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1. Introduction

This paper and the following paper are concerned with scattering theory
for pseudo-differential operators. The operators we consider are of the form

(1.1) P(D)+A(X,D)

in Rn, where the unperturbed operator P(D) and the perturbation A(X, D) are
pseudo-differential operators. We examine in the present paper the existence
of wave operators, while we shall prove the completeness of wave operators in
the succeeding paper.

We briefly recall the definition of wave operators W±. Let H and HQ be
the self-adjoint realizations of P(D)+A(X, D) and P(D) in L\Rn), respectively.
Then W± are defined by the limits

(1.2) W± = s-lim eitHe-itHoPac(H0).
t-*±°*

Here Pac(HQ) denotes the orthogonal projection onto the subspace of absolutely
continuity with respect to H0. (We refer to Kato [7, Chapter X] for definitions
and results from spectral theory.)

Some authors have studied scattering theory for pseudo-differential opera-
tors. Among others, recently Simon [10] has considered operators H=HQ-\-V
where H0 is a pseudo-differential operator and showed that the main conclusions
of scattering theory hold (namely the wave operators exist and are complete
etc.). He does not necessarily require that V be a differential operator, or
even a pseudo-differential operator. In fact, he only needs that I7 be a sym-
metric operator with some falloff at infinity. He used the methods which
have been originally found by Enss [5]. The condition that Simon calls the
Enss condition (see [10]) plays an important role in proving the completeness
of wave operators. Enss and Simon used purely time-dependent methods.

Schechter [9] considered the operators of the form (1.1) and proved the
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main theorems of scattering theory. For the perturbations he took the specific

operators of the form

or of the form

Ί,τk(D)qk(X)σk(D) .

Here ?*(-3Q is an operator of multiplication by a function qk(x)'y <rk(D) and
Tk(D) are pseudo-differential operators with symbols σk(ζ) and τk(ξ) respectively.
He exploited time-independent methods.

The main purpose of the present paper is to give a sufficient condition for
wave operators to exist. It is easy to find examples which are covered by the
present paper but which are not included in the results of [9], [10]. Such an
example is given in Section 2. However, the hypotheses of both [9] and [10]
assure the completeness of wave operators, which suggests that our hypotheses
are too weak to assure the completeness of wave operators. In addition, we
prove the symmetry and the self-adjointness of pseudo-differential operators
under suitable hypotheses.

We make assumptions directly on the symbols of P(D) and A(X, D). But
Schechter [9] and Simon [10] did not do so.

We use Cook's method, which is the main time-dependent technique, to

show the existence of wave operators. Our proof is similar to that of Hόr-
mander [6] which is based on the method of stationary phase, though he treated
differential operators only.

Finally, we sketch the contents of this paper. Section 2 contains the main
theorems and some examples. The proofs of the main theorems are given in
Sections 3 and 4 after we prove several lemmas except a key lemma. We prove
the key lemma in Section 5. In Section 6, we give a necessary and sufficient
condition for pseudo-differential operators to be symmetric. In Section 7, we give
sufficient conditions for pseudo-differential operators to have self-adjoint ex-
tentions.

The writer would like to express his sincere gratitude to Professors Y.
Saito and S. Ukai for their valuable advices and encouragements.

2. Existence of wave operators

In this section, we shall mention two basic theorems and some examples.
One of the theorems is a characterization of the subspace of absolute continuity
with respect to H0—P(D). The other theorem gurantees the existence of wave
operators.

Before giving the assumption of P(D) and A(Xy D) we shall list the notations
which will be employed in the sequel without further reference.
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Rn\ product of n copies of the real line R.

Zn+\ product of n copies of the set Z+ of nonnegative integers.

|#| rzrQ^-f-. .-f αΛ; the length of the multi-index αeZ+. a\=aι\ an\.

supp u\ the support of a function u.

f=(df/dxly •••, dflQxH); the gradient of a function/.

)=$(£)— \ e~l(χ'^u(x)dx'y Fourier transform of u=u(x).

) = \ei<Xtξ>v(ξ)dξ inverse Fourier transform of ^^^(f), (dξ=(2π)~ndξ).

Δ=(d/dx1)
2-{- -{-(dldxn)

2', the Laplace operator.

(̂ (Ω) the space of complex-valued functions, defined and N times

continuously differentiable in an open set Ω, equipped with the

topology of uniform convergence on every compact subset of

Ω, of the functions and of each one of their derivatives of order

<N+l(N^Z+ orJV= + °o).

CQ(Ω) the subspace of CN(Ω) consisting of the functions having a com-

pact support; if u£ΞC$(Ω) we write

I u I #—max sup I (dldxy*u(x) \ .
IΛKΛ *

L2(Rn) the Hubert space of measurable functions u square integrable over
Rn, equipped with the norm

(if there are no risks of confusion we will omit the subscript L2

and write as \\u\\).

S(Rn) the space of C°° functions u in Rn such that, for any nonnegative

integer N,

\u\N)S = ^max sup (1 + I * 1 2)k/2 \ (8/8*)X*) |< oo ,

^
equipped with the topology defined by the seminorms

cS/(JB11) the dual space of S(Rn), also the space of tempered distributions

in Rn.
Hs(Rn) the Sobolev space of order s^R in jRM, i.e., the space of tempered

distributions u in Rn whose Fourier transform ύ is a measurable

function such that

equipped with the Hubert space structure defined by the norm
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meas* the Lebesgue measure on Rk.
[s] the integral part of s^R.

the closed linear manifold spanned by all eigenvectors of an ope-
rator H in L\Rn).

the subspace of absolute continuity with respect to a self-adjoint

operator HmL\Rn).
Pac(H) the orthogonal projection onto <^ίac(H).

Ms(H) the subspace of singularity with respect to a self-adjoint operator
HmL2(Rn).

Now let us make the following assumption on symbols p(ξ) of P(D) and

a(xy ξ) of A(X, D). The set of all critical points of p(ξ) will be denoted by Σ:

Assumption 2.1.

a(xy ξ) is a complex-valued C°° function on Rn

x X R\ such that for all

multi-indicies α, /3 the estimate

is valid for some constant CΛβί where /, m, 8 and r are constants with
/, τw>0, 0<δ, τ<l

(P. 1) XI) is a real-valued C°° function on J?| such that for every multi-

index α, the estimate

is valid for some constants CΛ and Λ^.

