BLOCK INTERSECTION NUMBERS OF BLOCK DESIGNS

Mitsuo YOSHIZAWA

(Received March 12, 1980)

1. Introduction

Let t, v, k and λ be positive integers with $v \geqslant k \geqslant t$. A $t-(v, k, \lambda)$ design is a pair consisting of a v-set Ω and a family \boldsymbol{B} of k-subsets of Ω, such that each t-subset of Ω is contained in λ elements of \boldsymbol{B}. Elements of Ω and \boldsymbol{B} are called points and blocks, respectively. A $t-(v, k, \lambda)$ design is called nontrivial provided \boldsymbol{B} is a proper subfamily of the family of all k-subsets of Ω, then $t<k<v$. In this paper, we assume that all designs are nontrivial. For a t (v, k, λ) design \boldsymbol{D} we use $\lambda_{i}(0 \leqslant i \leqslant t)$ to represent the number of blocks which contain a given set of i points of \boldsymbol{D}. Then we have

$$
\lambda_{i}=\frac{\binom{v-i}{t-i}}{\binom{k-i}{t-i}} \lambda=\frac{(v-i)(v-i-l) \cdots(v-t+l)}{(k-i)(k-i-l) \cdots(k-t+l)} \lambda \quad(0 \leqslant i \leqslant t) .
$$

A $t-(v, k, \lambda)$ design \boldsymbol{D} is called block-schematic if the blocks of \boldsymbol{D} form an association scheme with the relations determined by size of intersection (cf. [3]). In §2, we prove the following theorem which extends the result in [1].

Theorem 1. (a) For each $n \geqslant 1$ and $\lambda \geqslant 1$, there exist at most finitely many block-schematic $t-(v, k, \lambda)$ designs with $k-t=n$ and $t \geqslant 3$.
(b) For each $n \geqslant 1$ and $\lambda \geqslant 2$, there exist at most finitely many block-schematic $t-(v, k, \lambda)$ designs with $k-t=n$ and $t \geqslant 2$.

Remark. Since there exist infinitely many $2-(v, 3,1)$ designs and since every $2-(v, k, 1)$ design is block-schematic (cf. [2]), Theorem 1 does not hold for $\lambda=1$ and $t=2$.

For a block B of a $t-(v, k, \lambda)$ design \boldsymbol{D} we use $x_{i}(B)(0 \leqslant i \leqslant k)$ to denote the number of blocks each of which has exactly i points in common with B. If, for each $i(i=0, \cdots, k), x_{i}(B)$ is the same for every block B, we say that \boldsymbol{D} is block-regular and we write x_{i} instead of $x_{i}(B)$. We remark that if a $t-(v, k, \lambda)$ design \boldsymbol{D} is block-schematic then \boldsymbol{D} is block-regular. For any $t-(v, k, 1)$ design or any $t-(v, t+1, \lambda)$ design, either of which is block-regular (cf. Lemma 1),
every x_{i} depends only on i, t, v, k or i, t, v, λ respectively (cf. Lemma 1). And Gross [5] and Dehon [4] respectively classified the $t-(v, k, 1)$ designs and the $t-(v, t+1, \lambda)$ designs both of which satisfy $x_{i}=0$. But for a block-regular $t-(v, k, \lambda)$ design, x_{i} depends not only on i, t, v, k, λ but also on others in general (cf. Lemma 1). In §3, we prove the following theorem.

Theorem 2. Let c be a real number with $c>2$. Then for each $n \geqslant 1$ and $l \geqslant 0$, there exist at most finitely many block-regular $t-(v, k, \lambda)$ designs with $k-t=$ $n, v \geqslant c t$ and $x_{i} \leqslant l$ for some $i(0 \leqslant i \leqslant t-1)$.

The author thanks Professor H. Enomoto for giving the direct proof of Lemma 5.

2. Proof of Theorem 1

Lemma 1. Let \boldsymbol{D} be a block-regular $t-(v, k, \lambda)$ design. Then the following equality holds for $i=0, \cdots, k-1$.

$$
x_{i}=\sum_{j=i}^{t-1}\binom{j}{i}\left(\lambda_{j}-1\right)\binom{k}{j}(-1)^{i+j}+\sum_{j=t}^{k-1}\binom{j}{i} w_{j}(-1)^{i+j},
$$

where $x_{j} \leqslant w_{j} \leqslant(\lambda-1)\binom{k}{j} \quad(t \leqslant j \leqslant k-1)$ and $w_{t}=(\lambda-1)\binom{k}{t}$.
Proof. Let B be a block of \boldsymbol{D}. Counting in two ways the number of the following set $\left\{\left(B^{\prime},\left\{\alpha_{1}, \cdots, \alpha_{i}\right\}\right) \mid B^{\prime}\right.$ a block $(\neq B), B^{\prime} \cap B \ni \alpha_{1}, \cdots, \alpha_{i}, \alpha_{j} \neq \alpha_{j^{\prime}}$ if $\left.j \neq j^{\prime}\right\}$ gives $x_{i}+\binom{i+1}{i} x_{i+1}+\cdots+\binom{t}{i} x_{t}+\cdots+\binom{k-1}{i} x_{k-1}=\left(\lambda_{i}-1\right)\binom{k}{i}$ for $i=0, \cdots, t-1$, and $x_{i}+\binom{i+1}{i} x_{i+1}+\cdots+\binom{k-1}{i} x_{k-1} \leqslant(\lambda-1)\binom{k}{i}$ for $i=t, \cdots, k-1$. Let $w_{i}(t \leqslant$ $i \leqslant k-1$) be the left hand of the above inequality, where $w_{t}=(\lambda-1)\binom{k}{t}$. Let $A=\left(a_{i j}\right)$ be the square matrix with $a_{i j}=\binom{j}{i} \quad(0 \leqslant i, j \leqslant k-1)$. Then we have

$$
A\left(\begin{array}{c}
x_{0} \\
\vdots \\
x_{t-1} \\
x_{t} \\
\vdots \\
x_{k-1}
\end{array}\right)=\left(\begin{array}{c}
\left(\lambda_{0}-1\right)\binom{k}{0} \\
\vdots \\
\left(\lambda_{t-1}-1\right) \\
w_{t} \\
\vdots \\
t-1
\end{array}\right) .
$$

