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Let Λ be a border in a semisimple Q-algebra A. We mean by the
class group of Λ the class group defined by using locally free left Λ-modules
and denote it by C(Λ). Define D(A) to be the kernel of the natural surjection
C(Λ) -> C(Ω) for a maximal Z'-order Ω in A containing Λ and rf(Λ) to be the
order of D(Λ).

Let ZG be the integral group ring of a finite group G. Then ZG can be
regarded as a 2Γ-order in the semisimple Q-algebra QG, and hence C(ZG) and
D(ZG) can be defined.

In this paper we consider only finite groups. We will treat the semidirect

product G=N F of a group N by a group F. Define D0(ZG) (resp. C0(ZG))
to be the kernel of the natural surjection D(ZG)-*D(ZF) (resp. C(ZG)-+
C(ZF)). First we will give

[I] Let N=NιXN2 be the direct product of groups Nl and N2 and G=
N F be the semidirect product of the group N by a group F. Assume that F acts

on each Ni9 i=l,2. Denote by Gt the subgroup Nf F of G, i=l> 2. Then
D(ZF)®D0(ZG1)®DQ(ZG2)(resp.C(ZF)®C0(ZG1)®C0(ZG2)) is a direct
summand of D(ZG) (resp. C(ZG)).

For an abelian group A and a positive integer q, A(q) denotes the g-part of
A and A(q'} denotes the maximal subgroup of A whose order is coprime to q.

In particular, we write O(A)=A(2'}. For any module M over a group H we

define MH= {m^M\rm=m for every τ^H}.
We will apply [I] to some metacyclic groups. Denote by Cm the cyclic

group of order m. Using induction technique we will give, as a refinement of

a result in [1],

[II] Let G=Cn Cq, and define ep by peρ\\n for each prime divisor p of n.

Assume that Cq acts faithfully on each Sylow subgroup of Cn and that (n, q)=l

Then
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-2 ep

where K is the complementary subgroup of ®D(ZCpβp)
c« in (D(ZCn)

cή(q^ (cf. § 1).
P\n

Next we will study the class groups of generalized quaternion groups in
connection with those of dihedral groups. Denote by Hn the generalized qua-
ternion group of order 4τz; Hn=(σ, τ\σn=τ*=l, τ "1στ=σ"

1> and by Dn the
dihedral group of order 2n\ Dn=<σ, τ\σ"=τ2=l9 τ~1

σr=σ~ly. Frϋhlich and
Wilson have studied the 2-part of D(ZHpt) for an odd prime p ([5], [11]), and
Cassou-Nogues has given some information on D(ZHn) for an odd integer n ([2]).

[Ill] Let n^3 be an odd integer and define ep by pep\\n for each prime divisor
pofn. Then\

ii) D(ZHn) « 0(D(ZD2n

where L is an extension of D(ZDn)< 2) by an elementary 2-group. In particular,
ifn=p*for an odd prime p,

D(ZHpt)^D(ZD2pt)®(Z/2Z)t .

1. Decomposition of class groups

The following theorem will play an essential part in this paper.

Theorem 1.1. Let N=NιXN2 be the direct product cf groups NI and N2

and G=N F be the semίdirect product of the group N by a group F. Assume that
F acts on each N ̂  ί=l, 2. Denote by G, the subgroup N^F of G,ί=l,2.
Then D(ZF)®DQ(ZG1)®DQ(ZG2) (resp. C(ZF)®C,(ZGl}®C,(ZG2}) is a direct
summand of D(ZG) (resp. C(ZG)). In particular, if F= {1} , D(ZG1)®D(ZG2)
(resp. C(ZG1)®C(ZG2)) is a direct summand of D(ZG) (resp. C(ZG)).

Proof. We denote the augmentation ideal of ZN (resp. ZNt) by IN

(resp. IN.). There is an exact sequence

0 -* D0(ZG) -* D(ZG) ^ D(ZF) -> 0 ,

where a is induced by M-*ZGl(IN)®M. Let β: D(ZF)-*D(ZG) be the

induction map. Then it is easy to see that a,oβ=idD(ZF). So we have that
D(ZG)^D(ZF)®D0(ZG) (cf. [10]).

