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Introduction. The notion of "generalized Siegel domains in CnxCm with
exponent c" was introduced by Kaup, Matsushima and Ochiai [3]. In the
previous paper [6], we studied exclusively the structure of generalized Siegel
domains in CxCm with exponent 1/2. Since then, as an application of the
results obtained in [6], we considered the equivalence problem and showed
that two generalized Siegel domains in Cn X Cm with exponent 1/2 are holomorphi-
cally equivalent only if they are linearly equivalent [7], [8].

In this paper we study the equivalence problem for generalized Siegel
domains in CxCm with arbitrary exponent. To state our results, we need a

few preparations. Let 3) be a generalized Siegel domain in Cn X Cm with ex-
ponent c and Q(<2)) the real Lie algebra consisting of all complete holomorphic
vector fields on 3). Then, by the definition of 3), the Lie algebra Q(£)) con-
tains the following vector field E on 3) (see section 1):

where (zly •• ,%Mwly •• ,wm) is the natural coordinate system in CnxCm. We
put, for any

Now we can state our results. First of all, we shall prove the following
proposition in section 2 (see Proposition 2.6):

Proposition. Let S) be a generalized Siegel domain in CnxCm with ex-
ponent c=l. Then Q(3J) has the following graded structure:

=β-rf flo+fli, [9λ,

Combining the results obtained in [3], [4] and [13] with this fact, we obtain
the following
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Theorem 1. Let 3) be a generalized Siegel domain in CnxCm with exponent
c.

(1) If c Φl/2, then we have

i, [9λ>

Moreover, in the case when n=ly we have the following direct sum decomposition

where QO and g" are vector subspaces of g0 such that both 9_ι+9o+8ι and g" are
ideals of §(3)}.

(2) Ifc=l/2, then we have

9(-S) = 9-ι+9-ι/2+9o+9ι/2+9ι > [9λ, flμ] Cgλ+μ .

Making use of this theorem, we can prove the following

Theorem 2. Let 3) and 3)' be generalized Siegel domains in CxCm with

exponent c and c' y respectively. Then 3) and 3)' are holomorphically equivalent
if and only if there exists a non-singular linear mapping X\ Cx Cm->Cx Cm such

that -C(3)) = 3)'. Moreover, if 3) and 3)' are holomorphically equivalent, we

have c=c'.

After some preliminaries in sections 1 and 2, these two theorems will be

proved in sections 3 and 4 respectively.

Now, the following generalization of the classical result due to H. Cartan
[2], which states that two bounded circular domains D and Dr in CN containing

the origin o are linearly equivalent if there exists a biholomorphic isomorphism
/ of D onto Df such that f(o)=o, will play an important role in the proof of
Theorem 2.

Theorem 3. Let D andD' be two circular domains in CN containing the origin
o of CN. Suppose that D admits an Aut(D)-invariant Kάhler metric ds2

Dy where

Aut(D) denotes the group of all biholomorphic transformations of D onto itself.

Then D and D' are holomorphically equivalent if and only if they are linearly

equivalent.

In his letter of May 16, 1978, Dr, K. Nakajima kindly announced, but
without proof, that this fact is true for bounded circular domains in CN containing

the origin. Since we do not know his proof, we present our proof of this theorem
in section 1.

1. Preliminaries

Let R (resp. C) denotes the field of real (resp. complex) numbers as usual.
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Let (SΊ, •••, zny zoly •••, wm) be the natural coordinate system in CnxCm.

DEFINITION 1. A domain 3) in CnxCm is called a generalized Siegel domain
with exponent c if the following conditions are satisfied:

(1) 3) is holomorphically equivalent to a bounded domain in Cn+m and
3)f\(C*X {o})φφ, where {0} denotes the origin of Cm.

(2) 3) is invariant by the transformations of Cn+m of the following types:

(a) (#, w) h-> (#+#, w) for all

(b) (#, 20) h-» (#, β^ '̂a;) for all

(c) (#, «;) f-> (£*#, £''«;) for all

where c is a fixed real number depending only on 3). We call c the exponent of
3).

It is obvious from the definition that the following vector fields on 3) are
contained in Q(3J):

(a)' d/dzk for Λ = l , 2 , ,n;
w a

(b)' /=χ/^ΣX—

For later use, we here study the structure of circular domains in CN.

DEFINITION 2. A domain D in CN is called a circular domain if Z) is in-
variant by the rotations

0 .1) L: (#ι, •••, ZN) i—» (ev~lizλ* •••. e^"1'̂ ). tELR,/ * \ If 7 Pi f \ J.7 7 J V / 7 *̂  *w 7

where (̂ ^ , ̂ ) is a fixed coordinate system in CN.

