Hironaka, Y. Osaka J. Math. 16 (1979), 831-841

ON THE STRUCTURE OF THE CLASS GROUPS OF METACYCLIC GROUPS

Yumiko HIRONAKA

(Received September 18, 1978) (Revised Jaunary 10, 1979)

Let Λ be a **Z**-order in a semisimple **Q**-algebra A. We mean by the class group of Λ the class group defined by using locally free left Λ -modules and denote it by $C(\Lambda)$. Define $D(\Lambda)$ to be the kernel of the natural surjection $C(\Lambda) \rightarrow C(\Omega)$ for a maximal **Z**-order Ω in A containing Λ and $d(\Lambda)$ to be the order of $D(\Lambda)$.

Let ZG be the integral group ring of a finite group G. Then ZG can be regarded as a Z-order in the semisimple Q-algebra QG, and hence C(ZG) and D(ZG) can be defined.

In this paper we consider only finite groups. We will treat the semidirect product $G=N \cdot F$ of a group N by a group F. Define $D_0(\mathbb{Z}G)$ (resp. $C_0(\mathbb{Z}G)$) to be the kernel of the natural surjection $D(\mathbb{Z}G) \to D(\mathbb{Z}F)$ (resp. $C(\mathbb{Z}G) \to C(\mathbb{Z}F)$). First we will give

[I] Let $N=N_1\times N_2$ be the direct product of groups N_1 and N_2 and $G=N\cdot F$ be the semidirect product of the group N by a group F. Assume that F acts on each N_i , i=1, 2. Denote by G_i the subgroup $N_i\cdot F$ of G, i=1, 2. Then $D(ZF) \oplus D_0(ZG_1) \oplus D_0(ZG_2)$ (resp. $C(ZF) \oplus C_0(ZG_1) \oplus C_0(ZG_2)$) is a direct summand of D(ZG) (resp. C(ZG)).

For an abelian group A and a positive integer q, $A^{(q)}$ denotes the q-part of A and $A^{(q')}$ denotes the maximal subgroup of A whose order is coprime to q. In particular, we write $O(A) = A^{(2')}$. For any module M over a group H we define $M^H = \{m \in M \mid \tau m = m \text{ for every } \tau \in H\}$.

We will apply [I] to some metacyclic groups. Denote by C_m the cyclic group of order m. Using induction technique we will give, as a refinement of a result in [1],

[II] Let $G = C_n \cdot C_q$, and define e_p by $p^{e_p} || n$ for each prime divisor p of n. Assume that C_q acts faithfully on each Sylow subgroup of C_n and that (n, q) = 1. Then

$$D(\mathbf{Z}G) \cong D(\mathbf{Z}C_q) \oplus \bigoplus_{p \mid n} D(\mathbf{Z}C_{p^{e_p}})^{C_q} \oplus \left(\mathbf{Z} / \frac{q}{(2, q)} \mathbf{Z}\right)^{\sum_{F \mid n}^{s e_p}} \oplus \operatorname{Ind}_{C_n}^G D(\mathbf{Z}C_n)^{(q)} \oplus K,$$

where K is the complementary subgroup of $\bigoplus_{p|n} D(\mathbb{Z}C_{p^{e_p}})^{C_q}$ in $(D(\mathbb{Z}C_n)^{C_q})^{(q')}$ (cf. § 1).

Next we will study the class groups of generalized quaternion groups in connection with those of dihedral groups. Denote by H_n the generalized quaternion group of order 4n; $H_n = \langle \sigma, \tau | \sigma^n = \tau^4 = 1, \tau^{-1}\sigma\tau = \sigma^{-1} \rangle$ and by D_n the dihedral group of order 2n; $D_n = \langle \sigma, \tau | \sigma^n = \tau^2 = 1, \tau^{-1}\sigma\tau = \sigma^{-1} \rangle$. Fröhlich and Wilson have studied the 2-part of $D(\mathbf{Z}H_p)$ for an odd prime p ([5], [11]), and Cassou-Noguès has given some information on $D(\mathbf{Z}H_n)$ for an odd integer n ([2]).

[III] Let $n \ge 3$ be an odd integer and define e_p by $p^{e_p} || n$ for each prime divisor p of n. Then;

- i) $D(\mathbf{Z}H_n) \oplus D(\mathbf{Z}D_n) \simeq D(\mathbf{Z}H_n/(\tau^2+1)) \oplus D(\mathbf{Z}D_{2n})$
- ii) $D(\mathbf{Z}H_n) \cong O(D(\mathbf{Z}D_{2n})) \oplus D(\mathbf{Z}D_n)^{(2)} \oplus (\mathbf{Z}/2\mathbf{Z})^{\sum_{i=1}^{n} e_i} \oplus L,$

where L is an extension of $D(\mathbb{Z}D_n)^{(2)}$ by an elementary 2-group. In particular, if $n=p^t$ for an odd prime p,

$$D(\mathbf{Z}H_{p^{t}}) \cong D(\mathbf{Z}D_{2p^{t}}) \oplus (\mathbf{Z}/2\mathbf{Z})^{t}$$
.

