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Let A be a union of some conjugacy classes in a group. We define a binary
operation on A by aob=b~ιab. It satisfies that (1) aoa=a9 (2) (aob)oc=
(aoc)o(boc) and (3) a mapping σa\ #—>#oα is a permutation on A, Generally
we call a binary system which satisfies the above three conditions a pseudosym-
metric set. It is called a symmetric set if (4) σa has the order 2 is also satisfied.
The set of all nilpotent elements in a Lie algebra is another example of a pseu-
dosymmetric set. whe.e σβ=exp(ad a). The purpose of this note is to genera-
lize the main result on the simplicity of a symmetric set given in [2] to the case
of a pseudosymmetric set. As applications, three examples of conjugacy classes
in simple groups Any SL(V) and Sp(V) will be discussed, from which we could
derive a new proof of the simplicity of the corresponding groups An, PSL(V)
and PSp(V).

Generally, let A be a pseudosymmetric set and define G=G(A)=(σa\a^
Ay> a group generated by σa. The above three conditions imply that G is a
group of automorphisms of A. Note that if p is an automorphism of A, then
σa

pz=:ρ~ιo ap' {σa\a^A} is a union of conjugacy classes in G and hence is
a pseudosymmetric set, and the mapping σ: a-*σa is a homomorphism of A to
the set. When σ is a monomorphism, we say that A is effective. When A=aG

for an element a, we say that A is transitive. Let G' be the commutator sub-
group of G. When A is transitive, G'=(<σ7ισh | a, b^Ay, since b=ap with some
element p in G and σ71σb=σJ1ρ~1σap^G/ and conversely σ71<rϊ1σaσb=σ71σe

with c=aσκ So, in this case, G=ζG\ <xfl> for any a. Also note that if A is a
union of conjugacy classes in a group K and if A generates Ky then G^K/Z(K)>
where Z{K) is the center of K.

Let A and B be pseudosymmetric sets and suppose that there exists a homo-
morphism / of A onto B. The inverse image f~\b) for an element b in B is
called a coset of /. Let {Ct } be the set of all cosets of /. Then {CJ is a
system of blocks of imprimitivity of the permutation group G? and if σ and
p belong to the same coset, then CPi = Cσi for every i. When |i?| > 1 and/is
not a monomorphism, we say that / is proper. A pseudosymmetric set A with
\A\ > 2 is called simple if it has no proper homomorphism. Note that if A is
simple, then it is transitive. For, consider the canonical homomorphism a->aG
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of A onto B={aG\a^A}. Since A is simple, |2? |=1 or the mapping is a
monomorphism. In the former case, A=aG is transitive. In the latter case,
a=aG for every a, i.e., G is trivial, which is impossible because \A\ > 2 implies
that A has a proper homomorphism to the trivial pseudosymmetric set of two
elements. The following theorem is established for a symmetric set in [2].

Theorem. Let A be a pseudosymmetric set. If A is simple, then G' is the
unique minimal normal subgroup of G. The converse is also true if A is effective and
transitive.

Proof. Suppose that A is simple. Let K Φl be a normal subgroup of
G, and B the set of all i£-orbits. B is a pseudosymmetric set, and there is the
canonical homorphism /: a->aκ. Since ϋC=t= 1, / is not a monomorphism.
Therefore, | J?| = 1 , which implies that K is transitive on A. So, for any ele-
ments a and b, ap=b with p in K. Then, o-apz=p~1

σ-ap=:(Tb} and hence σJισa^K
as K is normal. Thus G' dKy which proves the first part of Theorem. Conver-
sely, suppose that A is effective and transitive and that A is not simple. We want
to show that there is a normal subgroup K such that 1 Φi^SiG'. Since A is
not simple, there is a proper homomorphism f of A onto B with |j?| >2. /
induces a homomorphism / of G to G(B) in a natural way:/(αoft)=/(α)o/(£>)=
f(aY(<rb\ or, more generally f(ap)=f(ay(p). Lttg be the restriction of / to G'.
Let K be the kernel of g. Since / is not a monomorphism, there exist a and b
such that αφ£ and f(a)=f(b). Then, f(σa)=f(crb) and hence g(σ71σb)=l.
Thus i £ φ l . Note that σ-^V^φl and Gff as A is effective and transitive.
On the other hand, let/(c) and f(d) be two elements in B. Since A is transitive,
cr=d with some r in G. We may assume that T is in G'. For, G=ζG', crc>
= Σ M G ' and we can replace T by σι

cr. Then, f(c)ί{τ)=f(cr)=f(d)φf(c).
Therefore, £(τ)=|=l and T is not in K. K^G'.

Corollary. Let A be an effective and transitive pseudosymmetric set. Sup-
pose G'=G. Then A is simple if and only if G is a simple group.

In the following, we show some examples of simple pseudosymmetric
sets. Although it is well known that the corresponding groups G are simple,
we shall show the simplicity of A directly, thus giving a new proof of the sim-
plicity of G (once we show Gr=G).

