A REMARK ON CONJUGACY CLASSES IN SIMPLE GROUPS

Nobuo NOBUSAWA

(Received January 23, 1980)

Let A be a union of some conjugacy classes in a group. We define a binary operation on A by $a \circ b=b^{-1} a b$. It satisfies that (1) $a \circ a=a$, (2) $(a \circ b) \circ c=$ $(a \circ c) \circ(b \circ c)$ and (3) a mapping $\sigma_{a}: x \rightarrow x \circ \alpha$ is a permutation on A. Generally we call a binary system which satisfies the above three conditions a pseudosymmetric set. It is called a symmetric set if (4) σ_{a} has the order 2 is also satisfied. The set of all nilpotent elements in a Lie algebra is another example of a pseudosymmetric set. whe e $\sigma_{a}=\exp (\operatorname{ad} a)$. The purpose of this note is to generalize the main result on the simplicity of a symmetric set given in [2] to the case of a pseudosymmetric set. As applications, three examples of conjugacy classes in simple groups $A_{n}, S L(V)$ and $S p(V)$ will be discussed, from which we could derive a new proof of the simplicity of the corresponding groups $A_{n}, \operatorname{PSL}(V)$ and $P S p(V)$.

Generally, let A be a pseudosymmetric set and define $G=G(A)=\left\langle\sigma_{a}\right| a \in$ $A\rangle$, a group generated by σ_{a}. The above three conditions imply that G is a group of automorphisms of A. Note that if ρ is an automorphism of A, then $\sigma_{a^{\rho}}=\rho^{-1} \sigma_{a} \rho . \quad\left\{\sigma_{a} \mid a \in A\right\}$ is a union of conjugacy classes in G and hence is a pseudosymmetric set, and the mapping $\sigma: a \rightarrow \sigma_{a}$ is a homomorphism of A to the set. When σ is a monomorphism, we say that A is effective. When $A=a^{G}$ for an element a, we say that A is transitive. Let G^{\prime} be the commutator subgroup of G. When A is transitive, $G^{\prime}=\left\langle\sigma_{a}^{-1} \sigma_{b} \mid a, b \in A\right\rangle$, since $b=a^{\rho}$ with some element ρ in G and $\sigma_{a}^{-1} \sigma_{b}=\sigma_{a}^{-1} \rho^{-1} \sigma_{a} \rho \in G^{\prime}$ and conversely $\sigma_{a}^{-1} \sigma_{b}^{-1} \sigma_{a} \sigma_{b}=\sigma_{a}^{-1} \sigma_{c}$ with $c=a^{\sigma}{ }^{b}$. So, in this case, $G=\left\langle G^{\prime}, \sigma_{a}\right\rangle$ for any a. Also note that if A is a union of conjugacy classes in a group K and if A generates K, then $G \cong K / Z(K)$, where $Z(K)$ is the center of K.

Let A and B be pseudosymmetric sets and suppose that there exists a homomorphism f of A onto B. The inverse image $f^{-1}(b)$ for an element b in B is called a coset of f. Let $\left\{C_{i}\right\}$ be the set of all cosets of f. Then $\left\{C_{i}\right\}$ is a system of blocks of imprimitivity of the permutation group G, and if σ and ρ belong to the same coset, then $C_{i}^{\rho}=C_{i}^{\sigma}$ for every i. When $|B|>1$ and f is not a monomorphism, we say that f is proper. A pseudosymmetric set A with $|A|>2$ is called simple if it has no proper homomorphism. Note that if A is simple, then it is transitive. For, consider the canonical homomorphism $a \rightarrow a^{G}$
of A onto $B=\left\{a^{G} \mid a \in A\right\}$. Since A is simple, $|B|=1$ or the mapping is a monomorphism. In the former case, $A=a^{G}$ is transitive. In the latter case, $a=a^{G}$ for every a, i.e., G is trivial, which is impossible because $|A|>2$ implies that A has a proper homomorphism to the trivial pseudosymmetric set of two elements. The following theorem is established for a symmetric set in [2].

