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THE TRANSFER MAP IN THE KR^-THEORY
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In his work [10] Nishida defined the equivariant transfer maps and studied
some properties of the transfer maps in the equivariant ίΓ-theory. And making
use of them, he gave a new proof of the Adams conjecture in complex case.
Following his work and introducing the transfer maps in the Real equivariant

ίΓ-theory, we give here a proof of the Adams conjecture in real case.
In §1 we introduce the transfer maps in the .K7?G-theory, and in §2 we

discuss induced representations of Real representations and real representations.
Nishida [10] used the monomiality of complex representations [11]. Instead
of this fact, we prove in §3 that the identity representation of any odd dimen-
sional orthogonal group is a linear combination of representations which are
induced from one or two dimensional representations of appropriate subgroups.
Then, by a parallel argument to Nishida [10], the proof of the Adams conjecture
in real case is given in §4.

The author expresses his hearty gratitude to Professor S. Araki, Professor
H. Minami and Dr. A. Kono for their valuable suggestions.

1. The transfer map

Let G be a compact Lie group and X a compact G-space. For an admis-

sible G-bundle ξ=(p: E^X) [10, 8], Nishida [10] defined a G-equivariant
trace t: X+/\VC-+E+/\VC of ξ for a suitable real representation space V of G,
and proved that it is unique up to stable G-homotopics.

Let G be a compact Real Lie group with involution τ [5]. We denote
by GχτZ2 the semidirect product of G with Z2, the group generated by T.
Atiyah [4] introduced KRG, the Real equivariant ^-theory, which is a contra-
variant functor from the category of Real G-spaces (that is, G X T2T2-spaces) to

the category of abelian groups. When the involution acts trivially on G and a
Real G-space X, then KRG(X) is naturally isomorphic to KOG(X).

Let V be a Real representation space of G and X a Real G-space. Atiyah
[4] proved the Thorn isomorphism Φ: KRG(X)^KRG(Xχ V). Let ξ=(p: E-»
X) be an admissible G X τ^2~bundle. We can choose a G X rZ2-equivanant trace
t:X+/\Vc-*E+/\Vc of ξ [10] in such a way that V is a Real representation
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space of G. Then we define

the transfer map for ξ in the .K7?G-theory as the composite of the following
sequence

KRG(E) -̂  KRG(Ex V) -?-» KRG(Xx V) ̂ -» KRG(X) .

This definition is well defined since the trace is unique. Similarly we define
the transfer for an admissible G-bundle in the .K^-theory.

Let X be a Real G-space. If we forget the involution on X, then we may
regard X as a G-space, which is denoted by Λ|Γ X. We define the forgetful map

ψ: KRG(X) -> KG(ψX)

by foregtting conjugate linear involutions on vector bundles. The following
lemma is obtained straightforward from the definitions of the Thorn elements.

Lemma 1. The Thorn isomorphisms commute with the forgetful maps, i.e.,
the diagram

commutes, where V is a Real representation space of G.

Forgetting the involutions, an admissible Gx ^-bundle becomes an

admissible G-bundle and a Gx^-equivariant trace becomes a G-equivariant
trace. So we have

Proposition 2. The transfer maps commute with the forgetful maps, i.e.,
the following diagram commutes

2. The induced representation

Let G be a compact Lie group, H a closed subgroup and /: if cG the in-
clusion map. Segal [11] defined the induction homomorphism i\: R(H)-*R(G)
and Nishida [10] showed that the transfer map for a G-bundle (p: G/H->point)
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in the KG-theoτy coincides with the induction homomorphism through the

natural isomorphism KG(G/H)^R(H).

