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1. Introduction. Let M be an m-dimensional connected complete Rie-
mannian manifold with metric g. For a smooth function f on M, the Hessian
D*f of fis defined by D*f(X,Y)=X(Yf)—D,Y - f(X,YTM). By atheorem
of HW. Wissner ([5; Satz. II. 1.3]), if there is a smooth function f on M such
that D?f=g on M, then M is isometric to Euclidean space. In this note, we
shall prove that if the Hessian of a smooth function f on M is close enough to
g, then M is quasi-isometric to Euclidean space in the following sense: There
exists a diffeomorphism F: M—R" and some positive constant p such that
for each tangent vector X on M, p | X||y=||F+X|[z»=||X|l};. Our result
contains the above theorem by Wissner as a special case (u=1), and generalises
Yagi’s theorem ([7]). Our theorem is stated as follows.

Theorem. Let M be an m-dimensional connected complete Riemannian
manifold with metric g. Suppose there exists a smooth function f on M which
satisfies the following conditions:

(1) (A—-H(f(=)e(X, X)éész(X, X)=(1+Hyf(x)g(X, X),

where X € T,M(x= M) and each H; (i=1,2) is a nonnegative continuous function
on R,

(i1) 1—Hy(#)>0 for t=R and lim Hi(t) = 0 (: = 1, 2),
S“H,.(s)/s ds<+oo
@) . .,
j (g Hi()du))ds< o0 (i = 1, 2).
0
Then M is quasi-isometric to Euclidean space.

2. Proof of theorem and corollaries. Let M be an m-dimensional
connected complete Riemannian manifold with metric g.

Lemma 1. Let M and g be as above. Let f be a smooth function on M such
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that the eigenvalues of D*f are bounded from below by some positive constant 2v
outside a compact subset C. Then f is an exhaustion function, that is, {x&M: f(x)
=t} is compact for each tER. In particular, f takes the minimum on M.

Proof. Suppose fZa=inf {f(x): x &M} (—o0o<A<o0). Then there is
a divergent sequence {p,},cy in M with lim f(p,)=xr. Fix any point oM.

Let v,:[0,1,] =M be a minimizing geodesic joining o to p, for each nEN,
where 1,=dis(o, p,). Then by the assumption of Lemma 1, we can choose
sufficiently large N and T so that v,({)& M—C and f(7,)"(¢)=D*f(7,, 7.) )=V
for any =N and t<[T,1,]. This implies f(v,) &)= f(7.) (T)+A7.) (T)(t—T)

—{——;—(t—T)2 for t=[T,1,]. Taking t=1,, we have f(p,)= f(v.) (T)+f(v,)'(T)
(1,— T)+—12)—(1"—T)2. Since the distance between o and v,(T) equals T for

each n=N, {f(7,)'(T)},en is bounded. In the preceding inequality, the left
side tends to A and the right side goes to infinity as #—>co. This is a con-
tradiction. Therefore f takes the minimum at some points. By the same way, we

see that f is an exhaustion function on M. This completes the proof of Lemma
1.

Proof of Theorem. By (ii) in Theorem and Lemma 1, we can see that f
is a strictly convex exhaustion function on M. Let A te the minimum of f on
M and 6€ M be the only one point such that f(o)=x. Set f(x)=f(x)—x, k(x)=
F(x)2, and h,(t)=H(*+)\) (i=1,2). Then the conditions (i)~ (iii) in Theorem

can be rewritten as follows:
(1) (A=h(k(x))e(X, X)= %sz (X, X) = (1+hy(k(x)))s(X, X),

where XeT,M (x€M) and each A;(t) (¢=1,2) is a nonnegative continuous
function on [0, c0),

(i) 1—Mhy(t)>0 for t€0 and lim k(f) = 0 (i = 1, 2)
t-poo

iy ["ms ds<to,
Sw(S:u-h,-(u) duf?) ds< o0 (i =1,2).

Since 0&M is a nondegenerate critical point of f, there exists a coordinate

system x: U—R", where U is a neighborhood of o, with x(0)=(0, -++,0) and f(p)=

"axi(p)? for all pe U where x(pY=(x,(p), ***,Xn(p)) (cf. [3;p.6]). Let & be a

positive number such that {(x,,--,x,)ER": 2Mxi<8} Cx(U). We construct

a metric § on M with g(—a—, i):&-, on Us,zz{pe U: E}",lxi(p)2<i} and
Ox;  Ox; 2



RIEMANNIAN MANIFOLDS ADMITTING CERTAIN STRICTLY CONVEX FUNCTIONS 579

§=g on M—U,; such a metric can be constructed by the standard partition-of-
unity extention process. By the construction of g, it suffices to prove that
M with the metric §is quasi-isometric to Euclidean space. Let a>0 be
such that k7(a)={x&M: k(x)=a} CU,;. For each pck(a), let A (t) be the
maximal integral curve of grad k/||grad k|* with A,(a)=p. Then we have

gt-k(xp(t))zl and hence k(\,(t))=t (t>>0). Define F,: k™}(a)x (0, co)—M— {0}
by Fy(p, £)=n(#), and F;: k(@) X (0, 00) >R"—{(0,-++,0)} by Fy(p, t)=%(x1(P)’

oo, %,(p)). It follows that F, and F, are diffeomorphisms and F,oFi' can be
extended to the diffeomorphism F: M—R™ (cf. [3; p. 221]). We shall now show
that F is a required quasi-isometry. Let A:[0,6]—>k7'(a) be any smooth re-
gular curve. Define a smooth map G: [0,£]X[0,0)—M—{o} by G(t,s)=F,