Theorem. Let A be a pseudosymmetric set. If A is simple, then G^{\prime} is the unique minimal normal subgroup of G. The converse is also true if A is effective and transitive.

Proof. Suppose that A is simple. Let $K \neq 1$ be a normal subgroup of G, and B the set of all K-orbits. $\quad B$ is a pseudosymmetric set, and there is the canonical homorphism $f: a \rightarrow a^{K}$. Since $K \neq 1, f$ is not a monomorphism. Therefore, $|B|=1$, which implies that K is transitive on A. So, for any elements a and $b, a^{\rho}=b$ with ρ in K. Then, $\sigma_{a^{\rho}}=\rho^{-1} \sigma_{a} \rho=\sigma_{b}$, and hence $\sigma_{b}^{-1} \sigma_{a} \in K$ as K is normal. Thus $G^{\prime} \subset K$, which proves the first part of Theorem. Conversely, suppose that A is effective and transitive and that A is not simple. We want to show that there is a normal subgroup K such that $1 \neq K \subsetneq G^{\prime}$. Since A is not simple, there is a proper homomorphism f of A onto B with $|B| \geq 2 . f$ induces a homomorphism \bar{f} of G to $G(B)$ in a natural way: $f(a \circ b)=f(a) \circ f(b)=$ $f(a)^{\bar{f}\left(\sigma_{b}\right)}$, or, more generally $f\left(a^{\rho}\right)=f(a)^{\bar{f}(\rho)}$. Let \bar{g} be the restriction of \bar{f} to G^{\prime}. Let K be the kernel of g. Since f is not a monomorphism, there exist a and b such that $a \neq b$ and $f(a)=f(b)$. Then, $\bar{f}\left(\sigma_{a}\right)=\bar{f}\left(\sigma_{b}\right)$ and hence $g\left(\sigma_{a}^{-1} \sigma_{b}\right)=1$. Thus $K \neq 1$. Note that $\sigma_{a}^{-1} \sigma_{b} \neq 1$ and $\in G^{\prime}$ as A is effective and transitive. On the other hand, let $f(c)$ and $f(d)$ be two elements in B. Since A is transitive, $c^{\tau}=d$ with some τ in G. We may assume that τ is in G^{\prime}. For, $G=\left\langle G^{\prime}, \sigma_{c}\right\rangle$ $=\sum \sigma_{c}^{i} G^{\prime}$ and we can replace τ by $\sigma_{c}^{i} \tau$. Then, $f(c)^{\bar{g}(\tau)}=f\left(c^{\tau}\right)=f(d) \neq f(c)$. Therefore, $\bar{g}(\tau) \neq 1$ and τ is not in $K . \quad K \cong G^{\prime}$.

Corollary. Let A be an effective and transitive pseudosymmetric set. Suppose $G^{\prime}=G$. Then A is simple if and only if G is a simple group.

In the following, we show some examples of simple pseudosymmetric sets. Although it is well known that the corresponding groups G are simple, we shall show the simplicity of A directly, thus giving a new proof of the simplicity of G (once we show $G^{\prime}=G$).

