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0. Introduction

The homotopy theory of group representations has been studied by various
authors (see [3], [4], [7], [8], [9], [10] and [11] for example). We are con-
cerned with it in this paper.

Let G be a compact topological group. If V is a real G-representation, we
denote by S(¥) its unit sphere with respect to some G-invariant inner product.
Two real G-representations V' and W are called J-related if and only if there
exists a real G-representation U such that S(VV @ U) and S(W P U) are G-homo-
topy equivalent. Then the group Ji(*) is defined as the quotient group of
the real representation ring RO(G) by the above relation. K. Kawakubo studied
Je(*) for abelian groups G in [8] and [9]; S. Kakutani for some kind of metacy-
clic group in [7]. T. tom Dieck and T. Petrie made it clear in [3] and [4] that
Js-relation is deeply connected with field automorphisms.

The purpose of this paper is to determine J;(*) for G=SL(2, p), where p
is a prime greater than four. For this, Petrie’s theorem introduced in section
2 is applicable. Our main results are Theorems 1.1 and 1.2.

The arrangement of this paper is as follows. In section 1 we determine the
irreducible real SL(2, p)-representations and state Theorem 1.1 and 1.2. In
section 2 we introduce our main tools (developed by Petrie, tom Dieck and
Kawakubo). Section 3 is devoted to algebraic lemmas. In section 4 we study
subgroups of SL(2, p) up to conjugation. In section 5 we consider J;-relation
for generalized quaternion groups G, and get Corollary 5.5 as a by-product
related to [3; Theorems 1 and 3]. In section 6 we list the restriction of SL(2,
p)-representations to some subgroups. Putting all this together we prove
Theorem 1.2 in sections 7 and 8.

The author is greately indebted to Professor K. Kawakubo for suggesting to
the author the problem discussed here and for his advice in preparing this paper.

1. The main results and the real SL(2, p)-representations

Let N be the set of positive integers. Denote

D(n) = {kEN: k divides n and 2k<n} ,
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D,(n) = {k€D(n): kis odd} ,
D,(n) = {k=D(n): k is even} ,
for each positive integer n. We define groups /,, and J,, for each integer

n>1 and for each even integer #>>2 respectively as follows. Let n=2¢pi® ... p;®
be the prime decomposition of #.

Case 1. k=2. We set
Jin = ZDZp+D D Zyo_po and
i=1 4 4

t
J2,n = Z@Zzh-zea 6=31 Z(i,'t(l')_p't(l')-l)/z .
Case 2. k=0or1l. Weset
Jin= Z@(é} Zyo_yr-1)[Z, and
i=1 ¢ ¢

t
Jon=2ZD @1 Z(P’,cn_ﬁ(i)-x)/z ,
i=

where the inclusion of Z, into ézp(ﬁ)_p{(ﬂ-l is given by 1@ (pi—pi¥71)/2,
i=1 ! 4

Z is the group of integers, and Z,, are the quotient groups Z/(m) for positive
integers m.
Then we have

Theorem 1.1. Let p>4 be a prime. Then the group Jsic »(*) is isomor-
phic to

ZPZPZPZPT
S>) @MEDe(p—l)Jl, (p—1)/m® @men,(p—l)jz,(p—l)/m
S ®meb,<p+1)]1,(p+1)/m@ @meno(pﬂ)]z,(pﬂ)/m ’

where T is Z,DZ, if p=1mod 4, {0} if p=3 mod 4 respectively.

This theorem is a consequence of Theorem 1.2. We, however, need
some preparation to state Theorem 1.2.

Let G be a topological group. If V is a real G-representation, define
cV=CQprV, regarded as a complex G-representation, where R and C are the
classical fields of the real numbers and of the complex numbers respectively.
Similarly, if V" is a complex G-representation, let 7} have the same underlying
set as V and the same operations from G, but regard it as a vector space over
R. Let V be a real (resp. complex) G-representation. If H is a subgroup of
G, then the restriction of the group action to H defines the real (resp. complex)
H-representation resy V. If K is another topological group and f is a homomor-
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phism from K to G, then the canonically induced real (resp. complex) K-repre-
sentation is denoted by f*V.

We will determine the irreducible real SL(2, p)-representations according
to [5; §38].

Let p be a prime greater than four, G be SL(2, p), F be a finite field of p
elements and » be a generator of the cyclic group F*=F—{0}. Denote

(l 0) (—1 0) (1 O)
1= 8 = Cc=
0o 1) 0 —1p 1 1)
1 0 0
v 1) 0 »t)

Moreover G contains an element b of order p-+1, and we identify F with Z,=
Z|(p). For each element x of G, let (x) denote the conjugacy class of G con-
taining x. Then G has exactly p+4 conjugacy classes (1), (2), (¢), (d), (x¢), (2d),
(@), (@), -+, (@?7972), (b), (B%), -+, (b®~VP%) satisfing

Table 1

x 1 2 c d 2C dz a” b

@ 1| 1" =D2|*—D2|(*—1)2|(*—1)/2| p(p+1) | p(p—1)

for 1=m=(p—3)/2, 1=n=(p—1)/2.
Put &=(—1)®"V2 p=exp(2n\/ —1/(p—1)) and o=exp(2z\/—1/(p+1)).

