ANALYTICITY OF SOLUTIONS OF QUASILINEAR EVOLUTION EQUATIONS

Kıчоко FURUYA

(Received March 6, 1980)

0. Introduction

In this paper we establish analyticity in t of solutions to quasilinear evolution equations

$$
\begin{gather*}
\frac{d u}{d t}+A(t, u) u=f(t, u), \quad 0 \leqq t \leqq T, \tag{0.1}\\
u(0)=u_{0} \tag{0.2}
\end{gather*}
$$

The unknown, u, is a function of t with values in a Banach space X. For fixed t and $v \in X$, the linear operator $-A(t, v)$ is the generator of an analytic semigroup in X and $f(t, v) \in X$. Several authors O$u c h i ~[6], ~ H a y d e n ~ a n d ~ M a s s e y[2], ~ h a v e ~$ considered analyticity for semilinear equations $d u / d t+A(t) u=f(t, u)$. And Massey [5] discussed analyticity for quasilinear equations (0.1) when the domain $D(A(t, u))$ of $A(t, u)$ does not depend on t, u.

In the present paper, we consider analyticity for (0.1), (0.2) under the assumption that $D\left(A(t, u)^{h}\right)$ is independent of t, u for some $h=1 / m$ where m is a positive integer. In order to prove it we shall make use of the linear theory of Kato [3].

In the following $L(X, Y)$ is the space of linear operators from a normed space X to another normed space Y, and $B(X, Y)$ is the space of bounded linear operators belonging to $L(X, Y) . L(X)=L(X, X)$ and $B(X)=B(X, X)$. || || will be used for the norm both in X and $B(X)$; it should be clear from the context which is intended.

We shall make the following assumptions:
A-1 $\left.{ }^{\circ}\right) \quad u_{0} \in D\left(A_{0}\right)$ and $A_{0}^{-\infty}$ is a well-defined operator $\in B(X)$ where $A_{0} \equiv A\left(0, u_{0}\right)$. A-2 ${ }^{\circ}$) There exist $h=1 / m$, where m is an integer, $m \geqq 2, R>0, T_{0}>0, \phi_{0}>0$ and $0 \leqq \alpha<h$, such that $A\left(t, A_{0}^{-\infty} w\right)$ is a well-defined operator $\in L(X)$ for each $t \in \Sigma_{0} \equiv\left\{t \in \boldsymbol{C} ;|\arg t|<\phi_{0}, 0 \leqq|t|<T_{0}\right\} \quad$ and $\quad w \in N \equiv\left\{w \in X ;\left\|w-A_{0}^{\alpha} u_{0}\right\|<R\right\}$. A-3 ${ }^{\circ}$) For any $t \in \Sigma_{0}$ and $w \in N$
$\left\{\begin{array}{l}\text { the resolvent set of } A\left(t, A_{0}^{-\infty} w\right) \text { contains the left half-plane }\end{array}\right.$ and there exists C_{1} such that $\left\|\left(\lambda-A\left(t, A_{0}^{-\infty} w\right)\right)^{-1}\right\| \leqq C_{1}(1+|\lambda|)^{-1}, \operatorname{Re} \lambda \leqq 0$.
$\left.\mathrm{A}-4^{\circ}\right)$ The domain $D\left(A\left(t, A_{0}^{-\infty} w\right)^{h}\right)=D$ of $A\left(t, A_{0}^{-\infty} w\right)^{h}$ is independent of $t \in \Sigma_{0}$ and $w \in N$.
$\mathrm{A}-5^{\circ}$) The map $\Phi:(t, w) \mapsto A\left(t, A_{0}^{-\infty} w\right)^{h} A_{0}^{-h}$ is analytic from $\left(\Sigma_{0} \backslash\{0\}\right) \times N$ to $B(X)$.
A- 6°) There exist $C_{2}, C_{3}, \sigma, 1-h<\sigma \leqq 1$ such that

$$
\begin{align*}
& \left\|A\left(t, A_{0}^{-\infty} w\right)^{h} A\left(s, A_{0}^{-\infty} v\right)^{-h}\right\| \leqq C_{2} \quad t, s \in \Sigma_{0}, w, v \in N, \tag{0.4}\\
& \left\|A\left(t, A_{0}^{-\infty} w\right)^{h} A\left(s, A_{0}^{-\infty} v\right)^{-h}-I\right\| \leqq C_{3}\left\{|t-s|^{\sigma}+\|w-v\|\right\} \tag{0.5}\\
& \quad t, s \in \Sigma_{0}, w, v \in N .
\end{align*}
$$

A- $\left.7^{\circ}\right) f\left(t, A_{0}^{-\infty} w\right)$ is defined and belongs to X for each $t \in \Sigma_{0}$ and $w \in N$, and there exists C_{4} such that

$$
\begin{equation*}
\left\|f\left(t, A_{0}^{-\infty} w\right)-f\left(s, A_{0}^{-\infty} v\right)\right\| \leqq C_{4}\left\{|t-s|^{\sigma}+\|w-v\|\right\} \quad t, s \in \Sigma_{0}, w, v \in N \tag{0.6}
\end{equation*}
$$

A- 8°) The map $\Psi:(t, w) \mapsto f\left(t, A_{0}^{-\infty} w\right)$ is analytic from $\left(\Sigma_{0} \backslash\{0\}\right) \times N$ into X.
These constants $C_{i}\left(i \in \boldsymbol{N}_{+}\right)$do not depend on t, s, w, v.
The main result of this paper is the following theorem.
Theorem 1. Let the assumptions $\left.\mathrm{A}-1^{\circ}\right)-\mathrm{A}-8^{\circ}$) hold. Then there exist $T, 0<T \leqq T_{0}, \phi, 0<\phi \leqq \phi_{0}, K>0, k, 1-h<k<1$ and a unique continuous function u mapping $\Sigma \equiv\{t \in \boldsymbol{C} ;|\arg t|<\phi, 0 \leqq|t|<T\}$ into X such that $u(0)=u_{0}, u(t) \in$ $D(A(t, u(t)))$ and $\left\|A_{0}^{a} u(t)-A_{0}^{a} u_{0}\right\|<R$ for $t \in \Sigma \backslash\{0\} ; u: \Sigma \backslash\{0\} \rightarrow X$ is analytic, $\frac{d u(t)}{d t}+A(t, u(t)) u(t)=f(t, u(t))$ for $t \in \Sigma \backslash\{0\}$, and $\left\|A_{0}^{\alpha} u(t)-A_{0}^{\alpha} u_{0}\right\| \leqq K|t|^{k}$ for $t \in \Sigma$.

Remark. Under the assumption that $D\left(A(t, u)^{h}\right)$ is constant, Sobolevskii [8] gave the existence of solutions to (0.1) with differentiable coefficients. But, as far as the author knows, the proof of [8] (or similar results) is not published yet. In this paper we give the existence of local solutions to (0.1) for $A(t, u)$ differentiable in t, u (Theorem 2). But in this case, the condition (3.5) seems to be too restrictive to apply Theorem 2 to the Neumann problems. The condition may be reasonable when $A(t, u)$ is analytic in u and differentiable in t.

The author wishes to express her hearty thanks to Professor Y. Kōmura for his kind advices and encouragements.

1. Fractional powers of operators which generate analytic semigroups

Assume that A is a closed operator in Banach space X with domain, $D(A)$, dense in X and that the resolvent set of A contains the left half-plane and ($1+$
$|\lambda|)(A-\lambda)^{-1}$ is uniformly bounded in $R e \lambda \leqq 0$. Then there exist M, θ, $0<\theta<\frac{\pi}{2}$ such that the resolvent set of A contains closed sectorial domain $\Sigma \equiv\{\lambda \in \boldsymbol{C} ;|\arg \lambda| \geqq \theta\} \cup\{0\}$ and

$$
\begin{array}{ll}
\left\|(A-\lambda)^{-1}\right\| \leqq M(1+|\lambda|)^{-1} & \lambda \in \Sigma \\
\left\|A(A-\lambda)^{-1}\right\|=\left\|I-\lambda(A-\lambda)^{-1}\right\| \leqq 1+M=\tilde{M} & \lambda \in \Sigma \tag{1.1}
\end{array}
$$

$-A$ is a generator of an analytic semigroup in X, and the fractional powers $A^{\alpha}(\alpha \in \boldsymbol{R})$ are defined as follows;

$$
A^{\alpha}= \begin{cases}\left(A^{-\alpha}\right)^{-1} & \alpha>0 \tag{1.2}\\ I & \alpha=0 \\ \frac{1}{2 \pi i} \int_{\Gamma} \lambda^{\infty}(A-\lambda)^{-1} d \lambda & \alpha<0\end{cases}
$$

where the integration path Γ consists of the two rays $a+r e^{ \pm i \phi}[\theta<\phi<\pi, a>0$, $0 \leqq r<\infty$] and run in the resolvent of A from $\infty e^{-i \phi}$ to $\infty e^{i \phi}$. We define that λ^{a} attain positive values when $\lambda>0$.
A^{a} have the following properties;

1) For $\alpha<0, A^{a} \in B(X)$.
2) For $\alpha>0, A^{\alpha}$ is a closed operator in X with domain, $D\left(A^{\alpha}\right)$, dense in X.
3) $D\left(A^{\alpha}\right) \supset D\left(A^{\beta}\right)$ for $\beta>\alpha>0$.
4) For any $\alpha>0, \beta>0, A^{\alpha+\beta}=A^{\alpha} A^{\beta}=A^{\beta} A^{\alpha}$ holds.

It follows from (1.1) that there exist $\delta>0, C>0$ such that

$$
\begin{gather*}
\|\exp (-\tau A)\| \leqq C e^{-\delta \tau} \tag{1.3}\\
\|A \exp (-\tau A)\| \leqq C e^{-\delta \tau} \tau^{-1} \tag{1.4}
\end{gather*}
$$

For an operator A satisfying (1.3) we can give an equivalent definition of the fractional powers A^{a} as follows;

$$
A^{\alpha}= \begin{cases}\left(A^{-\alpha}\right)^{-1} & \alpha>0 \tag{1.5}\\ I & \alpha=0 \\ \frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} \exp (-s A(t)) s^{-\alpha-1} d s & \alpha<0\end{cases}
$$

For any $\alpha<\beta<\gamma$ an inequality of moments

$$
\begin{equation*}
\left\|A^{\beta} u\right\| \leqq C(\alpha, \beta, \gamma)\left\|A^{\gamma} u\right\|^{(\beta-\alpha) /(\gamma-\alpha)}\left\|A^{\infty} u\right\|^{(\gamma-\beta) /(\gamma-\alpha)} \quad\left[u \in D\left(A^{\gamma}\right)\right] \tag{1.6}
\end{equation*}
$$

holds. (Krein[4] Chapter 1. Theorem 5.2)
For $0 \leqq \alpha<1,-A^{\alpha}$ is also the generator of an analytic semigroup in X and has similar properties as A with θ replaced by $\alpha \theta$.

Assume that A and B are closed operators in X with domain, $D(A)$ and $D(B)$, dense in X and with property (1.1), and that $D(A) \subset D(B)$. Then $D\left(A^{\beta}\right)$ $\subset D\left(B^{\alpha}\right)$ for $0<\alpha<\beta \leqq 1$. (Krein [4] Chapter 1. Lemma 7.3)

For these and other properties of analytic semigroups, see Tanabe[9] Sobolevskii[7] Krein [4] Friedman [1] etc..

2. Kato's results

We shall make the following assumptions:
1°) For each $t \in[0, T], A(t)$ is a densely defined, closed linear operator in X with its spectrum contained in a fixed sector $S_{\theta}=\left\{z \in \boldsymbol{C} ;|\arg z|<\theta \leqq \frac{\pi}{2}\right\}$. The resolvent of $A(t)$ satisfies the inequality

$$
\begin{equation*}
\left\|[z-A(t)]^{-1}\right\| \leqq M_{0}| | z \mid \quad \text { for } z \notin S_{\theta} \tag{2.1}
\end{equation*}
$$

where M_{0} is a constant independent of t. Furthermore, $z=0$ also belongs to the resolvent set of $A(t)$ and

$$
\begin{equation*}
\left\|A(t)^{-1}\right\| \leqq M_{1} \tag{2.2}
\end{equation*}
$$

M_{1} being independent of t.
2°) For some $h=1 / m$, where m is a positive integer, $\geqq 2, D\left(A(t)^{h}\right)=D$ is independent of t, and there are constants k, M_{2} and M_{3} such that

$$
\begin{equation*}
\left\|A(t)^{h} A(s)^{-h}\right\| \leqq M_{2}, \quad 0 \leqq t \leqq T, 0 \leqq s \leqq T . \tag{2.3}
\end{equation*}
$$

$$
\begin{equation*}
\left\|A(t)^{h} A(s)^{-h}-I\right\| \leqq M_{3}|t-s|^{k}, \quad 0 \leqq t \leqq T, 0 \leqq s \leqq T, 1-h<k \leqq 1 . \tag{2.4}
\end{equation*}
$$

Remark. From (2.2) there exists $C_{h}>0$ such that

$$
\begin{equation*}
\left\|A(t)^{-h}\right\| \leqq C_{h} \quad \text { for } t \in[0, T] \tag{2.2}
\end{equation*}
$$

C_{h} being independent of t.
Under these assumptions, we get the following theorems. They are due to Kato.

Theorem A. Let the conditions 1°) and 2°) be satisfied. Then there exists a unique evolution operator $U(t, s) \in B(X)$ defined for $0 \leqq s \leqq t \leqq T$, with following properties. $U(t, s)$ is strongly continuous for $0 \leqq s \leqq t \leqq T$ and

$$
\begin{gather*}
U(t, r)=U(t, s) U(s, r), \quad r \leqq s \leqq t \tag{2.5}\\
U(t, t)=I . \tag{2.6}
\end{gather*}
$$

For $s<t$, the range of $U(t, s)$ is a subset of $D(A(t))$ and

$$
\begin{equation*}
A(t) U(t, s) \in B(X),\|A(t) U(t, s)\| \leqq M|t-s|^{-1} \tag{2.7}
\end{equation*}
$$

where M is a constant depending only on $\theta, h, k, T, M_{0}, M_{1}, M_{2}$ and M_{3}. Furthermore, $U(t, s)$ is strongly continuously differentiable in t for $t>s$ and

$$
\begin{equation*}
\frac{\partial}{\partial t} U(t, s)+A(t) U(t, s)=0 \tag{2.8}
\end{equation*}
$$

If $u \in D, U(t, s) u$ is strongly continuously differentiable in s for $s<t$. If in particular $u \in D\left(A\left(s_{0}\right)\right)$, then

$$
\begin{equation*}
\left.\frac{\partial}{\partial s} U(t, s) u\right|_{s=s_{0}}=U\left(t, s_{0}\right) A\left(s_{0}\right) u \tag{2.9}
\end{equation*}
$$

If $f(t)$ is continuous in t, any strict solution of

$$
\begin{equation*}
\frac{d u}{d t}+A(t) u=f(t) \tag{2.10}
\end{equation*}
$$

must be expressible in the form

$$
\begin{equation*}
u(t)=U(t, 0) u(0)+\int_{0}^{t} U(t, s) f(s) d s \tag{2.11}
\end{equation*}
$$

Conversely, the $u(t)$ given by (2.11) is a strict solution of (2.10) if $f(t)$ is Hölder continuous on $[0, T]$; here $u(0)$ may be an arbitrary element of X.