Example 1. We consider the alternating group A_{n}. $(n \geq 5)$ Let A be the conjugacy class of the 3 -cycle (1,2,3). A consists of all 3-cycles and generates A_{n}. So, $G \cong A_{n} \mid Z\left(A_{n}\right)=A_{n}$. We shall show that A is simple. Let $\left\{C_{i}\right\}$ be the set of all cosets of a homomorphism of A to a pseudosymmetric set B. Assume that $\left|C_{i}\right| \geq 2$. Note that all C_{i} have the same cardinality as A is transitive. Let C be one of C_{i}.
(1) Suppose that $(1,2,3)$ and $(1,2,4)$ are both contained in C. It is not hard to check that the pseudosymmetric set C contains all $(i, j, k), 1 \leq i, j, k \leq 4$. Since $(1,2,3)^{\sigma}=(1,2,4) \in C$ where $\sigma=(3,4,5)$, we see that $(1,2,4)^{\sigma}=(1,2,5)$ is also contained in C due to the definition of a block of imprimitivity of a permutation group. So, C contains all $(i, j, k), l \leq i, j, k \leq 5$ by the above argument. Repeating this process, we have $C=A$.
(2) Suppose that $(1,2,3)$ and $(1,4,5) \in C$. Then, $(1,2,3)^{\sigma}=(4,2,3)$ is contained in C, where $\sigma=(1,4,5)$. Thus, by (1), $C=A$.
(3) Suppose that $(1,2,3)$ and $(2,1,3) \in C$. Let $\sigma=(1,2,3)$ and $\tau=(2,1,3)$. Then both $(2,4,5)^{\sigma}=(3,4,5)$ and $(2,4,5)^{\tau}=(1,4,5)$ are contained in $C^{\prime}=C_{i}^{\sigma}=C_{j}^{\tau}$, where C_{i} contains $(2,4,5)$. Then $C^{\prime}=A$ by (1).
(4) Suppose that $(1,2,3)$ and $(2,1,4) \in C . \quad$ Let $\sigma=(1,2,3)$ and $\tau=(2,1,4)$. Then both $(2,3,5)^{\sigma}=(3,1,5)$ and $(2,3,5)^{\tau}=(1,3,5)$ are contained in a coset C^{\prime}, and $C^{\prime}=A$ by (3).
(5) Suppose that $n \geq 6$ and that $(1,2,3)$ and $(4,5,6) \in C$. Let $\sigma=(1,2,3)$ and $\tau=(4,5,6)$. Then both $(2,3,4)^{\sigma}=(3,1,4)$ and $(2,3,4)^{\tau}=(2,3,5)$ are contained in a coset C^{\prime}, and $C^{\prime}=A$ by (2).
From the above, we can conclude that A is simple.
Example 2 (For Examples $2 \& 3$, see [1]). Let V be a vector space over a field K. Let $\tau_{a, f}$ be a transvection: $x \rightarrow x-f(x) a$, where $a \neq 0$ and f is a nonzero linear function such that $f(a)=0$. A pseudosymmetric set A is defined as follows. When $\operatorname{dim} V \geq 3$, let A be the set of all transvections. It is known in this case that A is a conjugacy class in $S L(V)$ and generates $S L(V)$. When $\operatorname{dim} V=2$, let τ be a transvection represented by a matrix $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ with respect to some basis of V, and let A be the conjugacy class of τ in $S L(V)$. We show that A generates $S L(V)$ in this case. Then A is seen to be transitive. For $\lambda \neq 0$, we have

$$
\left[\begin{array}{ll}
\lambda^{-1} & 0 \\
0 & \lambda
\end{array}\right]^{-1}\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
\lambda^{-1} & 0 \\
0 & \lambda
\end{array}\right]=\left[\begin{array}{cc}
1 & \lambda^{2} \\
0 & 1
\end{array}\right] \in A
$$

If $\operatorname{char}(K) \neq 2$ or if K is finite, then $\mu=\alpha^{2}-\beta^{2}-\gamma^{2}$ has solutions α, β and γ in K for any given μ as we see easily. Then,

$$
\left[\begin{array}{cc}
1 & \alpha^{2} \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & \beta^{2} \\
0 & 1
\end{array}\right]^{-1}\left[\begin{array}{cc}
1 & \gamma^{2} \\
0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{ll}
1 & \mu \\
0 & 1
\end{array}\right] \in\langle A\rangle .
$$

Then, also,

$$
\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right]^{-1}\left[\begin{array}{ll}
1 & \mu \\
0 & 1
\end{array}\right]\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right]=\left[\begin{array}{rr}
1 & 0 \\
-\mu & 1
\end{array}\right] \in\langle A\rangle .
$$

We see that $\langle A\rangle=S L(V)$ in this case. Next, assume that $\operatorname{char}(K)=2$ and K
is infinite. Then,

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]^{-1}\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \in A
$$

Hence,

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right] \in\langle A\rangle .
$$