Let D be a circular domain in CN which admits an Aut(D)-invariant Kahler
metric ds2

D. Then we have Aut(D)cIso(Z)), where Iso(Z>) denotes the group
of isometries of D with respect to ds2

D. Therefore, being a closed subgroup of
the Lie group Iso(D), Aut(D) is also a real Lie group. Moreover, the isotropy
subgroup of Aut(Z>) at a pointy of D is compact, since the isotropy subgroup of
Iso(Z>) at p is so. We may identify the Lie algebra of Aut(Z>) with the real Lie
algebra Q(D) consisting of all complete holomorphic vector fields on D. Using
the coordinate system (zly ••-,##), any vector field X in Q(D) can be written in
the form

(1-2) X= ΣΔ— ,

where fk(k=\, 2, •••, N) are holomorphic functions on D. Now, suppose fur-
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ther that D contains the origin o of CN. Then it is easy to see (cf. [6], section 1)
that any vector field X^Q(D) is a polynomial vector field, that is, in the ex-
pression (1.2) of X every component fk is a polynomial. A vector field X is

called a homogeneous polynomial vector field of degree v, if any component
fk of X in (1.2) is a homogeneous polynomial of degree v. In this terminology,

we put

the set of all homogeneous polynomial vector
(l.J) ,ov - ) /- ι j r Λ

( fields of degree v

and

(1.4) 3 — v/—Λ Σ# —- >

which is the vector field in g(Z>) induced by the global one-parameter subgroup

{lt}t(=R defined in (1.1). Then we can show the following

Lemma 1.1 (cf. [6], [11]). With the same assumptions on D and notation
as above, we define an endomorphism J of Q(D) by J(X)=[d, X] for X^Q(D).
Then, denoting by ϊ the Lie subalgebra of Q(D) corresponding to the isotropy
subgroup K of Aut(D) at the origin o^D, we have

(1.5) l

where Ker J denotes the kernel of'/; and

(1.6) if we put t> = {XζΞQ(D)\J\X) = -X}, then

r ρ = β(z>)n(30+32);
\ Q(D) = ϊ+p (direct sum).

Lemma 1.2. Let D be a circular domain in CN containing the origin, which
admits an Aut(D)-invariant Kάhler metric ds2

D. Let G be the identity component
of Aut(D) and D0 the G-orbίt passing through the origin o. Then D0 is a complex
submanίfold of D. Moreover, it is a Hermίtίan symmetric space of non-compact

type.

Proof. First we notice that, being a G-orbit passing through the origin
oEϊD, D0 is a Riemannian submanifold of D. Let g be the Riemannian metric
on D0 induced from ds2

D. For each element σ of G, we denote by r(σ) the
restriction of σ to Z)0, that is, r(σ) x=σ x for all x£=D0. It is then obvious
that r is a Lie group homomorphism of G into the Lie group Iso (Z)0) consisting
of all isometrics of DQ with respect to the metric g and r(G) acts transitively on

A,

Now, assuming that Z)0 =£ {0}, we shall show that the orbit D0 is a non-compact
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complex submanifold of D. Let K be the isotropy subgroup of G at the origin
o. We may identify Z)0 with the quotient space G/K. Let g(Z)) = !+p be the

direct sum decomposition of Q(D) as in Lemma 1.1 and T0(D0) the tangent space

to D0 at the origin o. Then we have

(1.7)

where X(ό) denotes the value at o of the vector field X. We now assert that

(1.8) T0(Z30) is a complex subspace of T0(D) ,

where T0(D) is the tangent space to D at the origin o. In view of (1.7), it is
sufficient to verify the following

(1.9) N/=DΓ(o) e Γ0(Z>0) for every X^ .

For this, take an arbitrary vector field X on D belonging to p. Then, by
Lemma 1.1, -X" can be wirtten in the form

(1.10) X=X0+X2 for some ^Γ0e30 and JT2e32 .

By a straightforward computation we have

(1.11) J(X)= -v/=

where/ is the endomorphism of g(D) defined in Lemma 1.1. It follows then

that

(1.12) V=ΪX(o) = V^ΪXM = (~J(X))(o) e Γ0(D0) ,

as desired. Now, let 7 be the G-invariant complex structure on D. By virtue

of (1.8) we can define an r(G)-invariant tensor field / on DQ=G o by requiring

that, for any point p of Z)0 and any vector X^ Tp(D0),

(1.13)

Obviously / then defines a complex structure on Z>0, so that Z)0 is a complex
submanifold of D. Since D is an open subset of CN and DQ is a complex sub-

manifold of D of positive dimension, it is evident that DQ is non-compact.