Proof. See, [3].
Theorem B. Assume that $A(t)$ can be continued to a complex neighborhood Δ of the interval $[0, T]$ in such a way that the conditions $\left.1^{\circ}\right), 2^{\circ}$) are satisfied for $t, s \in \Delta$. Furthermore, let $A(t)^{-h}$ be holomorphic for $t \in \Delta$. Then the evolution operator $U(t, s)$ exists for $s \leqq t$, satisfies the assertions of Theorem A and is holomorphic in s and t for $s<t$. (Here " $s<t$ " should be interpreted as meaning " $t-s \in \Sigma$ ", where Σ is the sector \mid arg $t \mid<\pi / 2-\theta$ of the t-plane, and " $s \leqq t$ " as " $s<t$ or $s=$ t ".) If $f(t)$ is holomorphic for $t \in \Delta, t>0$, and Hölder continuous at $t=0$, every solution of (2.10) has a continuation holomorphic for $t \in \Delta, t>0$.

Proof. See, [3].
It follows from 1°) and 2°) that

$$
\begin{gather*}
\left\|A(t)^{\alpha} \exp (\tau A(t))\right\| \leqq N_{6}|\tau|^{-\infty}: 0 \leqq \alpha \leqq 2,|\arg \tau| \leqq \frac{\pi}{2}-\theta \tag{2.12}\\
\left\|A(t)^{\infty} U(t, s)\right\| \leqq(h+k-\alpha)^{-1} N_{18}(t-s)^{-\infty}: 0 \leqq \alpha<k+h \tag{2.13}\\
\left\|A(t)^{\alpha+h} U(t, s) A(s)^{-h}\right\| \leqq(k-\alpha)^{-1} N_{19}(t-s)^{-\infty}: 0 \leqq \alpha<k, 0 \leqq s \leqq t \leqq T \tag{2.14}
\end{gather*}
$$

Here the constants $N_{i}(i \geqq 4, i \in \boldsymbol{N})$ are determined by $M_{0}, M_{1}, M_{2}, M_{3}, \theta, h, k, T$. For a proof of the above estimates, (2.12)-(2.14), see the argument in [3]. In addition to these, we shall prove some estimates which will be used in the following.

Proposition 1. If $1-h<k<1,0<\alpha<\alpha^{\prime}<1-k$, then for any $0 \leqq r \leqq s \leqq t \leqq$ T, the following inequalities hold:

$$
\begin{align*}
& \left\|A(0)^{\infty}[U(t, 0)-U(s, 0)] A(0)^{-1}\right\| \leqq C(t-s)^{1-\alpha^{\prime}} \tag{2.15}\\
& \left\|A(0)^{\alpha}[U(t, r)-U(s, r)]\right\| \leqq C(t-s)^{1-\alpha^{\prime}}(s-r)^{-1} \tag{2.16}
\end{align*}
$$

where the constant C is determined by $M_{0}, M_{1}, M_{2}, M_{3}, \theta, h, k, \alpha, T$.
Proof of (2.15). Actually, by (2.5), the identity

$$
\begin{align*}
& A(0)^{\infty}[U(t, 0)-U(s, 0)] A(0)^{-1} \tag{2.17}\\
= & \left\{A(0)^{\infty} A(t)^{-\alpha^{\prime}} A(t)^{\alpha^{\prime}}\left[U(t, s)-e^{-(t-s) A(t)}\right] A(s)^{-1}\right. \\
& -A(0)^{\infty} A(t)^{-\alpha^{\prime}} \int_{0}^{t-s} A(t)^{\omega^{\prime}} e^{-r A(t)} d r \\
& \left.+A(0)^{\infty} A(t)^{-\alpha^{\prime}} \int_{0}^{t-s} A(t)^{1+\alpha^{\prime}-h} e^{-r A(t)} A(t)^{h}\left[A(t)^{-1}-A(s)^{-1}\right] d r\right\} \\
& \times A(s) U(s, 0) A(0)^{-1}
\end{align*}
$$

holds.
For any $0 \leqq t \leqq T$ the following inequality holds:

$$
\begin{equation*}
\left\|A(0)^{\infty} A(t)^{-\alpha^{\prime}}\right\| \leqq M_{a a^{\prime}} \tag{2.18}
\end{equation*}
$$

where the constant $M_{a \alpha^{\prime}}$ depends on α and α^{\prime}, but is independent of t.
In fact, from formula (1.5) and from the inequalities (1.6), (1.3), (1.4) and (2.3) it follows that for any $v \in X$, we have $A(t)^{-\alpha^{\prime}} v \in D\left(A(0)^{\alpha}\right)$ and there exist $C>0, \tilde{\delta}>0$ such that

$$
\begin{aligned}
& \left\|A(0)^{a} A(t)^{-\alpha^{\prime}} v\right\| \\
& =\left\|A(0)^{h(\omega / h)} A(t)^{h\left(-\omega^{\prime} / h\right)} v\right\| \\
& =\| A(0)^{h(\alpha / h)} \frac{1}{\Gamma\left(\alpha^{\prime} / h\right)} \int_{0}^{\infty} e^{-s A(t))^{h} s^{\left(\alpha^{\prime} / h\right)-1} v d s \|} \\
& \leqq \frac{C\left(0, \frac{\alpha}{h}, 1\right)}{\Gamma\left(\frac{\alpha^{\prime}}{h}\right)} \int_{0}^{\infty}\left\|A(0)^{h} A(t)^{-h} A(t)^{h} e^{-s A(t)^{h}} v\right\|^{\alpha^{\alpha / h}}\left\|e^{-s A(t)^{h}} v\right\|^{1-(\alpha / h)} s^{\left(\alpha^{\prime} / h\right)-1} d s \\
& \leqq \frac{C^{\prime}\|v\|}{\Gamma\left(\frac{\alpha^{\prime}}{h}\right)}\left\|A(0)^{h} A(t)^{-h}\right\|\left\|^{\omega / h} \int_{0}^{\infty}\right\| A(t)^{h} e^{-s A(t)^{h}\left\|^{\alpha / h}\right\|}\left\|e^{-s A(t)^{h}}\right\| \|^{1-(\alpha / h)} s^{\left(\alpha^{\prime} / h\right)-1} d s \\
& \leqq \frac{\|v\|}{\Gamma\left(\frac{\alpha^{\prime}}{h}\right)} M^{\alpha / h} C \int_{0}^{\infty} e^{-\tilde{\delta} s(\alpha / h)} s^{-(\alpha / h)} e^{-\tilde{\delta} s(1-\alpha / h)} s^{\left(\alpha^{\prime} / h\right)-1} d s \\
& =\frac{\|v\|}{\Gamma\left(\frac{\alpha^{\prime}}{h}\right)} M^{\alpha / h} C \tilde{\delta}^{\left(\omega-\alpha^{\prime}\right) / h} \int_{0}^{\infty} e^{-t} t^{\left(\alpha^{\prime}-\alpha\right) / h-1} d t
\end{aligned}
$$

$$
\begin{aligned}
& \leqq \Gamma\left(\frac{\alpha^{\prime}}{h}\right)^{-1} M^{\alpha / h} C \tilde{\delta}^{\left(\omega-\alpha^{\prime}\right) / h} \Gamma\left(\frac{\alpha^{\prime}-\alpha}{h}\right)\|v\| \\
& \leqq M_{a \alpha^{\prime}}\|v\| .
\end{aligned}
$$

Thus we obtain (2.18).
In the following, the constants C_{1}, C_{2}, \cdots do not depend on s, t.
We verify the following inequality:

$$
\begin{equation*}
\left\|A(t)^{h}\left[A(t)^{-1}-A(s)^{-1}\right]\right\| \leqq C_{1}|t-s|^{k} \quad 0 \leqq s \leqq t \leqq T . \tag{2.19}
\end{equation*}
$$

From formula (1.2) and from the inequalities (2.1) and (2.4) it follows that $A(t)^{-1} v \in D\left(A(t)^{h}\right)$ and $A(s)^{-1} v \in D\left(A(t)^{h}\right)$ for any $v \in X$ and

$$
\begin{aligned}
& \left\|A(t)^{h}\left[A(t)^{-1}-A(s)^{-1}\right] v\right\| \\
= & \left\|A(t)^{h}\left[A(t)^{h(-m)}-A(s)^{h(-m)}\right] v\right\| \\
= & \left\|A(t)^{h} \frac{1}{2 \pi i} \int_{\Gamma} \lambda^{-m}\left[\left(A(t)^{h}-\lambda\right)^{-1}-\left(A(s)^{h}-\lambda\right)^{-1}\right] v d \lambda\right\| \\
\leqq & \frac{\|v\|}{2 \pi} \int_{\Gamma}\left\|A(t)^{h} \lambda^{-m}\left(\lambda-A(t)^{h}\right)^{-1}\left(A(t)^{h}-A(s)^{h}\right)\left(\lambda-A(s)^{h}\right)^{-1}\right\| d|\lambda| \\
\leqq & \frac{\|v\|}{2 \pi} \int_{\Gamma}\left|\lambda^{-m}\right|\left\|A(t)^{h}\left(\lambda-A(t)^{h}\right)^{-1}\right\| \cdot\left\|A(t)^{h} A(s)^{-h}-I\right\| \cdot\left\|A(s)^{h}\left(\lambda-A(s)^{h}\right)^{-1}\right\| d|\lambda| \\
\leqq & C_{1}|t-s|^{k}\|v\| .
\end{aligned}
$$

Thus we have (2.19).
For any $0 \leqq s \leqq t \leqq T$, the inequality

$$
\begin{equation*}
\left\|A(t) e^{-t A(t)} A(s)^{-1}\right\| \leqq C_{2} e^{-\delta t} \tag{2.20}
\end{equation*}
$$

holds. In fact, from (1.3), (1.4), (2.19) and $k>1-h$ it follows that

$$
\begin{aligned}
& \left\|A(t) e^{-t A(t)} A(s)^{-1}\right\| \\
= & \left\|e^{-t A(t)}-A(t)^{1-h} e^{-t A(t)} A(t)^{h}\left[A(t)^{-1}-A(s)^{-1}\right]\right\| \\
\leqq & \left\|e^{-t A(t)}\right\|+\left\|A(t)^{1-h} e^{-t A(t)}\right\| \cdot\left\|A(t)^{k}\left[A(t)^{-1}-A(s)^{-1}\right]\right\| \\
\leqq & C e^{-\delta t}+C e^{-\delta t} t^{h-1} C_{1}(t-s)^{k} \\
\leqq & C\left(1+C_{1} T^{k-(1-h)}\right) e^{-\delta t} \\
\leqq & C_{2} e^{-\delta t} .
\end{aligned}
$$

Thus we get (2.20).
For any $0 \leqq s \leqq t \leqq T$ we get the bound

$$
\begin{equation*}
\left\|A(r) U(r, s) A(s)^{-1}\right\| \leqq C_{3} \tag{2.21}
\end{equation*}
$$

Actually, for any $v \in X$ we have

$$
\begin{aligned}
& A(r) U(r, s) A(s)^{-1} v \\
= & A(r)\left[e^{-(s-r) A(r)} A(s)^{-1} v+\int_{s}^{r} e^{-(r-\zeta) A(r)}[A(r)-A(\zeta)] U(\zeta, s) A(s)^{-1} v d \zeta\right] \\
= & A(r) e^{-(s-r) A(r)} A(s)^{-1} v \\
& +\int_{s}^{r} A(r) e^{-(r-\zeta) A(r)} \sum_{p=1}^{m} A(r)^{1-p h}\left[A(r)^{h} A(\zeta)^{-h}-I\right] A(\zeta)^{p h} U(\zeta, s) A(s)^{-1} v d \zeta \\
= & A(r) e^{-(s-r) A(r)} A(s)^{-1} v \\
& +\sum_{p=1}^{m} \int_{s^{*}}^{r} A(r)^{2-p h} e^{-(r-\zeta) A(r)}\left[A(r)^{h} A(\zeta)^{-h}-I\right] A(\zeta)^{p h} U(\zeta, s) A(s)^{-1} v d \zeta .
\end{aligned}
$$

Applying (2.20), (1.4) and (2.4), we get

$$
\begin{aligned}
& \left\|A(r) U(r, s) A(s)^{-1} v\right\| \\
\leqq & C_{2} e^{-\delta(r-s)}\|v\| \\
& +\sum_{p=1}^{m} \int_{s}^{r} C(r-\zeta)^{p h-2} e^{-\delta(r-\zeta)} M_{3}|r-\zeta|^{k}\left\|A(\zeta)^{(p-m) h}\right\| \cdot\left\|A(\zeta) U(\zeta, s) A(s)^{-1} v\right\| d \zeta \\
\leqq & C_{2} e^{-\delta(r-s)}\|v\| \\
& +\int_{s}^{r} C_{4} \sum_{p=1}^{m}(r-\zeta)^{p h-2+k} e^{-\delta(r-\zeta)} C_{h}^{m-p}\left\|A(\zeta) U(\zeta, s) A(s)^{-1} v\right\| d \zeta \\
\leqq & C_{2} e^{-\delta(r-s)}\|v\| \\
& +\int_{s}^{r} C_{5}(r-\zeta)^{h-2+k} \sum_{p=1}^{m} T^{(p-1) h} e^{-\delta(r-\zeta)} \max _{1 \leqq p \leqq^{m}} C_{h}^{m-p}\left\|A(\zeta) U(\zeta, s) A(s)^{-1} v\right\| d \zeta \\
\leqq & C_{2} e^{-\delta(r-s)}\|v\| \\
& +\int_{s}^{r} C_{5}(r-\zeta)^{h-2+k} e^{-\delta(r-\zeta)}\left\|A(\zeta) U(\zeta, s) A(s)^{-1} v\right\| d \zeta .
\end{aligned}
$$

Therefore, applying Gronwall's Lemma, we have

$$
\begin{aligned}
& \left\|A(r) U(r, s) A(s)^{-1}\right\| \\
\leqq & C_{2} e^{-\delta(r-s)} \exp \left|\int_{s}^{r} C_{5}(r-\zeta)^{h-2+k} e^{-\delta(r-\zeta)} d \zeta\right| \\
= & C_{2} e^{-\delta(r-\zeta)} \exp \left|\delta^{-k+(1-h)} C_{5} \int_{0}^{(r-s) / \delta} e^{-t} t^{k-(1-h)-1} d t\right| \\
\leqq & C_{3} .
\end{aligned}
$$

Thus (2.21) is proved.
Next, for any $0 \leqq s \leqq t \leqq T$, the inequality

$$
\begin{equation*}
\left\|A(t)^{\alpha^{\prime}}\left[U(t, s)-e^{-(t-s) A(t)}\right] A(s)^{-1}\right\| \leqq C_{6}(t-s)^{k+h-\alpha^{\prime}} \tag{2.22}
\end{equation*}
$$

holds. In fact we can write

$$
\begin{aligned}
& A(t)^{\alpha^{\prime}}\left[U(t, s)-e^{-(t-s) A(t)}\right] A(s)^{-1} \\
= & A(t)^{\alpha^{\prime}}\left[\int_{s}^{t} \exp (-(t-r) A(t))[A(t)-A(r)] U(3, s) d r\right] A(s)^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{s}^{t} A(t)^{\alpha^{\prime}} e^{-(t-r) A(t)} \sum_{p=1}^{m} A(t)^{1-p h}\left[A(t)^{h} A(r)^{-h}-I\right] A(r)^{p h} U(r, s) A(s)^{-1} d r \\
& =\sum_{p=1}^{m} \int_{s}^{t} A(t)^{\alpha^{\prime}+1-p h} e^{-(t-r) A(t)}\left[A(t)^{h} A(r)^{-h}-I\right] A(r)^{(p-m) h} A(r) U(r, s) A(s)^{-1} d r .
\end{aligned}
$$