For any non-zero μ,

$$
\left[\begin{array}{cc}
\mu & 0 \\
0 & \mu^{-1}
\end{array}\right]^{-1}\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
\mu & 0 \\
0 & \mu^{-1}
\end{array}\right]=\left[\begin{array}{cc}
1 & \mu^{-2} \\
\mu^{2} & 0
\end{array}\right] \in\langle A\rangle
$$

Hence,

$$
\left[\begin{array}{cc}
1 & \mu^{-2} \\
\mu^{2} & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{cc}
\mu^{-2} & 1 \\
0 & \mu^{2}
\end{array}\right] \in\langle A\rangle .
$$

Therefore,

$$
\left[\begin{array}{cc}
\mu^{-2} & 1 \\
0 & \mu^{2}
\end{array}\right]\left[\begin{array}{cc}
1 & \lambda \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
\mu^{-2} & 1 \\
0 & \mu^{2}
\end{array}\right]^{-1}\left[\begin{array}{ll}
1 & \lambda \\
0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{cc}
1 & \lambda\left(\mu^{-4}-1\right) \\
0 & 1
\end{array}\right] \in\langle A\rangle .
$$

Since K is infinite, $\lambda\left(\mu^{-4}-1\right)$ can be any non-zero element in K. As in the first case, we can show $\langle A\rangle=S L(V)$. So, we can also conclude that for any $\langle a\rangle$ there exists $c \in\langle a\rangle$ and f such that $\tau_{c, f} \in A$ if $\operatorname{dim} V=2$.

Now we are in a position to show that A is simple. Let $\left\{C_{i}\right\}$ be the set of all cosets of a homomorphism where $\left|C_{i}\right| \geq 2$. First, we prove that there is a coset C which contains two elements $\tau_{a, f}$ and $\tau_{b, g}$ such that $f(b) \neq 0$. For it, let σ and ρ be two elements in some coset. There is a hyperplane H such that $H^{\sigma} \neq H^{\rho}$, since otherwise $\sigma \rho^{-1}$ fixes every line and hence $\sigma=\rho$ as both σ and ρ are transvections. So, we can choose an element c in H such that $c^{\sigma} \notin H^{\rho}$. Let h be a linear function defining $H ; H=H_{h}=\{x \mid h(x)=0\}$. Let $a=c^{\rho}, b=c^{\sigma}, f=h^{\rho}$ and $g=h^{\sigma}$. Let $C=C_{i}^{\sigma}$, where C_{i} is a coset containing $\tau_{c, h}$. Note that we can make $\tau_{c, h} \in A$ if $\operatorname{dim} V=2$ by the above remark. Note also $C_{i}^{\sigma}=C_{i}^{\rho}$ as σ and ρ belong to the same coset. C satisfies the above condition. For, $f(b)=h^{\rho}(b)=h\left(b^{\rho-1}\right) \neq 0$ as $b \notin H^{\rho} . \quad C$ contains $\tau_{c, h}^{\rho}=\tau_{a, f}$ and $\tau_{c, h}^{\sigma}=\tau_{b, g}$. Next, we prove that, for every line $\langle d\rangle, C$ contains an element $\tau_{d^{\prime}, *}$ such that $d^{\prime} \in\langle d\rangle$. For it, we may assume that $d \notin\langle a\rangle \cup\langle b\rangle$. If $d \notin H_{f}$, we can choose φ is $S L(V)$ such that φ is the identity on H_{f} and that $b^{\varphi} \in\langle d\rangle$. Note that $f(b) \neq 0$ implies $b \notin H_{f} . \quad \varphi$ fixes $\tau_{a, f}$ as it is a unimodular linear transformation acting identically on H_{f}. Therefore, $C^{\varphi}=C$. Since $\tau_{b, g}^{\varphi} \in C$, we can let $d^{\prime}=b^{\varphi}$. If $d \in H_{f}$ and $d \notin H_{g}$, we can choose ξ in $S L(V)$ such that ξ is the identity on H_{g} and that $d^{\xi} \notin H_{f}$. Since ξ fixes $\tau_{b, g}$ this time, $C^{\xi}=C$. From the above, we can find d_{0} such that $\tau_{d_{0}, *} \in C$ and that $d_{0} \in\left\langle d^{\xi}\right\rangle$. So, in
this case, let $d^{\prime}=d_{a}^{\zeta^{-1}}$. Finally, suppose that $d \in H_{f} \cap H_{g}$. In this case, we can choose ζ in $S L(V)$ such that ζ induces a unimodular linear transformation on $H_{f}, a^{\zeta}=a$ and $d^{\zeta} \notin H_{g}$. It follows that $\tau_{a, f}^{\zeta}=\tau_{a, f}$ since $\zeta \in S L(V)$ and its restriction on H_{f} is a unimodular linear transformation of H_{f}. Hence, $C^{s}=C$. Then, as above, we can show the existence of a required element d^{\prime}. It is now easy to conclude that $C=A$. For, let $\tau_{d^{\prime}, *}$ be given as above. $\tau_{d, f}$ and $\tau_{d^{\prime}, *}$ are commtative as $d^{\prime} \in\langle d\rangle$. For every $d, \tau_{d, f}$ leaves C fixed. Since A is transitive, this implies $C=A$. We have proven that A is simple.