(M2),5), and vector fields X and Y along G by X=F*(%):grad k/llgrad K|P
and Y=F*(%>. Fix any 5>0 such that k}(b)cM—U, Then we have
for s=b,

(1) 2171, 9 = @Y, DIYIIE 9

= (DyX, V)/IYII(2, )
= (Dygrad k, Y)/||Y|| llgrad k|? (2, 5)
= D*(Y, Y)/IYIl llgrad k|[* (¢, 5)

By the assumption (i)', we have on {x& M: k(x)=b}

{(1—hy(k))- g—dk-dk} k< DR < {(1+hyk))- g—dk-dk} [k .
Therefore we get
(2)  {(A—Rr(R)k-YI% (2, ) SDR(Y,Y) (2, s) < {(1+Ro k)[R [ Y I} (2, 5)
for s=b. Now we need the following

Lemma 2. On {x&M: k(x)=b}, we have the following estimate:

1— ZSzu-hl(u) dulle - (B—457) 4k <

(3)
llgrad B|P< 1+2S:u-hz(u) dufk2+-(C—4b%)4R2 ,

where B=min{||grad f|[%(x): x€k™'(8)} and C=max{||grad f|[%(x): x€k™'(})}.
We leave a proof of this lemma later. By (1), (2) and (3), we have

(4)  (A=X))s-IYII=(, S)égll Yli(z, ) = (1+Xo))/s- 11 Y12, 5) »
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where  X,(s) = (8S:u-h2(u) dut-4h,(5)+-C—48%) |

(SS:u-hZ(u) dut-451-C—4)
and  X(s) = (SS:u-hl(u) du+-45%hy(s)— B-+487) |

(— SS:u-hl(u) dut-42+ B—48?) .
It follows that

(5) S (S:—Xl(u)/u )= 111t 9/ 1Y 165)=-3- exp (sz(u)/u du).

By the assumption (iii)’, there exists some positive constant £ such that

(6) exp (S:Xz(u)/u du)<E and £ 'Sexp (S:—Xl(u)/u du) .
By (5) and (6), we get
(7) ETNYNE 0)b=11YIIE, 5)/s<EllIYII(z, 0)/b .

The assumption (iii)’ implies that for some positive constant {

(8) ¢TI lgrad RlI=¢ .

Inequalities (7) and (8) show that F: M—R" is quasi-isometric. This com-

pletes the proof of Theorem.

Proof of Lemma 2. For each pek™(b), let 7,(f) be the maximal integral

curve of grad f/|lgrad f|? with «7,(0)=p. Then dit (7,(£))=1 and hence

F(v,(8))=t+8(t=0). From the assumption (i)', we obtain the inequality:
(1—h(®)lgrad fIPS - D*flgrad 7, grad £) < (1-+ (k) lgrad fIF

on {x&€M: k(x)=b}. Noting D?*f(grad f, grad f)=—;— grad f(|Igrad f|I?) we see

41—h(V t?b‘%)é% llgrad fI1(v () S4(1+ho(V t+57))

for £=0. Therefore we get the inequalities:
Vit
8 j . w(l—hw)) du-tlgrad FIF(p)=llgrad FIP(v,(®))

v—s

<8( U1+ du-+llgead FIF(p)

b

for t20. Since k(7,(t))=Vt-+& and grad f=2 k-grad k& we get the required
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estimate. This completes the proof of Lemma 2.
By Moser’s theorem ([4]), we have the following

Corollary 1. Let M be as in Theorem. Then on M there are no positive
harmonic functions other than constants. If M is in addition a Kaehler manifold,
then it has no nonconstant bounded holomorphic functions.

We shall derive the theorem of Wissner ([5; Satz. II. 1.3]) as follows.

Corollary 2. If M is a connected complete Riemannian manifold and f is
a smooth function on M whose Hessian 1s equal to the metric tensor on M, then M
is isometric to Euclidean space.

Proof. By Lemma 1 and the strictly convexity of f, f attains its minimum )\

at the one and only one point oM. Replacing f for % (f—2), we may assume
that f is a smooth function such that I? f:-flf gon M and f(x)= f(0)=0 for any

xEM—{o}. Let v:[0,00)—>M be any arc-length parametrized geodesic
issuing from o. Then Df(¥,%) = f(f)/(t))”:% for £=0 and hence f(v(t))=F.

That is, f(x) equals dis(x,0)* near oM. Therefore the same arguments as in
the proof of Theorem can be applied without any change of metric and we see
that the exponential mapping at o&M is an isometry. This completes the
proof of Corollary 2.

82
(1z|*+log(1+ | 2|?), where (2,,-:*,2,) is the canonical holomorphic coordinates
on C” and |z|*=|2|%4++++|2,]|% Then M is a Kaehler manifold with a pole
0=(0,-:-0), that is, the exponential mapping at o induces a global diffeomorphism
between T M and M. Let r(x) be the distance between o and xEM. By
computing the (radial) curvatures, we can see #° satisfies all the conditions re-
quired in Theorem (cf. [1; Theorem CJ).

ExampLE. Let M be C” with the Kaehler metric g defined by g;;=

Corollary 3 ([7]). Let M be a Riemannian manifold with a pole o€ M and
r(x) be the distance between o and x=M. Suppose there exists a continuous func-
tion h: [0, 00)— [0, o0) satisfying the following conditions:

(1) (I=h(r(x)e(X, X) é%DZfz(X, X)=(14-h(r(%))g(X, X)
where X € T,M(x€ M), and

(ii) S:h(t)/t dt<+oo .
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Then the exponential mapping at o€ M is quasi-isometric.

Proof. Noting [|grad7||=1 on M—{o}, we see the result easily from the

proof of Theorem.
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