Therefore, from (2.12), (2.4) and (2.21), it follows that

$$
\begin{aligned}
& \left\|A(t)^{\alpha^{\prime}}\left[U(t, s)-e^{-(t-s) A(t)}\right] A(s)^{-1}\right\| \\
\leqq & \sum_{p=1}^{m} \int_{s}^{t} N_{6}(t-r)^{p h-1-\alpha^{\prime}} M_{3}(t-r)^{k}\left\|A(r)^{(p-m) h}\right\| C_{3} d r \\
\leqq & N_{6} M_{3} C_{3} \int_{s}^{t}(t-r)^{k+h-\alpha^{\prime}-1} \sum_{p=1}^{m} T^{(p-1) h} \max _{1 \leqq p \leqq^{m}}\left\|A(r)^{(p-m) h}\right\| d r \\
\leqq & C_{6}(t-s)^{k+h-\alpha^{\prime}} .
\end{aligned}
$$

Thus (2.22) is obtained.

$$
\begin{equation*}
\left\|\int_{0}^{t-s} A(t)^{\alpha^{\prime}} e^{-r A(t)} d r\right\| \leqq \int_{0}^{t-s} N_{6} r^{-a^{\prime}} d r \leqq C_{7}(t-s)^{1-\alpha^{\prime}} \tag{2.23}
\end{equation*}
$$

This follows from (2.12).
Finally, from (2.12) and (2.19) it follows that

$$
\begin{align*}
& \left\|\int_{0}^{t-s} A(t)^{1+\alpha^{\prime}-h} e^{-r A(t)} A(t)^{h}\left[A(t)^{-1}-A(s)^{-1}\right] d r\right\| \tag{2.24}\\
\leqq & \int_{0}^{t-s} N_{6} r^{h-1-\alpha^{\prime}} C_{1}(t-s)^{k} d r \\
\leqq & C_{8}(t-s)^{k+h-\alpha^{\prime}} .
\end{align*}
$$

Then from (2.17), (2.18), (2.22), (2.23), (2.24) and (2.21), we get

$$
\begin{aligned}
& \left\|A(0)^{\alpha}[U(t, 0)-U(s, 0)] A(0)^{-1}\right\| \\
\leqq & \left\{M_{a \omega \alpha^{\prime}} C_{6}(t-s)^{k+h-\omega^{\prime}}+M_{a \omega^{\prime}} C_{7}(t-s)^{1-\omega^{\prime}}+M_{\omega \omega^{\prime}} C_{8}(t-s)^{k+h-\alpha^{\prime}}\right\} C_{2} \\
\leqq & C_{3} M_{\omega \alpha^{\prime}}\left\{C_{6} T^{k-(1-h)}+C_{7}+C_{8} T^{k-(1-h)}\right\}(t-s)^{1-\alpha^{\prime}} \\
\leqq & C(t-s)^{1-\alpha^{\prime}}
\end{aligned}
$$

Thus, (2.15) is proved.
Proof of (2.16). Actually, by (2.5), the identity
(2.25) $A(0)^{\alpha}[U(t, r)-U(s, r)]$

$$
\begin{aligned}
= & \left\{A(0)^{\omega} A(t)^{-\alpha^{\prime}} A(t)^{\alpha^{\prime}}\left[U(t, s)-e^{-(t-s) A(t)}\right] A(s)^{-1}\right. \\
& -A(0)^{\omega} A(t)^{-\alpha^{\prime}} \int_{0}^{t-s} A(t)^{\alpha^{\prime}} e^{-\zeta A(t)} d \zeta \\
& \left.+A(0)^{\infty} A(t)^{-\alpha^{\prime}} \int_{0}^{t-s} A(t)^{1+\alpha^{\prime}-h} e^{-\zeta A(t)} A(t)^{h}\left[A(t)^{-1}-A(s)^{-1}\right] d \zeta\right\} A(s) U(s, r)
\end{aligned}
$$

holds. By (2.13)

$$
\begin{equation*}
\|A(s) U(s, r)\| \leqq(h+k-1)^{-1} N_{18}(s-r)^{-1} . \tag{2.26}
\end{equation*}
$$

Then, from (2.25), (2.18), (2.22), (2.23), (2.24) and (2.26), we have

$$
\begin{aligned}
& \left\|A(0)^{\alpha}[U(t, r)-U(s, r)]\right\| \\
\leqq & \left\{M_{\omega \alpha^{\prime}} C_{6}(t-s)^{k+h-\omega^{\prime}}+M_{a \omega^{\prime}} C_{7}(t-r)^{1-\omega^{\prime}}+M_{\alpha \alpha} C_{8}(t-s)^{k+h-\alpha^{\prime}}\right\} \\
& \times(h+k-1)^{-1} N_{18}(s-r)^{-1} \\
\leqq & C(t-s)^{1-\omega^{\prime}}(s-r)^{-1}
\end{aligned}
$$

Thus, (2.16) is proved.
Remark. Even if $0<\alpha<\alpha^{\prime} \leqq h$, (2.18) holds good.
Proposition 2. Let the function $f(t)$ be continuous on $[0, T]$. Then for any $0 \leqq s \leqq t \leqq T, 0<\alpha<\alpha^{\prime}<\alpha^{\prime \prime}<h$, the following inequality holds:
(2.27) $\left\|A_{0}^{\alpha}\left[\int_{0}^{t} U(t, r) f(r) d r-\int_{0}^{s} U(s, r) f(r) d r\right]\right\| \leqq C_{\omega \omega^{\prime}}|t-s|^{1-\omega^{\prime \prime}}(|\log (t-s)|+1)$.

Proof. In fact, first let $s \leqq t-s$. Then from (2.18) and (2.13) it follows that

$$
\begin{aligned}
& \left\|A_{0}^{\alpha}\left[\int_{0}^{t} U(t, r) f(r) d r-\int_{0}^{s} U(s, r) f(r) d r\right]\right\| \\
\leqq & \int_{0}^{t}\left\|A_{0}^{\alpha} U(t, r)\right\| \cdot\|f(r)\| d r+\int_{0}^{s}\left\|A_{0}^{\alpha} U(s, r)\right\| \cdot\|f(r)\| d r \\
\leqq & \left\|A_{0}^{\alpha} A(t)^{-\alpha^{\prime}}\right\| \int_{0}^{t}\left\|A(t)^{\alpha^{\prime}} U(t, r)\right\| \cdot\|f(r)\| d r \\
& \quad+\left\|A_{0}^{\alpha} A(s)^{-\alpha^{\prime}}\right\| \int_{0}^{s}\left\|A(s)^{\alpha^{\prime}} U(s, r)\right\| \cdot\|f(r)\| d r \\
\leqq & M_{\omega \alpha^{\prime}}\left(h+k-\alpha^{\prime}\right)^{-1} N_{18}\left[\int_{0}^{t}(t-r)^{-\alpha^{\prime}}\|f(r)\| d r+\int_{0}^{s}(s-r)^{-\alpha^{\prime}}\|f(r)\| d r\right] \\
\leqq & M_{\alpha \alpha^{\prime}}\left(h+k-\alpha^{\prime}\right)^{-1} N_{18}\left(1-\alpha^{\prime}\right)^{-1}\left[t^{-\alpha^{\prime}}+s^{1-\alpha^{\prime}}\right] \max _{0 \leqq r \leqq t}\|f(r)\| .
\end{aligned}
$$

And $t \leqq 2(t-s)$ since $s \leqq t-s$. Therefore

$$
t^{1-\alpha^{\prime}}+s^{1-\alpha^{\prime}} \leqq[2(t-s)]^{1-\alpha^{\prime}}+(t-s)^{1-\alpha^{\prime}} \leqq\left(2^{1-\alpha^{\prime}}+1\right)(t-s)^{1-\alpha^{\prime}}
$$

hence, put

$$
C_{a \alpha^{\prime}}=M_{\omega a^{\prime}}\left(h+k-\alpha^{\prime}\right)^{-1}\left(1-\alpha^{\prime}\right)^{-1}\left(2^{1-\alpha^{\prime}}+1\right) \max _{0 \leqq r^{\prime} \leqq r}\|f(r)\| N_{18}
$$

and we obtain (2.27) for $s \leqq t-s$.
If $s \geqq t-s$, then $s-(2 s-t) \leqq t-s$ and from (2.18) and (2.16)

$$
\left\|A_{0}^{\alpha}\left[\int_{0}^{t} U(t, r) f(r) d r-\int_{0}^{s} U(s, r) f(r) d r\right]\right\|
$$

$$
\begin{aligned}
& \leqq\left\|A_{0}^{\alpha}\left[\int_{2 s-t}^{t} U(t, r) f(r) d r-\int_{2 s-t}^{s} U(s, r) f(r) d r\right]\right\| \\
& \quad+\left\|A_{0}^{\infty} A(t)^{-\alpha^{\prime}} \int_{0}^{2 s-t} A(t)^{\alpha^{\prime}}[U(t, r)-U(s, r)] f(r) d r\right\| \\
& \leqq C_{a \omega^{\prime}}^{\prime}|t-s|^{1-\alpha^{\prime}}+M_{\omega \omega^{\prime}} C \int_{0}^{2 s-t}(t-s)^{1-\alpha^{\prime \prime}}(s-r)^{-1}\|f(r)\| d r \\
& \leqq C_{a \omega^{\prime}}^{\prime}|t-s|^{1-\alpha^{\prime}}+C_{\alpha \omega^{\prime}}^{\prime \prime}(t-s)^{1-\alpha^{\prime \prime}}[|\log (t-s)|+1] \max _{0 \leqq r \leqq t}\|f(r)\|
\end{aligned}
$$

Hence, put

$$
C_{a \alpha^{\prime}}=C_{\alpha \alpha^{\prime}}^{\prime}+C_{\alpha \alpha^{\prime}}^{\prime \prime} \max _{0 \leqq^{r} \leqq T}\|f(r)\|
$$

and we obtain (2.27).
Proposition 3. If $0<\alpha^{\prime}<\alpha^{\prime \prime}<h$, then for any $0 \leqq r \leqq t \leqq T$, the following inequality holds:

$$
\begin{equation*}
\left\|A(t)^{\alpha^{\prime}} U(t, r) A(r)^{1-p h}\right\| \leqq E(t-r)^{p h-\alpha^{\prime \prime}-1} \quad p=1,2, \cdots, m . \tag{2.28}
\end{equation*}
$$

Proof. First we note the following identity:

$$
\begin{align*}
& A(t)^{\alpha^{\prime}} U(t, r) A(r)^{1-p h} \tag{2.29}\\
&=A(t)^{\alpha^{\prime}}\{\exp (-(t-r) A(r)) \\
&-\sum_{l=1}^{m} \int_{r}^{t} U(t, s) A(s)^{1-l h}\left[A(s)^{h} A(r)^{-h}-I\right] A(r)^{l h} \\
&= \\
&=A(t)^{\alpha^{\prime}} \\
&\quad \times \exp (-(s-r) A(r)) d s\} A(r)^{1-p h} \\
&-\sum_{l=1}^{m} \int_{r}^{t} A(t)^{\alpha^{\prime}} U(t, s) A(s)^{1-l h}\left[A(s)^{h} A(r)^{-h}-I\right] A(r)^{1-p h+l h} \\
& \times \exp (-(s-r) A(r)) d s .
\end{align*}
$$

Set

$$
\left\{\begin{array}{l}
X_{p}(t, s)=A(t)^{\alpha^{\prime}} U(t, s) A(s)^{1-p h} \tag{2.30}\\
X_{p, 0}(t, s)=A(t)^{\alpha^{\prime}} A(s)^{1-p h} \exp (-(t-s) A(s)) \\
K_{l, p}(s, r)=-\left[A(s)^{h} A(r)^{-h}-I\right] A(r)^{1-p h+l h} \exp (-(s-r) A(r))
\end{array}\right.
$$

We obtain a system of integral equations satisfied by $X_{p}, p=1, \cdots, m$.
In writing down these integral equations, we find it convenient to introduce the following notation. For any two operator-valued functions $K^{\prime}(t, s), K^{\prime \prime}(t, s)$ defined for $0<s<i<T$, we define their convolution by

$$
K=K^{\prime} * K^{\prime \prime}, K(t, r)=\int_{r}^{!} K^{\prime}(t, s) K^{\prime \prime}(s, r) d s
$$

Then the system of integral equations for X_{p} has the form

$$
\begin{equation*}
X_{p}=X_{p, 0}+\sum_{l=1}^{m} X_{l} * K_{l, p} \quad P=1,2, \cdots, m . \tag{2.31}
\end{equation*}
$$

From (2.30), (2.18) and (2.12) it follows that

$$
\begin{align*}
& \left\|X_{p, 0}(t, r)\right\| \tag{2.32}\\
\leqq & \left\|A(t)^{\alpha^{\prime}} A(r)^{-\alpha^{\prime \prime}}\right\| \cdot\left\|A(r)^{1-p h+\alpha^{\prime \prime}} \exp (-(t-r) A(r))\right\| \\
\leqq & M_{a^{\prime} \alpha^{\prime \prime}} N_{6}(t-r)^{p h-1-\alpha^{\prime \prime}} \leqq E_{1}(t-r)^{p h-\alpha^{\prime \prime}-1}
\end{align*}
$$

From (2.30), (2.4) and (2.12) it follows that

$$
\begin{align*}
\left\|K_{l, p}(s, r)\right\| & \leqq\left\|A(s)^{h} A(r)^{-h}-I\right\| \cdot\left\|A(r)^{1-p h+l h} \exp (-(s-r) A(r))\right\| \tag{2.33}\\
& \leqq M_{3}(s-r)^{k} N_{6}(s-r)^{p h-l h-1} \leqq E_{2}(s-r)^{k+p h-l h-1}
\end{align*}
$$

Suppose that the system (2.31) has been solved for X_{p} by successive approximation in the form

$$
\begin{align*}
& X_{p}(t, r)=\sum_{i=0}^{\infty} X_{p, i}(t, r), \tag{2.34}\\
& X_{p, i+1}=\sum_{l=1}^{m} X_{l, i} * K_{l, p} \tag{2.35}
\end{align*}
$$

Applying (2.32) and (2.33), we shall show that the series (2.34) are in fact convergent, with the rate of convergence determined by the constants, $T, \theta, h, k, \alpha^{\prime}$, $\alpha^{\prime \prime}, M_{0}, M_{1}, M_{2}, M_{3}$ alone. For convenience in this estimation, we further introduce the following notation. We denote by $P(a, M)$ the set of all operatorvalued function $K(t, s)$, defined and strongly continous for $0 \leqq s \leqq t \leqq T$ such that

$$
\|K(t, s)\| \leqq M(t-s)^{a-1}
$$

In particular, $K \in P(a, M)$ with $a>1$ implies that $K(t, s)$ is continous even for $s=t$ and $K(t, t)=0$. The following Lemma is a direct consequence of the definition.