(P. 2) There is a closed set EdRn with the following properties:
(a) measn(H\Σ)=0;

(b) every point ξQ^Rn\S has a neighborhood where rank/>/7(f) is con-
stant;

(<:) rank/'ίfJ^l^eΛ XB.
, Z)) with domain S(Rn) has a self-adjoint extention in L\Rn).

Let H be a self-adjoint extention in L\Rn) of P(Z>)+^4(^ Z)) with domain

S(Rn) and let H0 be the closure in L\Rn) of P(Z)) with domain <S(Rn). Our

main results are:

Theorem 1. Let hypothesis (P. 1) be fulfilled. Then we have

JίΛC(HQ) = ίweL2(.RM)|ώ(?) - Of or almost every £eΞΣ}

= {u<=L2(Rn) \ ύ(ζ) = Qfor almost every f eΛ"\Σ} .
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Theorem 2. Let Assumption 2.1 be fulfilled and put

Λk = {?€=Λ \B !/>'(?) ΦO, rank/'(?)=*} (A=l, -, n).

For every k such that Ωk Φφ assume that,

(CH) /or ^wjV r>0 βn^ ̂  compact set KdΩk there is an integer Nk^ [kβ]+2
such that

Γf
i t II

γ/2
X { max (sup | (d/d^af^ty, ξ) \ )2} dy\ dt< oo.

e wave operators (1.2) ixάf. ίfer^ [k/2] is the integral part of kβ and dκ(y)
is the distance from y to the set

Theorems 1 and 2 will be proven in Sections 3 and 4, respectively.

REMARK 2.1. Since p(ξ) is a real-valued C°° function, P(D) with domain
S(Rn) is essentially self-adjoint. Its unique self-adjoint extention HQ is given
by its closure. The domain £D(H0) consists of those u in L\Rn) such that pύ
is also in L\R").

In the rest of this section we illustrate some applications of Theorems 1 and
2.

EXAMPLE 2.2. Let n=l and let p(ξ)= φ(ξ)ξ2 (?eΛ) where
with φ(ξ)=0 (resp. 1) for \ξ\ <1, (resp. >2). Suppose that

\ξ\>l.

Then it follows immediatly from Theorem 1 that

c#ac(#0) = {u^L\R)\ύ(ξ) = 0 for almost every \ξ\ <!} .

It is easy to see that HQ has a single eigenvalue which is equal to zero (see the
proof of Proposition 3.5).

Let A be a multiplication operator by a real-valued C°° function a(oc) such
that

(2.1) |φ)| <C(1+ M)'1'* > ^^^, 6>0 .

Put H=HQ+A. Then ίί is self-adjoint since A is bounded. Applying Theorem
2, we will show the existence of wave operators (1.2). Suppose that p"(ξ) φO
for | £ τ | >1 except finitely many points ξly •• ,ξΛr. Put
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Then Assumption 2.1 is fulfilled. Since

, \
r<l3r|<2r

for every r>0, the condition fa) holds. Hence, from Theorem 2, it follows
that the wave operators (1.2) exist.

On the other hand, the proper wave operators W±=s—limeitHe~itHo do
/->±oo

not necessarily exist. For example, let us assume, in addition to (2.1), that

a(x) does not vanish almost everywhere and suppose that the proper wave opera-
tors exist. Let u be an eigenvector of HQ corresponding to the eigenvalue

zero. Then e~ltHm=u for all t^R. Since the proper wave operators exist,

\\eitHu-u\\ =

converges to zero as s tends to oo . Therefore

(2.2) eitHu = u .

It follows immediately from (2.2) that u<=S)(H) and Hu=0. Since H=H0+A

and since HQu=Q, we have au=0. Thus w— 0 because βφO a.e.. This con-

tradicts the fact that u is an eigenvector. Hence the proper wave operators do

not exist.

Next, we shall give an example which satisfies the conditions of Theorem 2

but which does not satisfy the Enss condition [10]. Let us first recall the de-

finition of the Enss condition. Let A be a symmetric operator in L\Rn) such

that 3)(Λ) z> H2N for some N. Put

(2.3) h(R) =

where

(̂M >*>(*)= f° (W<*}

V ' ' / \ / I / \ / l l -̂  7~>\( w(*) ( | Λ I | >jR) .

The norm in (2.3) is the operator norm. Simon [10] calls the condition

(2.4) A(0)<oo, Γ h(R)dR<oo
Jo

the Enss condition. Roughly speaking, the Enss condition implies the existence

and the completeness of the wave operators.

EXAMPLE 2.3. Let n=2 and let A be a multiplication operator by a real-

valued C °° function a(x) on R2 such that
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(2.5)

( a(x) = 0, x\<x\.

Then A is a bounded operator on L\R2). But the integral in (2.4) diverges.
We show this by using the fact that when h(Q)<°°,

h(R)dR<oo
o

if and only if

(2.6)

Here JR is the multiplication operator by the function JR(x)=φ(xjR) with
φtΞC~(R2) and φ(a)=0 (resp. 1) for |*| <1, (resp. >2). (The details can be
found on p. 124 of Simon [10].)

Now, let N be an integer. Choose v^C^ such that

supple

and put

e2 = (0,

Then it follows that

Noting that

we have

Since 6<1, the integral in (2.6) diverges. Thus \ h(R)dR diverges and the
Jo

Enss condition is not satisfied.
On the other hand, if we regard A as a perturbation of P(Z>)=(1+Z>*.)1/2, then

the existence of wave operators follows from Theorem 2. In fact, Assumption
2.1 is clearly fulfilled (with B={?eΛ2||1=0}). Since the symbol of P(D) is

(l+£ι)1/2, we have
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p'(ξ) = (^en-fir* 0)
,,.„ Γ(i+f2r/2 O

p(ξ} = [ o o
and

Ω2= φ

(see Theorem 2 for the definition of Ω,k). We examine that the integral in fa)
converges for any r>0 and any compact set KdΩ,^ Set

\y\

Noting that the setp'(K) is in thejyi-axis, we have

(2.7)

By (2.5) and (2.7)

Γ
J l

ί
°° / f \ 1/2

x ^1

Hence the condition (^) holds if we take Nλ=7. Thus the wave operators
exist. Incidentally it follows from Theorem 1 that <3tac(H0)=L2(R2). We
should note that if we take P(D)— Δ then fa) does not hold.