We can choose v and b so that the complex character table of G is

Table 2

1 2 c d a" b"
1, 1 1 1 1 1 1
r P P 0 0 1 —1
X; | p+1l [(=Di(p+1) 1 1 pimtpTim 0
6; | p—1 [(—=D(p—1) —1 —1 0 |=(e"+a7)
E | (p+D)2| &p+D2] (14+vEp)2| (1—vep)2| (—1)" 0
E |(p+D2) ep+D2) (1=Vep)2| (14+vep)2| (—=1)" 0
m |(p—1)2 |—&(p—1)[2[(—1+VEp)2|(—1—VEp)2| O (==
7 | (p—1)[2|—E(p—1)2(—1—VEp)2(—14+V/Ep)2| O (=™
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for 1< (p—3)2, 1S7=(p—1)2, 1=Em = (p—3)[2, 1=n=(p—1)/2. The
columns for the classes (2c) and (2d) are missing in this table. These values
are obtained from the relations

X(zc) = X()X()[(1), X(=2d) = X(=)X(d)[X(1)

for all irreducible characters X of G. We usually identify the above characters
with the corresponding complex representations.

According to [1; 3.62], an irreducible complex G-representation X is real,
not self-conjugate or quaternionic if and only if

2eec X(*)} G|

is equal to 1, 0 or —1, respectively. By calculation of the above values, we
determine the irreducible real G-representations as follows.
If p=1 mod 4, we have

Table 3
R R4 X; (i: even) | ©; (j: even) E, E,
dimg 1 ? p+1 p—1 (p+D2|(p+1)/2
n.b. cR=1; | c¥=+r cX;=X; 0;=0; cE,=E, | cB,=E,
X; (¢: odd) | ©; (j: odd) bl 9,
2(p+1) 2(p—1) p—1 | p—1
X;=rX; 0;=10; D1=ry, | Oo=rn,
for 1I<i<(p—3)/2, 1S =(p—1)/2.
If p=3 mod 4, we have
Table 4
R ¥ |X, (i: even)|®, (j: even)| X; (i: odd) |8, (j: odd)
dimg 1 P p+1 p—1 2(p+1) | 2(p—1)
nb. | cR=l; | c¥=y | X;=X; | ¢8;=0; | X;=1X; | 6;=rb;
= o
p+1 p—1
E=1& | S=m,




Groups Jg(*) FOR G=SL(2, p) 61

for 1Si<(p—3)/2, 1= (p—1)/2.
Put

[n: m] = {kEN: 2k<n, (k, n) = m}

for neN and me D(n), where (k, n) is the greatest common divisor of & and 7.
Now we state Theorem 1.2.

Theorem 1.2. Let V=@, (Y)Y and W=Dy c'(Y)Y, where Y runs through
the irreducible real representations and the coefficients ¢(Y) and c¢'(Y) are non-
negative integers. Then V and W are Jg-related if and only if all the following
conditions (1), (I), -+, (VII) are satisfied.

M o(R) = ¢'(R).
(1) (¥) = c'(?).
For each element m of D,(p—1),
) (IIL0) X e(Xy) =2%c'(X,) and
(III, 1) II (k/m)*w= j:l;[ (k/m)* *» mod (p—1)/m,
k

where k runs through [p—1: m] .
(IV,0) X)) =2%c'(X,) and

(IV, 1) TI (kjmy=0=TL (kfm)* 9 mod 2(p—1)/m,
where k runs throdugh [p—1: m] .

Iv)

For each element m of D (p+1),

(V,0)  23¢(@y) =2%c'(8,) and

(V,1) I (km)® =+ TI (k/m)" mod (p+1)/m
where k runs through [p+1: m] .

S For each element m of D,(p+1),

V)

( For each element m of D,(p+1),

(V,0) 2% (@) =20 c'(8))

(V, 1) TI (kfm)*©P=TI (w/k)'® mod 2(p-+1)/m,
whre k runs through [p+1: m] .

If p=1mod 4,

(VIL 0) ¢(E))+c(BEy) = ¢'(En)+c'(Ey) and

(VIL, 1) ¢(E)=c'(E;)mod 2.

If p=3 mod 4, ¢(E) = ¢'(E).

(VD)

(VII)
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If p=1mod 4,

(VILL 0) ¢(9,)+(9:) = ¢'(©)+¢'(D) and
(VIIL, 1) ¢(D))=c'(D;) mod 2.

If p=3 mod 4, ¢(D) = '(D).

(VIIT)

This theorem will be proved in sections 7 and 8. Theorem 1.1 can be
obtained from the same argument in [9; 3]. The details are omitted.

2. Introduction of fundamental theorems

Let G be a finite group, V and W G-representations, and f a G-map from
S(V) to S(W). For each subgroup H of G, let S(V)¥ and S(W)¥ be the H-fixed
point sets of S(V) and of S(W) respectively, and f# the induced map from S(V)#
to S(W)#. By the equivariant case of the theorem of J.H.C. Whitehead (see
[6] and [12]), the G-map f is a G-homotopy equivalence if and only if deg f¥ is
equal to 1 or —1 for each subgroup H of G. When does a G-homotopy equi-
valence from S(V) to S(W) exist? If V and W are complex G-representations,
Petrie’s theorem below is applicable to this question. Now let ¥ and W be
complex G-representations. Then the H-fixed point sets S(V)¥ and S(W)*
inherit the canonical orientations from the complex structures on V# and W*.
To introduce Petrie’s theorem, we assume that

dim V# = dim W# for each subgroup H of G .

Let K be a cyclic subgroup of G with a generator g of order #n. As com-
plex K-representation, V (resp. W) splits as V=VXPVy (resp. W=W*D W)
which defines Vi (resp. W) as the complement of the K-fixed point set
VE (resp. WX) of V (resp. W). Put n_y(Vg)(g) =23 (—1) trace (g, A'Vk),
where 7 runs through the non-negative integers. Define X(V'—W; K) by

ey st V(&)
V=W K) = & W &)’

where Z} is the set of units of Z,.