It remains to prove that DΌ is a Hermitian symmetric space. Let g be the
Kahler metric on D0 induced from ds2

D. Since ds2

D is G-invariant, the group

r(G) acts transitively on D0 as a group of holomorphic isometrics. Now, re-
calling that D is a circular domain in CN, we see that G contains the following

element

(1.14) /«: (*» -.., *„) H> (̂ ^̂ , -, ̂ ^̂ ) .

It is an easy matter to see that r(l^) is an involutive holomorphic isometry of D0
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and the origin o^D0 is an isolated fixed point of r(l^). From this our last asser-
tion is obvious, since the group of all holomorphic isometrics acts transitively
on D0. q.e.d.

Lemma 1.3. Let D be a circular domain in CN as in Lemma 1.2. We denote
by G the identity component of Aut(D) and K the isotropy subgroup of G at the
orgin o as before. Let Kλ be any compact subgroup of G. Then there exists an
element g^G such that g'^K^gdK. In particular, K is a maximal compact
subgroup of G and every maximal compact subgroup of G is conjugate to K under
an inner automorphism of G.

Proof. If G=K, our assertion is trivial. So we may assume that G^ίK.
Then, by Lemma 1.2 the G-orbit D0=G/K passing through the origin o is a
Hermitian symmetric space of non-compact type with r(G)-invariant Kahler
metric g, where r: G->Iso(Z>0) is the Lie group homomorphism defined in the
proof of Lemma 1.2. Consequently, DQ=G/K is a complete simply connected
Riemannian manifold of non-positive sectional curvature. On the other hand,
being a subgroup of G, r(K^ acts on D0=GIK as a group of isometrics. Hence,
by a classical result due to E. Cartan [1] we conclude that r(K^ has a fixed point
p=g o^D0(g^G), that is, k g o=r(k) (g o)=g o for every k^K^ Clearly
this implies our assertion. q.e.d.

Proof of Theorem 3. It is trivial that D and D' are holomorphically
equivalent, if they are linearly equivalent. Thus we have only to prove the
converse.

Suppose that there exists a biholomorphic isomorphism Φ:Z)->Z)' of D
onto D'. Let G (resp. G') be the identity component of Aut(fl) (resp. Aut(D'))
and K (resp. K') the isotropy subgroup of G (resp. G') at the origin o. Now we
have two cases to consider. Consider first the case where G o=0, that is, the
origin o is invariant under G. In this case we have

(1.15) Φ(o) - Φ(G o) = G' Φ(o) .

Since the group G' contains the global one-parameter subgroup {/J/e/z^s de-
fined in (1.1), this means that φ(o)=o. Taking a real number θ arbitrarily,
we now consider the following biholomorphic transformation f of D onto itself
defined by the composition

(1.16) f=φ-l L, Φ lθ

where Φ"1: D'-*D denotes the inverse mapping of Φ and lθ the rotation defined

in (1.1). Then we have

(1.17) f(o) = o and
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(1.18) the differential (/*)<,: T0(D)-*T0(D) of / at o is the identity mapping.
Noting that the isotropy subgroup K is compact, we can see from the proof of
Theorem 3.3, Chap. V of [5] that, under these two conditions, / must be the
identity transformation of D. Hence, if we put Φ=(Φj, •••, Φ#), we have from
(1.16) that

(1.19) Φχ*^#) = e*=»Φj(x) for all 0eΛ ,

from which we conclude that each component Φ; is linear (cf. [10], p. 67).

We next consider the case where G 02 {o}. By virtue of Lemma 1.3, we
can choose an element g of G' in such a way that^'XΦ JSvΦ"1)-^^', since
Φ K Φ'1 is a maximal compact subgroup of G'. Considering a biholomorphic
isomorphism Φ: /)—>/)' defined by φ=g~ί Φ, we have

(1.20) Φ(o) = Φ(K o) = K' Φ(o) .

Since the isotropy subgroup K' contains the global one-parameter subgroup as
defined in (1.1), it follows from (1.20) that Φ(o)=o. Repeating exactly the
same arguments as in the first case, we conclude that Φ is linear, completing
the proof.

We finish this section by a recent result on the cancellation problem due to
Urata. This will be used in the proof of Theorem 2 in section 4.

Theorem U (Urata [12]). Let X, Y and V be complex, analytic spaces such
that VxX is biholomorphic to VxY. If V is hyperbolic in the sense of Kobayashi
[6], then X is biholomorphic to Y.

2. The structure of generalized Siegel domains in CnxCm with
exponent c=l

Throughout this section we denote by 3) a generalized Siegel domain in
C"xCm with exponent c=l.