EXAMPLE 2.4 (Higher order perturbations). Let us consider two self-
adjoint operators

(2.8) fl 0 = (1-Δ)1/2

(2.9) H= (l_Δ)I/ϊ+(l+|*|1)-t/!1(l-Δ)ϊ/a(l+|*|ί)~i/*

in L\R3), where £>1. Since the right side of (2.9) with domain S(R3) is a
real operator, it admits a self-adjoint extention. We want to check the hypo-
theses of Theorem 2. The symbol of the perturbation

(1+ |*|2)-e/4(l-Δ)3/2(l+ |*|2)-5/4

is given by the following oscillatory integral :

a(x, ξ) = 0S-JJ e-
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(see Kumano-go [8]). By repeated integration by parts, we have

(2.10) a(x, ξ)

= (1 + 1*2) )-ε/4 j j e

Since, as can be easily verified,

with a constant C^β for all multi-indices a, β, it follows by differentiation under

the integral sign that

and

with a constant C%β for all a, β. Hence the hypothesis (A) is satisfied. The

symbol p(ξ) of H0 is (1+ If Γ)1/2, so it follows that Σ={0} and rankj>"(f)=3
at every f e7?3. Thus Assumption 2.1 is fulfilled (with B={0}). Finally, we

check the condition (ck). In this case, we have Ω1=Ω2=φ and Ω3=

Notice that, by (2.11),

for any r>0, any compact set K CΩ3 and any multi-index a. Then it is ob-
vious that (£3) holds. Thus the wave operators exist. By Theorem 1, we

have also ^ίac(H0)=L2(R3).

3. Proof of Theorem 1

In the present section we shall prove Theorem 1 and some propositions on
the spectral structure of H0. First we should note that the hypothesis (P. 1)

can be further relaxed. We only need that p(ξ ) be n times continuously di-

ffer entiable.
As a preliminary to the proof, we note that since the Fourier transforma-

tion is unitary, it is sufficient to consider the self-adjoint operator HQ defined by

instead of H0. It is easy to see that
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(3.1)

This implies that

(3.2)

The operator Ha coincides with the multiplication operator defined by

Γ

Let έ(B) be the spectral measure associated with JαΓ0, where B varies over all

Borel sets of real line. Then

(3.3)

(see Kato [7], p. 520).

We prepare a lemma which will be used later.

Lemma 3.1. Let φ^C\CL) be a real-valued function in an open set

and assume that φ'(ξ) φO/or every ξ eΩ. I f B is a Borel set of R with meas^JB)^
0, then φ~\B) is also a Borel set of Rn, and measw(93~~1(jB))=0.

Proof. It is easily seen that φ~\B) is a Borel set of Rn. We have only to
show that measn(φ~\B))=Q. Note that if

for every compact set K C Ω then

measn(φ-\B)) = 0 .

So it suffices to show that to every ?0^Ω there corresponds a neighborhood
U of ξ o such that

Suppose ξ0^Ω. Since <p'(f0)φO, we may assume, without loss of generality,

that dφ(ξ0)ldξι φO. The Jacobian matrix of the map

/:?-»(?>(£), &,-,£.)

is non-singular at ξ0. By the inverse function theorem, there is a neighborhood
Ϊ7 of f0 such that /is a diffeomorphism of class C1 between [7 and /([/). Since

we have
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U

Thus

meaSn({ξ<ΞU\φ(ξ)eB}) = measB(/-'(/({|et/|<X£)<Ξ£}))) = 0

where we use the fact that if g is a C1 map of a neighborhood of a null set NdR"
into R", then measn(g(N))=0. Q.E.D.

Throughout this section, we assume that p is real-valued.

Proposition 3.2. Ifρ<=C"(Rn), then

(3.4) <#ac(#o) = {u(ΞL2(Rn) \ ύ(ξ)=0for almost every £eΣ}

(3.5) c#s(#0) = {u<=L2(Rn)\ύ(ξ)=Ofor almost every

REMARK 3.3. To prove Proposition 3.2, we apply Sard's theorem (see
Sternberg [11], p. 47):

Let M1 and M2 be Ck manifolds of dimension nλ and n2 respectively. Let
/ be a map of class Ck of M1-^M2. The critical values of/ form a set of measure
zero if Λ—l^max^!— w2, 0).

Proof. As remarked before, we consider H0 instead of H0. Define

£= {ά£ΞL2(Rn)\ύ(ξ)=0 for almost every

M = {ύ<=L2(Rn)\ύ(ξ)=Q for almost every ?<GΞ/T\Σ} .

Let ώeJ7, and let J5 be a Borel set of the real line with meaSi (£)=(). Then
by (3.3) we have

Since ̂ '(f ) Φθ for every ?e/2w\2, we have

by Lemma 3.1. Thus

which means that ώe^ac(J0). Thus we have
Similarly, we show that J^C^S(^0). Let ά<=<3M, and let B0 be the set of

critical values of p. Then, by Sard's theorem

measj^o) = 0 .

Moreover, J50 is a Borel set. In fact, with Bj={ξ <=R"\ \ξ\ *ζj}
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decomposes B0 as the union of a countable collection of closed sets. If Bd

R\B0ί then/Γ1(.B)nΣ=φ, and

\\έ(B)ύ\\2={
J/>~

Thus the measure ||(B)#||2 is singular with respect to the Lebesgue measure,

so UG<4ίs(A0). Therefore we have c^Cc#s(#0).
It is easy to see that -C and JM are closed linear subspaces of L2(Rn), are

orthogonal complements to each other. This implies that -C=<$lac(H0) and
Thus, by (3.1) and (3.2), we obtain the conclusions. Q.E.D.

Proof of Theorem 1. It is an immediate consequence of Proposition 3.2.
Q.E.D.

REMARK 3.4. As mentioned before, the hypothesis (P. 1) can be further
relaxed. Simon [10] allows the possibility of singular points to include an
example like p(ξ)=\ξ\. In such cases we are also able to show a result
similar to Theorem 1 :

JίΛC(H0) = {u e L\Rn) I ύ(ξ) = 0 for almost every ξ e Cp U Sp}

Q) = {u£ΞL2(Rn)\ά(ξ)=Q for almost every

Here Cp (Sp) is the set of critical (singular) points of p. (See [10] for the defini-
tion.) The proof exactly follows from that of Proposition 3.2 with a minor

change.