EXAMPLE 1. We consider the alternating group An. (n>5) Let A be
the conjugacy class of the 3-cycle (1, 2, 3). A consists of all 3-cycles and
generates An. So, G^An/Z(An)=An. We shall show that A is simple. Let
{Ci} be the set of all cosets of a homomorphism of A to a pseudosymmetric
set B. Assume that | Ct | > 2 . Note that all Ct have the same cardinality as A
is transitive. Let C be one of Ct .
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(1) Suppose that (1, 2, 3) and (1, 2, 4) are both contained in C. It is not
hard to check that the pseudosymmetric set C contains all {i,j, k), \<i,j, &<4.
Since (1, 2, 3) σ =(l, 2, 4 ) e C where σ=(3, 4, 5), we see that (1, 2, 4)<Γ=(1, 2, 5)
is also contained in C due to the definition of a block of imprimitivity of a per-
mutation group. So, C contains all (i,j, k), l<iyj\ k<5 by the above argument.
Repeating this process, we have C=A.
(2) Suppose that (1, 2, 3) and (1, 4, 5 ) G C . Then, (1, 2, 3)σ=(4, 2, 3) is con-
tained in C, where σ = ( l , 4, 5). Thus, by (1), C=A.
(3) Suppose that (1, 2, 3) and (2, 1, 3)eC. Let σ = ( l , 2, 3) and τ=(2,1, 3).
Then both (2, 4, 5)σ = (3, 4, 5) and (2, 4, 5)τ = (l, 4, 5) are contained in
C'^C^C), where C, contains (2, 4, 5). Then C'=i4 by (1).
(4) Suppose that (1, 2, 3) and (2, 1, 4 ) G C . Let σ = ( l , 2, 3) and τ=(2, 1, 4).
Then both (2, 3, 5)°"=(3, 1, 5) and (2, 3, 5) τ =(l, 3, 5) are contained in a coset
C", and C"=,4 by (3).
(5) Suppose that n > 6 and that (1, 2, 3) and (4, 5, 6 ) G C . Let σ = ( l , 2, 3)
and τ=(4, 5, 6). Then both (2, 3, 4)σ=(3, 1, 4) and (2, 3, 4) τ=(2, 3, 5) are
contained in a coset C", and C"=^4 by (2).
From the above, we can conclude that A is simple.

EXAMPLE 2 (For Examples 2 & 3, see [1]). Let V be a vector space over
a field X". Let τ f l / be a transvection: x->x—f(x)a, where αφO and / is a non-
zero linear function such that/(α)=0. A pseudosymmetric set A is defined as
follows. When dim F > 3 , let A be the set of all transvections. It is known in
this case that A is a conjugacy class in SL(V) and generates SL(V). When

dim F = 2 , let r be a transvection represented by a matrix with respect to

some basis of V, and let A be the conjugacy class of T in SL(V). We show
that A generates SL(V) in this case. Then A is seen to be transitive. For λ Φθ,
we have

o xJ Lo lJLo λJ~Lo l
If char(i£)φ2 or if K is finite, then μ=a2—β2—y2 has solutions a, β and 7
in K for any given μ as we see easily. Then,

Lo lJLo l j Lo l j - L o iΓ<A>

Then, also,

We see that (Ay=SL(V) in this case. Next, assume that char(i£)=2 and K
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is infinite. Then,

rτi nro

Hence,

ri nro n ri I
lo iJLi oJ = Li o

For any non-zero μ,

Hence,

Therefore,

ι>-» l -iΓi x-ir>-» l -i-ri λr1 _ ri M ^ - i η

Lo M2JLO IJLO M

2J Lo IJ ~Lo l r < A > -
Since K is infinite, λ(μ~4— 1) can be any non-zero element in K. As in the
first case, we can show (A)=SL(V). So, we can also conclude that for any <α>
there exists C^(JOL) and /such that TCJ^A if dim V=2.

Now we are in a position to show that A is simple. Let {C,} be the
set of all cosets of a homomorphism where | Cf | > 2 . First, we prove that there
is a coset C which contains two elements τ Λ / and τbg such that/(£)Φθ. For
it, let σ and p be two elements in some coset. There is a hyper plane H such
that H'τφHp

) since otherwise σρ~ι fixes every line and hence σ=p as both
σ and p are transvections. So, we can choose an element c in H such that
cσ^Hp. Let A be a linear function defining H; H=Hh=^{x\h(x)=0}. Let
a=cp, b=cσ,f=hp and g=h(Γ. Let 0=0°, where C, is a coset containing τ c A .
Note that we can make τc^A if dim V=2 by the above remark. Note also
Cσi — Cp as σ and p belong to the same coset. C satisfies the above condition.
For, f(b)=hp(b)=h(bp~1)^O as b<£Hp. C contains τp