Let Zμv(resp. W^ be a polynomial vector field on 3) having the following
form

(2.1) = ΣP* ^ (resp. W» = ±Q
*=ι όzk \ «=ι

where P£v (resp. ζ)*v) are homogeneous polynomials of degree μ in
and of degree v in wβ (l^β^m). We denote by 3μv (resp 2Bμv) the set of all
vector fields of the form (2.1), that is,

(2.2) 3μv = {Z^} (resp. 2Bμv=

Then, as we have observed in section 1 of [9], we have the following bracket
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relation in the case c= 1:

<2 3> [/,
I',

where E and / are vector fields on 3) defined in section 1.
Now, as in the case where 3) is a generalized Siegel domain with exponent

1/2 (cf. [3], Lemma 3.1), we can see that every holomorphic vector field X in
can be written in the form

(2.4) X = Σ {Zκ+Zn+ WM+ W
μ^O

Using (2.3), we have then

(2.5) adE X= Σ {(
F^o

Hence, putting

(2.6) Xμ

for μ= — 1, 0, 1, 2, •••, we can verify easily that

(2.7) X= Σ Xμ
μ^-1

and

(2.8) Φ(adE) X=

for every polynomial Φ(x)^R[x]. Thus, by the same reasoning as in section
3 of [3], we obtain the following proposition (cf. [3], Theorem 2):

Proposition 2.1. Let 3) be a generalized Siegel domain in CnxCm with

exponent c=\. For each μ^ — 1, let Qμ be the vector subspace of Q(£D) con-
sisting of all vector fields in Q(£D) of the form (2.6). Then we have

(2.9) gμ is the eigen space of adE for the eίgen-value μ

(2.10) β(4))= Σ a^;
μ^-1

(2.11) [βμ, 8v]cgμ+v.

Lemma 2.2. For μ= — ly 0, 1, 2, •••, we have

(direct sum), where

u =a(^)n(3(μ+1)o+aδ«);
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n o

Moreover, we have 8-1= { Σ ak — I (βι> *"> <U

Proof. Let X be an arbitrary vector field on S) belonging to gμ. Then,
assuming that X has the form as in (2.6), we have by a routine calculation that

(2 12) ί adI'X= V^^-V
( ' } I (a

from which we obtain 8μ =8μ+β" (direct sum), where

ί = fl(^) n (3(μ+1)0+2Bμι)
( ' ;

ί aί =
I βί'=

Now, we shall prove that 8"=8(^)n(3μι+2δ(μ_l)2) in (2.13). The proof is
by induction on μ. Let FF00 be an arbitrary element of 8-Ί Then we see
from (2.12) that W00 and V^-ΪW00 are contained in 8(-S), so that WOQ=0 by

Cartan's principle: Q(£D) Π \/ — 1 8( 2)) = {0} . Thus, our assertion is really true
for μ, — — 1 . Supposing that our assertion holds for μ ̂  — 1 , we take an arbitrary

vector field X on 3) belonging to 8"+ι By (2.13) X may be written in the
form

(2.14) X = Z(μ+1)1+ WW2)0+ Wn -

Then, since [8/6*,, X] e si', [3/3 ,̂ Z(μ+1)Je3w, [9/9**, WWJ e 2δ(μ+1)o,
[3/3 ,̂ JFμ2]eS!B(μ._1)2 for every Λ=l, 2, •••, n and the 2B(/Λ+1)o-component of any
vector field belonging to Q" does not appear by the induction assumption, we
conclude that

(2.15) [3/3^ ^(μ+2)o] - 0 for k = 1, 2, ••*, n ,

which implies that W(μ+2ϊv
=® We have thus proved that X=Z(μ+1)1-\- Wμ2, and

so Q" = Q(£)) n(3μι+2δ(ju,_ι)2) for every μ. As a consequence of this fact, we
also see that θ-ι=θ(-®)Π3oo. Once it is shown that the coefficient of every
vector field on S) belonging to 8-1 are real, our proof is completed. But this
follows from the proof of Theorem 3 in [3]. q.e.d.

Lemma 2.3. Let r be the radical of 8(-2)) Then we have

ϊ = Σ rμ > where tμ, = r n 8^
fA^-l

Moreover, ΐμ=Qμ,for μ^2.

Proof. This can be proved in exactly the same way as Lemma 4.1 in
[3]. q.e.d.
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n d
Now, let A= Σ ΛΛ-— (ak^K) be an element of g_ lβ According to Kaup,

*=ι 9^
Matsushima and Ochiai [3], we shall define the linear mapping Φ^: 91-^9_1 by

(2.16) ΦA(X) = (\l2)(adAγ X for

Then, using the concrete expression of X as in (2.6), we can show by a straight-

forward computation that

(2.17) X(V=ϊa, 0) - -ΦA(X) (x/^ϊ*, 0) for all X(=Ql ,

where a=(a1, •••,#»). From this we can verify easily the following lemmas

with the same arguments as in the proofs of Lemmas 4.2 and 4.3 in [3], So

we will omit the proofs.