Let us set $A^{-1}=\left(b_{i j}\right)(0 \leqslant i, j \leqslant k-1)$. Since $\sum_{j=m}^{n}(-1)^{j+m}\binom{n}{j}\binom{j}{m}=\delta_{m n}$, we have
$b_{i j}=\binom{j}{i}(-1)^{i+j}$. Hence we get the desired result.
Lemma 2. Let \boldsymbol{D} be a $t-(v, k, \lambda)$ design with $t, \lambda \geqslant 2$. If $v \geqslant k^{3}$, then there exi.t three blocks B_{1}, B_{2}, B_{3} of \boldsymbol{D} such that $\left|B_{1} \cap B_{2}\right|=t-1,\left|B_{2} \cap B_{3}\right| \geqslant t$ and $\left|B_{1} \cap B_{3}\right|=t-2$.

Proof. Let B be a block of \boldsymbol{D}. Counting in two ways the number of the following set
$\left\{\left(B^{\prime}, \alpha_{1}, \cdots, \alpha_{t}\right)\right\} \mid B^{\prime}$ a block $(\neq B), B^{\prime} \cap B \ni \alpha_{1}, \cdots, \alpha_{t}, \alpha_{j} \neq \alpha_{j^{\prime}}$ if $\left.j \neq j^{\prime}\right\}$ gives $x_{t}(B)+\binom{t+1}{t} x_{t+1}(B)+\cdots+\binom{k-1}{t} x_{k-1}(B)=(\lambda-1)\binom{k}{t}$. Since $\lambda \geqslant-2$, there is an integer $q(t \leqslant q \leqslant k-1)$ with $x_{q}(B) \neq 0$. Hence, we may assume that there exist two blocks B_{2}, B_{3} such that $t \leqslant\left|B_{2} \cap B_{3}\right|=q$. Let α_{1} be a point of $B_{2}-B_{3}$ and $\alpha_{2}, \cdots, \alpha_{t-1}$ be $t-2$ points of $B_{2} \cap B_{3}$. Set $S=\left\{B \mid B\right.$ a block, $B \supseteq\left\{\alpha_{1}, \cdots\right.$, $\left.\left.\alpha_{t-1}\right\}\right\}$, where $|S|=\frac{v-t+1}{k-t+1} \lambda$. Then we have

$$
\mid\left\{B \in \boldsymbol{S}| | B \cap B_{2} \mid \geqslant t \text { or }\left|B \cap B_{3}\right| \geqslant t-1\right\} \mid \leqslant \lambda(k-t+1)+\lambda(k-t+2) .
$$

Hence, if $\frac{v-t+1}{k-t+1} \lambda>\lambda(k-t+1)+\lambda(k-t+2)$, then there exists a block B_{1} in S such that $\left|B_{1} \cap B_{2}\right|=t-1$ and $\left|B_{1} \cap B_{3}\right|=t-2$. On the other hand, $\frac{v-t+1}{k-t+1}$ $>(k-t+1)+(k-t+2)$ holds if $v \geqslant k^{3}$. So, the proof of Lemma 2 is completed.

Proposition. Let \boldsymbol{D} be a block-schematic $t-(v, k, \lambda)$ design with $t, \lambda \geqslant 2$. Then $v<\lambda k^{3}\binom{k}{\left[\frac{k}{2}\right]}^{2}$ holds.

Proof. By Lemma 1, we have

$$
x_{t-2}>\left(\lambda_{t-2}-1\right)\binom{k}{t-2}-(t-1)\left(\lambda_{t-1}-1\right)\binom{k}{t-1}-(k-t)(\lambda-1)\binom{k}{\left[\frac{k}{2}\right.}^{2} .
$$

So, $\left.x_{t-2}>\frac{(v-t+2)(v-t+1)}{(k-t+2)(k-t+1)} \lambda\binom{k}{t-2}-(t-1) \frac{v-t+1}{k-t+1} \lambda\binom{k}{t-1}-(k-t) \lambda\left(\begin{array}{c}k \\ {\left[\frac{k}{2}\right.}\end{array}\right]\right)^{2}$, and

$$
x_{t-2}>\frac{(v-k)^{2}}{k^{2}} \lambda-(t-1) v \lambda\left(\left[\begin{array}{c}
k \\
{\left[\frac{k}{2}\right]}
\end{array}\right)-k \lambda\binom{k}{\left[\frac{k}{2}\right]}^{2} .\right.
$$

Hence we have

$$
x_{t-2}>\frac{v^{2}}{k^{2}} \lambda-k v \lambda\binom{k}{\left[\frac{k}{2}\right]}-k \lambda\left(\left[\begin{array}{c}
k \tag{1}\\
{\left[\frac{k}{2}\right]}
\end{array}\right)^{2} .\right.
$$

Again by Lemma 1, we have

$$
x_{t-1}<\lambda_{t-1}\binom{k}{t-1}+(k-t)(\lambda-1)\left(\left[\begin{array}{c}
k \\
\frac{k}{2}
\end{array}\right)^{2} .\right.
$$

