilon<1} \Gamma_{t, \mathrm{e}}$, for any $\varepsilon_{m}=2^{-m}$ there exist $\boldsymbol{J}_{\nu_{m}}^{m}=\left(j_{1}^{m}, \cdots, j_{\nu_{m+1}}^{m}\right)\left(j_{k}^{m}=1,2, j_{k}^{m} \neq j_{k+1}^{m}\right),\left(y^{m}, \eta^{m}\right) \in W F_{\varepsilon_{m}}(G)$ and $\left\{t_{1}^{m}, \cdots, t_{v_{m}}^{m}\right\} \in \Lambda_{\varepsilon_{m}, j_{1}^{m}, \cdots, j_{\nu_{m}+1}^{m}}\left(y^{m}, \eta^{m}\right)$ such that

$$
\begin{equation*}
\left(x^{0}, \xi^{0}\right)=\left(Q_{i_{1}^{m}, \ldots, i_{v_{m}}^{m}+1}^{m}, P_{j_{1}}^{m}, \ldots, i_{v_{m}+1}^{m}\right)\left(t ; t, t_{1}^{m}, \cdots, t_{v_{m}}^{m}, 0 ; y^{m}, \eta^{m}\right) . \tag{3.12}
\end{equation*}
$$

We consider $\left(x^{0}, \xi^{0}\right)$ deviding into two cases as follows.
I) The case where we can take a subsequence $l=\left\{m_{\mu}\right\}_{\mu=1}^{\infty}$ and a point $\sigma_{1}\left(0 \leqq \sigma_{1} \leqq t\right)$ such that $t_{1}^{l} \rightarrow \sigma_{1}$ and $t_{v_{l}}^{l} \rightarrow \sigma_{1}$ as $l \rightarrow \infty$.
II) The other case.
I). We show that $\left(x^{0}, \xi^{0}\right)$ belongs to $\widetilde{\Gamma}_{t, 0}$, when $0<\sigma_{1}<t$. In the other case $\sigma_{1}=0$ or t we can also prove this by the similar way. By the assumption I) we can also take a subsequence $\gamma=\left\{l_{\mu}\right\}_{\mu=1}^{\infty}$ of $l=\left\{m_{\mu}\right\}_{\mu=1}^{\infty}$ such that

$$
\left(j_{1}^{\gamma}, j_{v_{\gamma+1}}^{\gamma}\right)=(1,1),(1,2),(2,1) \text { or }(2,2) .
$$

We may assume that $j_{1}^{\gamma}=1$ and $j_{\nu_{\gamma+1}}^{\gamma}=2$, since we can prove similarly in the other cases. Now, take a point $\left(\bar{y}^{0}, \bar{\eta}^{0}\right)\left(\left|\bar{\eta}^{0}\right| \geqq C^{-1}\right.$, see (3.11)) such that

$$
\begin{equation*}
\left(\bar{y}^{0}, \bar{\eta}^{0}\right)=\left(Q_{2,1}, P_{2,1}\right)\left(0 ; 0, \sigma_{1}, t ; x^{0}, \xi^{0}\right) . \tag{3.13}
\end{equation*}
$$

We note that

$$
\begin{equation*}
\left(x^{0}, \xi^{0}\right)=\left(Q_{1,2}, P_{1,2}\right)\left(t ; t, \sigma_{1}, 0 ; \bar{y}^{0}, \bar{\eta}^{0}\right) . \tag{3.13}
\end{equation*}
$$

Then, it is easy to see that

$$
\begin{align*}
\bar{y}^{0}=x^{0} & +\int_{t}^{\sigma_{1}} \nabla_{\xi} \lambda_{1}\left(\sigma, Q_{2,1}\left(\sigma ; 0, \sigma_{1}, t ; x^{0}, \xi^{0}\right), P_{2,1}\left(\sigma ; 0, \sigma_{1}, t ; x^{0}, \xi^{0}\right)\right) d \sigma \tag{3.14}\\
& +\int_{\sigma_{1}}^{0} \nabla_{\xi} \lambda_{2}\left(\sigma, Q_{2,1}\left(\sigma ; 0, \sigma_{1}, t ; x^{0}, \xi^{0}\right), P_{2,1}\left(\sigma ; 0, \sigma_{1}, t ; x^{0}, \xi^{0}\right)\right) d \sigma
\end{align*}
$$

Using the assumption of this case, for any small $\delta>0$ there exists N such that for any $\gamma \geqq N$ we have

$$
\begin{equation*}
\left\{t_{1}^{\gamma}, \cdots, t_{\gamma}^{\gamma}\right\} \subset\left[\sigma_{1}-\delta, \sigma_{1}+\delta\right] . \tag{3.15}
\end{equation*}
$$