If measw(Σ)>0 and the boundary 9Σ = Σ\IntΣ is of measure zero, then
we can improve Proposition 3.2. It should be noted that that p^C\Rn) does
not imply that 9Σ is of measure zero.

Proposition 3.5. Let measn(Σ)>0. Ifp<=C\Rn) and measn(9Σ)=0, then
we have

o) = {u<ΞΞL2(Rn)\ύ(ξ) = Of or almost every

Jίs(HQ) - {uϊΞL2(Rn)\ύ(ξ)=Qfor almost every ξ£ΞR"\Σ} .

Moreover,

Proof. We also consider the operator H0 and define J2 and <3tt as in the
proof of Proposition 3.2. It is obvious that -£>Cc^ac(jί0). We show that
<3tt=4lp(ή0) which implies that c5JίCc#s(#0).

Let {Oj} be the collection of connected components of Int Σ (note that
IntΣΦφ). Then, as can be easily verified, there exists λye/2 corresponding
to Oj such that
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Since the characteristic function I0/f) satisfies that

we have {λ; } Ccrp(l20), where σp(ή0) denotes the set of eigenvalues of nQ.
Furthermore, if ή0ύ=\ύ with λeJB\{λy}, then ύ=Q by

(3.6) me3sn({ξGRn\p(ξ) = λ}) = 0 .

In (3.6) we used the hypothesis

measw(9Σ) = 0

and the fact

which follows from Lemma 3.1. Thus we have σp(HQ)= {λ; } . Finally, writing

c5Ky = {ύ<=L2(Rn)\ά(ξ)=Q for almost every £eΛ"\O, } ,

we see that <3Hj is the eigenspace of A0 corresponding to the eigenvalue λ; and
that the closed linear manifold spanned by all <3Λj coincides with <3tt. Hence,
by the definition of <4ίp(n0), ^H coincides with <^ίp(H0).

Thus we have shown that J?C c#ac(7ϊ0) and J^—MP(H^). By the arguments
in the last step of the proof of Proposition 3.2, the result follows. Q.E.D.

It is well known that when p^C\R*)> that measw(Σ)=0 implies that
JίΛC(H0)=L2(R*). The converse is also true when p<=Cn(Rn).

Proposition 3.6. Suppose p<=C n(Rn) . If c#ac(#0) = L\Rn) , then measM(Σ)
=0.

Proof. We consider A0 instead of H0. Let B0 be the set of critical values
of p. Then, by Sard's theorem, meas1(J?0)=0. Recall (3.1). Since ^ίac(ή0)=
L\Rn), the measure ||β(-β)ώ||2 is absolutely continuous with respect to the
Lebesgue measure for all U£ΞL2(Rn), and so \\£(B0)ά\\2=0 for all ύ^L\Rn).
Noting (3.3), we have measn(p~1(B0))=Q. Thus we obtain

measM(Σ) = 0

since ^dp-\B0). Q.E.D.

4. Proof of Theorem 2

In the present section we shall prove Theorem 2. For the proof we need
several lemmas.
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Lemma 4.1. Under hypothesis (A) the psuedo-differentίal operator A =
A(X, D) is continuous from S(Rn] to S(Rn).

Proof. Suppose u e <S(R*) . Then

Au(x) = J e *<* *>a(x,

Since ύ^S(Rn), we can differentiate with respect to x under the integral sign
as often as we like. Therefore, it follows that Au^C°°(Rn). Moreover, for
every multi-index a and every integer &>0 we obtain

(4.1) (1+|*| )-<«(i-τ)* I (djdx)«Au(x) |

where CkfΛ is a constant and ΛΓ— \a\ + [w]+2(n+Λ)+3. Indeed, by differen-
tiation under the integral sign and integration by parts, we see that

(l+\x\2)k(Q/dx)*Au(x)

where the integrand can be estimated by

(ί+\X\)l+2τk(i

Noting that for every integer j

with a constant CJ9 we obtain (4.1). Since τ<l, —7+2(1 — τ)k—> oo as
^-^oo. Hence (4.1) means that Au^S(Rn) and ^4 is a continuous map of
cS(Λ") into S(Rn). Q.E.D.

Lemma 4.2. Under hypothesis (P. I) we have

(4.2) (e-ittt*u)(x) =

forallu£ΞS(Rn).

Proof. Put Ut=3e-itp®>3. Then E7,, — oo<ί<oo, is a group of unitary
operators in L\Rn). Let K be the infinitesimal generator of Ut. For

llrW-Tίfi-ί-^oW

as ί->Ό, where we use the Lebesgue dominated convergence theorem. Thus
we have
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(4.3) -i

According to the theory of semi-groups, K has the resolvent (K—\I)~l for
every λ>0. Since HQ is self-adjoint, —iHQ also has the resolvent (— iH0— λ/)"1

for every λ>0. Therefore, both

K-\I: 3)(K) -+ L2(Rn)

and

> L\Rn)

are bijective, provided that λ>0. Combining this fact and (4.3), we see that
. Thus

-iH0 = K

which implies that Ut=e~itH<>. Q.E.D.

REMARK 4.3. The hypothesis (P. 1) in Lemma 4.2 is not essential; by the
arguments in the proof of Lemma 4.2, one can show that e~itffo=ζfe~itp(^3' even
if p is a real- valued continuous function.

Lemma 4.4. Let hypothesis (P. 1) be fulfilled. If u<=S(Rn) then

is a continuous function with values in S(Rn).

Proof. By Lemma 4.2, it is easy to see that (e~itH°u)(x) is a complex-valued
C°° function. Integrating by parts after differentiating under the integral sign,

we have

(4.4) (1+ \x\

for every multi-index a and every integer k^O. The integrand is integrable
by (P. 1), thus

sup (1+ \x\y\(Qldx)*(e-"**u)(x)\ <oo .