Theorem 2.1 (Petrie). Let an integer d(K) be given for each subgroup K of
G. There exists a G-map f from S(W) to S(V) such that deg f*=d(K) for every
K, if and only if the following conditions are satisfied.
(i) If H and K are conjugate in G, then d(H)=d(K).
(i) If dim VE=0, then d(K)=1.
(i) If H<K and VE=V¥, then d(H)=d(K).
(iv) For each subgroup H,

S X(VE—WH; KJH)d(K)=0 mod | NH/H |,



GRroups Jg(*) FOR G=SL(2, p) 63

where the summation is taken over the subgroups K of NH such that K include H
and K[H are cyclic. Here NH is the normalizer of H in G.

Let’s call the above relation (iv) the Petrie equation. In order to calculate
the Petrie equation, we express X(V—W; K) in another form. Let ay(g),
as(g), -+, aa,(g) be all the eigenvalues of g on V, By(g), Bx(g), **, B«(g) all the
eigenvalues on W, where s is the complex dimension of V. Assume that
an(g)=PBu(g)=1 for each m<t, a,(g)*1 and B,(g)=*1 for each m=¢. Then
we have

X(V—W; K) = 3 1 1=%n(8)

where g is the generator as before and for m<¢ we put {l1—a,,(g)’}/{1—B.(2)}
=1 for convenience’ sake. This yields

WKy =V, 1T 1=%(&)
X V_“ ) K — g/ T 5 N
( =2 e

where g’ runs through the generators of K.

If we deal with complex G-representations, we call S(V) and S(W) oriented
G-homotopy equivalent if there exists a G-homotopy equvalence f from S(V) to
S(W) such that for each subgroup H of G, the restricted map fZ from S(V)¥ to
S(W)# has degree one with respect to the canonical orientations. Let R,(G)
be the subgroup of the complex G-representation ring R(G), consisting of a=
V—W such that S(V) and S(W) are oriented G-homotopy equivalent. Let
RO(G) be the real G-representation ring and RO;(G) be the subgroup of RO(G)
consisting of =V —W such that IV and W are J;-related. The elements a=
V—W of R(G) such that dim V#=dim W¥ for all subgroups H of G form a
subgroup of R(G) which is denoted by Ry(G). The analogous subgroup of
RO(G) is denoted by RO(G). If G has order n=|G |, then G-representations
are realizable over the field Q(¢) where ¢ is a primitive n-th root of unity.
The Galois group T of Q({) over @ acts on R(G) and RO(G) via its action
on character values. Let Z[I'] be the integral group ring of T" and I(T') its
augumentation ideal. It is well known that R(G)=I(T')R(G) and RO,(G)=
ITYRO(G). Put R(G)=I(T)Ry(G) and RO(G)=I(T)ROy(G). (Our notations
follow tom Dieck [3].)

Then the following theorem is proved.

Theorem 2.2 (tom Dieck and Petrie). For all finite groups G we have
R\(G)CR,(G) and RO,(G)C RO,(G).

We conclude this section by introducing a result for the cyclic group Z,
(see [8] and [9]). For an integer k, we define a complex Z,-character v(n, k)
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which will be identified with the corresponding complex Z,-representation, by
v(n, k)(j) = exp 2z jk/ —1/n) forjeZz,.
Put V(n, k)=rv(n, k), and simply write V() for V(n, k) if there is no confusion.

Theorem 2.3 (Kawakubo). Let V=@@,c(k)V(k) and W=D, c'(k)V(k),
where k runs through [n: 1] and all the coefficients c(k) and c'(k) are non-negative
integers. Then the following three conditions (i), (ii) and (iii) are equivalent.

(i) S(V)and S(W) are Z,-homotopy equivalent.
(it) V and W are [, -related.

(i) Dhek) =2 c'(k) and

I:.I kW= 4 I;[ E'® mod n.

3. Algebraic lemmas

For an even integer g=4, put
O, = {keN:1<k=q, kis 0odd},
E,= {k EN:1<k=gq, kis even},

and p=exp(2z\/ —1/q).
Lemma 3.1. Let r be a positive divisor of q with 2r<<q. Then we have
2lieo, W =0.
Proof. (i) We firstly prove the relation for r=1. Observe
2eour, bF = 0.

On the other hand we have
' q/2 g
Eke&,l& =§(M) =0.

Therefore we obtain 33,0, p*=0.
(ii) If g/r is even, then ¢/r=4. From (i) we have

Ekeo, wr=r z}kEOq/r (M')k =0.
(iii) If g/r is odd, then we have
alr
ZkEOq = (7'/2)'E1 (w)=0.

This completes the proof of Lemma 3.1.
Now let p be an odd prime with p=1 mod 4. Denote
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= {nEN: 1=a=<p—1, n=:"mod p for some integer 7} ,
K!={reK;: 1=n=(p—1)/2} ,
K, = {neN:1=<n=<p—1,n&EK}, and

= {nek,: 1=a=(p—1)/2} .

Then we have the following lemma.
Lemma 3.2. It never holds that

II n=+4+ 1l nmodp.
nekKs nekK,
Proof. Let a be an integer which generates Z¥. For iEN there exists
an integer m such that a'—mpeK,, if and only if /=0mod 2. Thus for B
K., there exists an integer m such that ¢@—mpeEK,. Since p=1mod4 im-
ples p—1&K,, either aB—mp<E K] or p—(aB—mp) & K; happens. We
define a map a* from K ! to K/ which maps 8 to aB8—mp if aB—mpEK/, to
p—(aB—mp) if p—(aB—mp)= K/ respectively. It is easy to check that a*
is bijective. Suppose that
T n=+ H nmodp.
nekKs nekK,
Then we have
g{/n_:t H n_i H a*(n) i II om—j;a(f’ D/ ]‘;{ nmod p .
This implies a® Y=+ 1mod p. Therefore we have a®?=1mod p. This
contradicts the fact that the order of ¢ is p—1. This completes the proof.
Lastly we quote a lemma which contributes to the computation to determine
the restriction of SL(2, p)-representations to subgroups in section 6. Put {=
exp (2z+/ —1/p), where p is an odd prime with p=1 mod 4.