Lemma 1. If $K^{\prime} \in P\left(a^{\prime}, M^{\prime}\right)$ and $K^{\prime \prime} \in P\left(a^{\prime \prime}, M^{\prime \prime}\right)$ with a^{\prime} and $a^{\prime \prime}$ positive, then $K^{\prime} * K^{\prime \prime} \in P\left(a^{\prime}+a^{\prime \prime}, B\left(a^{\prime}, a^{\prime \prime}\right) M^{\prime} M^{\prime \prime}\right)$. Here B denotes the beta function.

Now we have from (2.32) and (2.33)

$$
\begin{align*}
& X_{p, 0} \in P\left(p h-\alpha^{\prime \prime}, E_{1}\right), \tag{2.36}\\
& K_{l, p} \in P\left(k+p h-l h, E_{2}\right) ; \tag{2.37}
\end{align*}
$$

(2.36) and (2.37) lead to the following estimate on $X_{p, i}$:

$$
\begin{equation*}
X_{p, i} \in P\left(p h-\alpha^{\prime \prime}+i k, L_{i} E_{1}\left(m E_{2}\right)^{i}\right) \quad i \in N \tag{2.38}
\end{equation*}
$$

where $\left\{L_{i}\right\}$ is a sequence defined successively by

$$
\begin{equation*}
L_{0}=1, L_{i+1} / L_{i}=B\left(h-\alpha^{\prime \prime}+i k, h+k-1\right) \tag{2.39}
\end{equation*}
$$

(2.38) can be proved by mathematical induction. For $i=0$, it coincides with (2.36). Assuming that it was proved for i, we have from (2.35) and (2.37), using Lemma 1,

$$
\begin{aligned}
& X_{l, i} * K_{l, p} \in P\left(p h-\alpha^{\prime \prime}+(i+1) k, C_{l, p, i}\right), \\
& C_{l, p, i}=B\left(l h-\alpha^{\prime \prime}+i k, k+p h-l h\right) L_{i} E_{1} m^{i} E_{2}^{i+1} \\
& \quad \leqq B\left(h-\alpha^{\prime \prime}+i k, h+k-1\right) L_{i} E_{1} m^{i} E_{2}^{i+1}
\end{aligned}
$$

from which (2.38) follows for i replaced by $i+1$ in virtue of (2.39). Here it should be noted that $l h-\alpha^{\prime \prime}+i k \geqq h-\alpha^{\prime \prime}+i k>0, k+p h-l h \geqq k-m h+h=k-$ $1+h>0$.

It follows from (2.39) that

$$
L_{i+1} / L_{i}=0\left(i^{-(h+k-1)}\right) \quad[i \rightarrow+\infty]
$$

Since $h+k-1>0$, we see from (2.38) that the series in (2.34) are absolutely convergent for $s<t$, the convergence being uniform for $t-s \geqq a>0$. Noting that the first term in each of these series is estimated by (2.36), we thus obtain the estimates

$$
X_{p} \in P\left(p h-\alpha^{\prime \prime}, E\right) \quad p=1,2, \cdots, m
$$

where E may depend on $\alpha, \theta, h, k, M_{0}, \cdots$ alone. Thus (2.28) is proved.
Proposition 4. Let the function $f(t)$ be Hölder continuous on $[0, T]$. Then for any $0 \leqq r \leqq T$, the following inequality holds:

$$
\begin{equation*}
\left\|A(r)^{p h} \int_{0}^{r} U(r, s) f(s) d s\right\| \leqq E^{\prime} r^{1-p h} \quad: p=1,2, \cdots, m \tag{2.40}
\end{equation*}
$$

Proof. Actually, the identity

$$
\begin{align*}
& \int_{0}^{r} U(r, s) f(s) d s \tag{2.41}\\
= & \int_{0}^{r}\left[\exp (-(r-s) A(r))+\int_{s}^{r} \exp (-(r-\zeta) A(r))[A(r)-A(\zeta))\right] \\
= & \int_{0}^{r} \exp (-(r-s) A(r)) f(s) d s \\
& +\sum_{p=1}^{m} \int_{0}^{r} \int_{s}^{r} A(r)^{1-p h} \exp (-(r-\zeta) A(r))\left[A(r)^{h} A(\zeta)^{-h}-I\right] \\
= & \int_{0}^{r} \exp (-(r-s) A(r)) f(s) d s
\end{align*}
$$

$$
\begin{aligned}
&+\sum_{p=1}^{m} \int_{0}^{r} A(r)^{1-p h} \exp (-(r-\zeta) A(r))\left[A(r)^{h} A(\zeta)^{-h}-I\right] \\
& \times \int_{0}^{\zeta} A(\zeta)^{p h} U(\zeta, s) f(s) d s d \zeta
\end{aligned}
$$

Multiplying (2.41) from left by $A(r)^{q h}$, we obtain a system of integral equations

$$
\begin{equation*}
Y_{q}=Y_{q, 0}+\sum_{p=1}^{m} H_{q, p} * Y_{p} \quad q=1,2, \cdots, m \tag{2.42}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
Y_{q}(r, 0)=A(r)^{q h} \int_{0}^{r} U(r, s) f(s) d s \tag{2.43}\\
Y_{q, 0}(r, 0)=A(r)^{q h} \int_{0}^{r} \exp (-(r-s) A(r)) f(s) d s \\
H_{q, p}(r, s)=A(r)^{1+q h-p h} \exp (-(r-s) A(r))\left[A(r)^{h} A(s)^{-h}-I\right]
\end{array}\right.
$$

In the following the constants E_{3}, E_{4}, \cdots do not depend on r, s.
We get

$$
\begin{equation*}
\left\|Y_{q, 0}(r, 0)\right\| \leqq E_{3} r^{1-p h} \quad q=1,2, \cdots, m \tag{2.44}
\end{equation*}
$$

In fact, for $q=1,2, \cdots m-1$, from (2.12) it follows that

$$
\begin{aligned}
\left\|Y_{q, 0}(r, 0)\right\| & \leqq \int_{0}^{r}\left\|A(r)^{q h} \exp (-(r-s) A(r))\right\| \cdot\|f(s)\| d s \\
& \leqq \int_{0}^{r} N_{6}(r-s)^{-q h} d s \max _{0 \leqq t \leqq r}\|f(t)\| \leqq E_{4} r^{1-q h}
\end{aligned}
$$

The case $q=m$. Noting that there exists $E_{5}>0,0<k \leqq 1$ such that $\|f(t)-f(s)\|$ $\leqq E_{5}|t-s|^{k}$ for every s, t in $[0, T]$, from (2.12), we have

$$
\begin{aligned}
& \left\|Y_{m, 0}(r, 0)\right\| \\
= & \left\|\int_{0}^{r} A(r) \exp (-(r-s) A(r))[f(s)-f(r)] d s+\int_{0}^{r} A(r) \exp (-(r-s) A(r)) f(r) d s\right\| \\
\leqq & \int_{0}^{r}\|A(r) \exp (-(r-s) A(r))\| \cdot\|f(s)-f(r)\| d s+\left\|\int_{0}^{r} \frac{\partial}{\partial s} \exp (-(r-s) A(r)) d s f(r)\right\| \\
\leqq & \int_{0}^{r} N_{6}(r-s)^{-1} E_{5}|s-r|^{k} d s+2 N_{6} \max _{0 \leqq t \leq T}\|f(t)\| \\
\leqq & E_{6} .
\end{aligned}
$$

Hence for a constant $E_{3} \geqq \max \left\{E_{4}, E_{6}\right\}$ we obtain (2.44).
From (2.11) and (2.4) it follows that

$$
\begin{align*}
& \left\|H_{q, p}(r, s)\right\| \tag{2.45}\\
\leqq & \left\|A(r)^{1+q h-p h} \exp (-(r-s) A(r))\right\| \cdot\left\|A(r)^{h} A(s)^{-h}-I\right\| \\
\leqq & N_{6}(r-s)^{-1-q h+p h} M_{3}(r-s)^{k} \\
\leqq & E_{7}(r-s)^{k+p h-q h-1} .
\end{align*}
$$

Suppose that the system (2.42) has been solved for Y_{q} by successive approximation in the form

$$
\begin{align*}
& Y_{q}(r, 0)=\sum_{i=0}^{\infty} Y_{q, i}(r, 0), \tag{2.46}\\
& Y_{q, i+1}=\sum_{p=1}^{m} H_{q, p} * Y_{p, i} .
\end{align*}
$$

Applying (2.44) and (2.45), we shall show that the series (2.46) are in fact convergent.

We have from (2.44) and (2.45)

$$
\begin{gather*}
Y_{q, 0} \in P\left(2-q h, E_{3}\right) \tag{2.48}\\
H_{q, p} \in P\left(k+p h-q h, E_{7}\right) \tag{2.49}
\end{gather*}
$$

(2.48) and (2.49) lead to the following estimates on $Y_{q, i}$:

$$
\begin{equation*}
Y_{q, i} \in P\left(2-q h+i k, L_{i} E_{3}\left(m E_{7}\right)^{i}\right) \quad i \in \boldsymbol{N} \tag{2.50}
\end{equation*}
$$

where L_{i} is a sequence defined successively by

$$
\begin{equation*}
L_{0}=1, L_{i+1} / L_{i}=B(1+i k, k+h-1) \tag{2.51}
\end{equation*}
$$

It follows from (2.51) that

$$
L_{i+1} / L_{i}=0\left(i^{-(k+k-1)}\right) \quad[i \rightarrow+\infty]
$$

Since $h+k-1>0$ we see from (2.50) that the series in (2.46) are absolutely convergent for $s<t$, the convergence being uniform for $t-s \geqq a>0$. Noting that the first term in each of these series is estimated by (2.48), we thus obtain the estimates

$$
\begin{equation*}
Y_{q} \in P\left(2-q h, E_{8}\right) \quad q=1,2, \cdots, m \tag{2.52}
\end{equation*}
$$

Hence put $E^{\prime}=E_{8}$, and (2.40) is proved.

3. Existence of the solutions on the real axis

We consider the Cauchy problem

$$
\begin{gather*}
\frac{d u}{d t}+A(t, u) u=f(t, u) \quad 0 \leqq t \leqq T \tag{3.1}\\
u(0)=u_{0} \tag{3.2}
\end{gather*}
$$

We shall make the following assumptions:
3°) For some $0<\alpha<h=1 / m$, where m is an integer, $\geqq 2$, and $R>0$ and for any $v \in N(R) \equiv\{v \in X ;\|v\|<R\}$ the operator $A\left(t, A_{0}^{-\infty} v\right)=A\left(t, A\left(0, u_{0}\right)^{-\infty} v\right)$ is well defined on $D\left(A\left(t, A_{0}^{-\infty} v\right)\right.$), for all $0 \leqq t \leqq T$.
4°) For any $t \in[0, T]$ and $v \in N(R)$, the operator $A\left(t, A_{0}^{-\infty} v\right)$ is a closed operator from X to X with a domain $D\left(A\left(t, A_{0}^{-\alpha} v\right)\right)$ dense in X and

$$
\begin{equation*}
\left\|\left(\lambda I-A\left(t, A_{0}^{-\infty} v\right)\right)^{-1}\right\| \leqq C_{1} /(1+|\lambda|) \quad \text { for all } \lambda \text { with } R e \lambda \leqq 0 \tag{3.3}
\end{equation*}
$$

where C_{1} is a constant independent of t, v.
5°) For every $t \in[0, T]$ and $v \in N(R)$, the domain $D\left(A\left(t, A_{0}^{-\infty} v\right)^{h}\right) \equiv D$ of $A(t$, $\left.A_{0}^{-\infty} v\right)^{h}$ does not depend on t, v. Furthermore, for any $t, s \in[0, T]$ and $v, w \in N(R)$

$$
\begin{gather*}
\left\|A\left(t, A_{0}^{-\infty} v\right)^{h} A\left(s, A_{0}^{-\infty} w\right)^{-h}\right\| \leqq C_{2} \tag{3.4}\\
\left\|A\left(t, A_{0}^{-\infty} v\right)^{h} A\left(s, A_{0}^{-\infty} w\right)^{-h}-I\right\| \leqq C_{3}\left\{|t-s|^{\sigma}+\|v-w\|\right\} \tag{3.5}
\end{gather*}
$$

where $1-h<\sigma \leqq 1$.
(6) For every $t, s \in[0, T]$ and $v, w \in N(R)$

$$
\begin{equation*}
\left\|f\left(t, A_{0}^{-\infty} v\right)-f\left(s, A_{0}^{-\infty} w\right)\right\| \leqq C_{4}\left\{|t-s|^{\sigma}+\|v-w\|\right\} \tag{3.6}
\end{equation*}
$$

$\left.7^{\circ}\right) \quad u_{0} \in D\left(A_{0}\right)$ and

$$
\begin{equation*}
A_{0}^{a} u_{0} \in N(R) \tag{3.7}
\end{equation*}
$$

Theorem 2. Let the assumptions $\left.3^{\circ}\right)-7^{\circ}$) hold. Then there exists a unique solution of (3.1) which is continuously differentiable for $0<t \leqq t^{*}$, continuous for $0 \leqq t \leqq t^{*}$ and satisfie。 (3.2).

Proof. We first introduce sets $Q(s, L, k)$. Here k is any number satisfying $1-h<k<\min \{1-\alpha, \sigma\}$ and L is any positive number. A function $v(t)$, defined for $0 \leqq t \leqq s$, is said to belong to $Q(s, L, k)$ if

$$
v(0)=A_{0}^{\alpha} u_{0}
$$

and if for any t_{1}, t_{2} in $[0, s]$

$$
\begin{equation*}
\left\|v\left(t_{1}\right)-v\left(t_{2}\right)\right\| \leqq L\left|t_{1}-t_{2}\right|^{k} \tag{3.8}
\end{equation*}
$$

Suppose $s_{1} \in(0, T]$. Then for any $v \in Q\left(s_{1}, L, k\right)$

$$
\begin{equation*}
\|v(t)\| \leqq L|t-0|^{k}+\|v(0)\| \leqq L t^{k}+\left\|A_{0}^{\alpha} u_{0}\right\| \tag{3.9}
\end{equation*}
$$

From (3.7) and (3.8) it follows that if $0<s_{2}<\min \left\{s_{1},\left[L^{-1}\left(R-\left\|A_{0}^{\alpha} u_{0}\right\|\right)\right]^{1 / k}\right\}$, then

$$
\|v(t)\|<L\left[L^{-1}\left(R-\left\|A_{0}^{\alpha} u_{0}\right\|\right)\right]+\left\|A_{0}^{\alpha} u_{0}\right\|=R \quad \text { for } t \in\left[0, s_{2}\right]
$$

Hence the operator

$$
\begin{equation*}
A_{v}(t)=A\left(t, A_{0}^{-\infty} v(t)\right) \tag{3.10}
\end{equation*}
$$

is well defined for $t \in\left[0, s_{2}\right]$ and, by (3.3)

$$
\left\|\left(\lambda I-A_{v}(t)\right)^{-1}\right\| \leqq C_{1} /(1+|\lambda|) \quad \text { if } R e \lambda \leqq 0, t \in\left[0, s_{2}\right] .
$$

From (3.4) we obtain

$$
\left\|A_{v}(t)^{h} A_{v}(s)^{-h}\right\| \leqq C_{2} \quad \text { if } t, s \in\left[0, s_{2}\right\rfloor
$$