Let G be a compact Real Lie group, H a closed Real subgroup and i: HdG

the inclusion map. RR(G) denotes the Real representation ring of G [5]. The

forgetful map

is defined by forgetting conjugate linear involutions. It is well known that
this forgetful map is injective. When the involution acts trivially on G, then
RR(G) is naturally isomorphic to RO(G) and the forgetful map coincides with
the complexification map c: RO(G)-*R(G). The diagram

KRG(G/H) -^ KRG(point)

—* -Kc(ρoint)

~\
-ί! * *(G)

commutes by the definition of the natural isomorphism KRG(G/H)£*RR(H),

Proposition 2 and [10], Theorem 5.2. We define an induction homomorphism

il:Rx(H)-+RJI(G)

as the composite of the upper horizontal map and two isomorphisms of this
diagram. In case the involution is trivial, we have an induction homomorphism

iι: RO(H)-» RO(G).

Since the forgetful map and the complexification map preserve the characters,
these induction homomorphisms satisfy the character formula [11], p. 119-120.

Let E be a compact Real G-space such that -ψ Z? is a free G-space. For a
Real representation space M of G, we define a(M) as a Real G-vector bundle

(ExGM-*E/G). The correspondence M-*a(M) induces a homomorphism

a:RR(G)-+KR(EIG).

When the involution acts trivially on G and #, we have a homomorphism

a:RO(G)-+KO(EIG)>

Proposition 3. The diagram
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commutes, where p\ is the transfer for an admissible Z2-bundle (p: E/H-+E/G).

This proof is parallel to [10] Proposition 5.4, so we omit it. In case the
involution is trivial, we have

Corollary 4. The following diagram commutes

RO(H) -5U KO(E/H)
I . I
V\ \P\

Φ a
RO(G) > KO(E/G).

3. Real representations of the orthogonal group

In this section we put G=O(2m+l) and H=O(2)χO(2m— 1). Let i:HdG

be the standard inclusion, i.e., i(B,C)= ( j. Let t and v be representations

of G, whose actions are t(A)x=Ax and v(A)y=ά&iA y for ^4eG, x^R2m+1

and y^R. And let μ be a representation of H, whose action is μ(B,C)z=Bz

Proposition 5. ι=i\μ-\-v

Proof. We take the characters of both representations and we shall see
that they are equal as class functions. Since G consists of exactly two connected
components, we have two conjugacy classes of Cartan subgroups of G in the
sense of Segal [11], and we may choose Tm and TmxZ2 as representatives of
them, where Tm is the standard maximal torus of SO(2m-{-l) and Z2 is generated
by —/2ι«+ι> tne diagonal matrix with —1 as diagonal entries. Let^flj, Θ2, •••, θm\£)
be a matrix

\

D(Θ2)

where D(θ)=(cosθ -sm<?\ 0^θk<2π, £=±1. Every topological generators
Vsmσ COS0/

of Tm (resp. TmxZ2) can be expressed as g=g(θ1,θ?, —,θm;l) (resp. g'=g(θlt
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Θ19 " ,0W; — 1)) such that Θlyθ2, ,θm and π are linearly independent over the
rational field. Since the topological generators of Cartan subgroups are dense

in G, it is sufficient to show that those characters coincide on g and g'. It is

easy to see that %tfe)=Σ?-ι 2 cos θk+l, %tfe')=Σ?-ι 2 cos θk-l, Xμ(?)=%μfe
/)

—2 cos #!, %v(?)— 1> ^v(#')— ~~1 By the character formula, the character of i\μ
is written as

where F (resp. F') is the set of representatives of fixed points of the action of g

(resp. g') on GjH. We shall describe F' explicitly. y^F' means y~lgy^H, and

y~l£y generates a Cartan subgroup T of H which is isomorphic to TmxZ2.