Lemma 3.3 (Gauss, see [13]). It holds that
. —14+Vp . —1—p
2hex, U = —%p‘ and ek, § =—_2—*A :
4. On subgroups of SL(2, p)

In this section we determine some subgroups of SL(2, p) up to conjugation
and their normalizers in order to use the Petrie equation. Here p is an odd
prime greater than four.

Put
a 0
B = {( _):aEF*,BEF}.
B a’!
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Then B is the subgroup generated by a and zc defined in section 1. If
p=1mod 4, B has the subgroup

O

By = <x, yrx=26y :( 0 ,,—(p—l)/4)>-

We firstly consider subgroups H of SL(2, p) such that p divides |H|. Since
H contains a cyclic subgroup of order p, we may assume that H contains <{¢)>
(see Table 1). Let ¢ act canonically on

F@F=%(;):xEF}.

Then <{c)> preserves the line
0
L= {( ): xEF } .
x

We easily see that N<c)> is B, where N<c) is the normalizer of <{c> in SL(2, p).
If all the elements of H of order p are represented in the form

()

then for each element g of H it holds that g7'{c>g=<c>. Therefore H is
included in B. Otherwise H has an element of order p which never preserves
the line L. According to the proof of [14, 2.4 Proposition 15] H must be
SL(2, p). Hence H is included in B, if H is different from SL(2, p). Moreover
{¢> is the unique cyclic subgroup of B of order p, consequently of H. Thus
B=N<c)> includes the normalizer NH of H in SL(2, p).

We have proved

Proposition 4.1. For a subgroup H with {cyCH C B, NH is included in B.

Secondly we will determine the subgroups H of SL(2, p) with (| H |, 2p)=1.
In this case |H | is divisible neither by 2 nor by p. Let f be the projection of
SL(2, p) to PSL(2, p)=SL(2, p)/<z>. Observe

f(H)CPSL(2, p)CPGL(2, p).

Let K be a subgroup of PGL(2, p) whose order is prime to p. If K is neither
cyclic nor dihedral, then K is isomorphic to one of the groups «,, &, and U;
(see [14; Proposition 16]). Now |f(H)| is prime to p, moreover to 2. It
follows that f(H) is cyclic. As |H| is prime to 2, H is a cyclic group which
does not contain 2. If H is non-trivial, then we assume that H is one of {a")
and <b*>, where 1<s<(p—1)/2, 1<t<(p-+1)/2.
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Proposition 4.2. Provided 1=<s<(p—1)/2, we have

O A )

Since the proof is straightforward, we omit it.

From now on we will determine N<¥*> for 1=<t<(p+1)/2. Following to
Dornfhoff [5; p. 229], put k&=GF(p?), then kDF. Choose a generator 7 of
k* with 7**'=p. Let b and e be the F-linear maps of the F-vector space k
defined by &(v)=7?"'y and e(v)=7v, where 7 are elements of k. If an element
g of SL(2, p) satisfies gb'g™'=b", 1=t<(p+1)/2, then we have gb'=>b"g. Let
¢: k—k be the map given by

Hla+TPIR) = qr® UG

where a and B are elements of F. So we have ¢p(a+b'B)=a+b"B. If y=
a+7? VR and pEk, then it follows that g(vu)=g((a+b'B)n)=(a+b"R)g(r)
=¢(7)g(n). Therefore we have g(v7')=¢(v7')g(1) and g(vv")=H(7)g(7’)
=¢(7)p(v")g(l), and these relations imply ¢(vYY")=¢(Y)p(v’). Hence ¢ is

an automorphism of & over F.

Proposition 4.3. For each element g of N<b*, 1=t<(p+1)/2, g is in-
cluded in the normalizer Ny, »<e)> of <e> in GL(2, p).

Proof. Let ¢ be the map defined as above, ¢’ the map of k given by
¢’(v)=g(1)y for elements v of k. Then g is considered as the composition
¢’op. It is sufflcient to show that both ¢ and ¢’ belong to the normalizer
Nereo,p<e>. Since ¢ is an automorphsm, we have (pedp™)(v)=¢(T)v. ¢(7) is
an element of k*. Therefore pedp'=e" follows for some integer m. As for ¢’,
since g(1) is an element of k¥, there exists an integer m such that ¢'=¢€". ltis
clear that ¢’ belongs to Ny p<e>. This completes the proof.

Proposition 4.4. N<BD, 1<t <(p-+1)/2, s equal to N<{b>. Moreover
[ N<BY[<b) | =2 holds.

Proof. By Proposition 4.3, N<{b*> is included in Ng, »<e>NSL(2, p).
On the other hand, it is obvious N<¥*)> includes N, n<e> N SL(2, p). Con-
sequently we have N<b'>=N;.; » N SL(2,p). The first part of Proposition 4.4
follows from this relation.