Let α be a projective left ideal of ZGλ such that the class [α] is in Z)0(ZGι).
Then ZG®& is isomorphic to ZN2®& as ZG-modules. Since \ZGI(IN)®

ZGl z ZG

(ZN2®0)] = [ZG^IjfJ ® α]=0 in Z)(ZF), [ZN2 ® a] is in Z)0(ZG). Hence we
Z ZG z

have the map φλ: D0(ZG1)-»D0(ZG) and similarly we get the map φ2: D0(ZG2)-+
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D0(ZG). Further, for a projective left ideal b of ZG such that
^) ® (ZG/(IN2) ® b)]=0 in D(ZF), so [ZGI(IN2) ®b]^D0(ZG1). Hence

ZG l ZG ZG

we have the map φλ: D0(ZG)-+D0(ZGι) and similarly we get the map φ2: DQ(ZG)
-+D0(ZG2). For every projective left ideal α of ZGλ such that [a}^DQ(ZG^,
φ1oφ1[a]=[ZG/(INz)®(ZN2®a)] = [ZG1®a]=[a]m D^ZGJ. In φ2°φι[a]=

ZG Z ZG j

[ZG/(IN ) ® (ZN2®ά)], N2 acts on ZGI(IN\ and N2 via group action and F acts
1 ZG Z

on ZG/(IN^) via group action, and we know that φ2°φι[a]=[ZG2]=Q in D0(ZG2).
Consequently we see that (φι(&φ2)°(φι®φ2)=idDo(ZGι)®Do(ZG2). This implies that
D^ZG^ΦD^ZG^ is a direct summand of D0(ZG).

If F= {1} , then D0(ZG)=D(ZG) and D0(ZGi)=D(ZGi)y hence we see that
D(ZG1)®D(ZG2) is a direct summand of D(ZG). The assertion for C(ZG)

can be proved in the same way as for D(ZG).

Throughout this paper p stands for a rational prime. In case where G is
metacyclic, (1.1) will become as follows.

Proposition 1.2. Let G=Cn Cq and define ep by peρ\\n for each p\n.
Denote by Gp the subgroup CpeP Cq of G. Assume that (n, q) = l and that
Ker(Cq-+AutCpep)=Crfor every p\n. Let d denote the order of CJCr. Then

where M is an extension of an abelίan group whose exponent divides d by the group

Ker [lndc^cD(ZCnxCr)->φlndc^χCD(ZCpet X Q].

Proof. It follows from (1.1) that Z)(ZC,)φ ξ&D0(ZGp) is a direct summand
ρ\n

of D(ZG). Now we determine the remaining factor M. Define the subgroup
D^ZC.x.Cr) (resp. D^ZC^ X CΓ)) of D(ZCnx Cr) (resp. D(ZCpep X CΓ)) as the
complementary subgroup of D(ZCr). Then there is a commutative diagram
with exact rows and columns

0 —

0 —

0
1

* Ker oc

-^>IadCfζcDl(ZCnx.Cr) -̂ ->
Γ \a φ'

^ rr\ Jj^ζJ ^p J) (2jC X C ) )

"" c'"xc'j1

0

0

D0(ZG)-

Ψ
0

0
I

~k TZ"χ7k« π/ v> IVCΓ 7 >

1
— >• Coker φ >

! Ύ
>• Coker φ' >

0

0

0

0

9

where φ and φ' are the inclusion maps and α, /?, and γ are the natural maps.

By the induction theorem (cf. [3]) we know that the exponent of Coker φ divides
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dy and hence the exponent of Ker y also divides d. Next consider the com-
mutative diagram with exact rows and columns

0 0 0

I 1 [

0 - Ker α - Indc^cDl(ZCn X C,) -^ Θ lndc£>xC D^ZC^ X C,) -* 0

I 1 ~ ^
0 -* Ker ct - Indc^c D(ZCaX Cr) -̂  θ Indc£*χCD(ZCpepxCr)

Ψ

4 Γ * δ r0 -> Ker δ -> Ind£Z>(ZCr) - > 0 Indgf Z)(ZCr)

v Ψ

0 0

Since δ is injective, Ker δ=0 and so Ker α^Kerα. This completes the proof.

Let N F be the semidirect product of a group N by a group jF. For a
.ZJV-module M and each reί1, we define another ZTV-module structure on M
to be σ m=τ~lστm where σ^N and m^M, and denote it by Mr. This
yields the action of F on D(ZN). Hence D(ZN) can be regarded as a module
over F.