ch^raf and τσ

ch = τbg.
Next, we prove that, for every line <J>, C contains an element τd,j. such that
d' e<d>. For it, we may assume that iφ<α>U<(δ>. If d&Hff we can
choose φ is SL(F) such that φ is the identity on Hf and that ^e<rf>. Note
that/(ό)Φθ implies b^Hf. φ fixes τ β i / as it is a unimodular linear trans-
formation acting identically on Hf. Therefore, Cφ = C. Since τ%^C, we
can let d'=bφ. If d^Hf and d&Hg, we can choose f in SL(F) such that
I is the identity on Hg and that d^Hf. Since £ fixes τbg this time, C*=C.
From the above, we can find d0 such that τ ί θ i # e C and that i oe<J^>. So, in
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this case, let df=d%~ . Finally, suppose that d^Hff)Hg. In this case, we
can choose ζ in SL(V) such that ζ induces a unimodular linear transformation
on Hfy aζ=a and dζ&Hg. It follows that τij—τaJ since ζ^SL(V) and its
restriction on Hf is a unimodular linear transformation of Hf. Hence, Cζ—C.
Then, as above, we can show the existence of a required element d'. It is
now easy to conclude that C—A. For, let τd/ * be given as above. τdf and
τd/^ are commtative as d'^ζdy. For every d, τdJ leaves C fixed. Since A
is transitive, this implies C=A. We have proven that A is simple.

EXAMPLE 3. Suppose that V has a non-singular symplectic metric (xy y).
Let σ β λ be a symplectic transvection: x->x-\-X(x, a)a, where a is a non-zero
element in V and λ is a non-zero element in K. We define a pseudosymmetric
set A by A={σaΛ\a^:V*=V— {0}}. We want to show that A generates
Sp(V) and that A is simple. In order to show that A generates Sp(V)y first
suppose that char (K) Φ2 or that K is finite. Since σλaί=σa λ

2 and σ7,i=σβf_i,
we can show that ζA} contains all σΛμ as in Example 2. Thus, (Ay=Sp(V)
in this case, since σa μ generate Sp(V). Next, suppose that char(i£)=2 and
that K is infinite. We reduce our problem to the case of dim 2 and solve it.
To show σα>λeC4>, consider V'=ζa, α'>, a hyperbolic plane. Let V=V'®V"
be an orthogonal decomposition. Then crβ ) λ=σ£> λθly", where σ£fλ is a sym-
plectic transvection on V. Now, Sp(V')=SL(V')=PSL(V) because i£ is
infinite and char(iη=2. (See [1], p. 174.) If we let A'={σ'eti\c&V'*}, then
ζA'y is a normal subgroup of SL(V) and hence ζA'y=Sp(V')9 since the latter
is a simple group by the above. This implies that σΛλG<^4/>01F//C<^4)>.
Thus, A generates Sp(V).

Before we show the simplicity of A, we show that A is transitive. F* is
clearly a pseudosymmetric set by aob=a<r^i. A mapping /: a->σaι is a
homomorphism of F * onto A, and /~%re ti)={±fl}. It suffices to show that
F * is transitive. Fix α, and let # be an arbitrary element in F* . If (a, x) Φθ,
then a-\-x=ar*>λ, where X=(a9 x)'1. Therefore, a-\-x belongs to the G*-orbit
of a where G*=G(V*). Then x belongs to the G*-orbit of a-\-x, which is
equal to the G*-orbit of a> since (a+x, —α)Φθ and (α+^)+(—a)=x. If
(α, x)=0, we can choose y such that (a, J>)φθ a n d (j> <^)φθ. For, let F ' =
<α, α'> as before. If («', Λ?) Φθ, let y=a'. If (αr, x)=0, let <JC, Λ'> be a hyper-
bolic plane which is orthogonal to F'. Let j ^ α ' + a Λ Thus, x is in the G*-
orbit of j>, which is equal to the G*-orbit of α. We have shown that A is
transitive. Now we are in a position to prove that A is simple. Let {C,} be
the set of cosets as before, where | Ct | > 2 . Let Cf=f"\Cf). Let C* be one
of Cf.

(1) Suppose that C* contains α and b such that (#, δ)Φθ. Since C*<rb>*=C*
for any λ as σ M fixes έ, C* contains all a-\-μb. So, more generally, C*
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contains aa+βb for any a and β. For any c in F*, (aa-\-βb, c)=0 for some
aa-\-βb in F*, which implies that σ c λ leaves aa-\-βb fixed. Therefore, C* is
left fixed by any σ c λ. Since F* is transitive, this implies C*=V*> or C—A.
A is simple in this case.
(2) Suppose that C* contains a and δ such that (a> b)=0 and a&ζby. Then,
we can express b=aa-{-d with a non-zero element d in F" , where V=V'@V"
(orthogonal), since (α, έ)=0 and #<$<&>. Now, let ί: be an element in V"
such that (d, c) φθ. Since σCfλ fixes α, C* is left fixed by σCyλ. Then, b^Λ G C*,
which implies that H ^ C * . Since (έ, i+c)Φθ, we have C=A by (1).

(3) Suppose that C* contains a and αα, where α Φ ± l . Let b be an element
such that {a, b)Φθ. Let Cf be a coset which contains b. Then, CfσaΛ =
C f W , which contains d=^bσ°Λ^b+{b, a)a and e=bσ*aΛ =b+a2(b, a)a. Since

>, we can apply (1) or (2) and get that {C^ = {A}y or A is simple.

REMARK.

satisfied.
If we consider PSL(V) snd PSp(V), the "effective" condition is
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