Lemma 2.4. r n 81 = {0} .

Lemma 2.5. gμ = {0} for μ = 2, 3, •••

Thus, summing up we have the following

Proposition 2.6. Let 3) be a generalized Siegel domain in CnxCm with

exponent c—\. For each μίg:— 1, let Qμ, be the subspace of Q(£D) as defined in

Proposition 2.1. Then we have

(2.18) Q(3)} = fl-x+flo+βi , [0μ, 9v]cgμ+v ,

where

(2.19) β-ι= {ijeJ^IK -,«.)£*"} ,k~1 ozk

(2.20) for μ=Q, 1, flμ=flί+flμ/ (direct sum), where

ί g£ =
I 9ίc/ =

3. Proof of Theorem 1

Throughout this section we denote by 3) a generalized Siegel domain in

CχCm with exponent c, unless otherwise stated. By change of linear coordinates

if necessary, we may assume without loss of generality that (>/ — 1,

Lemma 3.1. // (*, w)^3), then Im.z>Q.

Proof. In the case where the exponent c of 3) is non-zero, this can be

verified in the same way as in the proof of Lemma 1 in [6].

We next consider the case c = 0. Suppose that there exists a point
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such that Im.s0^0. Then, by the same reasoning as in the proof
of Lemma 1 in [6], 3) contains a point of the form (0, ίvQ). Then, by the
definition 1, 3) also contains the set {(a, ^eCxCΓIαe.R}. Moreover, since
3) is open in Cx Cm, we can choose a positive number rQ in such a way that the
points — (\/^Tr0, tΰQ) and (χ/^Πr0> wQ) are contained in j£D. Then S) also con-
tains the set {(#, ίv0)^CxCm \Im.z Φθ}. As a result, we conclude that 3)
contains the set {(#, w)0)eCxCw|#eC}, which is naturally identified with C.
But, since 3) is holomorphically equivalent to a bounded domain in Cw+1, this
is a contradiction. q.e.d.

Lemma 3.2. W^ /wf .2Vπ = {w e £Γ | (\/ ̂ T , α>) e £)} .

(3.1) .2)v— i is α circular domain in Cm containing the origin o\

(3.2) ^ = {(*,«OeCxCHΛι *>0, wl(Im.z)c^3)^-^.

Proof. This is immediate from the definition of 3) and Lemma 3.1. q.e.d.

Proof of Theorem 1. The second statement (2) of the theorem is nothing
but a result due to Kaup, Matsushima and Ochiai [3]. Moreover, combining
Theorem 3.2 in Kaup and Upmeier [4] and Proposition 7.1 in Vey [13] with
Proposition 2.6 in section 2, we obtain the first assertion of (1).

In the following part of the proof, we denote by 3) a generalized Siegel
domain in CxCm with exponent c. We have now two cases to consider. Con-
sider first the case c=Q. Then, by Lemma 3.2, 3) is the direct product ξ> X 3)^—^
where © is the upper half plane {z^C\Im.z>0} and 3)v~ι is the circular
domain defined in the same Lemma 3.2. Combining this fact with Proposi-
tions 7.1 and 8.1 in Vey [13], we can see that Q(3)) has the following structure:

(3.3) g(£)) = g(€>)+9( ®vrϊ) (direct sum of ideals)

(3.4) g(ξ>) = 9_x+9$+9ι

(3.5) g(

where

(3.6) β-ι= {^\a

(3.7) 9$ =

(3.8) fl̂

Therefore, putting 9o/:=9(^^^τ), we have our assertion.
Consider next the case £ΦO. By Theorem 3.2 in Kaup and Upmeier

[4], the linear mapping (ad(dldz))2: 9ι->9_ι is injective in the case £Φ1. We
also claim that this is true for the case c=l. Indeed, using the equality (2.17),
this can be verified with the same arguments as in the proof of Lemme 6.4 in
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Vey [13]. Consequently, we have dimg^l, because dimg_ 1=l by Propo-
sition 2.6. We want to show that dim 8!=!. For this it is sufficient to prove

that 8ιΦ{0}. We put 3)0={(z, w)e^)|.«?=0}. Then, <D0 is identified with

the upper half plane ξ> by Lemma 3.1. Now, it is well-known that each el-

ement 7— (a j}^SL(2, R) acts on ξ> by a holomorphic transformation

(3.9) l,(z) = (

and conversely each biholomorphic transformation of £> onto itself is obtained

in the manner described in (3.9). For each element y~la ,Je*SL(2, R), we

here define a mapping 7V : £ X Cw->ξ> X Cm by

(3.10) 7Y(*, «;) -

It is then checked easily that 7Y is a holomorphic mapping and 7Y(.2)) C ,2), so

that 7Y induces a biholomorphic transformation of .2) onto itself (cf. [6], Corollary
3). By the construction of 7Y, it is obvious that 7Y=/Y on <DQ. Therefore, the
group Aut0(.2)0) can be identified with a subgroup of Aut0(.2)) via the correspon-
dence /Yt-»7Y. Finally, consider the global one-parameter subgroup