Proposition 1.3. Let G=Cn Cq and define ep by peρ\\n for each p\n.
Assume that Cq acts faithfylly on each Sylow subgroup of Cn and that (n, ?)=!.
Then

Σ ep

where K is the complementary subgroup of ®D(ZCύ.)
c^ in (D(ZCn)

c<)( "''>.
p\n V

Proof. We have the induction map φ: D(ZCn)^>DQ(ZG) and the restri-

ction map φ: DQ(ZG)-*D(ZCn). It is known that Coker φ
(2,q)

([!]). We see that ? Ker ̂ -0. Then we have that φ: D(ZCnY«>-*
is surjective and that ψ: D0(ZGγq/)-^D(ZCn)

(q^ is injective. On the other hand
for a ZCw-module M, ZG ® M^MΦMT0 0MT?~1 as ZCΛ-modules, where

ZCn

T is a generator of Cq. So we see that ψoφ=traceCς. Since q D(ZCn)
c*Si

t^ceCq(D(ZCn))ZD(ZCn)
c^ trace^: (D(ZC n)

c^ -^ (D (ZC n)
cή^ is bijective.

Hence φ: DQ(ZG)^-^(D(ZCn)
c^ is surjective and φ: (D(ZCn)

c*y9')-*
D0(ZG)(9/) is injective, and so both maps are bijective. Applying this argument

to the subgroup Gp~Cpβp Cp of G, we have the split exact sequence

0 - D(ZCpey< - Dΰ(ZGp) - zz - 0 ,
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we note here that D(ZCpep) is a />-group and that p is coprime to q.

Now applying (1.2), we get that

"-
(2, q)

Ker[Indg D(ZCn) - θ lnd

Trivially the last factor is isomorphic to lria^D(ZC ̂  φ Ker [Ind
(-*

->®Indc*β D(ZCpβp)], and further, from the above argument on the induction

maps it follows that the second factor is isomorphic to the complementary sub-
group of θ D(ZCpep)

c« in (D(ZCn)
c«yq'\ This completes the proof.

2. Structure of D(ZHn)

Throughout this section we assume that n^3 is an odd integer.

Lemma 2.1. There are exact sequences

0 - N -> D(ZHn) -> D(ZDn)®D(ZHn/(τ2+l)) -» 0

0 -̂  N'^> D(ZD2n) -> D(ZDn)®D(ZDn) -* 0

where both N and N' are of odd order.

Proof. From the pullback diagrams

^/xxn

1

7T\
^U2n

\
VΓt

\
) >F2Da

> 7T)> &Un

\
* IT'-Π

we get the (Mayer- Vietoris) exact, sequences (cf. [8])

D(ZHn)

D(ZD2n) - D(ZDn}®D(ZDn) - 0 .

Hence it is sufficient to show that Coker {K^ZD^-^K^Fβ^} is of odd order.
Write D2B=<p, σ, τ|p2=σ"=τ2=l, pσ=σp, ρτ=τp, τ-1

στ=σ~1> and Z>Λ =
<σ, T |σ" = τ2=l, τ'1σr = σ-

1y, and define ΣΛSZD2B (resp. Ί,n<ΞZDn) to be

SΛ=ΣΪ σ ' It has been shown [4] that D(ZD2n)^D(ZD2ttJCΣa)) and D(ZDtt)^
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D(ZDn/(Σ,n)). Then we have the commutative diagram with exact rows

- D(ZD2n) - D(ZDn)®D(ZDn) -> 0

We see that Coker φ&έCoker φ' and that the latter is of odd order, since

Σ<^) is so. This completes the proof.

Lemma 2.2. There is a commutative diagram with exact rows and columns

O^E^ D(ZHn) - - - * D(ZD2n) -* 0
II I φ> \

0 - E - D(ZHnl(τ>+l))^ D(ZDn) - 0
ψ ψ

0 0

where E is an elementary 2-group.

Proof. We will use the following notation;
jR^the ring of integers of Q(ζd

J^-ζJ1)9 where ξd is a primitive d-th root of

unity,

Write Hn=<<τ,τ\σn=τ*=\, τ-1

σr=σ-
1y and ̂ n=^σi^ZHn. Then we see

that Nτd((ZfD2ul(ΣΛ))*) = (Zp[σ + σ-l

9 p]/(ΣΛ))* for every prime p, because
ZpΌ2nl(^^ is embedded into M2(Zp[σ-\-σ~l, p]/(Σn)). Since we can prove by

the same method as in [4, § 3] that D(Z[σ+σ~\ ρ])^D(Z[σ+σ~\ p]/(Σn)), we
have that D(ZD2n)^D(Z[σ+σ'\ p]). Similarly we have that D(ZDn)^
D(Z[σ-\-σ~1]). Now we express the class groups in idelic form (cf. [6]).
Then we have