Example 3. Suppose that V has a non-singular symplectic metric (x, y). Let $\sigma_{a, \lambda}$ be a symplectic transvection: $x \rightarrow x+\lambda(x, a) a$, where a is a non-zero element in V and λ is a non-zero element in K. We define a pseudosymmetric set A by $A=\left\{\sigma_{a, 1} \mid a \in V^{*}=V-\{0\}\right\}$. We want to show that A generates $S p(V)$ and that A is simple. In order to show that A generates $S p(V)$, first suppose that $\operatorname{char}(K) \neq 2$ or that K is finite. Since $\sigma_{\lambda a, 1}=\sigma_{a, \lambda^{2}}$ and $\sigma_{a, 1}^{-1}=\sigma_{a,-1}$, we can show that $\langle A\rangle$ contains all $\sigma_{a, \mu}$ as in Example 2. Thus, $\langle A\rangle=S p(V)$ in this case, since $\sigma_{a, \mu}$ generate $S p(V)$. Next, suppose that $\operatorname{char}(K)=2$ and that K is infinite. We reduce our problem to the case of $\operatorname{dim} 2$ and solve it. To show $\sigma_{a, \lambda} \in\langle A\rangle$, consider $V^{\prime}=\left\langle a, a^{\prime}\right\rangle$, a hyperbolic plane. Let $V=V^{\prime} \oplus V^{\prime \prime}$ be an orthogonal decomposition. Then $\sigma_{a, \lambda}=\sigma_{a, \lambda}^{\prime} \oplus 1_{V^{\prime \prime}}$, where $\sigma_{a, \lambda}^{\prime}$ is a symplectic transvection on V^{\prime}. Now, $S p\left(V^{\prime}\right)=S L\left(V^{\prime}\right)=P S L\left(V^{\prime}\right)$ because K is infinite and $\operatorname{char}(K)=2$. (See [1], p. 174.) If we let $A^{\prime}=\left\{\sigma_{c, 1}^{\prime} \mid c \in V^{\prime *}\right\}$, then $\left\langle A^{\prime}\right\rangle$ is a normal subgroup of $S L\left(V^{\prime}\right)$ and hence $\left\langle A^{\prime}\right\rangle=S p\left(V^{\prime}\right)$, since the latter is a simple group by the above. This implies that $\sigma_{a, \lambda} \in\left\langle A^{\prime}\right\rangle \oplus 1_{V^{\prime \prime}} \subset\langle A\rangle$. Thus, A generates $S p(V)$.