Put A=( ), and let Z70 be the subgroup of H generated by ( ) and

fA \ T

Uι the subgroup of Jϊ generated by ί ). Tm~l denotes the maximal
^ —J 2m-Y

torus of SO(2m— 1) which we regard as a subgroup of Jϊ. C70 and Ul are sub-

groups of ZH(Tm~l), the centralizer of Tm~l in /ί. We define 50= C/0X Γ^'1 and

S1=U1xTm~1. SQ and 5Ί are isomorphic to Tm~1χZ2 and they are Cartan
subgroups of # which are not conjugate. According to Segal [11], there are
just four conjugacy classes of Cartan subgroups of H since ίfyff °, the group of
components is isomorphic to Z2 X Z2. And we may take Γm, Tm X Z2, S0 and
S1 as representatives of those conjugacy classes. Thus T, the group generated
by y~1g'y, is conjugate to TmxZ2 in H, i.e., there exists an element h of H

such that TmχZ2=h~lTh. Then yh<=NG(TmxZ2\ the normalizer, and j and

jA are in the same coset in G/H. So we can take Ff as a subset of NG(Tmχ

Z2). The natural projection G-+G/H sends NG(TmχZ2) to NG(TmxZ2)/ (NG(Tm

χ Z 2 ) Γ ( H ) and evidently NG(TmχZ2}^H=NH(TmχZ2). So we identify F'
with ^(Γ* X Z2)/NH(Tm X Z2). It is easy to see that

So we shall identify them. Let y=(σ; fi, — , εJeΣn l-^ and y/=(δ, p;

81, -, 8— Oe^xΣ-iJ^ Then

y^ί^i, -, ̂  -i)y = ^A-i(D, -, ̂ σ-ι(β); -1)
y'-lg(θι, -, ̂  -i)/ = ̂ (8 ,̂ δA+p-HD, -, δm_A+P-^-ι>; -i)

Since #F'=m, X l Iμ(ί/)=Σ?-ι 2 cos θk. Similarly χ/ιμ(jf)=Σ?-ι 2 cos θk. This

completes the proof.
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4. The Adams conjecture

We state the Adams conjecture in real case and prove it. Let Fn be the
monoid of based homotopy equivalences of S*. Let BFn be the classifying

space of Fn and BF=lim BFn. The homotopy set [X+, BF] is isomorphic to

the group of stable fibre homotopy equivalence classes of spherical fibre spaces
[14]. For a finite CW-complex X, an abelian group Sph(X) is defined as [X+,
BFxZ], and the J-homomorphism /: KO(X)^Sph(X) is defined by J(ξ)=
([f], dim ξ) for a real vector bundle ξ where [ξ] denotes the class of the
associated sphere bundle. By Segal [13], {O(n)} and {Fn} are Γ-spaces and

the map j={jn' O(ri)->Fn} is a map of Γ-spaces. So BOxZ and BFxZ
become infinite loop spaces and j: BO X Z->BFxZ becomes an infinite loop map.
Remark that this infinite loop space structure of BOxZ coincides with the
infinite loop space structure induced from the Thorn isomorphism [15]. So
Sph(X) is a 0-th term of a generalised cohomology theory and J=j* is a stable
natural transformation. By [10], Proposition 4.3, we have

Lemma 6. The transfer commutes with the J-homomorphism.

Let q be a prime number. For an abelian group A, A®Z\ — is denoted

[ 11 L ? J '
— . Let ψ* be the q-th Adams operation. Since a: RO(G)-*KO(EIG)

is a λ-ring homomorphism, a commutes with \|Λ It is well known that ψq is

a stable operation on ^O(̂ C) — . So we have

Lemma 7. The transfer commutes with ψq in the KO( ) — \-theory.

Now we prove

Theorem 8 (Adams conjecture).

«-l) = 0;

Proof. Adams [2] proved this theorem for one and two dimensional
vector bundles. Since odd dimensional vector bundles generate KO(X) as an
abelian group, it is sufficient to prove the theorem for odd dimensional vector

bundles. Let ξ be a (2m-fl)-dimensional real vector bundle over X and
(E->X) the associated principal O(2m+l)-bundle. Let G and H be the same
groups as in §3. Consider the following commutative diagram



TRANSFER MAP IN THE J^^-THEORY 507

where p\ is the transfer for the bundle (p: E/H->EIG). Clearly ξ=a(ι). Since
v is a one dimensional representation and μ is a two dimensional representation,

we have

This completes the proof.
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