From (3.5) and (3.8) we also get

$$
\begin{aligned}
\left\|A_{v}(t)^{h} A_{v}(s)^{-h}-I\right\| & \leqq C_{3}\left\{|t-s|^{\sigma}+\|v(t)-v(s)\|\right\} \\
& \leqq C_{3}\left\{T^{\sigma-k}+L\right\}|t-s|^{k}
\end{aligned}
$$

By Theorem A, there exists a fundamental solution $U_{v}(t, s)$ corresponding to $A_{v}(t)$ and all the estimates for fundamental solutions derived in previous section hold uniformly with respect to v in $Q\left(s_{2}, L, k\right)$. In paritcular, from (2.15) and (2.16) we get for $0<\alpha<\alpha^{\prime}<1-k, 0 \leqq r \leqq s \leqq t \leqq s_{2}$

$$
\begin{gather*}
\left\|A_{0}^{\alpha}\left[U_{v}(t, 0)-U_{v}(s, 0)\right] A_{0}^{-1}\right\| \leqq \widetilde{C}|t-s|^{1-\alpha^{\prime}} \tag{3.11}\\
\left\|A_{0}^{\alpha}\left[U_{v}(t, r)-U_{v}(s, r)\right]\right\| \leqq \leqq|t-s|^{1-\alpha^{\prime}}|s-r|^{-1} \tag{3.12}
\end{gather*}
$$

where \tilde{C} is the constant depending on $\theta, h, k, \alpha, C_{1}, C_{2}, C_{3}, s_{2}$.
Setting $f_{v}(t)=f\left(t, A_{0}^{-\infty} v(t)\right)$, it follows from (3.6) and (3.8) that

$$
\begin{align*}
\left\|f_{v}(t)-f_{v}(s)\right\| & \leqq C_{4}\left\{|t-s|^{\sigma}+\|v(t)-v(s)\|\right\} \tag{3.13}\\
& \leqq C_{4}\left\{T^{\sigma-k}+L\right\}|t-s|^{k}
\end{align*}
$$

Since $f_{v}(0)=f\left(0, A_{0}^{-\infty} v(0)\right)=f\left(0, u_{0}\right)$ is independent of v, (3.13) implies that

$$
\begin{equation*}
\max _{0 \leqq t s_{2}}\left\|f_{v}(t)\right\| \leqq\left\|f\left(0, u_{0}\right)\right\|+C_{4}\left\{s_{2}^{\sigma-k}+L\right\} s_{2}^{k} \leqq C_{5} \tag{3.14}
\end{equation*}
$$

Set $w_{v}(t)=A_{0}^{\alpha} w(t)$, where w is the unique solution of

$$
\begin{gather*}
\frac{d w}{d t}+A_{v}(t) w=f_{v}(t) \quad t \in\left[0, s_{2}\right] \tag{3.15}\\
w(0)=u_{0} . \tag{3.16}
\end{gather*}
$$

Then from (3.13) and Theorem A, w_{v} is given by

$$
\begin{equation*}
w_{v}(t)=A_{0}^{\alpha} U_{v}(t, 0) u_{0}+A_{0}^{\alpha} \int_{0}^{t} U_{v}(t, s) f_{v}(s) d s \tag{3.17}
\end{equation*}
$$

In view of (3.17), for any t_{1}, t_{2} in $\left[0, s_{2}\right]$ we obtain

$$
\begin{align*}
&\left\|w_{v}\left(t_{1}\right)-w_{v}\left(t_{2}\right)\right\| \tag{3.18}\\
& \leqq\left\|A_{0}^{\alpha}\left[U_{v}\left(t_{1}, 0\right)-U_{v}\left(t_{2}, 0\right)\right] A_{0}^{-1}\right\| \cdot\left\|A_{0} u_{0}\right\| \\
& \quad+\left\|A_{0}^{\alpha}\left[\int_{0}^{t_{1}} U_{v}\left(t_{1}, s\right) f_{v}(s) d s-\int_{0}^{t_{2}} U_{v}\left(t_{2}, s\right) f_{v}(s) d s\right]\right\|
\end{align*}
$$

Making use of (3.13), (3.14) and (2.27), we find that

$$
\begin{align*}
& \left\|A_{0}^{a}\left[\int_{0}^{t_{1}} U_{0}\left(t_{1}, s\right) f_{v}(s) d s-\int_{0}^{t_{2}} U_{v}\left(t_{2}, s\right) f_{v}(s) d s\right]\right\| \tag{3.19}\\
\leqq & \widetilde{C}\left|t_{1}-t_{2}\right|^{1-\alpha^{\prime}}\left(\left|\log \left(t_{1}-t_{2}\right)\right|+1\right)
\end{align*}
$$

Therefore from (3.18), (3.11) and (3.19) it follows that

$$
\begin{aligned}
& \left\|w_{v}\left(t_{1}\right)-w_{v}\left(t_{2}\right)\right\| \\
\leqq & \tilde{C}\left|t_{1}-t_{2}\right|^{1-\alpha^{\prime}}| | A_{0} u_{0}|+C| t_{1}-\left.t_{2}\right|^{1-\alpha^{\prime}}\left(\left|\log \left(t_{1}-t_{2}\right)\right|+1\right)
\end{aligned}
$$

Hence if $s_{3}>0$ satisfies $\tilde{C s} s_{3}^{1-k-\alpha^{\prime}}| | A_{0} u_{0}| |+C s_{3}^{1-k-\omega^{\prime}-\varepsilon}\left|t_{1}-t_{2}\right|^{\ell}\left(\left|\log \left(t_{1}-t_{2}\right)\right|+1\right) \leqq L$ where $0<\varepsilon<1-k-\alpha^{\prime}$ and if $s_{3} \leqq s_{2}$, the inequality

$$
\begin{equation*}
\left\|w_{v}\left(t_{1}\right)-w_{v}\left(t_{2}\right)\right\| \leqq L\left|t_{1}-t_{2}\right|^{k} \quad \text { for } t_{1}, t_{2} \in\left[0, s_{3}\right] \tag{3.20}
\end{equation*}
$$

holds.
Since (3.16) implies

$$
\begin{equation*}
w_{v}(0)=A_{0}^{\alpha} w(0)=A_{0}^{\alpha} u_{0} \tag{3.21}
\end{equation*}
$$

we get $w_{v} \in Q\left(s_{3}, L, k\right)$.
We set $F_{3}=Q\left(s_{3}, L, k\right)$ and define a transformation $w_{v}=T v$ for $v \in F_{3}$. Then from (3.21) and (3.20) we have

$$
\begin{aligned}
& (T v)(0)=w_{v}(0)=A_{0}^{\alpha} u_{0}, \\
& \left\|(T v)\left(t_{1}\right)-(T v)\left(t_{2}\right)\right\| \leqq L\left|t_{1}-t_{2}\right|^{k} \quad \text { for } t_{1}, t_{2} \in\left[0, s_{3}\right]
\end{aligned}
$$

that is, T maps F_{3} into itself.
We now consider F_{3} as a subset of the Banach space $Y \equiv C\left(\left[0, s_{3}\right] ; X\right]$ consisting of all the continuous functions $v(t)$ from $\left[0, s_{3}\right]$ into X with norm

$$
\|v\|\left\|=\sup _{0 \leq t \leq s_{3}}\right\| v(t) \|
$$

We shall prove that T is a continuous mapping in F_{3} (with the topology induced by Y) and that furthermore, if s_{3} is sufficiently small, then T is a contraction mapping.
i) The case of bounded $A\left(t, A_{0}^{-\infty} v\right)$.

If $A\left(t, A_{0}^{-\infty} v\right)$ is assumed to be bounded for some $t \in\left[0, s_{3}\right]$ and some $v \in$ $N(R)$, in addition to the assumptions 4°) and 5°), it follows that $A\left(t, A_{0}^{-\infty} v\right) \in$ $B(X)$ for all $t \in\left[0 ; s_{3}\right]$ and $v \in N(R)$. In fact the boundedness of $A\left(t, A_{0}^{-\infty} v\right)$ implies that of $A\left(t, A_{0}^{-\infty} v\right)^{h}$ so that the constant domain $D=D\left(A\left(t, A_{0}^{-\infty} v\right)^{h}\right)$ must coincide with X. From (3.4) it follows that for any s in $\left[0, s_{3}\right]$ and $w \in N(R)$

$$
\begin{aligned}
\left\|A\left(s, A_{0}^{-\infty} w\right)^{h}\right\| & \leqq\left\|A\left(s, A_{0}^{-\infty} w\right)^{h} A\left(t, A_{0}^{-\infty} v\right)^{-h}\right\| \cdot\left\|A\left(t, A_{0}^{-\infty} v\right)^{h}\right\| \\
& \leqq C_{2}\left\|A\left(t, A_{0}^{-\infty} v\right)^{h}\right\|
\end{aligned}
$$

Thus $A\left(s, A_{0}^{-\infty} w\right)^{h} \in B(X)$ and hence $A\left(s, A_{0}^{-\infty} w\right) \in B(X)$ for all s and w.

Let v_{1}, v_{2} belong to F_{3} and set

$$
\left\{\begin{array}{l}
A_{i}(t)=A\left(t, A_{0}^{-\infty} v_{i}(t)\right) \tag{3.22}\\
U_{i}(t, s)=U_{v_{i}}(t, s) \\
f_{i}(t)=f\left(t, A_{0}^{-\infty} v_{i}(t)\right) \\
z_{i}(t)=A_{0}^{-\infty} w_{v_{i}}(t) \quad i=1,2
\end{array}\right.
$$

Thus, for $i=1,2$.

$$
\left\{\begin{array}{l}
\frac{d z_{i}}{d t}+A_{i}(t) z_{i}=f_{i}(t) \tag{3.23}\\
z_{i}(0)=u_{0}
\end{array}\right.
$$

Note that $z_{1}(t) \in D\left(A_{2}(t)\right), z_{2}(t) \in D\left(A_{1}(t)\right)$ since $A_{i}(t) \in B(X)[i=1,2]$, and we get

$$
\begin{equation*}
\frac{d}{d t}\left(z_{1}-z_{2}\right)+A_{1}(t)\left(z_{1}-z_{2}\right)=\left[A_{2}(t)-A_{1}(t)\right] z_{2}+\left[f_{1}(t)-f_{2}(t)\right] . \tag{3.24}
\end{equation*}
$$

Now, we shall show the following,
Lemma 2. $\left[A_{2}(t)-A_{1}(t)\right] z_{2}(t)$ is Hölder continuous in t for $0 \leqq t \leqq s_{3}$.
Proof of Lemma. Write

$$
\begin{align*}
& {\left[A_{2}(t)-A_{1}(t)\right] z_{2}(t)-\left[A_{2}(s)-A_{1}(s)\right] z_{2}(s) } \tag{3.25}\\
= & {\left[A_{2}(t)-A_{2}(s)\right] z_{2}(t)+A_{2}(s)\left[z_{2}(t)-z_{2}(s)\right] } \\
& -\left[A_{1}(t)-A_{1}(s)\right] z_{2}(t)-A_{1}(s)\left[z_{2}(t)-z_{2}(s)\right] .
\end{align*}
$$

First we verify the following two inequalities:

$$
\begin{array}{ll}
\left\|\left[A_{i}(t)-A_{i}(s)\right] z_{2}(t)\right\| \leqq D_{1}(t-s)^{\sigma} & 0 \leqq s \leqq t \leqq s_{3}, i=1,2 \\
\left\|A_{i}(s)\left[z_{2}(t)-z_{2}(s)\right]\right\| \leqq D_{2}(t-s)^{1-h} & 0 \leqq s \leqq t \leqq s_{3}, i=1,2 \tag{3.27}
\end{array}
$$

where the constants D_{1}, D_{2} do not depend on v_{i}, s, t but depend on $\left\|A_{0}^{k}\right\|$.
In fact from (3.4), (3.5), (2.13) and (3.14) we have

$$
\begin{aligned}
& \left\|\left[A_{i}(t)-A_{i}(s)\right] z_{2}(t)\right\| \\
= & \left\|\sum_{p=1}^{m} A_{i}(t)^{1-p h}\left[A_{i}(t)^{h} A_{i}(s)^{-h}-I\right] A_{i}(s)^{p h}\left\{U_{2}(t, 0) u_{0}+\int_{0}^{t} U_{2}(t, r) f_{2}(r) d r\right\}\right\| \\
\leqq & \sum_{p=1}^{m}\left\|A_{i}(t)^{h}\right\|^{m-p}\left\|A_{i}(t)^{h} A_{i}(s)^{-h}-I\right\| \cdot\left\|A_{i}(s)^{h}\right\|^{p} \\
& \times\left[\left\|U_{2}(t, 0) u_{0}\right\|+\int_{0}^{t}\left\|U_{2}(t, r) f_{2}(r)\right\| d r\right] \\
\leqq & m C_{2}^{m}(t-s)^{\sigma}\left[(h+k)^{-1} N_{18}\left\|u_{0}\right\|+t(h+k)^{-1} N_{18} C_{5}\right]\left\|A_{0}^{h}\right\|^{m} C_{3} \\
\leqq & E_{1}(t-s)^{\sigma} .
\end{aligned}
$$

In fact from (3.4), (3.11) and (3.19) we have

$$
\begin{aligned}
& \left\|A_{i}(s)\left[z_{2}(t)-z_{2}(s)\right]\right\| \\
& \leqq\left\|A_{i}(s) A_{0}^{-\infty}\right\| \cdot \| A_{0}^{\alpha}\left\{U_{2}(t, 0) u_{0}+\int_{0}^{t} U_{2}(t, r) f_{2}(r) d r\right. \\
& \left.-U_{2}(s, 0) u_{0}-\int_{0}^{s} U_{2}(s, r) f_{2}(r) d r\right\} \| \\
& \leqq\left\|A_{i}(s) A_{0}^{-\alpha}\right\|\left\{\left\|A_{0}^{\alpha}\left[U_{2}(t, 0)-U_{2}(s, 0)\right] A_{0}^{-1}\right\| \cdot\left\|A_{0} u_{0}\right\|\right. \\
& \left.+\left\|A_{0}^{\alpha}\left[\int_{0}^{t} U_{2}(t, r) f_{2}(r) d r-\int_{0}^{s} U_{2}(s, r) f_{2}(r) d r\right]\right\|\right\} \\
& \leqq\left. C_{2}^{m}| | A_{0}^{h}\right|^{m}| | A_{0}^{-\infty} \mid\left\{\tilde{C}(t-s)^{1-\alpha^{\prime}}| | A_{0} u_{0} \|+C(t-s)^{1-\alpha^{\prime}}(|\log (t-s)|+1)\right\} \\
& \leqq D_{2}(t-s)^{1-h} \text {. }
\end{aligned}
$$

Thus using (3.25), (3.26) and (3.27) we obtain

$$
\begin{align*}
& \left.\|\left[A_{2}(t)-A_{1}(t)\right] z_{2}(t)-\left[A_{2}(s)-A_{1}(s)\right] z_{2}(s)\right] \| \tag{3.28}\\
\leqq & 2 D_{1}|t-s|^{\sigma}+2 D_{2}|t-s|^{1-h} \\
\leqq & D_{3}|t-s|^{1-h}
\end{align*}
$$

so that $\left[A_{2}(t)-A_{1}(t)\right] z_{2}(t)$ is Hölder continuous.
q.e.d.