From the above fact we obtain

|N<BY[KB>| = | Nere,p<e> N SL(2, p)[<e> N SL(2, p)|

= INGL<z,p)<e>/<e>|
=2,
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Proposition 4.5. N<a)> and N<b)> are the generalized quaternion groups such
that

NLay =<, y: a?™t =1, 0702 = 42 y7lgy = &7V
Ny =, y: ™ =1, k02 = 42 y~lpy = 715

Proof. For N<a), put x=a and y=
0 —1
)
Then the three relations x?'=1, x®/2=4? and y~'xy=x"" follow immediately.
For N<b)>, put x=b and choose an arbitrary element as y in N<{\b.
Since |Gal(k|F)|=2, we get y(v)=v?y(1) for any y=k. Let ¢ and ¢’ be
the maps of & defined by ¢(v)=v? and ¢'(v)=y(1)y for yEk. Then we can
consider ¥ as the composition ¢’op. As det y=1 and det = —1, we get
det ¢’==—1. det e=v implies that the order of y(1) as an element of k*
divides 2(p+1). Since we have y*(v)=y(v?y(1))=7y(1)**!, the order of j* is
at most 2. Since y&<b>, we conclude that the order of y is 4 and y*=z.

We complete the proof if we show the relation y~'xy=x"'. Notice that
y'=zy and y(1)’"'=—1. For v Ek, we have

(y72y)(7) = (2y2)(¥(7)) = (2yx)(v"¥(1))
= (D) = 5731
= 7l7ty = x"(’)’) .

Hence we obtain y'xy=x"". This completes the proof.

5. Jgrelation for generalized quaternion groups G

We showed in the previous section that SL(2, p) contains some generalized
quaternion groups. In order to consider [y »-relation, we consider [Je-
relation for the generalized quaternion groups. Let G be one of them .with
presentation

lwyyra® =12 =92 y oy = a7,

where s is an integer greater than 1. For an integer & with 1=<k<(s, define a
complex matrix representation T(G, k) by

T(G, k)(x) = (gk ;ik) and

Iwwmze(ﬁﬁ,
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where {=exp(z\/—1/s). The corresponding complex G-representation to
T(G, k) will be also denoted by T(G, k). From [2], T(G, k) is irreducible. If
G is fixed and there is no confusion, we simply write T(k) for T(G, k).

Proposition 5.1. If rT(1) and rT(k) are J-related, then it holds that
F=1mod 4s.

We will prove this proposition later on, and we admit this proposition to
be true for a moment.

Proposition 5.2. Provided k*=1 mod 4s, S(T(1)) and S(T(k)) are oriented
G-homotopy equivalent.

Proof. We show that there exists a G-map f from S(7(1)) to S(T'(k)) such
that deg f¥=1 with respect to the canonical orientations for each subgroup K
of G, using Theorem 2.1. Put V=T(k), W=1T(1) and d(K)=1 for all K<G.
Since G acts freely on S(T'(k)) as well as S(7(1)), it is sufficient to check the
Pertrie equation for H={1}. That is we check the equation:

) dut 3 XTE)—T(1); <)) +sd(<eyd)+sd(<yp)=0 mod 4,
<ty
where all d(*) are equal to one. Since
oy (1—§ijk)(1—§—ijk)
X(T(R)—T(1); &) = 23 (1—¢7)(1—¢ %)

i€z,

D S S AVS s A RE el

jezy,

the left hand side of (*)
=14+ 33 X(T(k)—T(1); <¥'>)+2s
Cady(1)

- 1+§j{ {1 b oo ETEDY {1 E T oee £ IE D} — R4 25 .

By the fact that for integers a and B, ("t ?=1 implies {P{ “=1, the above
value is congruent to 1+42ks—k?+2s mod 4s, consequently to 0 mod 4s. This
completes the proof.

Corollary 5.3. T(k)—T(1) (resp. rT(k)—rT(1)) belongs to R,(G) (resp.
RO\(G)), if and only if =1 mod 4s.

Proposition 5.4. If 33,cry, : 11¢(R) T(R) (resp. D ietzs : 11 ¢(R) {r T(k)}) belongs tu
R\(G) (resp. RO\(G)), then we have

];[ kE®=11 mod 2s,

where all the coefficients c(k) are integers, and for a positive integer i, k™" is an
integer such that k'k~*=1 mod 2s.
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Proof. Let ¢ be a field-automorphism and ¢ an integer such that ¢(¢)=¢,
then for h&[2s: 1] T (k) is equal to T(h'), where &' &[2s: 1] and h’= +th mod 2s.
If we have 23, ¢(R)T(k)=(1—¢)(1—¢')T(h) for some A& [2s: 1] and field-auto-
morphisms ¢ and ¢’, then we easily get [T #®=41 mod 2s. Proposition 5.4
comes from this fact.

Corollary 5.5. Assume s is odd. If we have R(G)=R,(G) or RO\(G)=
RO\(G), then s is a power of a prime.

Proof. If s is odd and divisible by distinct more than two primes, then
there exist more than two integers & such that =1 mod 4s and 1=<k<<s. If we
take such a non-trivial &, T(k)—T(1) (resp. rT(k)—rT(1)) belongs not to R (G)
(resp. RO|(G)) but to R,(G) (resp. RO,(G)).

Theorem 5.6. Let V=0 cp;: 11¢(R)T (k) and W=D erz : 1¢'(R) T (k), where
c(k) and c'(k) are non-negative integers. Then the following three statements (i),
(i1) and (iii) are equivalent.
0 { 2hck)=2%c'(k) and
IT #®=TI F'® mod 4s .

(1) 7V and rW are J;-related.
(iit) S(V) and S(W) are oriented G-homotopy equivalent.

Proof. Firstly we prove that (i) implies (iii). Since X3, c(k)=21; ¢'(k),
> (c(k)—c'(R))T(k) belongs to R(G). There exists i &[2s: 1] such that

>V, (c(k)—c'(k) T(R)=T(5)— T(1) mod R,(G)

(see [3; section 1]). By Proposition 5.4 and (i), we have =1 mod 4s. Combin-
ing Theorems 2.1 and 2.2 and Proposition 5.2 we see that S(V) and S(W) are
oriented G-homotopy equivalent.