So,

$$
x_{t-1}<\frac{v}{2} \lambda\binom{k}{\left[\frac{k}{2}\right]}+(k-1) \lambda\left(\left[\begin{array}{c}
k \tag{2}\\
{\left[\frac{k}{2}\right]}
\end{array}\right)^{2} .\right.
$$

From now on, we may assume that $v \geqslant k^{3}$. By Lemma 2, there exist three blocks B_{1}, B_{2}, B_{3} of \boldsymbol{D} such that $\left|B_{1} \cap B_{2}\right|=t-1,\left|B_{2} \cap B_{3}\right|=q(t \leqslant q \leqslant k-1)$, and $\left|B_{1} \cap B_{3}\right|=t-2$. By Lemma 1, we have

$$
\begin{equation*}
x_{q} \leqslant(\lambda-1)\binom{k}{q}<\lambda\binom{k}{\left[\frac{k}{2}\right]} . \tag{3}
\end{equation*}
$$

Hence, by (1), (2) and (3), we have

$$
\left.x_{t-2}-x_{t-1} x_{q}>\frac{v^{2}}{k^{2}} \lambda-k v \lambda\left(\begin{array}{c}
k \\
{\left[\frac{k}{2}\right.}
\end{array}\right]\right)-k \lambda\left(\left[\begin{array}{c}
k \\
{\left[\frac{k}{2}\right.}
\end{array}\right]\right)^{2}-\lambda^{2}\left(\left[\begin{array}{c}
k \\
{\left[\frac{k}{2}\right.}
\end{array}\right]\right)^{2}\left\{\frac{v}{2}+(k-1)\left(\left[\begin{array}{c}
k \\
{\left[\frac{k}{2}\right.}
\end{array}\right]\right)\right\} .
$$

Thus, we have that

$$
x_{t-2}-x_{t-1} x_{q}>\frac{v^{2}}{k^{2}} \lambda-\lambda^{2}\left(\left[\begin{array}{c}
k \tag{4}\\
2
\end{array}\right]\right)^{2} v-k \lambda^{2}\left(\left[\begin{array}{c}
k \\
\frac{k}{2}
\end{array}\right]\right)^{3} .
$$

Hence, $x_{t-2}-x_{t-1} x_{q}>0$ holds if $v \geqslant k^{3}\left(\left[\begin{array}{c}k \\ {\left[\frac{k}{2}\right]}\end{array}\right)^{2} \lambda\right.$.
Let $B_{1}, B_{2}, B_{3}, \cdots, B_{\lambda_{0}}$ be the blocks of \boldsymbol{D}. Let $A_{h}(0 \leqslant h \leqslant k)$ be the h adjacency matrix of \boldsymbol{D} of degree λ_{0} defined by

$$
A_{h}(i, j)= \begin{cases}1 & \text { if }\left|B_{i} \cap B_{j}\right|=h \\ 0 & \text { otherwise }\end{cases}
$$

Since \boldsymbol{D} is block-schematic, we have

$$
A_{i} A_{j}=\sum_{h=0}^{k} \mu(i, i, h) A_{h} \quad(0 \leqslant i, j \leqslant k)
$$

where $\mu(i, j, h)$ is a non-negative integer. Let \boldsymbol{a} be the all-1 vector of degree λ_{0}. Then,

$$
A_{i} A_{j} \boldsymbol{a}=\sum_{h=0}^{k} \mu(i, j, h) A_{h} \boldsymbol{a}
$$

Hence we have $x_{i} x_{j}=\sum_{h=0}^{k} \mu(i, j, h) x_{h}$. In particular,

$$
\begin{equation*}
x_{t-1} x_{q}=\sum_{h=0}^{k} \mu(t-1, q, h) x_{h}, \tag{5}
\end{equation*}
$$

where $\mu(t-1, q, t-2)$ is a positive in.eger, because $\left|B_{1} \cap B_{2}\right|=t-1,\left|B_{2} \cap B_{3}\right|=q$ and $\left|B_{1} \cap B_{3}\right|=t-2$. Hence, by (4) and (5), we have $v<k^{3}\left(\left[\begin{array}{l}k \\ \frac{k}{2}\end{array}\right]\right)^{2} \lambda$.

Lemma 3. For each $n \geqslant 1$, there is a positive integer $N_{1}(n)$ satisfying the following: If \boldsymbol{D} is a $t-(v, k, \lambda)$ design with $k-t=n$ and $t \geqslant N_{1}(n)$, then there exist two blocks B_{1} and B_{2} of \boldsymbol{D} such that $\left|B_{1} \cap B_{2}\right|=t-1$.

Proof. Let \boldsymbol{D} be a $t-(v, k, \lambda)$ design with $k-\boldsymbol{t}=\boldsymbol{n}$. Let B be a block of D. Counting in two ways the number of the following set $\left\{\left(B^{\prime},\left\{\alpha_{1}, \cdots, \alpha_{t}\right\}\right) \mid B^{\prime} \quad\right.$ a block $\quad(\neq B), B^{\prime} \cap B \ni \alpha_{1}, \cdots, \alpha_{t}, \alpha_{j} \neq \alpha_{j^{\prime}}$ if $\left.j \neq j^{\prime}\right\}$ gives $\quad x_{t}(B)+\binom{t+1}{t} x_{t+1}(B)+\cdots+\binom{k-1}{t} x_{k-1}(B)=(\lambda-1)\binom{k}{t}$.
Since $\frac{\binom{t+i}{t-1}}{\binom{t+i}{t}}=\frac{t}{i+1} \quad(i \geqslant 0)$, we have

$$
\begin{equation*}
\binom{t}{t-1} x_{t}(B)+\binom{t+1}{t-1} x_{t+1}(B)+\cdots+\binom{k-1}{t-1} x_{k-1}(B) \leqslant t(\lambda-1)\binom{k}{t} . \tag{6}
\end{equation*}
$$