π
D(ZHn) Π (Rd*xRd$)Iln(ZpHn*)>

p\2n

where n(ZpHn*)= {Nrd(^)|(l, x)tΞZpHn*^Zp<τ>*χ ZJI ,/&.)*} and R**=

I u is positive at all real places of Rd} ,

π IK^
Π (R1* X R"*) Π u(Zf[σ+σ-\ p])

where
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Π TT Rd *11 *v A

where n(ZpHn/(τ2+l)*)=

)eZAff./(^+l)*^Zί[τ]*χZ^./(Σ« τ'+l)*}, and

π ΠJzv

where n^H-*-1])̂  |(1, y)eZ,[σ+σ->]*^ Z*y.Zt]σ+σ-*\l(?,.)*}.
Hence there exist natural surjections φ: D(ZHn)-*D(ZD2n) and

. Then

Π
~

*"* Π (IZ^
φrfl*

Trivially (/P1*)2^/^; for every rf | n, d φ 1. Since the degree of ZpHn/(Σn) over
its center is 4, ̂ (^[σ+σ"1, p])2£n(-Z'ίίi

Γ

n*) for every p\n. Hence Ker φ is an
elementary 2-group. Similarly we can show that Ker φ1 is an elementary 2-
group.

Let φ: D(ZHn)-^D(ZHJ(r2+l)) and /: D(ZD2n)-*D(ZDn) be the maps

defined as follows; for (*,y)e(II Π ^V)X(Π Π Λrf/), ^ (the class of
j>|2» Iφrfln ^ ί|2» lφrf|»

(^j;))— the class of y, and 0' (the class of (#, ^y))= the class of j. In fact φ
(resp. ^') is the map induced by the natural surjection ZHn-+ZHn/(τ2-\-l)
(resp. ZD2rr>ZD2nl(p+\)^ZD^). It is clear that both φ and φ1 are surjective.
Further we have the commutative diagram with exact rows and columns

0 -> N -> DZJΪW -̂ U DZZ) w θ(^ί? w /τ 2 +l) -* 0
I 9? I M/

0 _> ̂ -> D(ZD2l() ,— TTf ^(^n) θβ(^fln) - > 0.
i ( » # ) I
0 0

Since Ker<p and Ker φ' are 2-group, we get by (2.1) that Ker (

Thus we conclude the proof.

Theorem 2.3. Let n^3 be an odd integer and define ep by peρ\\n for each

p\n. Then:
i) D(ZHn)®D(ZDn)^D(ZHn/(r^+l))®D(ZD2n)

ii) D(ZHΛ) ^ 0(D(ZD2n)) @D(ZDn}W ®(ZβZγn ** 0L,
where L is an extension of D(ZDn)

(2> by an elementary 2-group. In particular,

if n=p* for an odd prime p,
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Ό(ZHp.)^D(ZD2p.)®(ZβZ)i.

Proof. By (2.2) we have the commutative diagram with exact rows and

columns

0 0
1 I
F F
I

0 -> E - D(ZHn) - * D(ZD2n) -> 0
II \Φ \V

0-+E-* D(ZHJ(τ2+l)) -* D(ZDn) -* 0
I I
o o

Since ψ' splits by (1.2), ψ splits also. Therefore

For the proof of ii) we begin with the case n=p*. It has been shown (e.g.

[1], [4]) that d(ZDpt) and d(ZD2pt) are odd, and hence in this case the exact

sequences in (2.2) split. On the other hand it is known that the 2-part of

D(ZHpt/(τ2+l)) is an elementary 2-group of rank t ([11]). Therefore we see

that

Next consider the general case. By (2.1) we see that

On the other hand, by (2.2), we have that O(D(ZHn))^O(D(ZD2n)). Thus

we get

There is a commutative diagram with exact rows

0 - >E - > D(ZHnl(τ>+ 1)) - > D(ZDn) - > 0

0 -* (Z/2Z)&"-» ®D(ZH%(τ2+l)) -* φ D(ZD,p) -> 0 .
p\n r p\n P

It can be shown along the same line as in (1.2) that a is surjective and spur,

and by (2.2) E is an elementary 2-grouρ. Therefore we see that
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where L is an extension of D(ZDn)™ by an elementary 2-group. We conclude
the proof.