Since for any y^{γ} we have the similar equality to (3.14), we get

$$
\left|\bar{y}^{0}-y^{\gamma}\right| \leqq C_{1} \delta \quad(\gamma \geqq N)
$$

for a constant $C_{1}>0$ independent of δ and γ. By the similar way we get

$$
\left|\bar{\eta}^{0}-\eta^{\gamma}\right| \leqq C_{1} \delta \quad(\gamma \geqq N) .
$$

Consequently, we can see that $\left(y^{\gamma}, \eta^{\gamma}\right) \rightarrow\left(\bar{y}^{0}, \bar{\eta}^{0}\right)$ as $\gamma \rightarrow \infty$ and

$$
\begin{equation*}
\left(\bar{y}^{0}, \bar{\eta}^{0}\right) \in W F(G) . \tag{3.16}
\end{equation*}
$$

Next, since $\left\{t_{1}^{\gamma}, \cdots, t_{\nu \gamma}^{\gamma}\right\} \in \Lambda_{\varepsilon,}, j_{1}^{\gamma}, \ldots, j_{\nu \gamma+1}^{\gamma}\left(y^{\gamma}, \eta^{\gamma}\right)$, it follows from (3.11) and (3.12) that

$$
\left|\left(\lambda_{2}-\lambda_{1}\right)\left(t_{1}^{\gamma}, Q_{1}\left(t_{1}^{\gamma} ; t_{1}^{\gamma}, t ; x^{0}, \xi^{0}\right), P_{1}\left(t_{1}^{\gamma} ; t_{1}^{\gamma}, t ; x^{0}, \xi^{0}\right)\right)\right| \leqq C \varepsilon_{\gamma}
$$

for a constant C of (3.11). Here, noting that $j_{1}^{\gamma}=1$ and $j_{\nu \gamma+1}^{\gamma}=2$, we used

$$
\begin{aligned}
& \left(Q_{j_{1}^{\gamma}, \ldots, j_{v y+1}^{\gamma}}, P_{j}^{\gamma}, \ldots, j_{\gamma \gamma+1}^{\gamma}\right)\left(t_{1}^{\gamma} ; t, t_{1}^{\gamma}, \cdots, t_{v \gamma}^{\gamma}, 0 ; y^{\gamma}, \eta^{\gamma}\right) \\
& =\left(Q_{1}, P_{1}\right)\left(t_{1}^{\gamma} ; t_{1}^{\gamma}, t ; x^{0}, \xi^{0}\right) .
\end{aligned}
$$

When $\gamma \rightarrow \infty$, we get from (3.13)

$$
\begin{aligned}
0 & =\left(\lambda_{2}-\lambda_{1}\right)\left(\sigma_{1}, Q_{1}\left(\sigma_{1} ; \sigma_{1}, t ; x^{0}, \xi^{0}\right), P_{1}\left(\sigma_{1} ; \sigma_{1}, t ; x^{0}, \xi^{0}\right)\right) \\
& =\left(\lambda_{2}-\lambda_{1}\right)\left(\sigma_{1}, Q_{1,2}\left(\sigma_{1} ; t, \sigma_{1}, 0 ; \bar{y}^{0}, \bar{\eta}^{0}\right), P_{1,2}\left(\sigma_{1} ; t, \sigma_{1}, 0 ; \bar{y}^{0}, \bar{\eta}^{0}\right)\right) .
\end{aligned}
$$

Together with (3.13)' and (3.16) this implies that

$$
\begin{aligned}
\left(x^{0}, \xi^{0}\right) & \in\left\{\Lambda_{0}^{(1,2)}(t ; y, \eta) ;(y, \eta) \in W F(G)\right\} \\
& \subset \tilde{\Gamma}_{t, 0}
\end{aligned}
$$

II). We can take a subsequence $l=\left\{m_{\mu}\right\}_{\mu^{\infty}=1}^{\infty}$ and points $\sigma_{1}, \sigma_{2}\left(0 \leqq \sigma_{2}<\right.$ $\left.\sigma_{1} \leqq t\right)$ such that $t_{1}^{l} \rightarrow \sigma_{1}$ and $t_{\nu_{l}}^{l} \rightarrow \sigma_{2}$ as $l \rightarrow \infty$. We set

$$
\begin{align*}
v(\sigma ; l)= & \left(\lambda_{2}-\lambda_{1}\right)\left(\sigma ; Q_{j_{1}}^{l} \cdots, j_{v_{l}+1}^{l}\left(\sigma ; t, t_{1}^{l}, \cdots, 0 ; y^{l}, \eta^{l}\right),\right. \tag{3.17}\\
& P_{j_{1}^{l}, \cdots, i_{v_{l}+1}^{l}}\left(\sigma ; t, t_{1}^{l}, \cdots, 0 ; y^{l}, \eta^{l}\right) \quad(0 \leqq \sigma \leqq t) .
\end{align*}
$$