Counting in two ways the number of the following set
$\left\{\left(B^{\prime},\left\{\alpha_{1}, \cdots, \alpha_{t-1}\right\}\right) \mid B^{\prime}\right.$ a block $(\neq B), B^{\prime} \cap B \ni \alpha_{1}, \cdots, \alpha_{t-1}, \alpha_{j} \neq \alpha_{j^{\prime}}$ if $\left.j \neq j^{\prime}\right\}$ gives $x_{t-1}(B)+\binom{t}{t-1} x_{t}(B)+\binom{t+1}{t-1} x_{t+1}(B)+\cdots+\binom{k-1}{t-1} x_{k-1}(B)$

$$
\begin{equation*}
=\left(\lambda_{t-1}-1\right)\binom{k}{t-1} . \tag{7}
\end{equation*}
$$

By (6) and (7), we have

$$
\begin{aligned}
& x_{t-1}(B) \geqslant\left(\lambda_{t-1}-1\right)\binom{k}{t-1}-t(\lambda-1)\binom{k}{t}, \quad \text { and } \\
& x_{t-1}(B) \geqslant \frac{v-t+1}{n+1} \lambda \frac{(n+t) \cdots t}{(n+1)!}-\frac{(n+t) \cdots t}{(n+1)!}-(\lambda-1) \frac{(n+t) \cdots t}{n!} .
\end{aligned}
$$

Since \boldsymbol{D} is a nontrivial design, $v>k+t \geqslant 2 t+n$. Hence we have

$$
x_{t-1}(B)>\left(\frac{(t+n+1) \cdots t}{(n+2)!}-\frac{(t+n) \cdots t}{n!}\right) \lambda .
$$

Set $f(t)=\frac{(t+n+1) \cdots t}{(n+2)!}-\frac{(t+n) \cdots t}{n!}$. Then there is a positive integer $N_{1}(n)$ such that $f(t) \geqslant 0$ holds if $t \geqslant N_{1}(n)$. Hence, the proof of Lemma 3 is completed.

Lemma 4. For each $n \geqslant 1$, there is a positive integer $N_{2}(n)$ satisfying the
following: If \boldsymbol{D} is a $t-(v, k, \lambda)$ design with $k-t=n$ and $t \geqslant N_{2}(n)$, then there exist three blocks B_{1}, B_{2}, B_{3} of \boldsymbol{D} such that $\left|B_{1} \cap B_{2}\right|=t-1,\left|B_{2} \cap B_{3}\right|=t-1$ and $\left|B_{1} \cap B_{3}\right|=t-n-2$.

Proof. Let \boldsymbol{D} be a $t-(v, k, \lambda)$ design with $k-t=n$. We may assume $t \geqslant N_{1}(n)$, where $N_{1}(n)$ is a positive integer obtained in Lemma 3. Therefore, there exist two blocks B_{2} and B_{3} of \boldsymbol{D} with $\left|B_{2} \cap B_{3}\right|=t-1$. Let $\alpha_{1}, \cdots, \alpha_{n+1}$ be $n+1$ points of $B_{2}-B_{3}$ and $\alpha_{n+2}, \cdots, \alpha_{t-1}$ be $t-n-2$ points of $B_{2} \cap B_{3}$. Set $\boldsymbol{S}=\left\{B \mid B\right.$ a block, $\left.B \supseteq\left\{\alpha_{1}, \cdots, \alpha_{t-1}\right\}\right\}$, where $|\boldsymbol{S}|=\frac{v-t+1}{k-t+1} \lambda$. Then we have

$$
\mid\left\{B \in \mathbf{S}| | B_{2} \cap B \mid \geqslant t \text { or }\left|B_{3} \cap B\right| \geqslant t-n-1\right\} \mid \leqslant \lambda(k-t+1)+\lambda(k-t+n+2) .
$$

Hence, if $\frac{v-t+1}{k-t+1} \lambda>\lambda(n+1)+\lambda(2 n+2)$, then there exists a block B_{1} in S such that $\left|B_{1} \cap B_{2}\right|=t-1$ and $\left|B_{1} \cap B_{3}\right|=t-n-2$. On the other hand, since $v>k+t$ $=2 t+n$, we have that $\frac{v-t+1}{n+1}>(n+1)+(2 n+2)$ holds if $t \geqslant 3(n+1)^{2}$. Thus, Lemma 4 holds if $N_{2}(n)=\max \left\{N_{1}(n), 3(n+1)^{2}\right\}$.

Proof of Theorem 1. First, let us suppose that \boldsymbol{D} is a block-schematic $t-(v, k, \lambda)$ design with $k-t=n$ and $t, \lambda \geqslant 2$. By Proposition, we may assume that $t \geqslant N_{2}(n)$, where $N_{2}(n)$ is a positive integer obtained in Lemma 4. By Lemma 1 we have

$$
x_{t-n-2}>\lambda_{t-n-2}\binom{t+n}{t-n-2}-\sum_{j=t-n-1}^{t-1}\binom{j}{t-n-2} \lambda_{j}\binom{t+n}{j}-\sum_{j=t}^{k-1}\binom{j}{t-n-2} \lambda\binom{t+n}{j},
$$

where $\lambda_{t-n-2}\binom{t+n}{t-n-2}=\frac{(v-t+n+2) \cdots(v-t+1)}{(n+n+2) \cdots(n+1)} \lambda \cdot \frac{(t+n) \cdots(t-n-1)}{(2 n+2)!}$,

$$
\begin{aligned}
& \sum_{j=t-n-1}^{t-1}\binom{j}{t-n-2} \lambda_{j}\binom{t+n}{j}<(n+1) \lambda_{t-n-1}(t-n-2)! \\
&=(n+1) \frac{(v-t+n+1) \cdots(v-t+1)}{(n+n+1) \cdots(n+1)} \frac{(t+n)!}{(t-n-2)!} \lambda,
\end{aligned}
$$

and

$$
\sum_{j=t}^{k-1}\binom{j}{t-n-2} \lambda\binom{t+n}{j}<n \frac{(t+n)!}{(t-n-2)!} \lambda .
$$