REMARK 2.4. When n=p*9 rankE=t. But it may be conjectured that
rank/?— Σ^>0 unless n is a power of an odd prime. In fact, when n=l5,

P\n

E^C2xC2xC2 and in this case we get that D(ZHl5)^C2xC2χC2. We
note here the outline of the computation.

Since D(ZD30) = D(ZD1S)= {1} ([4]), the commutative diagram in the proof
of (2.3) shows that F= {!}, and hence

Along the same line as in the proof of [15 Thόorέme 3] we get that for an
odd square-free integer n,

0
P\n

cfφprime

where Id= Π (1 — (Γ,)(l — ζp~l)IP Further we see that there is a natural
P\d

surjection φ (Rd/Id)*llmR<l^D(ZHn/(Ίln,^+l)). On the other hand, we
Iφdln

dφprime

know that Ker[D(ZHn/(τ*+l))-*D(ZHn/(Σn, τ2+l))] is an elementary 2-group
of rank 2 1- Though this is true for every odd integer, here we give the proof

P\n

for the square-free case. Expressing both groups in idelίc form (cf. the proof
of (2.2)), we know that

Π #ϊ Π Nrd(Z/ff./(Σ,, τ2+l)*)
*

Pin

Pin

Hence we have that for an odd square-free integer n

Now let us return to the case n=15. It is sufficient to show that D
D(ZH15I(ΣK, τ2+l))^Z/2Z. From the pullback diagram
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we get the exact sequence

zfo, if])e î(z[^, τ])-»
T -* z> -* o .

Taking the reduced norm, we have the exact sequence

On the other hand Z[ζ15+ξϊs]* = {BιB^c\α, b and c are all odd or all even},

where S^ζv + ζTΪ-l, £2=?ii+£il2-l and S3=£d+£T£ +1. A direct com-
putation shows that D^Z/2Z.

REMARK 2.5. Let A2n=ZC2nΓ\ϊί RdxRd. Cassou-Nogues has shown in
d\n

[2] that there exists a surjection of D(ZHn) in D(A2n) whose kernel is an elemen-

tary 2-group. It is seen in the proof of (2.2) that D(Λ2n)^D(ZD2n). Hence a

part of (2.2) and the final assertion of (2.3) are only restatements of the results

of Cassou-Nogues.

REMARK 2.6. Recently, after this manuscript was written, T. Miyata

has shown [9] that Res: D(ZDm)->D(ZCm) is injective for every integer m>l.

Using this we know that the map φ in (2.2) has a close relation to the restric-

tion Res^" : D(ZHn)-*D(ZC2n). Further we can extend the results to the

case where n is even. Let m>l be an integer and Hm=(σ, τ | σ 2w=l, σm=τ2,

τ~1σr=σ~
1y. Then there is a natural surjection φ: D(ZH m) -> D(ZD2m) such

that Res^2mo<p— Resc

m. (When m is odd, φ is the map defined in (2.2).)

From this we see that Resc™m(D(ZHm))^D(ZD2m) and Ker <p=Ker Res^ is an

elementary 2-group.

We give here the outline of the proof. There are isomorphisms (for de-

tails see [6], [7])

C(ZG)^JQG/[JQG, JQG\(QG)*U(ZG)

^HomΩβ(ΛG, JF)/HomΩQ(RG, F*)Όet(U(ZG)),

where RG is the Grothendieck group of virtual characters of G. For each

element of D(ZG) we can choose representatives as follows;

a projective left ideal M

t=((Xp)^U(y3ΐ)SijQGy where 2JΪ is a maximal order of QG

containing ZGy such that M= Π ( Z p G a p Γ ( Q G )
P

(RoJr).
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f~\
For a subgroup H of G, Resff(M) has the representative Pc/#(Det(α)), where

= Detlndcχ(α) for X<=RH (for details see Appendix in [7]).

Now we compute Res^"1 and Res£2wl by using pffm/c2m

 and PD2m/c2m When

is odd, we have the commutative diagram with exact row and column

0 - Ker φ -> D(ZHΛ)

where 9? is the map defined in (2.2). Let m be even. Since Resc

2m is injective,

we know that the natural map φ of D(ZHm)^U(O)+IO$Nτd(U(ZHm)) to

D(ZD2m)^U(O)IO*^rd(U(ZD2m))9 where O=Z@Z@Z@Z® 0 #, is well
d\2m

TT

defined. Hence we also have the diagram (*). Finally, Ker <p=Ker Res£M is

annihilated by 2 (the Art in exponent of Hm).
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