Before we show the simplicity of A, we show that A is transitive. V^{*} is clearly a pseudosymmetric set by $a \circ b=a^{\sigma_{b, 1}}$. A mapping $f: a \rightarrow \sigma_{a, 1}$ is a homomorphism of V^{*} onto A, and $f^{-1}\left(\sigma_{a, 1}\right)=\{ \pm a\}$. It suffices to show that V^{*} is transitive. Fix a, and let x be an arbitrary element in V^{*}. If $(a, x) \neq 0$, then $a+x=a^{\sigma} x, \lambda$, where $\lambda=(a, x)^{-1}$. Therefore, $a+x$ belongs to the G^{*}-orbit of a where $G^{*}=G\left(V^{*}\right)$. Then x belongs to the G^{*}-orbit of $a+x$, which is equal to the G^{*}-orbit of a, since $(a+x,-a) \neq 0$ and $(a+x)+(-a)=x$. If $(a, x)=0$, we can choose y such that $(a, y) \neq 0$ and $(y, x) \neq 0$. For, let $V^{\prime}=$ $\left\langle a, a^{\prime}\right\rangle$ as before. If $\left(a^{\prime}, x\right) \neq 0$, let $y=a^{\prime}$. If $\left(a^{\prime}, x\right)=0$, let $\left\langle x, x^{\prime}\right\rangle$ be a hyperbolic plane which is orthogonal to V^{\prime}. Let $y=a^{\prime}+x^{\prime}$. Thus, x is in the G^{*} orbit of y, which is equal to the G^{*}-orbit of a. We have shown that A is transitive. Now we are in a position to prove that A is simple. Let $\left\{C_{i}\right\}$ be the set of cosets as before, where $\left|C_{i}\right| \geq 2$. Let $C_{i}^{*}=f^{-1}\left(C_{i}^{*}\right)$. Let C^{*} be one of C_{i}^{*}.
(1) Suppose that C^{*} contains a and b such that $(a, b) \neq 0$. Since $C^{* \sigma_{b, \lambda}}=C^{*}$ for any λ as $\sigma_{b, \lambda}$ fixes b, C^{*} contains all $a+\mu b$. So, more generally, C^{*}
contains $\alpha a+\beta b$ for any α and β. For any c in $V^{*},(\alpha a+\beta b, c)=0$ for some $\alpha a+\beta b$ in V^{*}, which implies that $\sigma_{c, \lambda}$ leaves $\alpha a+\beta b$ fixed. Therefore, C^{*} is left fixed by any $\sigma_{c, \lambda}$. Since V^{*} is transitive, this implies $C^{*}=V^{*}$, or $C=A$. A is simple in this case.
(2) Suppose that C^{*} contains a and b such that $(a, b)=0$ and $a \notin\langle b\rangle$. Then, we can express $b=\alpha a+d$ with a non-zero element d in $V^{\prime \prime}$, where $V=V^{\prime} \oplus V^{\prime \prime}$ (orthogonal), since $(a, b)=0$ and $a \notin\langle b\rangle$. Now, let c be an element in $V^{\prime \prime}$ such that $(d, c) \neq 0$. Since $\sigma_{c, \lambda}$ fixes a, C^{*} is left fixed by $\sigma_{c, \lambda}$. Then, $b^{\sigma_{c, \lambda}} \in C^{*}$, which implies that $b+c \in C^{*}$. Since $(b, b+c) \neq 0$, we have $C=A$ by (1).
(3) Suppose that C^{*} contains a and αa, where $\alpha \neq \pm 1$. Let b be an element such that $(a, b) \neq 0$. Let C_{i}^{*} be a coset which contains b. Then, $C_{i}^{* \sigma_{a, 1}}=$ $C_{i}^{* \sigma_{a \alpha, 1}}$, which contains $d=b^{\sigma_{a, 1}}=b+(b, a) a$ and $e=b^{\sigma_{\alpha a, 1}}=b+\alpha^{2}(b, a) a$. Since $d \notin\langle e\rangle$, we can apply (1) or (2) and get that $\left\{C_{i}\right\}=\{A\}$, or A is simple.

Remark. If we consider $P S L(V)$ snd $P S p(V)$, the "effective" condition is satisfied.

References

[1] E. Artin: Geometric algebra, Interscience, New York, 1961.
[2] H. Nagao: A remark on simple symmetric sets, Osaka J. Math. 16 (1979), 349-352.

Department of Mathematics
University of Hawaii
Honolulu, Hawaii 96822
U.S.A.