Hence we have

$$
\begin{equation*}
x_{t-n-2}>\frac{(v-t)^{n+2}(t-n-1)^{2 n+2}}{((2 n+2)!)^{2}} \lambda-(v-t+n+1)^{n+1}(t+n)^{2 n+2} \lambda . \tag{8}
\end{equation*}
$$

Again by Lemma 1, we have

$$
x_{t-1}<\frac{v-t+1}{n+1} \lambda\binom{t+n}{t-1}+\sum_{j=t}^{k-1}\binom{j}{t-1} \lambda\binom{t+n}{j}, \text { and }
$$

$$
x_{t-1}<(v-t+1)(t+n)^{n+1} \lambda+n(t+n)^{n+1} \lambda .
$$

Hence we have

$$
\begin{equation*}
x_{t-1}^{2}<(v-t+n+1)^{2}(t+n)^{2 n+2} \lambda^{2} . \tag{9}
\end{equation*}
$$

By (8) and (9), we have

$$
x_{t-n-2}-x_{t-1}^{2}>\frac{(v-t)^{n+2}(t-n-1)^{2 n+2}}{((2 n+2)!)^{2}} \lambda-2(v-t+n+1)^{n+1}(t+n)^{2 n+2} \lambda^{2} .
$$

Set $\quad f(t)=\frac{\lambda}{((2 n+2)!)^{2}} t^{n+2} \cdot(t-n-1)^{2 n+2}-2 \lambda^{2}(t+n+1)^{n+1}(t+n)^{2 n+2}$.
Then there is a positive integer $N(n, \lambda)\left(\geqslant N_{2}(n)\right)$ such that $f(t) \geqslant 0$ holds if $t \geqslant N(n, \lambda) . \quad$ Since $v-t>t$, we have that

$$
\begin{equation*}
x_{t-n-2}-x_{t-1}^{2}>0 \text { holds if } t \geqslant N(n, \lambda) \tag{10}
\end{equation*}
$$

By the similar argument as in the proof of Proposition, we have

$$
\begin{equation*}
x_{t-1}^{2}=\sum_{h=0}^{k} \mu(t-1, t-1, h) x_{h} \tag{11}
\end{equation*}
$$

where $\mu(t-1, t-1, h)$ is a non-negative integer. Moreover, since $t \geqslant N_{2}(n)$ $\mu(t-1, t-1, t-n-2)$ is a positive integer by Lemma 4. Hence, by (10) and (11), we have $t \leqslant N(n, \lambda)$. Therefore, $k \leqslant N(n, \lambda)+n$. Hence by Proposition, the proof of Theorem 1 is completed on condition that $\lambda \leqslant 2$.

Next, let us suppose that \boldsymbol{D} is a block-schematic $t-(v, k, l)$ design with $k-t=n$ and $t \geqslant 3$. (The proof of the case $\lambda=1$ is similar to that of the case $\lambda \geqslant 2$. Then, we give an outline of it.) By Theorem in [1], we may assume that $t \geqslant N_{2}(n)$, where $N_{2}(n)$ is a positive integer obtained in Lemma 4. By Lemma 1, we get

$$
x_{t-n-2}-x_{t-1}^{2}>\frac{(v-t)^{n+2}(t-n-1)^{2 n+2}}{((2 n+2)!)^{2}}-2(v-t+n+1)^{n+1}(t+n)^{2 n+2} .
$$

Hence, there is a positive integer $N(n)\left(\geqslant N_{2}(n)\right)$ such that $x_{t-n-2}-x_{t-1}^{2}>0$ holds if $t \geqslant N(n)$. On the other hand, the following equation holds:

$$
x_{t-1}^{2}=\sum_{h=0}^{k} \mu(t-1, t-1, h) x_{h},
$$

where $\mu(t-1, t-1, h)$ is a non-negative integer and $\mu(t-1, t-1, t-n-2)$ is positive. Therefore, we have $t \leqslant N(n)$, and so $k \leqslant N(n)+n$. Hence by Theorem in [1], the proof of Theorem 1 is completed on condition that $\lambda=1$. Thus, Theorem 1 is proved.