For large l we have

$$
t_{1}^{l}-t_{v_{l}}^{l} \geqq \frac{1}{2}\left(\sigma_{1}-\sigma_{2}\right)>0
$$

and then, noting that $\left\{t_{1}^{l}, \cdots, t_{\nu_{l}}^{l}\right\} \in \Lambda_{\varepsilon_{l}, j_{1}, \cdots, j_{\nu_{l}+1}^{l}}\left(y^{l}, \eta^{l}\right)$, we have by (3.11)

$$
\left|v\left(t_{1}^{l} ; l\right)\right|,\left|v\left(t_{v_{l}}^{l} ; l\right)\right| \leqq C \varepsilon_{l} .
$$

Consequently, since $v(\sigma ; l)$ of (3.17) has the form

$$
\begin{equation*}
v(\sigma ; l)=a \sigma+b \quad(0 \leqq \sigma \leqq t) \tag{3.18}
\end{equation*}
$$

from Lemma 2.3 in Section 2, it follows that

$$
\begin{align*}
|v(\sigma ; l)| & \leqq 2 C \varepsilon_{l} T_{0}\left(t_{1}^{l}-t_{v_{l}}^{l}\right) \tag{3.19}\\
& \leqq 4 C \varepsilon_{l} T_{0}\left(\sigma_{1}-\sigma_{2}\right) \quad(0 \leqq \sigma \leqq t) .
\end{align*}
$$

Now, by Corollary 2.5 there exist some $\bar{t}_{1}^{l}, \bar{t}_{2}^{l}\left(t>\bar{t}_{2}^{l}>\bar{t}_{2}^{l}>0\right)$ such that

$$
\begin{equation*}
\left(x^{0}, \xi^{0}\right)=\left(Q_{1,2,1}, P_{1,2,1}\right)\left(t ; t, \bar{t}_{1}^{l}, \bar{t}_{2}^{l}, 0 ; y^{l}, \eta^{l}\right) \tag{3.20}
\end{equation*}
$$

Then, we note that

$$
\begin{equation*}
\left(y^{l}, \eta^{l}\right)=\left(Q_{1,2,1}, P_{1,2,1}\right)\left(0 ; 0, \bar{t}_{2}^{l}, \bar{t}_{1}^{l}, t ; x^{0}, \xi^{0}\right) . \tag{3.20}
\end{equation*}
$$

We set

$$
\begin{align*}
& v_{1}(\sigma ; l)=\left(\lambda_{2}-\lambda_{1}\right)\left(\sigma ; Q_{1,2,1}\left(\sigma ; t, \bar{t}_{1}^{l}, \bar{t}_{2}^{l}, 0 ; y^{l}, \eta^{l}\right)\right. \\
&\left.P_{1,2,1}\left(\sigma ; t, \bar{t}_{1}^{l}, \bar{t}_{2}^{l}, 0 ; y^{l}, \eta^{l}\right)\right) \tag{3.21}
\end{align*}
$$

Since $v_{1}(\sigma ; l)=v(\sigma ; l)$ by Lemma 2.3 and Remark 2.1, from (3.19) we obtain

$$
\begin{equation*}
\left|v_{1}(\sigma ; l)\right| \leqq \frac{4 C}{\sigma_{1}-\sigma_{2}} \varepsilon_{l} T_{0} . \tag{3.22}
\end{equation*}
$$

Next, let $\bar{\sigma}_{i}\left(i=1,2, \bar{\sigma}_{1} \geqq \bar{\sigma}_{2}\right)$ be the accumulating points of sets $\left\{\bar{t}_{i}^{l}\right\}_{l=1}^{\infty}$, respectively and take some subsequence $\left\{\gamma=l_{\mu}\right\}_{\mu=1}^{\infty}$ such that $\overline{\boldsymbol{t}}_{1}^{\gamma} \rightarrow \bar{\sigma}_{1}$ and $\bar{t}_{2}^{\gamma} \rightarrow \bar{\sigma}_{2}$ as $\gamma \rightarrow \infty$. Then, it follows from (3.20)' that there exists ($\bar{y}^{0}, \bar{\eta}^{0}$) such that

$$
\left(y^{\gamma}, \eta^{\gamma}\right) \rightarrow\left(\bar{y}^{0}, \bar{\eta}^{0}\right)=\left(Q_{1,2,1}, P_{1,2,1}\right)\left(0 ; 0, \bar{\sigma}_{2}, \bar{\sigma}_{1}, t ; x^{0}, \xi^{0}\right)
$$

as $\gamma \rightarrow \infty$, and

$$
\begin{equation*}
\left(\bar{y}^{0}, \bar{\eta}^{0}\right) \in W F(G) . \tag{3.23}
\end{equation*}
$$