From (3.6) for any $0 \leqq s \leqq t \leqq s_{3}$ it follows that

$$
\begin{equation*}
\left\|\left[f_{1}(t)-f_{2}(t)\right]-\left[f_{1}(s)-f_{2}(s)\right]\right\| \leqq 2 C_{4}|t-s|^{\sigma} . \tag{3.29}
\end{equation*}
$$

Hence from (3.28) and (3.29) the right-hand side of (3.24) is Hölder continuous. Then applying Theorem A to (3.23) and $z_{1}(0)-z_{2}(0)=0$ we can write

$$
\begin{equation*}
z_{1}(t)-z_{2}(t)=\int_{0}^{t} U_{1}(t, r)\left\{\left[A_{2}(r)-A_{1}(r)\right] z_{2}(r)+\left[f_{1}(r)-f_{2}(r)\right]\right\} d r \tag{3.30}
\end{equation*}
$$

Therefore from the definition of w_{v} we get the identity

$$
\begin{align*}
& w_{v_{1}}(t)-w_{v_{2}}(t) \tag{3.31}\\
= & A_{0}^{\alpha} z_{1}(t)-A_{0}^{a} z_{2}(t) \\
= & -A_{0}^{a} \int_{0}^{t} U_{1}(t, r)\left\{\left[A_{1}(r)-A_{2}(r)\right] z_{2}(r)+\left[f_{2}(r)-f_{1}(r)\right]\right\} d r \\
= & -A_{0}^{a} \int_{0}^{t} U_{1}(t, r) \sum_{p=1}^{m} A_{1}(r)^{1-p h}\left[A_{1}(r)^{h} A_{2}(r)^{-h}-I\right] A_{2}(r)^{p h} z_{2}(r) d r \\
& +A_{0}^{a} \int_{0}^{t} U_{1}(t, r)\left[f_{1}(r)-f_{2}(r)\right] d r \\
= & -\sum_{p=1}^{m} \int_{0}^{t} A_{0}^{a} U_{1}(t, r) A_{1}(r)^{1-p h}\left[A_{1}(r)^{h} A_{2}(r)^{-h}-I\right] A_{2}(r)^{p h} z_{2}(r) d r \\
& +\int_{0}^{t} A_{0}^{a} U_{1}(t, r)\left[f_{1}(r)-f_{2}(r)\right] d r .
\end{align*}
$$

In the following the constants E_{1}, E_{2}, \cdots do not depend on $s, t, v_{i},\left\|A_{0}^{h}\right\|$.

For any $0 \leqq t \leqq s_{3}$, the following inequality holds:

$$
\begin{equation*}
\left\|\int_{0}^{t} A_{0}^{\alpha} U_{1}(t, r)\left[f_{1}(r)-f_{2}(r)\right] d r\right\| \leqq E_{1} t^{1-h}\| \| v_{1}-v_{2}\| \| \tag{3.32}
\end{equation*}
$$

We see this, using (2.18), (2.13) and (3.6) for $0<\alpha<\alpha^{\prime}<h$, as follows;

$$
\begin{aligned}
& \left\|\int_{0}^{t} A_{0}^{\alpha} U_{1}(t, r)\left[f_{1}(r)-f_{2}(r)\right] d r\right\| \\
\leqq & \int_{0}^{t}\left\|A_{0}^{\alpha} A_{1}(t)^{-\alpha^{\prime}}\right\| \cdot\left\|A_{1}(t)^{\alpha^{\prime}} U_{1}(t, r)\right\| \cdot\left\|f_{1}(r)-f_{2}(r)\right\| d r \\
\leqq & \int_{0}^{t} M_{\omega \omega^{\prime}}\left(h+k-\alpha^{\prime}\right)^{-1} N_{18}(t-r)^{-\alpha^{\prime}} C_{4}\left\|v_{1}(r)-v_{2}(r)\right\| d r \\
\leqq & E_{1} t^{1-h}\left\|v_{1}-v_{2}\right\| \| .
\end{aligned}
$$

Here we cite (2.28) for $A=A_{1}, U=U_{1}$;

$$
\begin{equation*}
\left\|A_{1}(t)^{\alpha^{\prime}} U_{1}(t, r) A_{1}(r)^{1-p h}\right\| \leqq E_{2}(t-r)^{p h-\alpha^{\prime}-1} \tag{3.33}
\end{equation*}
$$

Note that

$$
\begin{align*}
& A_{2}(r)^{p h} z_{2}(r)=A_{2}(r)^{p h} U_{2}(r, 0) u_{0}+A_{2}(r)^{p h} \int_{0}^{r} U_{2}(r, s) f_{2}(s) d s \tag{3.34}\\
&\left\|A_{2}(r)^{p h} U_{2}(r, 0) u_{0}\right\| \leqq \| A_{2}\left(r r^{p h} U_{2}(r, 0) A_{0}^{-h}\|\cdot\| A_{0}^{h} u_{0} \|\right. \tag{3.35}\\
& \leqq(k-p h+h)^{-1} N_{19} r^{h-p h}\left\|A_{0}^{h} u_{0}\right\| \\
& \leqq E_{3} r^{h-p h}
\end{align*}
$$

since by (2.14).
From (2.40) we find that

$$
\begin{equation*}
\left\|A_{2}(r)^{p h} \int_{0}^{r} U_{2}(r, s) f_{2}(s) d s\right\| \leqq E_{4} r^{1-p h} \tag{3.36}
\end{equation*}
$$

Hence using (3.34), (3.35) and (3.36) we have

$$
\begin{align*}
\left\|A_{2}(r)^{p h} z_{2}(r)\right\| & \leqq E_{3} r^{h-p h}+E_{4} r^{1-p h} \tag{3.37}\\
& \leqq E_{5} r^{h-p h}
\end{align*}
$$

Therefore from (3.31), (3.33), (3.5), (3.37) and (3.32) it follows that

$$
\begin{align*}
& \left\|w_{v_{1}}(t)-w_{v_{2}}(t)\right\| \tag{3.38}\\
\leqq & \sum_{p=1}^{m} \int_{0}^{t}\left\|A_{0}^{\alpha} U_{1}(t, r) A_{1}(r)^{1-p h}\right\| \cdot\left\|A_{1}(r)^{h} A_{2}(r)^{-h}-I\right\| \cdot\left\|A_{2}(r)^{p h} z_{2}(r)\right\| d r \\
& +\left\|\int_{0}^{t} A_{0}^{\alpha} U_{1}(t, r)\left[f_{1}(r)-f_{2}(r)\right] d r\right\| \\
\leqq & \sum_{p=1}^{m} \int_{0}^{t} E_{2}(t-r)^{p h-\alpha^{\prime \prime}-1}\left\|v_{1}(r)-v_{2}(r)\right\| E_{5} r^{h-p h} d r+E_{1} t^{1-h}\| \| v_{1}-v_{2}\| \| \\
\leqq & E_{6}\left[t^{h-\alpha^{\prime \prime}}+t^{1-h}\right]\left\|\left|v_{1}-v_{2}\right|\right\|
\end{align*}
$$

$$
\leqq E_{7} t^{h-a^{\prime \prime}} \mid\left\|v_{1}-v_{2}\right\| \| .
$$

Hence

$$
\begin{equation*}
\left|\left\|T v_{1}-T v_{2}\right\|\left\|=\sup _{0 \leqq t s_{3}}\right\| w_{v_{1}}(t)-w_{v_{2}}(t)\left\|\leqq E_{7} s_{3}^{h-\alpha^{\prime \prime}}\left|\left\|v_{1}-v_{2} \mid\right\| .\right.\right.\right. \tag{3.39}
\end{equation*}
$$

This means that T is a Lipschitz continuous operator.
Furthermore, if $0<s_{3}<E^{1 /\left(\omega^{\prime \prime}-h\right)}$ for $\theta=E_{7} s_{3}^{h-\alpha^{\prime \prime}}<1$, we get

$$
\begin{align*}
\left\|\mid T v_{1}-T v_{2}\right\| \| & =\sup _{0 \leq t \leq s_{3}}\left\|w_{v_{1}}(t)-w_{v_{2}}(t)\right\| \tag{3.40}\\
& \leqq E_{7} s_{3}^{h-a^{\prime \prime}}\left|\left\|v_{1}-v_{2}\right\|\|\leqq \theta\|\right| v_{1}-v_{2} \mid \| . \quad v_{1}, v_{2} \in F_{3}
\end{align*}
$$

So T is a contraction mapping, and by applying fixed point theorem we can prove that there exists unique point v in F_{3} such that $T v=v$.
ii) The general case.

We now turn to general case in which $A\left(t, A_{0}^{-\infty} v\right)$ is not necessarily bounded. We first construct a sequence of bounded operators $A_{n}\left(t, A_{0}^{-\infty} v\right)$ that approximate $A\left(t, A_{0}^{-\infty} v\right)$ in a certain sense. We set

$$
\left\{\begin{array}{l}
A_{n}\left(t, A_{0}^{-\infty} v\right)=A\left(t, A_{0}^{-\infty} v\right) J_{n}\left(t, A_{0}^{-\infty} v\right) \tag{3.41}\\
J_{n}\left(t, A_{0}^{-\infty} v\right)=\left[1+n^{-1} A\left(t, A_{0}^{-\infty} v\right)^{h}\right]^{-m} \quad n=1,2, \cdots
\end{array}\right.
$$

Obviously $A_{n}\left(t, A_{0}^{-\infty} v\right)$ belong to $B(X)$ and satisfy the assumptions $\left.\left.1^{\circ}\right), 2^{\circ}\right)$. Therefore, all the estimates deduced in the preceding section are valid with constants independent of n. Hence from i) there exist a fundermental solution $U_{i, n}(t, s)$ corresponding to $A_{n}\left(t, A_{0}^{-\infty} v_{i}(t)\right)$ and a solution $z_{i, n}$ of

$$
\begin{cases}\frac{d z_{i, n}}{d t}+A_{n}\left(t, A_{0}^{-\infty} v_{i}(t)\right) z_{i, n}=f_{i}(t) & \\ z_{i, n}(0)=u_{0} & v_{i} \in F_{3} \\ i=1,2\end{cases}
$$

Then, we get

$$
\begin{equation*}
\left\|A_{n}\left(0, u_{0}\right)^{\alpha}\left[z_{1, n}(t)-z_{2, n}(t)\right]\right\| \leqq E_{8} s_{3}^{n-\alpha^{\prime \prime}} \mid\left\|v_{1}-v_{2}\right\| \| \quad n \in \boldsymbol{N}_{+} \tag{3.42}
\end{equation*}
$$

Due to Kato [3], we obtain that $A_{n}\left(0, u_{0}\right)^{\alpha} U_{i, n}(t, 0) \rightarrow A_{0}^{\alpha} U_{i}(t, 0)$ as $n \rightarrow \infty$. Thus T is a Lipschitz continuous operator.

Furthermore, if $0<s_{4}<\min \left\{s_{3}, E_{8}^{1 /\left(h-\alpha^{\prime \prime}\right)}\right\}$ and set $F_{4}=Q\left(s_{4}, L, k\right)$, same as i), there exists $0<\theta<1$ such that for any $v_{1}, v_{2} \in F_{4}$ the inequality $\left\|\left\|v_{1}-T v_{2}\right\|\right\|$ $<\theta\| \| v_{1}-v_{2}\| \|$ holds. Then there exists unique point v in F_{4} such that $T v=v$.

Thus in i) and ii) we have shown the existence of the fixed point v for T. Noting $T v=w_{v}$ and $w_{v}(t)=A_{0}^{\alpha} w(t)$, we have $A_{0}^{\alpha} w(t)=v(t)$ or $w(t)=A_{0}^{-\alpha} v(t)$. Applying (3.15) we find that

$$
\frac{d}{d t} A_{0}^{-\infty} v(t)+A\left(t, A_{0}^{-\infty} v(t)\right) A_{0}^{-\infty} v(t)=f\left(t, A_{0}^{-\infty} v(t)\right)
$$

This finishes the proof of Theorem 2 for $t^{*}=s_{4}$ and $u=A_{0}^{-\infty} v$.

4 Further results on linear equations

In the proof of Theorem 1 we shall use some results on analyticity of solutions of linear evolution equations of the form

$$
\left\{\begin{array}{l}
\frac{d u}{d t}+A(t) u=f(t) \tag{4.1}\\
u(0)=u_{0}
\end{array}\right.
$$

We shall make the following assumtions:
8°) For each $t \in \Sigma \equiv\{t \in \boldsymbol{C} ;|\arg t|<\phi, 0 \leqq|t| \leqq T\}, A(t) \in L(X)$ which has resolvent set containing the sector $Q \equiv\{\lambda \in \boldsymbol{C} ;|(\arg \lambda)-\pi| \leqq \pi / 2+\phi\}$ and

$$
\begin{equation*}
\left\|(\lambda+A(t))^{-1}\right\| \leqq C(1+|\lambda|)^{-1}, \quad \lambda \in Q, t \in \Sigma, \tag{4.2}
\end{equation*}
$$

where C is a constant independent of λ and t.
9°) There exists $h=1 / m$, where m is an integer, $\geqq 2$ such that the domain, D, of $A(t)^{h}$ is independent of t and dense in X.
10°) There exist $C_{1}, C_{2}, C_{3}, k, 1-h<k<1$ such that

$$
\begin{gather*}
\left\|A(t)^{h} A(s)^{-h}\right\| \leqq C_{1} \quad t, s \in \Sigma,|\arg (t-s)|<\phi \tag{4.3}\\
\left\|A(t)^{h} A(s)^{-h}-I\right\| \leqq C_{2}|t-s|^{k} \quad t, s \in \Sigma,|\arg (t-s)|<\phi \tag{4.4}
\end{gather*}
$$

11°) The map $t \mapsto A(t)^{h} A(0)^{-h}$ is analytic from $\Sigma \backslash\{0\}$ to $B(X)$.
12 ${ }^{\circ}$) f maps Σ into X with

$$
\begin{equation*}
\|f(t)-f(s)\| \leqq C_{3}|t-s|^{k} \quad t, s \in \Sigma,|\arg (t-s)|<\phi, \tag{4.5}
\end{equation*}
$$

13 $\left.{ }^{\circ}\right) f: \Sigma \backslash\{0\} \rightarrow X$ is analytic.
14 ${ }^{\circ}$) $u_{0} \in D(A(0))$.
Theorem 3. Let the assumptions $\left.8^{\circ}\right)-14^{\circ}$) hold. Then there exists a unique continuous function $u: \Sigma \rightarrow X$ such that $u: \Sigma \backslash\{0\} \rightarrow X$ is analytic, $u(t) \in D(A(t))$ with $d u(t) / d t+A(t) u(t)=f(t)$ for $t \in \Sigma \backslash\{0\}$ and $u(0)=u_{0}$. Furthermore, $A(0)^{h} u$: $\Sigma \backslash\{0\} \rightarrow X$ is analytic and, for $0<\alpha<1-k$, there exists constant $G>0$, such that

$$
\begin{equation*}
\left\|A(0)^{\infty} u(t)-A(0)^{\infty} u(s)\right\| \leqq G|t-s|^{k}, \quad t, s \in \Sigma,|\arg (t-s)|<\phi \tag{4.6}
\end{equation*}
$$

Proof. We first restrict t to be real in (4.1), $t \in[0, T)$. Then the family $\{A(t) ; 0 \leqq t \leqq T\}$ and the function $f:[0, T) \rightarrow X$ satisfy the hypotheses of Theorem A. Thus there is a continuous function $u:[0, T) \rightarrow X$ which is a solution to (4.1).