It is clear from the definition that (iii) implies (ii).

We complete the proof by showing that (ii) implies (i). It is easy to get
2N c(k)=2]; ¢'(k) from (ii). Therefore we have 23 (c(k)—c'(k))T(k)=T(:)—
T(1) mod Ry(G) for some i& [2s: 1]. Since rT'(1) and rT(7) are Jg-related,
i?=1mod 4s. By Proposition 5.4 it holds that IT #® =TI ¥'® mod 4s.

We have proved Theorem 5.6 assuming Proposition 5.1.

Proof of Proposition 5.1. For s a power of two, Proposition 5.1 is given in
tom Dieck [3; section 4].

Lemma 5.7. If s is a power of an odd prime, rT(1) and rT(k) are J-related,
then =1 mod 4s hclds.

If we admit this lemma to be true, we can prove Proposition 5.1 in general
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as follows. Let s=pI®p;®..- pi® be the prime decomposition of 5. For each
integer 7, 1=7 =¢, restrict T(1) and T'(k) to the subgroup H(7) of G generated by
x' and y, where j=s/p;®. If rT(1) and rT(k) are J;-related, then r(reszqT(1))
and r(resy T(k)) are Jyq-related. From the case of a power of a prime, we
obtain that #=1mod 4pi>. This yields that #=1 mod 4.

Proof of Lemma 5.7. Let s=¢" be the prime decomposition of s. From
the assumption such that »T'(1) and rT'(k) are J;-related, there exists a complex
G-representation U such that S(T(1)@U) and S(T(k)@U) are G-homotopy
equivalent. Therefore there exists (d(K))x consisting of 1 and —1, and satisfying
the Petrie equation (iv) of Theorem 2.1 for V=T(k)®U and W=T(1)BU,
where K runs through the subgroups of G. The following assertion is a key to
complete the proof of Lemma 5.7.

Assertion 5.8. In the above situation, it holds that
() d<a™) = d(<a) for 0=m=n,
(i) d(<x*">)=d(<xD) for 0<m=<n—1.

Proof. We prove (i) by induction on m. If m=0, then (i) holds trivialy.
For fixed m, 0=<m=<n—1, putting the inductive assumption such that

d(<a) = d(<x)
holds for each i, 0<i<m, we prove d(<x*""'>)=d(<x)>). The Petrie equation
for H=<x"m“> is
A ) 3] )+, y)=0mod 297,

where ¢ is the Euler function. By the inductive assumption, we get

A< )+ (g — D<)+ (<o
Since d(K)=1 or —1, we obtain

d(G™) = d(G)

This completes the proof of (i).
Next we prove (ii) by induction on m. The Petrie equation for H=<s*> is

d(K&®)+d({x>)+2d(G)=0mod 4.
Since d(K)=1 or —1, we obtain d(<a*>)=d({x>). This shows (ii) for m=0.

As the rest of the proof of (ii) is quite similar to that of (i), we omit it.
We return to the proof of Lemma 5.7. The Petrie equation for H={1} is

d({1} )+ 24[ X(T(R)— T(1); <&*>)d(<{x'>)+25d(<y>)=0 mod 4s .
x>+ (1)

m+1

, ¥>)=0mod 2¢™** .
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From the definition we obtain

T(B—T(1 : N (1_Cijk)(1__§-ijk)
OO &, o

:J_E;*} {14 LA e LHEDY {1 L oo f L HEDY
2s/é

By Assertion 5.8 d(<x*>)=d(<x)>) holds for <x">= {1}. Therefore it holds that
23 X(T(R)—T(1); <x'D)d(<xD)

{atyH(1}

= 3 X(T(k)—T(1); <¥D)d(<x)

by
= d({xD) [g {LE L e LT D} {14 g eee L0 D} _R2]

Since for integers a¢ and B, {¢ =1 implies £’ =1, we get

23 X(T(k)—T(1); <x*>)d(<x">) = (2ks—k)d(<x>) mod 4s .
<x' > (1}
Therefore the Petrie equation shows that

d({1})+(2ks—k)d({xy) +25d(<y>)=0 mod 4s .

As d(k)=1 or —1, we obtain d({1})=~#d(<x>) mod 4s. Consequently we have
not only d({1})=d(<x>) but also #*=1mod 4s. This completes the proof of
Lemma 5.7.

6. Restriction of SL(2, p)-representations to subgroups

In section 4 we considered subgroups of SL(2, p). Rest:iction of irredu-
cible SL(2, p)-representations to those subgroups is listed below. Since this
can be obtained by easy calculation using Lemmas 3.1 and 3.3, the proof is

omited.
Suppose p=1 (resp. 3) mod 4.

(6.1) rescy Xo = V(p—1, 2;)@2{"@2"1/( »—1, 2k DROR'}

where R’ is the one dimensional real representation such that a acts as —1, and
V(*, *) are ones defined in section 2,

(resp. resco Xo = V(p—1, 2i)€92{(1é§ "Vip—1, 2)®R}).

res(,»0,; and res¢,yE, are independent of j and k respectively as real {a>-repre-
sentation.

P-1)/4
(6.2) res®y = V(p+1,2)®2{, @ _V(p+1, 0DE}
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(resp. reses®s; = V(p+1, 2)®2{ & _V(p+1, 2)SRSR},

where R’ is the one dimensional real representation such that & acts as —1).
res¢;yX,; and res¢yE, are independent of 7 and k respectively as real <b)-repre-
sentation.
(6.3) res¢y=, = RD Diex;, V(p, k), and

res<c>Ez = RO @keK} V(P; k) )
where K and K7 are the sets defined in section 3. res¢;X,; and res(,;0,; are
independent of 7 and j respectively as real {c)>-representation.