We note that

$$
\begin{equation*}
\left(x^{0}, \xi^{0}\right)=\left(Q_{1,2,1}, P_{1,2,1}\right)\left(t ; t, \bar{\sigma}_{1}, \bar{\sigma}_{2}, 0 ; \bar{y}^{0}, \bar{\eta}^{0}\right) . \tag{3.24}
\end{equation*}
$$

By using (3.22) we obtain

$$
\begin{aligned}
& \left(\lambda_{1}-\lambda_{2}\right)\left(\sigma, Q_{1,2,1}\left(\sigma ; t, \bar{\sigma}_{1}, \bar{\sigma}_{2}, 0 ; \bar{y}^{0}, \bar{\eta}^{0}\right), P_{1,2,1}\left(\sigma ; t, \bar{\sigma}_{1}, \bar{\sigma}_{2}, 0 ; \bar{y}^{0}, \bar{\eta}^{0}\right)\right) \\
& =\lim _{\gamma \rightarrow \infty} v_{1}(\sigma ; \gamma) \\
& =0 \quad(0 \leqq \sigma \leqq t)
\end{aligned}
$$

This implies with (3.23) and (3.24) that

$$
\left(x^{0}, \xi^{0}\right) \in \widetilde{\Gamma}_{t, 0}
$$

which means (3.9) together with the result of I).
Q.E.D.

References

[1] S. Alinhac: Branching of singularities for a class of hyperbolic operators, Indiana Univ. Math. J. 27 (1978), 1027-1037.
[2] S. Alinhac: A class of hyperbolic operators with double involutive characteristics of Fuchsian type, Comm. Partial Differential Equations 3 (1978), 877-905.
[3] J. Chazarain: Opérateurs hyperboliques à caractéristiques de multiplicité constante, Ann. Inst. Fourier 24 (1) (1974), 173-202.
[4] J. Chazarain: Propagation des singularités pour une classe d'opérateurs à caractéristiques multiples et résobulité locale, Ann. Inst. Fourier 24 (1) (1974), 203-223.
[5] A.K. Gautesen and D. Ludwig: Tangential characteristics and coupling of waves, J. Math. Anal. Appl. 38 (1972), 430-466.
[6] M. Hata: On the Cauchy problem for hyperbolic operators with characteristic roots of variable multiplicity, Master thesis, Osaka Univ., (1977).
[7] H. Kumano-go: Pseudo-differential operators, Iwanami Shoten, Tokyo, 1974 (in Japanese).
[8] H. Kumano-go: Factorizations and fundamental solutions for differential operators of elliptic-hyperbolic type, Proc. Japan Acad. 52 (1976), 480-483.
[9] H. Kumano-go: A calculus of Fourier integral operators on R^{n} and the fundamental solution for an operator of hyperbolic type, Comm. Partial Differential Equations 1 (1976), 1-44.
[10] H. Kumano-go, K. Taniguchi and Y. Tozaki: Multi-products of phase functions for Fourier integral operators with an application, Comm. Partial Differential Equations 3 (1978), 349-380.
[11] H. Kumano-go and K. Taniguchi: Fourier integral operators of multi-phase and the fundamental solution for a hyperbolic system, Funkcial. Ekvac. 22 (1979), 161-196.
[12] P.D. Lax: Asymptotic solutions of oscillatory initial value problem, Duke Math. J. 24 (1957), 627-646.
[13] D. Ludwig: Exact and asymptotic solutions of the Cauchy problem, Comm. Pure Appl. Math. 13 (1960), 473-508.
[14] D. Ludwig and B. Granoff: Propagation of singularities along characteristics with nonuniform multiplicity, J. Math. Anal. Appl. 21 (1968), 556-574.
[15] Y. Morimoto: Fundamental solution for a hyperbolic equation with involutive characteristics of variable multiplicity, Comm. Partial Differential Equations 4 (1979), 609-643.
[16] J.C. Nosmas: Parametrix du problèm de Cauchy pour une classe de systèmes hyperboliques symétrisables à caractérisitques involutives de multiplicité variable, C.R. Acad. Sci. Paris Sér. A 288 (1979), 129-132.
[17] K. Taniguchi: Multi-products of Fourier integral operators and the fundamental solution for a hyperbolic system with involutive characteristics, to appear.
[18] K. Taniguchi and Y. Tozaki: A hyperbolic equation with double characteristics which has a solution with branching singularities, Math. Japonica 25 (1980), 279300.
[19] G.A. Uhlmann: Pseudo-differential operators with involutive characteristics, Comm. Partial Differential Equations 2 (1977), 713-779.

Department of Mathematics
Shimane University
Matsue 690
Japan