(3.11) 7V/: (*,

of Aut0(^)) defined by the one-parameter subgroup

(3.12) <y'

of SL(2, K). Then, we can see by a direct computation that {7y/}iejR defines a
non-zero vector field on 3) belonging to 3ι Consequently, we have 8ιΦ{0}>

as desired.
Now, noting that Q0={X&Q(<D)\[E,X]=Q} and the group Aut0(^)0) can

be considered as a subgroup of Aut0(.Φ) as above, we can show that Aut0(^))
leaves invariant the complex submanifold <DQ of .2), and in fact S)Q coincides
with the Aut0(.2))-orbit passing through the point (%/^T, 0): ^)0=Aut0(^))

(Y/1ΓJ, 0). Hence, there is a natural homomorphism TT: 8(-2))~^8( ®o) induced
by the Lie group homomorphism of Aut0(£)) to Aut0(^)0) defined by g\-^g\g)0,

where ,̂̂ 0 denotes the restriction of g<=Aut0(<D) to <D0. Let fl(5)o)=8-ι+
80+81 be the decomposition of fl(5)0)

 as m Kaup, Matsushima and Ochiai [3].
Λ

Then, since π(E)=z—, π preserves the gradition, i.e., τr(8λ)C8λ. Moreover, it
QZ

is clear that π(Qλ)=Q\ for λ = — 1 and 1. On the other hand, since Q(3)0) is

a simple Lie algebra isomorphic to sl(2, R), we have 8o=[θ-ι> 8?]> so that 80=
ττ([8-ι> 81]) C τr(8o). Therefore, zr is surjective. Put 8o / = =Ker7r and 80 =
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[9-ι> 9ι]^9o Since π is injective on gλ for λ— — 1 and 1, we see go'cg0.
From this we conclude that [go7, gλ] = {0} for \=—1 and 1, and hence
[9o'> 9o] ={0} by the Jacobi identity. Finally it is an easy matter to see that
9-ι+9o+9ι and g" are ideals of Q(ίD) satisfying the condition: g(^))—(g_χ+go+

9ι)+9o' (direct sum), completing the proof.

4. Proof of Theorem 2

Throughout this section we denote by 3) (resp. 3)') a generalized Siegel

domain in CχCm with exponent c(resp. cr). In general, for given two domains
S and Sr we employ the notation .A' for denoting the onject for S' corresponding
to an object A for S.

Now, we begin with the following

Lemma 4.1. Let B and B' be two hyperbolic circular domains in CN con-
taining the origin o. Suppose that the following two conditions are satisfied:

(4.1) The Lie algebra Q(B) (resp. Q(B')) contains the element I (resp. /') of the

form

(4.2) There exists a non-singular linear mapping Φ: CN-*CN of the form

(I Φl ΦV

•ΦjvΦ :

\ZN)

o Φf

\ZN)

such that Φ(B)=B'.
Then Φl=Qfor k=2, 3, —, N.

Proof. Let Λ: B'->B be the inverse mapping of Φ and put

f l Ai ; AiΛ

(4.3) Λ : 0 A!

0 Λ5^ AN

N ί*1*,
Denoting by Λ^: Q(B')^Q(E) the differential of Λ, we have by routine calcu-

lation that

(4.4) Σ ΛJΦ?*,)-
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N f)
/ ΐ~ %Π /M«v \ °

Consequently, the vector field

(4.5) X =

also belongs to 9(5). Then, as we can see easily, the global one-parameter
group {φt}teR generated by X is given by

(4.6) Φ,=

1

0

ό

-V-
1

(

-iΦiί
I (

> (

~>-V-
) (

) θ'

-1ΦJU'

)

.

, t<EΞR,

so that φt acts on B by the following transformation

(4.7)
ft = 2, 3, — ,N.

Here we notice that the group Aut0(B) contains the global one-parameter sub-
group

(4.8) ΨΘ: (zl9 *2, -, ZN) M> (*̂ %, #2, •-, ZN) , ^eΛ .