3. Proof of Theorem 2

Lemma 5. Let \boldsymbol{D} be a block-regular $t-(v, k, \lambda)$ design. Then the following equality holds for $i=0, \cdots, t-1$.

$$
\begin{aligned}
x_{i}= & \frac{\lambda\binom{k}{i}}{\binom{v-t}{k-t}}\left\{\binom{v-k}{k-i}+(-1)^{t+i+1} \sum_{i=0}^{k-t-1}\binom{t-i-1+q}{q}\binom{v-k+q}{k-t}\right\} \\
& +(\lambda-1) \sum_{j=1}^{t-1}\binom{j}{i}\binom{k}{j}(-1)^{i+j}+\sum_{j=t}^{k-1}\binom{j}{i} w_{j}(-1)^{i+j}
\end{aligned}
$$

where $\quad x_{j} \leqslant w_{j} \leqslant(\lambda-1)\binom{k}{j}(t \leqslant j \leqslant k-1)$ and $w_{t}=(\lambda-1)\binom{k}{t}$.
(The essential part of Lemma 5 is [5, Lemma 6].)
Proof. In this proof, we use the following three combinatorial identities:
(i) $\binom{-a}{b}=(-1)^{b}\binom{a+b-1}{b}$,
(ii) $\sum_{r}\binom{a}{r}\binom{b+r}{c}(-1)^{r}=(-1)^{a}\binom{b}{c-a} \quad(a \geqslant 0)$,
(iii) $\sum_{r}\binom{a}{r}\binom{b}{c-r}=\binom{a+b}{c} \quad(a \geqslant 0)$.

By Lemma 1, we have

$$
x_{i}=\sum_{j=i}^{t-1}\binom{j}{i}\left(\lambda_{j}-1\right)\binom{k}{j}(-1)^{i+j}+\sum_{j=t}^{k-1}\binom{\eta}{i} w_{j}(-1)^{i+j},
$$

where $x_{j} \leqslant w_{j} \leqslant(\lambda-1)\binom{k}{j} \quad(t \leqslant j \leqslant k-1)$.
Then, $x_{i}=\lambda \sum_{j=i}^{t-1}\binom{j}{i}\left(\lambda_{j}^{\prime}-1\right)\binom{k}{i}(-1)^{i+j}+(\lambda-1) \sum_{j=i}^{t-1}\binom{j}{i}\binom{k}{j}(-1)^{i+j}$

$$
+\sum_{j=t}^{k-1}\binom{j}{i} w_{j}(-1)^{i+j}
$$

where $\lambda_{j}^{\prime}=\frac{\binom{v-j}{t-j}}{\binom{k-j}{t-j}}=\frac{\binom{v-j}{k-j}}{\binom{v-t}{k-t}} \quad(0 \leqslant j \leqslant t-1)$.
Hence, in order to prove Lemma 5, it is sufficient to show that the following equality holds for $i=0, \cdots, k-1$.

$$
\sum_{j=i}^{t-1}\binom{j}{i}\left(\lambda_{j}^{\prime}-1\right)\binom{k}{j}(-1)^{i+j}
$$

$$
\begin{equation*}
=\frac{\binom{k}{i}}{\binom{v-t}{k-t}}\left\{\binom{v-k}{k-i}+(-1)^{t+i+1} \sum_{q=0}^{k-t-1}\binom{t-i+1+q}{q}\binom{v-k+q}{k-t}\right\} . \tag{12}
\end{equation*}
$$

First suppose that $t \leqslant i \leqslant k-1$. Then,

$$
\begin{align*}
\sum_{q=0}^{k-t-1}\binom{t-i-1+q}{q}\binom{v-k+q}{k-t} & =\sum_{q=0}^{k-t-1}(-1)^{q}\binom{i-t}{q}\binom{v-k+q}{k-t} \tag{i}\\
& =(-1)^{i-t}\binom{v-k}{k-1} . \tag{ii}
\end{align*}
$$

Hence, the right hand of $(12)=0=$ the left hand of (12).
Let $A=\left(a_{r s}\right)$ be the square matrix with $a_{r s}=\binom{s}{r}(0 \leqslant r, s \leqslant k-1)$. Since $\operatorname{det}(A) \neq 0, A^{-1}=\left(\binom{s}{r}(-1)^{r+s}\right)(0 \leqslant r, s \leqslant k-1)$ and (12) holds for $i=t, \cdots, k-1$, we have that (12) holds for $i=0, \cdots, k-1$ if the following holds for $i=0, \cdots, t-1$.

$$
\begin{equation*}
\sum_{j=1}^{k-1}\binom{j}{i} \frac{\binom{k}{j}}{\binom{v-t}{k-t}}\left\{\binom{v-k}{k-j}+(-1)^{t+j+1} \sum_{q=0}^{k-t-1}\binom{t-j-1+q}{q}\binom{v-k+q}{k-t}\right\}=\left(\lambda_{i}^{\prime}-1\right)\binom{k}{i} \tag{13}
\end{equation*}
$$

Since $\binom{j}{i}\binom{k}{j}=\binom{k}{i}\binom{k-i}{k-j}$,
the left hand of $(13)=\frac{\binom{k}{i}}{\binom{v-t}{k-t}} \sum_{j=i}^{k-1}\binom{k-i}{k-j}\left\{\binom{v-k}{k-j}\right.$

$$
\begin{equation*}
\left.+(-1)^{t+j+1} \sum_{q=0}^{k-t-1}\binom{t-j-1-q}{q}\binom{v-k+q}{k-t}\right\} . \tag{14}
\end{equation*}
$$

Now, $\sum_{j=i}^{k-1}\binom{k-i}{k-j}\binom{v-k}{k-j}=\sum_{j=i}^{k-1}\binom{k-i}{j-i}\binom{v-k}{k-j}$

$$
\begin{align*}
& =\sum_{h=0}^{k-i}\binom{k-i}{h}\binom{v-k}{k-i-h}-1 \quad(h=j-i) \\
& =\binom{v-i}{k-i}-1 . \quad \text { (cf. (iii)) } \tag{15}
\end{align*}
$$