Thus e-itH*u<=S(R"). It follows from (4.4) that for every integer

(4.5) \e-itH°u

max

with a constant CV. Letting \t— s\-*Q, we see that the right side of (4.5)

tends to zero, by the Lebesgue dominated convergence theorem, so that the



376 T. UMEDA

left side of (4.5) tends to zero, which proves the lemma. Q.E.D.

Lemma 4.5. Let hypotheses (A), (P. 1) and (H) be fulfilled. Ifu(=S(Rn),
then

t-*eitHe-itH*u

is a C1 function with values in L\Rn) and

(4.6) ~(eitH e-itH*u) = ieitHAe~itH^u .
^ dt

Proof. First note that S(Rn)<^£)(HQ) and S(Rn)c:^)(H). Since, by
Lemma 4.4, e~itH*u<=<S(Rn}, we have

(4.7) He-itHou

Using (4.7), we write

(4.8) h-\ei(t+w e-^+^u -e"11 e~itH<>u)— ieitHAe~itH«u

o^

By the unitarity of eitH and the fact that u^3)(H^, the first term in the right

side of (4.8) tends to zero in the L2 norm as A-»0. Note that for every v e L\Rn)

is a continuous function with values in L2(Rn). Then it is clear that the second
term tends to zero in the L2 norm as λ->0. The third term goes to zero in the
L2 norm as λ^O, since e~itH*u^<3)(H). Thus we obtain (4.6). It follows
immediately from Lemmas 4.1 and 4.4 that

t -> Ae~itHou

is a continuous function with values in S(Rn), so that it is a continuous function
with values in L2(Rn). Thus,

is an L2- valued continuous function. Q.E.D.

The following is a key to the proof of Theorem 2. The proof will be
given in Section 5, as it is fairly long.

Lemma 4.6. Let all of the hypotheses of Theorem 2 be fulfilled. Then for
every non-empty Ωk, we have
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(4.9) Γ \\Ae-"* u\\dt<°o , ώeC7(ΩA).
J-oo

Proof of Theorem 2. First let Of be the subspace of L2(Λ?) defined by

If Ωk is empty, we interpret C~(Ω*) as {0}, i.e., the space consisting of the
only function which is identically zero in ΩΛ. Since

and since

0} is dense in the subspace

{ύ<EΞL2(Rn)\u(ξ) = 0 for almost every £<ΞΣ}

of L\Rΐ). Writing 3£=3<(y, it follows from Theorem 1 that 3£ is dense in

Λ.«(flo)
Now, let u^3£. Then, by Lemmas 4.5 and 4.6,

ΓJ -0

-

dt

dΐ<oo.

This implies that eitHe itH*u converges in the L2 norm (i.e., converges strongly)
as ί->±oo. Since 3? is dense in Mac(H0) and since \\ettffe~itHo\\ = l, we see

that the limits

exist for every u^<$ίac(H0). Thus, we have proved the existence of the wave

operators (1.2). Q.E.D.

5. Proof of the key lemma 4.6

We now turn to the proof of Lemma 4.6. We shall divide the proof into
two cases: (i) k=n (ii) k<n.

Proof of Lemma 4.6. It suffices to show that to each ξQ^Ωk there corres-

ponds a neighborhood U of ξQ such that

(5.1) ( \\Ae-"a u\\dt<oo,
Jκm<°°

In fact, by a partition of unity we then obtain (4.9).
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(i) Assume that ίo.eΩ,. Then det /'(f0)φO which means that the
Jacobian of the map

is non-zero at ξQ. By the inverse function theorem there exists a neighborhood
U of ξQ such that p' is a diίfeomorphism between U and p'(U). Here we
may assume that Ud£ln and

for some positive number r.
Now, let ά(=Co(U). Then, by Lemma 4.2,

(5.2) (Ae-itH*u)(ty) = \

Let ^^^'(suppώ). Then we can find a unique critical point η*^U of the
phase function

with det />"(?? jj^φO. By Lemma II of Appendix and the remarks following
it, there is a sufficiently small number £* >0 such that for y with \y— y

(5.3)

ty, η)u(η) \ t \ ~n/2

where Ly is a constant depending on y and σ=sgnp"(η*) (i.e., the signature
of the symmetric matrix p"(η$$), y—p'M (η^U). From (5.2) and (5.3) we
have

(5.4) \(Ae-"a*u)(ty)\<C{ max ( sup J(9/9f)*β(ίy, f)|)} I*ΓΛ / 2

when |jy— y*\<£*, |ί|>l. Since ^'(suppώ) is compact, we can choose a
neighborhood V of ^/(suppώ) so that Fc^>'(ϊ7) and so that (5.4) remains
valid fory^ V. Furthermore, we choose a compact set-K^C U so thatp'(K)=V.
Thus we have

f /f ^ ._τ \l/2

Ίl/2

X { max (sup | (9/9?)β«(ίy, f) | )2} ̂ y
|Λ|<2JΓrt £€ΞJS: J
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Here we have used the facts that dκ(y)=0 when y^V and

By condition (cn) the right side of (5.5) is convergent. Thus we have shown

that

(5.6)

Now, we shall show that

/» / f
(5.7)

To do so we shall apply Lemma A.I of Hϋrmander [6] to the integral

/Ap~ i t H Qij\(γ\ I /> |XI*l + l'l)(<*»£>-W£))/(l*l + l ί IWv\AV "U){X) — i e u\xy

Let Φ be the set of phase functions given by

φ = {£->«*, ξy-tp(ξ))l(\x\ + \t\)\xlt^R«\V} in C»

Then Φ is a compact subset of CN+\R", R) such that for every

/'(£)ΦO i f fe suppώ.

In fact, writing

Z= {(*, *) e Jf+1 1 (*, *) = (*, f )/( I * I + 1 ί I ) for some xlt<=Rn\V}

we have

It is easily seen that

1(/2Λ, Λ)

is continuous. Since Z is compact, it follows immediately that Φ is a compact

subset of CN+1(Rn, R). Thus Lemma A.I of [6] shows that for every N

(5.8) \(Ae~»* u)(x)\ <CN(

if x/t^R"\V. By Assumption (2.1) (A) the right side of (5.8) is bounded by

Thus we see that

ί - ^ o " Λ " 1 M + ^ ^ ^ ^
j χ
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for every integer N with (n+l)/2+/— (1— τ)Λ/r< — 1. This proves (5.7).
Thus we have proved (5.1) in the case k=n.