In fact, {Ψ0}θeΛ is the one-parameter subgroup of Aut0(JS) generated by the
r\ N r\

holomorphic vector field \/ — \zl — =-\/ — 1 Σ^A -- ^ belonging to 9(5).
3 !̂ *=1 OZk

Now, suppose that (Φj, Φa, ••% Φjv) Φ(0, 0, •••, 0). Then, choosing a point
N

p0=(0ί zl, •••, ZN) of JS such that 2 Φ/#? φO, we see that B contains the set

which is canonically identified with the complex plane C. But this is impossible,
because B is hyperbolic in the sense of Kobayashi [5]. Thus we have proved
that (Φi, ΦJ, -, Φlr)=(0, 0, •-, 0). q.e.d.

We now consider a mapping φ\ {#eC| Im.#>0} X Cm-+Cm+1 defined by

(4.9) for k= 2, 3, --,

where c is the exponent of 3). As we can see easily, φ defines a biholomorphic
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isomorphism of 3) onto the image domain 3ϊ—φ(ίD) in Cm+1.
In the case £ΦO, 1/2, we know already from the proof of Theorem 1 that

Aut0 (̂ ) (V=T, 0) = {(*, 0)GΞCxeΓ|Im.*>0}

and hence

by (4.9). Moreover, by direct computations as in the proof of Theorem 2 in
[6], the structure of Aut0(.S) is explicitly determined as follows. Let *SJ7(1, 1)
be the matrix group defined by

( H
2 - l d 2 = ι

(4.10) S17(1,1)= \ Γ ΊeSL(2,C)'

and K^~ι C GL(m> C) the identity component of the isotropy subgroup of
Aut(<Dv—ι) at the origin o of Cm, where 3)^—\ is the circular domain defined in
Lemma 3.2. Then we can verify that the group Aut0(.S) consists of all transfor-
mations of the following type (cf. [6], REMARK 3):

,4m ί a
( ' }

where $=*,, j'='(^2) »,*.+1), e5£^(l, 1) and KeK^iCGI^m, C).

The following lemma is essential to the proof of Theorem 2.

Lemma 4.2. WftA ίAβ notation as above, the domain <B is a hyperbolic

circular domain in Cm+1 containing the origin o. Moreover g(.3) contains the
_ m + l Q

element I of the form /=>/ — 1 *Σ>zk — .
*=2 Qzk

Proof. By using (4.11), the first statement can by verified in exactly the
same way as in the proof of Lemma 1 in [8].

For the second assertion, we recall that Aut0(5)) contains the following
global one-parameter subgroup

(4.12) /, : (*, to) κ» (*, β1

By way of (4.9), {lθ}βeR induces the global one-parameter subgroup

(4.13) 7Θ : fo, z2> — , zm+1) H-* («!, ̂ ^̂  ..., e^ zm+1) , (9eΛ ,

of Aut0(.®), which defines the desired element 7. q.e.d.

We are now prepared to prove Theorem 2.
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Proof of Theorem 2. Since it is trivial that 3) and 3)' are holomorphi-
cally equivalent if they are linearly equivalent, we have only to prove the con-
verse.

Let φ: 3)->3$ be the biholomorphic isomorphism of 3) onto 3$ defined in

(4.9) and φ'\ 3)'^>3&' the corresponding isomorphism of 3)' onto the image
domain 3$''. Suppose that there exists a biholomorphic isomorphism Φ: 3)->3)'
of 3) onto 3)'. We put Φ=φ' Φ φ~1. Then Φ gives rise to a biholomor-

phic isomorphism of J3 onto IB'. Now, we know already by Lemma 4.2 that
3ί and 3$' are hyperbolic circular domains in Cm+l containing the origin o. More-
over, since 13 (resp. 3ίr) is holomorphically equivalent to a bounded domain,

3ϊ (resp. Jδ') has the Bergman metric ds2^ (resp. tfc^j/), which is Aut(^) (resp.

Aut(.£9'))-invariant Kahler metric. Hence, it follows immediately from The-

orem 3 that there exists a non-singular linear mapping X\ Cm+l->Cm+1 such that

£($$)—J$r. We shall prove that this isomorphism Jβ induces a linear iso-
morphism X\ CxCm-*CxCm such that £(3))=3)f. The proof is divided
into three cases as follows.

Case I: cφO, 1/2.

In this case we know from the proof of Theorem 1 and (4.9) that

(4.14) Aut0(J2) o = {(zl9 0, .", 0)eC-+1| |^|<1} .