On the other hand,

$$
\left.\begin{array}{rl}
& \sum_{j=i}^{k-1}\binom{k-i}{k-j}(-1)^{t+j+1} \sum_{i=0}^{k-t-1}\binom{t-j-1+q}{q}\binom{v-k+q}{k-t} \\
= & \sum_{q=0}^{k-t-1}(-1)^{t+1}(v-k+q \\
k-t \tag{i}
\end{array}\right) \sum_{j=i}^{k-1}\binom{k-i}{j-i}\binom{t-j-1+q}{q}(-1)^{j} .
$$

$$
\begin{align*}
& =\sum_{q=0}^{k-t-1}(-1)^{t+1}\binom{v-k+q}{k-t}\left\{\sum_{h=0}^{k-i}\binom{k-i}{h}\binom{i-t+h}{q}(-1)^{i+h+q}-\binom{k-t}{q}(-1)^{k+q}\right\} \\
& (h=j-i) \\
& =\sum_{q=0}^{k-t-1}(-1)^{t+1}\binom{v-k+q}{k-t}\left\{(-1)^{(k-i)+(i+q)}\binom{i-t}{q-k+i}-\binom{k-t}{q}(-1)^{k+q}\right\} \quad(\mathrm{cf.} \text { (ii)) } \tag{ii}\\
& =\sum_{q=0}^{k-t-1}(-1)^{t+k+q}\binom{v-k+q}{k-t}\binom{k-t}{q} \quad(q-k+i<0) \\
& =(-1)^{k+t} \sum_{q=0}^{k-t}\binom{k-t}{q}\binom{v-k+q}{k-t}(-1)^{q}-\binom{v-t}{k-t} \\
& =(-1)^{k+t+k-t}\binom{v-k}{k-t-k+t}-\binom{v-t}{k-t} \quad \text { (cf. (ii)) } \\
& =1-\binom{v-t}{k-t} . \tag{16}
\end{align*}
$$

Hence by (14), (15) and (16), we have that

$$
\text { the left hand of } \left.\left.\begin{array}{rl}
(13) & =\frac{\binom{k}{i}}{\binom{v-t}{k-t}}\left\{\binom{v-i}{k-i}-1+1-\binom{v-t}{k-t}\right\} \\
& =\left\{\binom{v-i}{k-i}\right. \\
\binom{v-t}{k-t}
\end{array}\right\}, 1\right\}\binom{k}{i}=\text { the right hand of (13). } . ~ l
$$

Thus, Lemma 5 is proved.
Lemma 6. For each $k \geqslant 2$ and $l \geqslant 0$, there exist at most firitely many blockregular $t-(v, k, \lambda)$ designs with $x_{i} \leqslant l$ for some $i(0 \leqslant i \leqslant t-1)$.

Proof. In order to prove Lemma 6, it is sufficient to show the following: For each $k \geqslant 2, l \geqslant 0, t(1 \leqslant t<k)$ and $i(0 \leqslant i<t)$, there exist at most finitely many block-regular $t-(v, k, \lambda)$ designs with $x_{i} \leqslant l$.

Let k, l, t and i be integers with $k \geqslant 2, l \geqslant 0,1 \leqslant t<k$ and $0 \leqslant i<t$, and let \boldsymbol{D} be a block-regular $t-(v, k, \lambda)$ design with $x_{i} \leqslant l$. By Lemma 1, we have

$$
x_{i}=\sum_{j=i}^{t-1}\binom{j}{i}\left(\lambda_{j}-1\right)\binom{k}{j}(-1)^{i+j}+\sum_{j=t}^{k-1}\binom{j}{i} w_{j}(-1)^{i+j}
$$

where $x_{j} \leqslant w_{j} \leqslant(\lambda-1)\binom{k}{j} \quad(j=t, \cdots, k-1)$. Therefore,

$$
\begin{aligned}
&\left.x_{i}-l>\left(\frac{(v-i) \cdots(v-t+1)}{(k-i) \cdots(k-t+1)} \lambda-1\right)\binom{k}{i} \cdots \sum_{j=i+1}^{t-1}\binom{j}{i} \frac{(v-j) \cdots(v-t+1)}{(k-j) \cdots(k-t+1)} \lambda-1\right)\binom{k}{j} \\
&-\sum_{j=t}^{k-1}\binom{j}{i}(\lambda-1)\binom{k}{j}-l .
\end{aligned}
$$

In the above expression, if we suppose that k, l, t and i are constants, and that v and λ are variables with $v>k$ and $\lambda \geqslant 1$, then we can obtain the following:

The right hand of the expression $=\lambda \cdot f(v)+\lambda \cdot g(v)+d$, where $f(v)$ is a polynomial in v of degree $t-i$ with the leading coefficient of $f(v)>0, g(v)$ is a polynomial in v of degree $t-i-1$, and d is a constant. Hence, there exists a constant $C(k, l, t, i)>0$ such that $x_{i}-l>0$ holds if $v \geqslant C(k, l, t, i)$. Namely, if $x_{i} \leqslant l$, then $v<C(k, l, t, i)$.