From (2.15) and (2.27) for any $0<\alpha<1-k$ and s, t in $[0, T)$ we obtain

$$
\begin{equation*}
\left\|A(0)^{\infty} u(t)-A(0)^{\infty} u(s)\right\| \tag{4.7}
\end{equation*}
$$

$$
\begin{aligned}
& =\| A(0)^{\infty}\left[U(t, 0) u_{0}+\int_{0}^{t} U(t, r) f(r) d r\right] \\
& -A(0)^{\infty}\left[U(s, 0) u_{0}+\int_{0}^{s} U(s, r) f(r) d r\right] \| \\
& \leqq\left\|A(0)^{\infty}[U(t, 0)-U(s, 0)] A(0)^{-1}\right\| \cdot\left\|A(0) u_{0}\right\| \\
& +\left\|A(0)^{\alpha}\left[\int_{0}^{t} U(t, r) f(r) d r-\int_{0}^{s} U(s, r) f(r) d r\right]\right\| \\
& \leqq C T^{1-k-\alpha^{\prime}}|t-s|^{k}+C|t-s|^{1-\alpha^{\prime}}(|\log (t-s)|+1) \quad 0<\alpha<\alpha^{\prime}<1-k \\
& \leqq G_{1}|t-s|^{k} \text {. }
\end{aligned}
$$

We fix $\alpha, 0<\alpha<1-k$, and we have $\left\|A(0)^{a} u(t)\right\|$ bounded on $[0, T)$. In fact for any t in $[0, T)$ from (4.7) we have

$$
\left\|A(0)^{\infty} u(t)\right\| \leqq G_{1}|t|^{k}+\left\|A(0)^{\infty} u_{0}\right\| \leqq G_{1} T^{k}+\left\|A(0)^{\infty} u_{0}\right\|
$$

For $0<\varepsilon<T / 2$ we consider the sector $\Sigma_{\mathrm{e}}=\{t \in \boldsymbol{C} ;|\arg (t-\varepsilon)|<\phi,|t|<$ $T-\varepsilon\}$. Since the functions $t \mapsto A(t)^{h} A(0)^{-h}$ and $t \mapsto f(t)$ are analytic in a neighborhood of the closure of Σ_{ε}, and by (4.5) $f(t)$ is Hölder continuous, we can apply Theorem $B: u$ has an extention to $\cup\left\{\Sigma_{\varepsilon} ; \varepsilon>0\right\}=\Sigma \backslash\{0\}$ such that u : $\Sigma \backslash\{0\} \rightarrow X$ is analytic, $u(t) \in D(A(t))$ and $d u(t) / d t+A(t) u(t)=f(t)$ for $t \in \Sigma \backslash\{0\}$.

Next we shall show that $A(0)^{h} u: \Sigma \backslash\{0\} \rightarrow X$ is analytic. Actually seeing that $t \mapsto A(t)^{h} A(0)^{-h}$ is analytic, $t \mapsto A(0)^{h} A(t)^{-h}$ is analytic. By rewriting the equation as $A(t) u(t)=f(t)-u^{\prime}(t)$ and using the fact that $t \mapsto u(t)$ and $t \mapsto f(t)$ are analytic, we have that $t \mapsto A(t)^{h} u(t)=A(t)^{-1+h}\left[f(t)-u^{\prime}(t)\right]$ is analytic. Then $t \mapsto$ $A(0)^{h} u(t)$ is analytic from $\Sigma \backslash\{0\}$ to X as we see the differentiability of $A(0)^{h} u(t)$ in the following identity

$$
\begin{aligned}
& A(0)^{h} u(t+\Delta t)-A(0)^{h} u(t) \\
& =A(0)^{h} A(t+\Delta t)^{-h}\left[A(t+\Delta t)^{h} u(t+\Delta t)-A(t)^{h} u(t)\right] \\
& \quad+\left[A(0)^{h} A(t+\Delta t)^{-h}-A(0)^{h} A(t)^{-h}\right] A(t)^{h} u(t) .
\end{aligned}
$$

It remains to show inequality (4.6). We do this in several steps.
i) First, suppose $s \in(0, T)$ and

$$
\begin{equation*}
t=s+\lambda_{0} e^{i \theta} \in \Sigma,|\theta|<\phi, \lambda_{0}>0 \tag{4.8}
\end{equation*}
$$

Then $v(\lambda)=u\left(s+\lambda e^{i \theta}\right)$ is a solution of the equation

$$
\left\{\begin{array}{l}
\frac{d}{d \lambda} v(\lambda)+e^{i \theta} A\left(s+\lambda e^{i \theta}\right) v(\lambda)=e^{i \theta} f\left(s+\lambda e^{i \theta}\right) \quad 0 \leqq \lambda \leqq \lambda_{0}, \tag{4.9}\\
v(0)=u(s) .
\end{array}\right.
$$

The family $B(\lambda)=e^{i \theta} A\left(s+\lambda e^{i \theta}\right), 0 \leqq \lambda \leqq \lambda_{0}$, and the function $g(\lambda)=e^{i \theta} f\left(s+\lambda e^{i \theta}\right)$, $0 \leqq \lambda \leqq \lambda_{0}$, satisfy the hypotheses 1°) and 2°), and the various constants are in-
dependent of s, t. In fact, set $t_{\lambda}=s+\lambda e^{i \theta} \in \Sigma, 0 \leqq \lambda \leqq \lambda_{0}$. Then for any $\lambda \in$ $\left[0, \lambda_{0}\right], D(B(\lambda))=D\left(A\left(t_{\lambda}\right)\right)$ is dense in X and $B(\lambda)$ has resolvent containing the sector $\widetilde{Q} \equiv\{\gamma \in \boldsymbol{C}: \operatorname{Re} \gamma \leqq 0\}$.
And for any $\gamma \in \widetilde{Q}$ from (4.2) it follows that

$$
\begin{aligned}
\left\|(\gamma-B(\lambda))^{-1}\right\| & =\left\|\left(e^{-i \theta} \gamma-A\left(t_{\lambda}\right)\right)^{-1}\right\| \\
& \leqq C\left(1+\left|e^{-i \theta} \gamma\right|\right)^{-1}=C(1+|\gamma|)^{-1}
\end{aligned}
$$

Furthermore for any λ, μ in $\left[0, \lambda_{0}\right]$ from (4.3), (4.4) and (4.5) we get the followings,

$$
\begin{aligned}
&\left\|B(\lambda)^{h} B(\mu)^{-h}\right\|=\left\|e^{i k \theta} A\left(t_{\lambda}\right)^{h} e^{-i k \theta} A\left(t_{\mu}\right)^{-h}\right\| \\
&=\left\|A\left(t_{\lambda}\right)^{h} A\left(t_{\mu}\right)^{-h}\right\| \quad \leqq C_{1}, \\
&\left\|B(\lambda)^{h} B(\mu)^{-h}-I\right\|=\left\|A\left(t_{\lambda}\right)^{h} A\left(t_{\mu}\right)^{-h}-I\right\| \\
& \leqq C_{2}\left|s+\lambda e^{i \theta}-\left(s+\mu e^{i \theta}\right)\right|^{k}=C|\lambda-\mu|^{k}, \\
&\|g(\lambda)-g(\mu)\|=\left\|f\left(s+\lambda e^{i \theta}\right)-f\left(s+\mu e^{i \theta}\right)\right\| \\
& \leqq C_{2}\left|s+\lambda e^{i \theta}-\left(s+\mu e^{i \theta}\right)\right|^{k}=C_{3}|\lambda-\mu|^{k} .
\end{aligned}
$$

Thus $B(\lambda)$ satisfy 1°) and 2°) and g is a Hölder continuous mapping. Hence in the same way as (4.7), we find that

$$
\begin{gather*}
\left\|B(0)^{\alpha^{\prime}} v(\lambda)-B(0)^{\omega^{\prime}} v(\mu)\right\| \leqq G_{2}|\lambda-\mu|^{k} \quad \alpha<\alpha^{\prime}<1-k \tag{4.20}\\
\text { where } B(0)=e^{i \theta} A(s) .
\end{gather*}
$$

Therefore from (2.18) and (4.10) we get

$$
\begin{align*}
& \left\|A(0)^{a} u(t)-A(0)^{\omega^{\alpha}} u(s)\right\| \tag{4.11}\\
= & \left\|A(0)^{\omega} A(s)^{-\alpha^{\prime}} A(s)^{\omega^{\prime}} u\left(s+\lambda e^{i \theta}\right)-A(0)^{\alpha} A(s)^{-\alpha^{\prime}} A(s)^{\alpha^{\prime}} u\left(s+0 e^{i \theta}\right)\right\| \\
\leqq & \left\|A(0)^{\omega} A(s)^{-\alpha^{\prime}}\right\|\left|e^{-i \theta}\right|\left\|B(0)^{\omega^{\prime}} v(\lambda)-B(0)^{\alpha^{\prime}} v(0)\right\| \\
\leqq & M_{\alpha \omega^{\prime}} G_{2}|\lambda|^{k} \leqq G_{3}|t-s|^{k} .
\end{align*}
$$

ii) in the case of $s=0$.

From (4.7) for any $\varepsilon>0$, there exists $s \in(0, T),|\arg (t-s)|<\phi$, such that $\| A(0)^{d}$ $u(s)-A(0)^{a} u(0) \|<\varepsilon$.
Hence according to i) we get

$$
\begin{aligned}
& \left\|A(0)^{\infty} u(t)-A(0)^{\infty} u(0)\right\| \\
\leqq & \left\|A(0)^{\infty} u(t)-A(0)^{\infty} u(s)\right\|+\left\|A(0)^{a} u(s)-A(0)^{a} u(0)\right\| \\
\leqq & G_{3}|t-s|^{k}+\varepsilon \\
\leqq & G_{3}|t|^{k}+\varepsilon .
\end{aligned}
$$

Then as $\varepsilon \rightarrow 0$, we get

$$
\begin{equation*}
\left\|A(0)^{\infty} u(t)-A(0)^{\infty} u(0)\right\| \leqq G_{3}|t|^{k} \quad|\arg t|<\phi, t \in \Sigma \tag{4.12}
\end{equation*}
$$

iii) The general case.

In the same way as in i) for with general $s, t \in \Sigma \backslash\{0\},|\arg (t-s)|<\phi$, we obtain

$$
\begin{equation*}
\left\|A(0)^{a} u(t)-A(0)^{a} u(s)\right\| \leqq G_{4}|t-s|^{k} \tag{4.13}
\end{equation*}
$$

Thus for $G=\max \left\{G_{1}, G_{3}, G_{4}\right\}$ Theorem 3 is proved.

5. Proof of Theorem 1

From (0.3) there are constants $C_{4}, \phi_{1}>0, T_{1}>0$ such that for $t \in \Sigma_{1}, w \in N$ and $|\theta|<\phi_{1}$ the resolvent set of $e^{i \theta} A\left(t, A_{0}^{-\infty} w\right)$ contains the left plane and

$$
\begin{equation*}
\left\|\left(\lambda-e^{i \theta} A\left(t, A_{0}^{-\infty} w\right)\right)^{-1}\right\| \leqq C_{4}(1+|\lambda|)^{-1} \quad R e \lambda \leqq 0 \tag{5.1}
\end{equation*}
$$

where $\Sigma_{1} \equiv\left\{t \in \boldsymbol{C} ;|\arg t|<\phi_{1}, 0 \leqq|t|<T_{1}\right\}$.
We let $\phi=\min \left\{\phi_{0}, \phi_{1}\right\}$, and in (0.1) and (0.2) we make the change of variable $t=\tau e^{i \theta}, \tau \in\left[0, T_{1}\right],|\theta|<\phi$, so equations (0.1) and (0.2) become

$$
\left\{\begin{array}{l}
\frac{\partial v}{\partial \tau}+e^{i \theta} A\left(\tau e^{i \theta}, v\right) v=e^{i \theta} f\left(\tau e^{i \theta}, v\right) \tag{5.2}\\
v\left(0, e^{i \theta}\right)=u_{0}
\end{array}\right.
$$

where $v\left(\tau, e^{i \theta}\right)=u\left(\tau e^{i \theta}\right), u(t)=v(|t|, t| | t \mid)$.
We hold $|\theta|<\phi$ fixed and apply Theorem 2 to equation (5.2). In order to make precise, let

$$
B(\tau, w, \theta)=e^{i \theta} A\left(\tau e^{i \theta}, w\right), g(\tau, w, \theta)=e^{i \theta} f\left(\tau e^{i \theta}, w\right)
$$

for $\tau \in\left[0, T_{1}\right],\left\|A_{0}^{\alpha} w-A_{0}^{\alpha} u_{0}\right\|<R,|\theta|<\phi$. We shall show that for fixed $\theta, B(\tau$, $w, \theta)$ and $g(\tau, w, \theta)$ satisfy the hypotheses $\left.3^{\circ}\right)-7^{\circ}$) of section 3 with constants independent of θ.

Since $A\left(t, A_{0}^{-\infty} w\right)$ is well defined for any $w \in N$ and $t \in \Sigma$ and

$$
B\left(\tau, B_{0}^{-\infty} w, \theta\right) \equiv B\left(\tau, B\left(0, u_{0}, \theta\right)^{-\infty} w, \theta\right)=e^{i \theta} A\left(\tau e^{i \theta}, A_{0}^{-\alpha}\left(e^{-i \omega_{\theta}} w\right)\right)
$$

$B\left(\tau, B_{0}^{-\infty} w, \theta\right)$ is well defined for $w \in N$ and $\tau \in\left[0, T_{1}\right]$, which verifies $\left.3^{\circ}\right)$.
$\left.4^{\circ}\right)$ is verified since by (5.1) and $D\left(B\left(\tau, B_{0}^{-\infty} w, \theta\right)\right)=D\left(A\left(\tau e^{i \theta}, A_{0}^{-\infty}\left(e^{-i \omega_{\theta}} w\right)\right)\right)$. For any $w \in N$ and $\tau \in\left[0, T_{1}\right]$ we have

$$
D\left(B\left(\tau, B_{0}^{-\infty} w, \theta\right)^{h}\right)=D\left(e^{i \theta} A\left(\tau, A_{0}^{-\infty}\left(e^{-i \omega_{\theta}} w\right)\right)^{h}\right) \equiv D
$$

and from (0.4) and (0.5) it follows that

$$
\begin{aligned}
& \left\|B\left(\tau_{1}, B_{0}^{-\infty} w, \theta\right)^{h} B\left(\tau_{2}, B_{0}^{-\infty} v, \theta\right)^{-h}\right\| \\
\leqq & \left\|e^{i h \theta} A\left(\tau_{1} e^{i \theta \theta}, A_{0}^{-\infty} e^{-i \omega_{\theta}} w\right)^{h} e^{-i h \theta} A\left(\tau_{2} e^{i \theta}, A_{0}^{-\infty} e^{-i \boldsymbol{i} \theta} v\right)^{-h}\right\| \\
\leqq & C_{2}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\|B\left(\tau_{1}, B_{0}^{-\infty} w, \theta\right)^{h} B\left(\tau_{2}, B_{0}^{-\infty} v, \theta\right)^{-h}-I\right\| \\
= & \left\|A\left(\tau_{1} e^{i \theta}, A_{0}^{-\infty} e^{-i \omega_{\theta}} w\right)^{h} A\left(\tau_{2} e^{i \theta}, A_{0}^{-\infty} e^{-i \omega_{\theta}} v\right)^{-h}-I\right\| \\
\leqq & C_{3}\left\{\left|\tau_{1} e^{i \theta}-\tau_{2} e^{i \theta}\right|^{\sigma}+\left\|e^{-i \omega_{\theta}} w-e^{-i \omega_{\theta}} v\right\|\right\} \\
= & C\left\{\left|\tau_{1}-\tau_{2}\right|^{\sigma}+\|w-v\|\right\} \quad w, v \in N, \tau_{1}, \tau_{2} \in\left[0, T_{1}\right] .
\end{aligned}
$$