Let B, be the subgroup in section 4, T(B,, k) the complex Bj-representations
defined as in section 5 for G=B, and 1<k<p—1. Denote

K = {neZ: 0<n<p, nis odd and n+p=2:>mod p for some i€Z}, and
K} = {neZ: 0<n<p,nisodd and ncK{'} .
(6.4) resg, 11 = Direxy T(By, k), and
resg, 7, = Drexy T(Bo, R) .

resp, Xp;_; and resp, ©,;_,are independent of 7 and j as real B,-representation.
-1/
(6.5) resye Xois = T(N<a), 2i—1)® & T(N<a), 2k—1).
=1

resy¢,> @,;-; are independent of j as real N<{a)>-representation.
(p+D/2
(6.6) resyy 021 :Iz=le?:l:j T(N<b, 2k—1),

resyqyXai-1 are independent of 7 as real N<b)-representation.

7. The Proof of the suffcient condition in Theorem 1.2

Let G be SL(2, p) in this section. We prove that if (I), (II), ---, (VIII) in
Theorem 1.2 all are satisfied, then ¥V and W are J;-related.
Suppose p=1 mod 4.

PropOSition 7.1- Let V=®ke[p_1:m]c(Xk)Xk and W:@kefp—lim]cl(Xk)Xk
for an element m of D(p—1). If for ¢(X,) and c'(X,) the condition (II1) in
Theorem 1.2 is satisfied, then V and W are Js-related.

Proof. We consder the submodule M={3}cr,-1:m@Xi: a,€Z} of
RO(G). A homomorphism resy from RO(G) to RO({a>) is canonically
defined by restriction. The restricted map res¢, | M over M is injective from

(6.1). The assumption (III) implies that res¢,y (2 (c(k)—c'(k))X,) belongs to
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RO\(Ka)>), by Theorem 2.3. As res¢y|M is injective, we have >3, (c(X;)—
¢'(Xy))X, in RO|(G). Then the conclusion follows from Theorem 2.2.

PrOpOSition 7.2. Let V=@ke[p+1 H m]C(@k)@k dﬂd WZ@kE[p-i-l : m]C’(@k)@k
for an element m of D,(p+1). If for ¢(8,) and c¢'(8,) -he condition (V) in Theorem
1.2 is satisfied, then V and W are ] -related.

Proof. Applying the previous argument to & and (6.2) instead of a and
(6.1) respectively, we obtain Proposition 7.2.

Proposition 7.3. Let V =(E,)E,Dc(E,)E, and W=_'(E,)E,Bc'(E,)E,.
If for c(B,), ¢(Ey), ¢'(E,) and c'(E,) the condition (VII) in Theorem 1.2 satisfied,
then V and W are J;-related.

Proof. As 2E,—2E, belongs to RO,(G), 2E, and 2E, are J;-related.
Proposition 7.3 follows from this fact.

Proposition 7.4. Let V=c(9,)nBc(Dy)n. and W=c'(9)n,Pc'(D2)n,.  If
for ¢(91), ¢(92), ¢'(9,) and c'(D,) the condition (VIII) in Theorem 1.2 is satisfied,
then S(V) and S(W) are oriented G-homotopy equivalent.

ReMARK. By the definition 9,=ry, and 9,=rx,.

Proof. As 2y, —2x, belongs to R|(G), S(2n,) and S(27,) are oriented G-
homotopy equivalent. Proposition 7.4 follows from this fact.

Proposition 7.5. Let V=@ cry-1: m1c(Xp)X, and W=D elp-1: m1¢'(Xi)Xs
for an element m of D,(p—1). If for ¢(X,) and ¢'(X,) the condition (IV) in Theorem
1.2 satisfied, then S(V) and S(W) are oreinted G-homotopy equivalent.

Lemma 7.6. If XYci,-1: mic(R)X, belongs to R\(G) for m&D,(p—1), then
we have

Detp-1: m1 (kfm)*®=41mod (p—1)/m ,
where all the coefficients c(k) are integers, and for a positive integer i, (k/m)™* is an
integer such that (k/m)'(k/m) =1 mod (p—1)/m.

Proof. By the same argument as the proof of Proposition 5.4, this lemma
can be obtained.

Lemma 7.7. Provided (k/m)*=1mod2(p—1)/m for me D,(p—1) and
ke[p—1: m], S(X,) and S(X,) are oriented G-homotopy equivalent.

Proof of Proposition 7.5. We admit Lemma 7.7 to be true for a moment.
By the same argument as the proof of Theorem 5.6, we obtain Proposition 7.5
from Lemmas 7.6 and 7.7.
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Proof of Lemma 7.7. We prove Lemma 7.7 using Theorem 2.1 for V=X,,
W=X,, and d(K)=1 for all K<G. We have to check the Petrie equation (iv)
of Theorem 2.1. For H<G such that S(X,,)?=¢, there is no need to check it.
Therefore we consider it for H<<G such that S(X,,)? #¢. Since S(X,, )@=
S(X,,)"#+¢ implies that H does not contain 2. By the consideration in section
4, it is sufficient to check the Petrie equation for H={1} and to prove the
following assertion.

Assertion 7.8. If H is one of the subgroups B, N<a> and N<b)>, then
S(resy X,,) and S(resyX,) are oriented H-homotopy equivalent.