Proof of Theorem 2. By Lemma 6, we may assume that $t \geqslant \frac{2 n+((2 n+2)!)^{2}}{c-2}$ $+2 n$. Let \boldsymbol{D} be a block-regular $t-(v, t+n, \lambda)$ design with $v \geqslant c t, t \geqslant$ $\frac{2 n+((2 n+2)!)^{2}}{c-2}+2 n$, and $x_{i} \leqslant l$ for some $i(0 \leqslant i \leqslant t-1)$. Set $v=m t(m \geqslant c)$, where m is not always integral. By Lemma 5, we have

$$
\begin{align*}
x_{i}= & \frac{\lambda\binom{t+n}{i}}{\binom{(m-1) t}{n}}\left\{\left(\begin{array}{c}
\binom{m-1) t-n}{t+n-i}+(-1)^{t+i+1} \sum_{q=0}^{n-1}\binom{t-i-1+q}{q}\left(\begin{array}{c}
\left.\binom{m-1) t-n+q}{n}\right\} \\
\\
\end{array}+(\lambda-1) \sum_{j=i}^{t-1}\binom{j}{i}\binom{t+n}{j}(-1)^{i+j}+\sum_{j=t}^{t+n-1}\binom{j}{i} w_{j}(-1)^{i+j}\right.
\end{array}, l\right.\right.
\end{align*}
$$

where $x_{j} \leqslant w_{j} \leqslant(\lambda-1)\binom{t+n}{j} \quad(t \leqslant j \leqslant k-1)$.
Now, $(\lambda-1) \sum_{j=i}^{t-1}\binom{j}{i}\binom{t+n}{j}(-1)^{i+j}+\sum_{j=t}^{t+n-1}\binom{j}{i} w_{j}(-1)^{i+j}$

$$
\begin{align*}
& =-(\lambda-1) \sum_{j=t}^{t+n}\binom{j}{i}\binom{t+n}{j}(-1)^{i+j}+\sum_{j=t}^{t+n-1}\binom{j}{i} w_{j}(-1)^{i+j} \\
& >-2 \lambda(n+1) \frac{(t+n)!}{i!(t-i)!} \tag{18}
\end{align*}
$$

On the other hand,

$$
\begin{align*}
& >\frac{\lambda(t+n)!((m-1) t-n)!((m-1) t-n)!}{i!(t+n-i)!((m-1) t)!(t+n-i)!((m-2) t-2 n+i)!}-\frac{\lambda(t+n)!}{i!(t-i)!} \tag{19}
\end{align*}
$$

By (17), (18) and (19), we have

$$
\frac{x_{i} i!(t-i)!}{(t+n)!\lambda}>\frac{\{((m-1) t-n)!\}^{2}(t-i)!}{((t+n-i)!)^{2}((m-1) t)!((m-2) t-2 n+i)!}-5 n .
$$

Then since $\frac{i!(t-i)!}{(t+n)!\lambda} \leqslant \frac{\iota!}{(t+n)!\lambda}<1$, we have

$$
x_{i}>\frac{((m-1) t-n) \cdots((m-2) t-2 n+i+1)}{((m-1) t) \cdots((m-1) t-n+1) \cdot(t+n-i) \cdots(t-i+1)(t+n-i)!}-5 n .
$$

Hence, $x_{i}>((m-1) t-n) \frac{((m-1) t-n-1) \cdots((m-1) t-2 n)}{((m-1) t) \cdots((m-1) t-n+1)}$

$$
\begin{aligned}
& \cdot \frac{((m-1)-2 n-1) \cdots((m-1) t-3 n)}{(t+n-i) \cdots(t-i+1)} \\
& \cdot \frac{((m-1) t-3 n-1) \cdots((m-2) t-2 n+i+2)}{(t+n-i) \cdots(2 n+3)} \cdot \frac{(m-2) t-2 n+i+1}{(2 n+2)!}-5 n
\end{aligned}
$$

holds if $t-i \geqslant n+3$, and

$$
\begin{aligned}
x_{i}>((m-1) t-n) & \frac{((m-1) t-n-1) \cdots((m-1) t-2 n)}{((m-1) t) \cdots((m-1) t-n+1)} \\
& \cdot \frac{((m-1) t-2 n-1) \cdots((m-2) t-2 n+i+1)}{((2 n+2)!)^{2}}-5 n
\end{aligned}
$$

holds if $2 \leqslant t-i \leqslant n+2$,
and $\quad x_{i}>((m-1) t-n) \frac{((m-1) t-n-1) \cdots((m-1) t-2 n)}{((m-1) t) \cdots((m-1) t-n+1)} \frac{1}{((n+1)!)^{2}}-5 n$
holds if $t-i=1$.
In any case, since $t \geqslant \frac{2 n+((2 n+2)!)^{2}}{c-2}+2 n$, we have

$$
\begin{aligned}
x_{i} & >((m-1) t-n) \frac{((m-2) t)^{n}}{((m-1) t)^{n}} \cdot \frac{1}{((n+1)!)^{2}}-5 n \\
& >\frac{((c-1) t-n)}{((n+1)!)^{2}}\left(\frac{c-2}{c-1}\right)^{n}-5 n .
\end{aligned}
$$

Therefore, there exists a positive integer $N(c, n, l)\left(\geqslant \frac{2 n+((2 n+2)!)^{2}}{c-2}+2 n\right)$ such that $x_{i}-l>0$ holds if $t \geqslant N(c, n, l)$. Namely, if $x_{i} \leqslant l$, then $t \leqslant N(c, n, l)$. Hence by Lemma 6, the proof of Theorem 2 is completed.

References

[1] T. Atsumi: An extension of Cameron's result on blockschematic Steiner systems, J. Combin. Theory Ser. A 27 (1979), 388-391.
[2] R.C. Bose: Strongly regular graphs, partial geometries, and partially balanced designs, Pacific J. Math. 13 (1963), 389-419.
[3] P.J. Cameron: Two remarks on Steiner systems, Geom. Dedicata 4 (1975), 403-418.
[4] M. Dehon: Sur les t-designs dont un des nombres d'intersection est nul, Acad. Roy. Belg. Bull. Cl. Sci. (5) 61 (1975), 271-280.
[5] B.H. Gross: Intersection triangles and block intersection numbers for Steiner systems, Math. Z. 139 (1974), 87-104.

Division of Mathematics
Keio University
Hiyoshi, Yokohama 223
Japan