(ii) Assume that ξQ^Ωk. Since the rank of the symmetric matrix p/f(ζ^)
is ky we can find a principal minor of order k which does not vanish. So we
may assume that

Let

Then, by the implicit function theorem, there is a neighborhood W of j>ό, a
neighborhood U' of ξ'Q, a neighborhood U" of ξ" and a unique function

such that

{(y',ξ)€ΞWxU'xU"\y'=pt,(ξ)}

= {(y', ξ)^RkxR"\ξ' = φ(y', ξ") for some (y', ξ")^Wx U"} .

Here ?'=(?„ -, f»), £"=(£*«, "', £„) and/=(Λ, -,y»). We now set

C7= {fsΛΊf7 = ̂ (j', Γ) for some (y', ξ")^Wx U"} .

Obviously U is a neighborhood of ξ0. We may assume that C/CΩ4 and that

(5.9)

for some r>0. Using Assumption (2.1) (P. 2) (b) we shall show that ρ$"(φ(y',
ξ"}, ξ") is independent of ξ". Put

', ξ"), n/8fy 0' =

Then we have the differential

(5.10) dg,

On the other hand, since yj=Qp(φ(y', ξ"), ξ")βξj (j=l, —, k) we have

(5.11) dy, = Σ (Q2pldξ^J)dφi+ Σ
i=l »=*+!

Since the rank of p"(φ(y', ξ"), ζ") is & and since

(5.10) and (5.11) imply that
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dgi = ίk ,(/, m. c/=*+ι, -,»)
where cjΊ(yf

9 ξ") are suitable functions. Hence

= 0 (*,; = k+l, •-, n)

which means that pξ"(φ(y'> ξ"), ξ") is independent of ξ". Hence there is a
function g e C°°(W ) such that

Let us now estimate the L? norm of Ae~itH°u. Let u^C%(U). We write

= j <ίf" f β"«Λ«>->tt»fl(t

Set

Γ = {f'eΛ -'Kf ', f")eβupp <l for some ξ'

Let y*&p' (supp zί) and let ξ*eΓ. We consider the phase function

r
Since y*=pξ'(φ(y*, £*), fix)> tnis phase function has a unique critical point
<p(y*> £*0e f^' βy Lemma II and the remarks following it, for every integer
N>0 there is a positive number £* such that when \y—y*\ <£* and

(5.12) I \e««> *
\ J

x^-/4^/(</,.v</^r>-^^rO)L^/.(β(^ f μ^ | |/=η/ \t \

<CN\a(ty, ,ξ")ύ( >n\s\t\-k/2-N, \t\>\.

Here η'=φ(y', ξ"), s=2N+[k/2]+l and σ=sgn j>f/f/(^i, ξ'*'), ξίf). Differ-
ential operators Ly^j depend on y, ξ" and by virtue of Lemma A.5 of [6] their
coefficients are C°° functions of 3;, f". Since p '(supp ύ) and Γ are compact, we
can find a neighborhood V of j£>'(supp $) such that (5.12) remains valid for y^ V
and |x/eΓ. Here we may assume that

and

(5.13)

with the same r as in (5.9). At the critical point -η'=φ(yf

 } ξ") the phase
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is of the form

f(y)+<y"-g(y'),ξ">
Indeed, writing

f(y, O = <y', <p(y'> £")>+</', ξ">-p(<p(y', Γ), Γ
and using the fact that y'=pξ'(φ(y', ξ"), £")> we see that

df= <dy', φ>+<dy", ξ">+<y"-g(y'), dξ"> .

Therefore /{"=/'—£(/).
Summing up, we have for every N > 0 and every y e V

(5.14) \Ae-i>H*u(ty)\

<CΣΊ \ ei'<>"-*^">
j=o I J

X L,̂ y(β(ίy, x|ί|

Applying Lemma I to /;, we see that for every integer L

It is obvious that

J<CIt max ( sup |(9/9f )Xξy, ξ ) \ ) .

Choose a compact set K so that supp ύaK and so that Vf}p'(U)dp'(K). Then

1-

and

Thus we have

(5.15) ( (( \Ae-itffou(x)\2dx)1/2dt

Jr<\y\<2r

. . _ 11/2
X max
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-2N. . i-r i * \"κ\ y ιj
KUKoo LJr<\y\<2r

+CN\
J

]l/2
at

_

where we use (5.13). If we choose N, L so that Nk*ζ2N=2L<;Nk-\-l, then
2N+L—2<;2Nk and s^2Nk. Thus, by condition (ck), the integrals in the
right side of (5 .15) are convergent.

Finally, (5.7) is shown in quite the same way as in (i). Thus we have
proved (5.1) in the case k<n. Q.E.D.

6. Symmetry of A(X, D)

In this section we shall determine completely when the pseudo-differential
operator A=A(X }D) is symmetric on S(Rn). To avoid confusion, we denote

Lemma 6.1. Let hypothesis (A) be fulfilled. Then the domain <D(AΫ) of
the adjoint A$ contains <S(Rn) and

Here a(x, f )=φΓf).

Proof. See [8], p.61. Q.E.D.

We wish to get the representation of the form

(Aϊv)(x) = J e?<* e>b(x, ξ)ό(ξ)dξ.

Following ideas in [8], we shall consider the symbol b(x, ξ) defined by the
oscillatory integral

(6.1) b(x,.ξ) = Os- j J e-<o *>a(x+y, ξ+v)dydη .

For oscillatory integrals we refer to [8, Chapter I].

Lemma 6.2. Let hypothesis (A) be fulfilled and let b(x, ξ) be as in (6.1).
Then b^C°°(RnxRn) and for all multi-indices a, β the estimate

(6.2)

< CΛβ(l+ I x I )'+τ('α'+2'(*)>(l+ I ξ I )«

is valid for some constant Caβ, where l(a)=[(l+n-{-τ\a\)/2(l—τ)]+ly m(β)=
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Proof. First put

(6.3) ftf(*, ξ) = J j <Γ' <^>X(£j;, 67)«(*+:y,

where %(jy, 97) e cS(#n X Λ") and %(0, 0)=1. Since we can differentiate under
the sign of integration as often as we like, we conclude that iεeC°°. Further-
more, by repeated integration by parts, we have

(6.4) (d/βς )β(8/9*yA.(*, ξ)

-JJ *-'<**>(!+ I y I ̂

with the notation a(β^=(dlθξ)*(dldx)βa. By using hypothesis (^4) we have

(6.5) |/

where C^β is independent of 6. Since l+τ\a\+2(τ—l)l(a)<—n and since
m+δ|/3|+2(δ— l)m(β)<— n, we can derive from (6.4) and (6.5)

(6.6)

with a constant C££ independent of 6.
Now, let

M*, f ) = Os-j J e-'^a^x+y, ξ+ri)dydη .