Therefore 5°) is verified.
Next from (0.6) we get

$$
\begin{aligned}
& \left\|g\left(\tau_{1}, B_{0}^{-\infty} w, \theta\right)-g\left(\tau_{2}, B_{0}^{-\infty} v, \theta\right)\right\| \\
= & \left\|e^{i \theta} f\left(\tau_{1} e^{i \theta}, A_{0}^{-a} e^{-i \alpha_{\theta}} w\right)-e^{i \theta} f\left(\tau_{2} e^{i \theta}, A_{0}^{-a} e^{-i \alpha_{\theta}} v\right)\right\| \\
\leqq & C_{4}\left\{\left|\tau_{1} e^{i \theta}-\tau_{2} e^{i \theta}\right|^{\sigma}+\left\|e^{-i \omega_{\theta}} w-e^{-i \omega_{\theta}} v\right\|\right\} \\
= & C_{4}\left\{\left|\tau_{1}-\tau_{2}\right|^{\sigma}+\|w-v\|\right\} \quad \tau_{1}, \tau_{2} \in\left[0, T_{1}\right], v, w \in N,
\end{aligned}
$$

which verifies 6°).
Finally, note that

$$
\begin{aligned}
& e^{i \theta} u_{0} \in D\left(e^{i \theta} A_{0}\right)=D\left(B_{0}\right), \\
& \left\|B_{0}^{\alpha} e^{i \theta} u_{0}-e^{i \theta} A_{0}^{\alpha} u_{0}\right\|<R,
\end{aligned}
$$

and 7°) is verified.
Hence it follows from Theorem 2, that there exist $T, 0<T \leqq \min \left\{T_{0}, T_{1}\right\}$ and a unique solution $v\left(\tau, e^{i \theta}\right)$ of (5.2) defined for $\tau \in[0, T],|\theta|<\phi$, which also satisfies

$$
\begin{array}{ll}
\left\|A_{0}^{\alpha} v\left(\tau_{1}, e^{i \theta}\right)-A_{0}^{\alpha} v\left(\tau_{2}, e^{i \theta}\right)\right\| \leqq K\left|\tau_{1}-\tau_{2}\right|^{k} & \tau_{1}, \tau_{2} \in[0, T] \tag{5.3}\\
& 1-h<k<\min \{1-\alpha, \sigma\}
\end{array}
$$

$$
\begin{equation*}
\left\|A_{0}^{\alpha} v\left(\tau, e^{i \theta}\right)-A_{0}^{\alpha} u_{0}\right\|<R \quad \tau \in[0, T] \tag{5.4}
\end{equation*}
$$

where the constant K does not depend on θ.
Let $\Sigma \equiv\{t \in \boldsymbol{C} ;|\arg t|<\phi, 0 \leqq|t| \leqq T\}$ and

$$
\left\{\begin{array}{l}
u(t)=v(|t|, t /|t|) \quad t \in \Sigma \backslash\{0\} \tag{5.5}\\
u(0)=u_{0}
\end{array}\right.
$$

We shall show that u satisfies the conclusions of Theorem 1 .
The fact that $u(t) \in D(A(t, u(t)))$ and

$$
\begin{aligned}
& \left\|A_{0}^{a} u(t)-A_{0}^{a} u_{0}\right\|<R \quad \text { for } \quad t \in \Sigma \backslash\{0\}, \\
& \left\|A_{0}^{\alpha} u(t)-A_{0}^{a} u_{0}\right\| \leqq K|t|^{k} \quad \text { for } t \in \Sigma
\end{aligned}
$$

follow from the corresponding properties of v.
We now show that $A_{0}^{a} u ; \Sigma \backslash\{0\} \rightarrow X$ is analytic. Actually the proof of

Theorem 2 shows that $v\left(\tau, e^{i \theta}\right)$ is the limit of a sequence $\left\{v_{n}\left(\tau, e^{i \theta}\right)\right\}$ where $v_{0}\left(\tau, e^{i \theta}\right) \equiv u_{0}, \tau \mapsto v_{n}\left(\tau, e^{i \theta}\right)$ is the unique solution of the linear equation $\partial v_{n} / \partial \tau$ $+e^{i \theta} A\left(\tau e^{i \theta}, v_{n-1}\right) v_{n}=e^{i \theta} f\left(\tau e^{i \theta}, v_{n-1}\right) \tau \in[0, T]$, (set $A_{0}^{\alpha} v_{n+1}=T\left(A_{0}^{\alpha} v_{n}\right)$ for $n \in N$,) and also $A_{0}^{\alpha} v_{n}\left(\tau, e^{i \theta}\right)$ converges to $A_{0}^{\alpha} v\left(\tau, e^{i \theta}\right)$ uniformly in $\tau \in[0, T], v_{n}$ also satisfies

$$
\begin{array}{ll}
\left\|A_{0}^{\alpha} v_{n}\left(\tau, e^{i \theta}\right)-A_{0}^{\alpha} u_{0}\right\|<R & \tau \in[0, T] \\
\left\|A_{0}^{\alpha} v_{n}\left(\tau_{1}, e^{i \theta}\right)-A_{0}^{\alpha} v_{n}\left(\tau_{2}, e^{i \theta}\right)\right\| \leqq K\left|\tau_{1}-\tau_{2}\right|^{k} & \tau_{1}, \tau_{2} \in[0, T] \tag{5.7}
\end{array}
$$

Since $A_{0}^{\alpha} v_{n}$ converges to $A_{0}^{\alpha} v$, we have

$$
A_{0}^{\infty} u(t)=\lim _{n \rightarrow \infty} A_{0}^{\infty} u_{n}(t) \quad \text { where } u_{n}(t)=v_{n}(|t|, t /|t|)
$$

Therefore, we get the following Lemma.

Lemma 3. $A_{0}^{\alpha} u$ is analytic.

Proof of Lemma. From (5.6) it follows that $\left\{\left\|A_{0}^{\alpha} u_{n}(t)\right\|\right\}$ is uniformly bounded in $n \in \boldsymbol{N}$ and $t \in \Sigma$. Therefore, in order to show $A_{0}^{\alpha} u$ is analytic, it suffices to show

$$
\begin{equation*}
A_{0}^{\alpha} u_{n}: \Sigma \backslash\{0\} \rightarrow X \text { is analytic for each } n \tag{5.8}
\end{equation*}
$$

We shall show (5.8) by induction, combining with the following inequality

$$
\begin{equation*}
\left\|A_{0}^{\infty} u_{n}(t)-A_{0}^{\alpha} u_{n}(s)\right\| \leqq K_{n}|t-s|^{k} \quad \text { for } t, s \in \Sigma,|\arg (t-s)|<\phi \tag{5.9}
\end{equation*}
$$

This is true for $n=0$ since $u_{0}(t)=v_{0}(|t|, t| | t \mid) \equiv u_{0}$. Suppose they are true for u_{n-1}. We shall apply Theorem 3 to the equation

$$
\left\{\begin{array}{l}
\frac{d w}{d^{+}}+A\left(t, u_{n-1}\right) w=f\left(t, u_{n-1}\right) \quad t \in \Sigma \tag{5.10}\\
w(0)=u_{0}
\end{array}\right.
$$

We must show

$$
H(t) \equiv A\left(t, u_{n-1}(t)\right) \text { and } h(t) \equiv f\left(t, u_{n-1}(t)\right)
$$

satisfy the hypotheses of Theorem 3.
The fact that each $H(t)$ has resolvent containing the sector $|(\arg \lambda)-\pi|$ $\leqq \pi / 2+\phi$ with the estimate

$$
\left\|(\lambda-H(t))^{-1}\right\|=\left\|\left(\lambda-A\left(t, A_{0}^{-\infty} A_{0}^{\infty} u_{n-1}(t)\right)\right)^{-1}\right\| \leqq C_{1}(1+|\lambda|)^{-1}, t \in \Sigma
$$

follows from $(0,3)$ and the fact that

$$
\left\|A_{0}^{\alpha} u_{n-1}(t)-A_{0}^{\alpha} u_{0}\right\|<R \quad t \in \Sigma .
$$

From (0.4), we have

$$
\begin{array}{r}
\left\|H(t)^{h} H(s)^{-h}\right\|=\left\|A\left(t, A_{0}^{-\infty} A_{0}^{\alpha} u_{n-1}(t)\right)^{h} A\left(s, A_{0}^{-\infty} A_{0}^{\alpha} u_{n-1}(s)\right)^{-h}\right\| \leqq C_{2} \\
t, s \in \Sigma,|\arg (t-s)|<\phi .
\end{array}
$$

Using (0.5), $k \leqq \sigma$ and the induction hypothesis on u_{n-1} it follows that

$$
\begin{aligned}
\left\|H(t)^{h} H(s)^{-h}-I\right\| & =\left\|A\left(t, A_{0}^{-\infty} A_{0}^{\alpha} u_{n-1}(t)\right)^{h} A\left(s, A_{0}^{-\infty} A_{0}^{\alpha} u_{n-1}(s)\right)^{-h}-I\right\| \\
& \leqq C_{3}\left\{|t-s|^{\sigma}+\left\|A_{0}^{\alpha} u_{n-1}(t)-A_{0}^{\alpha} u_{n-1}(s)\right\|\right. \\
& \leqq C_{3}\left\{T^{\sigma-k}+K_{n-1}\right\}|t-s|^{k} \\
& \leqq C_{3}^{\prime}|t-s|^{k} \quad t, s \in \Sigma,|\arg (t-s)|<\phi
\end{aligned}
$$

The analyticity of the map

$$
H(t)^{h} H(0)^{-h}=A\left(t, A_{0}^{-\infty} A_{0}^{\alpha} u_{n-1}(t)\right)^{h} A_{0}^{-h}
$$

follows from the analyticity of the maps $\Phi:(t, w) \mapsto A\left(t, A_{0}^{-\infty} w\right)^{h} A_{0}^{-h}$
Applying (0.6), $h \leqq \sigma$ and the induction hypothesis on u_{n-1} and $t \mapsto A_{0}^{\alpha} u_{n-1}(t)$. we obtain

$$
\begin{aligned}
\|h(t)-h(s)\| & =\left\|f\left(t, A_{0}^{-\infty} A_{0}^{\alpha} u_{n-1}(t)\right)-f\left(s, A_{0}^{-\infty} A_{0}^{\alpha} u_{n-1}(s)\right)\right\| \\
& \leqq C_{4}\left\{|t-s|^{\sigma}+\left\|A_{0}^{\alpha} u_{n-1}(t)-A_{0}^{\alpha} u_{n-1}(s)\right\|\right\} \\
& \leqq C_{4}\left\{T^{\sigma-k}+K_{n-1}\right\}|t-s|^{k} \\
& \leqq C_{4}^{\prime}|t-s|^{k} \quad t, s \in \Sigma,|\arg (t-s)|<\phi .
\end{aligned}
$$

The analyticity of the map

$$
h(t)=f\left(t, A_{0}^{-\infty} A_{0}^{\alpha} u_{n-1}(t)\right)
$$

follows from the analyticity of the maps $\Psi:(t, w) \mapsto f\left(t, A_{0}^{-\infty} w\right)$ and $t \mapsto A_{0}^{\alpha} u_{n-1}(t)$.
Therefore $H(t)$ and $h(t)$ satisfy the hypotheses of Theorem 3. So (5.10) has a unique solution w satisfying the conclutions of Theorem 3, i.e. w satisfies (5.10) and $w: \Sigma \backslash\{0\} \rightarrow X$ is analytic. Further more $A(0)^{h} w: \Sigma \backslash\{0\} \rightarrow X$ is analytic, and there exists $K_{n}>0$ such that

$$
\left\|A_{0}^{\alpha} w(t)-A_{0}^{\alpha} w(s)\right\| \leqq K_{n}|t-s|^{k} \quad t, s \in \Sigma,|\arg (t-s)|<\phi
$$

Next, we claim $u_{n} \equiv w$. We must show $v_{n}\left(\tau, e^{i \theta}\right)=w\left(\tau e^{i \theta}\right)$. This is true because the function $\tau \mapsto w\left(\tau e^{i \theta}\right)$ is also a solution to $\frac{\partial v_{n}}{\partial \tau}+e^{i \theta} A\left(\tau e^{i \theta}, v_{n-1}\right) v_{n}=$ $e^{i \theta} f\left(\tau e^{i \theta}, v_{n-1}\right)$ and hence $v_{n}\left(\tau, e^{i \theta}\right)=w\left(\tau e^{i \theta}\right)$ by uniqueness. Hence (5.8) and (5.9) are obtained.

This completes the proof that $A_{0}^{\alpha} u: \Sigma \backslash\{0\} \rightarrow X$ is analytic. q.e.d.
The continuity of $A_{0}^{\alpha} u: \Sigma \rightarrow X$ follows from the analyticity of $A_{0}^{\alpha} u: \Sigma \backslash\{0\} \rightarrow X$ and the estimate $\left\|A_{0}^{\alpha} u(t)-A_{0}^{\alpha} u_{0}\right\| \leqq K|t|^{k}$ for t in Σ. Finally the fact that u satisfies the differential equation (0.1) and (0.2) follows from the corresponding property
of v.
To show that u is unique, it suffices to restrict to real t since u is analytic. However, for real t, uniqueness is included in Theorem 2.

This finishes the proof of Theorem 1.

References

[1] A. Friedman: Partial differential equations, Holt, Rinehart and Winston, New York, 1969.
[2] T.L. Hayden and F.J. Massey III: Nonlinear holomorphic semigroups, Pacific J. Math. 57 (1975), 423-439.
[3] T. Kato: Abstract evolution equations of parabolic type in Banach and Hilbert spaces, Nagoya Math. J. 5 (1961), 93-125.
[4] S.G. Krein: Linear differential equations in a Banach space, Izdatel'stov Nauka, Moscow. (in Russian); Japanese transl., Yoshioka-shoten, Kyoto, 1972.
[5] F.J. Massey III: Analyticity of solutions of nonlinear evolution equations, J. Differential Eqations 22 (1976), 416-427.
[6] S. Ōuchi: On the analyticity in time of solutions of initial boundary value problems for semi-linear parabolic differential equations with monotone nonlinearity, J. Fac. Sci. Univ. Tokyo, Sect. 1A 20 (1974), 19-41.
[7] P.E. Sobolevskii: Equations of parabolic type in a Banach space, Trudy Moscow Mat. Obsc. 10 (1961), 297-350. (in Russian); English transl., Amer. Math. Soc. Transl. Ser. II, 49 (1965), 1-62.
[8] P.E. Sobolevskii: Parabolic equations in Banach space with an unbounded variable operator, a fractional power of which has a constant domain of definition, Dokl. Akad. Nauk SSSR, 138 (1961), 59-62. (in Russian); English transl., Soviet. Math. Dokl. 2 (1961), 545-548.
[9] H. Tanabe: Equations of evolution, Iwanami-shoten, Tokyo. 1975. (in Japanese); English transl., Monogr. \& Studies in Math. vol, 6. Pitman, 1979.