We prove this assertion later on. Firstly we check the Petrie equation for
H={1}. Thatis, we show

2 X(Xi—Xn; K)=0mod p(p°—1),

where K runs through the cyclic subgroups of G, and p(p 1)=|G|. From
Tables 1 and 2, we obtain

2k X(X— X K)
= 1+14+(p"—1)2+(p*—1)[24(p*—1)[2+-(p*—1)/2

(D =12+ om0 S L=

+p(p—1)(p—1)/2.
Put h=Fk/m, then we have

2k X(X—Xw; K)
= 20 +p(p—1)’2+p(p-+1)(m—1)
Cp-D/2m-1 . . ) .
+mP(P+1) ’ 'gl {1+sz__l_..._|_pxm(h-l)} {1_|_P—sm_|__...+P~£m(h—1)}

We can show that this value is congruent to 0 mod p(p*+1), by using the fact
that for integers o and B, p®p~?=1 implies pPp~*=1.
By proving Assertion 7.8 we complete the proof of Lemma 7.7.

Proof of Assertion 7.8. First we consider the case that H=B. Let v be
an odd integer with 1<v<2p which represents the generator of F* defined in
section 1. Put {=exp(zy/ —1/p), r=1% s=(p—1)/2, x=2c and y=a. For
integers ¢ define complex B-representations T'(B, 7) by the corresponding matrix
representations (also denoted by T(B, 7)) such that

;i
T(B,i)x)=| &,
gir"l ,
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0 g
1 0
T(B, i)(y) = 1 0

1 o),
where all blancks are zero. Let A be the homomorphism from B to Z,_, given by

vt 0
7\.((* y-h ) = h fOl' hGZ)_l .

Put A (j)=A*v(p—1, j) (cf. section 2). Then we have

resp X,, = T(B, 1)DT(B, v)BA(m)DBN(—m),
resg X, = T(B, 1)@ T(B, v)DA(k)DA(—F) .

Since v(p—1, m)+ov(p—1, —m)—v(p—1, k)—ov(p—1, —k) belongs to R,(Z,_,)
by (k/m)*=1mod 2(p—1)/m, N(m)-+\(—m)—r(k)—X(—Fk) belongs to Ry(G).
We have proved the case that H=B.

If H=N<{a> or N<b>, then we obtain Assertion 7.8 from (6.5), (6.6) and
Theorem 5.6 easily. Thus we complete the proof of Assertion 7.8.

In the same way as above we get the following result.

Pl'OpOSitiOll 7.9. Let V= ®kE[p+1 H m]c(®k)0k and W= ®kE[p+l B ,,,]C'(@,,)ek
for an element m of D,(p+1). If for c(®,) and c'(8;) the condition (V1) in
Theorem 1.2 is satisfied, then S(V) and S(W) are oriented G-homotopy equivalent.

Remark. Even if p=3 mod 4, Propositions 7.1, 7.2, 7.5 and 7.9 are valid.

Putting all propositions in this section together we see that ¥ and W in
Theorem 1.2 are J;-related if all the conditions (I), (II), -+, (VIII) are satisfied.

8. The proof of the necessary condition in Theorem 1.2

Let G be SL(2, p), V and W the real G-representations in Theorem 1.2.
In this section we discuss that if V' and W are ] -related, the conditions (I),
(IT), +++, (VIII) in Theorem 1.2 hold Assume that I and W are J;-related in

this section
By the assumption V'—W belongs to RO(G). Since RO|(G)=I(T)RO(G),
we obtain
(I, (1), (111, 0) (IV, 0) (V. 0) (VI, 0), (VII, 0) and (VIII, 0) if p=1mod 4,
1), (IT), (111, 0) (IV, 0), (V, 0), (VI, 0) (VII) and (VIII) if p=3 mod 4.
As V—W belongs to RO(G), V<2 —W< and V(y— W, both belong to
RO,(G). If p=1 (resp. 3) mod 4, we have
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(8.1) V< = o(R)RD(L)TD ea c(Xz,)Xz,GB ,@ c(ez,)ez,@c(ul)ul@c(f:z)_z

=1

(resp. V<2 —c(R)R@c(‘I’)‘I’@ EB C(Xz;)Xz.EB 69 C(@z,)@z,EBC(SQ)'b)

and

(8'2) V(z)— 4 C(XZx )sz 1@ @ C(@& )@z; @C('%J@l@c(@z)@z

= p- 3)/4 (p+1/4

(l‘esp. V(Z> = = C(.Xg,‘_l)Xz,'_1® % 6(82]'_1)@2]',1®C(: :) y

as real SL(2, p)-representation. Since resy (V< —W<?) e RO,(Ka)), we
obtain (III, 1) from (6.1) and Theorem 2.3. Observing res¢y(V<?—W<®),
resy¢os(Viy— Weyy) and resy (Vs —We,y), we obtain (V, 1), (IV, 1) and (VI, 1)
from Theorems 2.3 and 5.6.

To complete the proof of Theorem 1.2, we show (VII, 1) and (VIII, 1). By
Propositions 7.3 and 7.4 we see that it is enough to show the following proposi-
tion.

Proposition 8.3. Neither E,—E, nor ,—9, belongs to RO,(G).

Proof. Assume that =,—E, belongs to RO,(G). From (6.3) we obtain
res¢y (B —E) =2 e, V{p, k) —2 ek, V(p, k). Since res¢y(E,—E,) belongs to
RO,(Kc>), we get

II k== Hkmodp

kEK) *EK}

from Theorem 2.3. This, however, contradicts Lemma 3.2.
Next assume that ,—9, belongs to RO,(G). Since resp (9,—9;) belongs
to RO,(B,), we get

I k= 11 k2m0d4-p

kEKY kEK)

from Theorem 5.6. This yields
II k= :J: H kmodp.

kEKY

Consequently we have

Il k=+ II Amodp.

kER] kEK,

This contradicts Lemma 3.2. Thus we complete the proof.
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