Then, by repeated integration by parts,

(6.7) M*,f)

From (6.4) and (6.7) we see that for every compact set Kc:RnxR" and all
multi-indices or, β

(6.8) sup IM*,Ώ
C*,$)ejc

<C r β βf( max
J Jί/|

x
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is valid for some constant CKΛβ, where Naβ = 2(l(a)+m(β)). Since
(9/9y)v(l — X(6y, £τ?))-*0 as £->0, (6.8) implies that for all multi-indices a, β
(d/dξ)*(d/dx)βbe converges uniformly on every compact set to baβ as £->0. In
particular, be converges uniformly on every compact set to b as £-»0. Hence

(6.9) (β/βfΠΘ/a*)̂ *, ξ) = M*> ξ) .

Thus (6.2) follows from (6.6) and (6.9). Q.E.D.

The proof of the following lemma is virtually identical to some arguments
of [8, chapter 2].

Lemma 6.3. Let hypothesis (A) be fulfilled and let b(x, ξ) be as in (6.1).
Then

(6.10) (Afv)(x) = J €?<* *>b(x, ξ}ϋ(ξ)dξ , v e S(R") .

Proof. Let bt(x, ξ) be as in the proof of Lemma 6.2. Then the Fubini
theorem and a change of variables give

(6.11)

= JJJ

x (J ̂  «>χ(£(Λ-Λ'), £(f '-f Mf )4ίf )&' }dξ'

By (6.6), (6.11) and the Lebesgue dominated convergence theorem

ε j o J ' J

By repeated integration by parts it follows that for every integer

(6.13) \-k

with Ct independent of £. Therefore, by the Lebesgue dominated conver-

gence theorem,

(6.14) lim /,(*, £') = ( e-«''>t'>a(x', ξ')v(x'}dx'.
8->0 J
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Here we have used Fourier's inversion formula

v(x') = J e{<x/

Note that for every integer j"

(6.15) It(x,ξ')

Ί2)-'

x

Since, by (6.13) and hypothesis (A), the integrand in (6.15) can be estimated by

(1+ If Ί)"^«(i+ 1 *Ί)'-»

for every integer &>0, it follows that for every integer />0

with a constant Cj independent of ε. Choosing j so that m+2(S— l)/< — n
and using the Lebesgue dominated convergence theorem, we see that

(6.16) lim ( «'<*•*'>/,(*, ξ')dx'
ε->oo J

= J *''< '̂>

(Recall (6.14).) By Lemma 6.1, the right side of (6.16) equals (A$v)(x). Thus,
combining (6.16) with (6.12), we obtain (6.10). Q.E.D.

Now we give a theorem.

Theorem 3. Let hypothesis (A) be fulfilled. The operator AQ is symmetric
if and only if

(6.17) 3x[a](η, £) = 3x[a\(η, ξ+η) in S'(R», x

Here 3"x[a] is the Fourier transform of a with respect to x.

Proof. Let b be as in (6.1). If

(6.18) ffjflfo, ξ) = 3x[a}(^ ξ+η) in S'(R»ηx

then (6.17) is equivalent to

(6.19) 3x[d\(η, ξ} = ffjflfo, ξ) in «$'(«; XΛ?),
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or what is the same thing,

(6.20) a(x, ξ) = b(x, ξ) .

Hence, by Lemma 6.3, (6.17) is equivalent to the fact that A0 is symmetric.

Thus, it suffices to show (6.18)

(6.18) means that for every φ(η,

(6.21)

Choose %0<ΞcS(/r) so that X0(Q)=l and replace X(€y, B-η) in (6.3) by

%0(£j;)X0(£97). Then bξ has the same properties as before. By (6.6) and the

fact that b^-^b as £->0, the left-hand side of (6.21) is equal to the limit of

(6.22)

which, by the definition of έε, equals

(6.23) j J5J e-'^^εy^εη^x+y, ξ+^')3,[φ](x, ξ)dyd η'dxdξ.

By a change of variables, (6.23) equals

(6.24) JJ a(X, £)(JJ e-

= \\a(x,ξ)J,(x,ξ}dxdζ.

Finally we should examine Jt. Using the Fubini theorem, we see that

(6.25) /.(*, I) = j J β-'<«

Writing y'=Syy we see that the right side of (6.25) is equal to

Thus a change of variables gives

Λ(«, f) =
Hence
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(6.26) lim/t(*, ζ) =
8->0

= j .- '̂w, ε-* w

where we use X0(0)=l. On the other hand, since ^γ)[φ]^S(Rn XRn), it
follows that for every integer

(6.27) \J,(*,

with a constant C* independent of £. Hence, by (6.22)-(6.24), (6.26), (6.27)
and the Lebesgue dominated convergence theorem, (6.21) now follows. Q.E.D.

7. Self-adjoint extensions of P(D)+A(Xy D)

In this section we give sufficient conditions for P(D)-\-A(XyD) with domain
S(Rn) to have self-adjoint extensions. Let AQ be as in Section 6 and let P0—
P(D) \^S(Rn). Throughout this section, we assume that A0 is symmetric.
The following is an extension of a proposition of [1].

Theorem 4. Let hypothesis (A) be fulfilled and assume that p is a real-

valued continuous function so that

for some real numbers C andj. If there is a symmetric and orthogonal matrix M of

type nXn such that

(7.1) ρ(-Mξ) = p(ξ) , a(Mx, -Mξ) - a(x, ξ)

then PO-\~AQ has a self-adjoint extension.

Proof. For u e L2(/T ), define

(Uu)(x) = u(Mx).