Since dimc(Aut0(^r) o)=dimc(Aut0(^) o)=l, we obtain that

(4.15) X(Aut0(JS) o) = Aut0(^') o= {(zl, 0, •-., 0)eΞC"»+1| |*i

from which we conclude that ^C: Cm+1->Cm+1 is of the form

( yf

%\

(4.16)

where A is an mxm non-singular matrix. Since the group Aut0(.S) contains

the linear transformations

changing -£ by a suitable linear transformation ~C Ίt if necessary, we may as-

sume that α—1. Then, as a consequence of Lemmas 4.2 and 4.1, X is reduced

to the following form

Π 0

(4.17)
0
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Recalling the definitions of the isomorphisms φ: 3)->Sl and φ'\ 3)'-*<£',

we put -£=φ'~1 JU φ. Then it is easily checked that X is a biholomorphic

isomorphism of 3) onto 3)' of the following form

( z' = z

(4.18) X:
WΛ =

where we put A=(A<Λβ)1^Λ β^m. Once it is shown that the exponents c and c'

are identical, we may conclude from (4.18) that the mapping -C: 3)-^>3)' gives a
desired linear equivalence between 3) and 3)' . Now, we start out to prove

c=c'. Let {φ't}tt=R be the global one-parameter subgroup

(4.19) φ't : (*', wr) h-» («'*, *CV) , *<ΞΛ

of Aut(,2)'). By direct computations, we can show that the global one-parameter

subgroup {φt}t(=R of Aut(.S)) defined by φt=~C~1 φ't -C is given by

(4.20) ft : (,, .) « (A, A / ^ Γ . , . . + / , . - . - 1 -) ,

so that the complete holomorphic vector field -XΌn 3) induced by {φt} t<=R is of
the following form

(4.21) τ-J. +
Qz "

On the other hand, we know from [3] that every complete holomorphic vector

field on 3) is a polynomial vector field. By (4.21), it is clear that X is a polynomial
vector field only if c=c'y as desired.

Case II: c = 0.

By Lemma 3.2 3) is the direct product <D=§ X 3)v=ι so that .$= Ux 3)^=\,
where ξ> is the upper half plane and U is the unit disk {z^C\ \z1\<l}. We

have two cases to consider. Consider first the case where dimc(Aut0(.®) 0)— 1.

In this case we have

(4.22)

and

(2.23) J7(Aut0(^)-0) = AutoGS')-* = {(*ί, 0, -, 0)eCw+1| \z{\<l} .

From this, repeating the same arguments as in the Case I, we can see that
3) and 3)' are linearly equivalent and c=c'. Consider next the case where

dimc(Aut0(.$) 0)>l. We first claim that the exponent c' is also zero. It is
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evident that c'=ΰ or 1/2, since dimc(Aut0(^') o)=l in the casec'φO, 1/2.
Suppose that £'=1/2. Then, as we have observed in the previous paper [6], the
orbit Aut0(.3') 0 is a unit ball. In particular, Aut0(^') o is irreducible in the
sense of Kahler geometry. On the other hand, by Theorem 3 and the fact that
& is the direct product £B= Ux <Dvτrί9 we see that the orbit Aut0(^) o is also the
direct product Aut0(j3) 0— ί/xS, where S is a positive dimensional Hermitian
symmetric space of non-compact type. Since Aut0(.3) 0 and Aut0(J3') o are
holomorphically equivalent, this is a contradiction. Thus we have proved
that ^'=0, and hence S)' is also the direct product 3)' =§xS)v—λ by Lemma
3.2. Since Φ: 3)=$x3)v=ι-»3)'=iQx3)v>'=} [ is a biholomorphic isomor-
phism and the upper half plane ξ> is of course a hyperbolic complex manifold
in the sense of Kobayashi [5], it follows immediately from Theorem U in section
1 that 3)^~ 1 and 3)(/^\ are also holomorphically equivalent. Now, being isomor-
phic to a complex submanifold of 3) (resp. .2)'), the domain 3)(^^ (resp. S)v=ϊ)
a hyperbolic circular domain in Cm containing the origin. Moreover, noting
the fact 3)τs=ι=$ίx3)v=ϊ (resp. 3)'=&x3)'v^ϊ) in our case, the domain 3)*=\
(resp. 3)'^—^) has the Aut(^)v/^i) (resp. Aut(^C^))-invariant Kahler metric
induced from the Bergman metric of S) (resp. S)'}. Hence, it follows from
Theorem 3 that 3)v=i and 3)v=\ are linearly equivalent. It is now trivial that

—1 and 3)'=^x3)f^=i are linearly equivalent.

Case III: £=1/2.

In the case where dimc(Aut0(.S) 0)=l, our assertion can be proved in the
same way as Case I. Next, consider the case where dimc(Aut0 (.3) o)>l. We
assert that the exponent c' of S)' is also 1/2. In fact, replacing S) by 3)' in
the second case of the Case II, this can be verified easily. As a result, two
domains 3) and 3)' are generalized Siegel domains in CxCm with exponent
1/2. Therefore, our assertion follows from the previous paper [8]. q.e.d.
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