Since M is symmetric and orthogonal, U is a conjugation in the sense of [4,
Definition 17, p. 1231]. Using (7.1), we shall show that P0+A0 commutes with
U. Let u^S(Rn). Since \Mx\ = \ x \ , we see that Uu^S(Rn). By (7.1) and

the fact that &[Uu\(ξ)=&[u](-Mξ),

(P0+A0)Uu(x) = j e«* e>(p(-Mξ)+a(Mx, - ~

A change of variables gives

(7.2) (P0+A0)Uu(X) =



SCATTERING THEORY FOR PSEUDO- DIFFERENTIAL OPERATORS 389

Thus, by Theorem 18, p. 1231 of [4], P0+^40 has equal deficiency indices,
which implies that P0+^10 admits a self-adjoint extension. Q.E.D.

Next, we shall give a sufficient condition for P0-\-A0 to be essentially self-
adjoint. We will need a stronger condition on A(X, D).

Theorem 5. Let m, p, δ be real numbers with 0<δ<p<l, S<1 and
assume that a is a C°° function so that

(7.3) |(9/8e) (a/8*)"φ, ξ)\ <cβp(|f |)(i+ If ir8"3'-'1"1

for all multi-indices a, β. Here Cα/3( | ξ \ ) is a continuous function on Rn such that
C<»β(\ξ |)-*0 as |f|-»o°. Moreover, assume that p is a real-valued continuous

function so that

(7.4) C1(l+\ξ\Γ<\p(ξ)\<C2(l+\ξ\f

for some C\, C2 and m. Then P0+^40 is essentially self-adjoint.

Proof. For every P>0, choose a function φR^C°°(Rn) with φR(ξ)= 1
when I f | <# and φR(ξ)=Q when | ? | >R+ 1. Let Φ*(Z>) be a pseudo-differen-
tial operator with the symbol φR(ξ). We make a decomposition

(7.5) ^(ΛΓ, Z))(1-Δ)--/2

- ̂  D)(l~Φ^

Note that the symbol of the first term on the right side is

a(X>ξ)(l-φR(ξ))(l+\ξ\^2.

Since 1 — φR(ξ)= 0 for \ξ\ <Ry we obtain for all multi-indices α, β

\(didξ)«(diQxγ{a(X> ξ)(i-φs(ξ))(i+ \ξ\rm/2} I
<Mαβ(max sup Cμv( | f | ))(!+ I ξ I )δl9'-p""

with a constant Maβ. Here we have used (7.3). From a theorem due to
Calderon and Vaillancourt ([8], p. 215) it follows that

(7.6) \\A(X, Z))(l-Φ^

where

(7.7) CR = C max sup
|O5|<J!f •*,£

and M=2[n/2+l], JV=2[»/(2(1— δ))+l]. The constant C5 can be estimated by
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(7.8) max(supCαβ(|?|)).
\*\<X |£|

Similarly, we note that the symbol of the second term on the right side of (7.5) is

which vanishes when | ξ \ >R. Again we can apply a theorem due to Calderon
and Vaillancourt which shows that

(7.9) \\A(X,D)Φll(D)(l-Δ)- ^\\L'<Cί\\υ\\.m,

with CR depending on R.

Now, let u<^<S(Rn) and put v= (I — Δ)m/2u. Then,

and

where we use (7.4). Hence, by (7.5)-(7.11),

(7.12) \\A0u\\L> = \\A(X, Z>)(l-Δ)

with CR depending on R and C independent of R. Since CΛβ( \ ξ \ )->0 as | f | -*•
oo? (7.12) means that A0 is P0-bounded with relative bound 0. Note that P0 is
essentially self-adjoint. Thus, by Theorem 4.4, p. 288 of [7], we conclude
that PO+AQ is also essentially self-adjoint. Q.E.D.

Appendix

In [6], Hϋrmander systematized the method of stationary phase. In this

appendix, we shall reproduce his results in a somewhat different form.

Lemma I. Let K C Rn be a compact set, Ω a neighborhood of K and let Φ

be a subset of C*+1(Ω, R) with the following properties:
(a) There is a constant C± such that for every f e Φ and every multi-index a,

with K I a I <&+ 1 the estimate

is valid.
(b) There is a positive constant C2 such that for every f£=Φ
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!/'(*) I >C8, xt=K.

391

Then we have for and allf^Φ

If one looks carefully into the proof of Lemma A.I of [6] one finds easily
that the conclusion of Lemma I remains valid. So we omit the proof.

Lemma II. Letf^C°°(Ω,) be a real-valued function in a neighborhood Ω, of
0 in Rn. Assume that /'(0)=0 and that f"(ϋ) is non-singular. Moreover, assume
that /'(#)ΦO for every #eίl\{0}. Then there exist differential operators Lf j
of order 2j such that for every integer k>0 and every s>2k+n/2, we have when
u e C o (K) , K compact C Ω,

(A.I) I ( u(xy*
I J

- I det/"(0)/2τr |
y=o

ω>ί.

Here σ==sgn/"(0), i.e.,

Σ sgn

in which \j>j=l, ••• ,ny are the repeated eigenvalues of the symmetric matrix f\G).
Since we assume that /'(#)ΦO for every #eΩ\{0}, this lemma follows

immediately from Lemma A.I and Lemma A.4 of [6]. In fact, choosing a^
C Γ(Ω) so that supp a is contained in a small neighborhood of the origin and
using Lemma A.4 of [6], we find that there exist differential operators Lftj of
order 2j such that

(A.2) I j u(x} £ \ det/"(0)/2;r |

If r0>0 is sufficiently small and a(x)= 1 when | Λ ? | <r0, then /has no critical
point in supp u(\— a). Applying Lemma A.I of [6] to the integral

we have

(A.3)

Combining (A.2) and (A.3), we obtain the conclusion of Lemma II.
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We remark that Lemma II is applicable uniformly to all functions in a
small neighborhood of / in C~(Ω). Indeed, Hϋrmander [6] showed that (A.2)
is applicable uniformly to all functions in a small neighborhood of/ in C°°(ίl).
Remembering that /'(#)ΦO for every #EΞΩ\{0}, we find that for any com-
pact setj?£cΩ\{0} and any integer &>0 the hypotheses of Lemma I are
satisfied, provided that we take Φ to be a small neighborhood of/ in C°°(Ω).
Thus (A.3) is also applicable uniformly to all functions in a small neighborhood
of/inC°°(Ω).
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