1. Decomposition of class groups

The following theorem will play an essential part in this paper.

Theorem 1.1. Let $N=N_1\times N_2$ be the direct product of groups N_1 and N_2 and $G=N\cdot F$ be the semidirect product of the group N by a group F. Assume that F acts on each N_i , i=1, 2. Denote by G_i the subgroup $N_i \cdot F$ of G, i=1, 2. Then $D(ZF) \oplus D_0(ZG_1) \oplus D_0(ZG_2)$ (resp. $C(ZF) \oplus C_0(ZG_1) \oplus C_0(ZG_2)$) is a direct summand of D(ZG) (resp. C(ZG)). In particular, if $F=\{1\}$, $D(ZG_1) \oplus D(ZG_2)$ (resp. $C(ZG_1) \oplus C(ZG_2)$) is a direct summand of D(ZG) (resp. C(ZG)).

Proof. We denote the augmentation ideal of $\mathbb{Z}N$ (resp. $\mathbb{Z}N_i$) by I_N (resp. I_{N_i}). There is an exact sequence

$$0 \to D_0(\mathbf{Z}G) \to D(\mathbf{Z}G) \xrightarrow{\alpha} D(\mathbf{Z}F) \to 0,$$

where α is induced by $M \to \mathbb{Z}G/(I_N) \underset{\mathbb{Z}G}{\otimes} M$. Let $\beta: D(\mathbb{Z}F) \to D(\mathbb{Z}G)$ be the induction map. Then it is easy to see that $\alpha \circ \beta = id_{D(\mathbb{Z}F)}$. So we have that $D(\mathbb{Z}G) \cong D(\mathbb{Z}F) \oplus D_0(\mathbb{Z}G)$ (cf. [10]).

Let \mathfrak{a} be a projective left ideal of $\mathbb{Z}G_1$ such that the class $[\mathfrak{a}]$ is in $D_0(\mathbb{Z}G_1)$. Then $\mathbb{Z}G \bigotimes_{\mathbb{Z}G_1} \mathfrak{a}$ is isomorphic to $\mathbb{Z}N_2 \bigotimes_{\mathbb{Z}} \mathfrak{a}$ as $\mathbb{Z}G$ -modules. Since $[\mathbb{Z}G/(I_N) \bigotimes_{\mathbb{Z}G} (\mathbb{Z}N_2 \bigotimes_{\mathbb{Z}} \mathfrak{a})] = [\mathbb{Z}G_1/(I_{N_1}) \bigotimes_{\mathbb{Z}G} \mathfrak{a}] = 0$ in $D(\mathbb{Z}F)$, $[\mathbb{Z}N_2 \bigotimes_{\mathbb{Z}} \mathfrak{a}]$ is in $D_0(\mathbb{Z}G)$. Hence we have the map $\varphi_1: D_0(\mathbb{Z}G_1) \to D_0(\mathbb{Z}G)$ and similarly we get the map $\varphi_2: D_0(\mathbb{Z}G_2) \to$

 $\begin{array}{l} D_0(\mathbf{Z}G). \quad \text{Further, for a projective left ideal b of } \mathbf{Z}G \text{ such that } [b] \in D_0(\mathbf{Z}G), \\ [\mathbf{Z}G_1/(I_{N_1}) \underset{\mathbf{Z}G}{\otimes} (\mathbf{Z}G/(I_{N_2}) \underset{\mathbf{Z}G}{\otimes} b)] = 0 \text{ in } D(\mathbf{Z}F), \text{ so } [\mathbf{Z}G/(I_{N_2}) \underset{\mathbf{Z}G}{\otimes} b] \in D_0(\mathbf{Z}G_1). \quad \text{Hence} \\ \text{we have the map } \psi_1 \colon D_0(\mathbf{Z}G) \to D_0(\mathbf{Z}G_1) \text{ and similarly we get the map } \psi_2 \colon D_0(\mathbf{Z}G) \\ \to D_0(\mathbf{Z}G_2). \quad \text{For every projective left ideal } \mathfrak{a} \text{ of } \mathbf{Z}G_1 \text{ such that } [\mathfrak{a}] \in D_0(\mathbf{Z}G_1), \\ \psi_1 \circ \varphi_1[\mathfrak{a}] = [\mathbf{Z}G/(I_{N_2}) \underset{\mathbf{Z}G}{\otimes} (\mathbf{Z}N_2 \underset{\mathbf{Z}}{\otimes} \mathfrak{a}]] = [\mathbf{Z}G_1 \underset{\mathbf{Z}G_1}{\otimes} \mathfrak{a}] = [\mathfrak{a}] \text{ in } D_0(\mathbf{Z}G_1). \quad \text{In } \psi_2 \circ \varphi_1[\mathfrak{a}] = \\ [\mathbf{Z}G/(I_{N_1}) \underset{\mathbf{Z}G}{\otimes} (\mathbf{Z}N_2 \underset{\mathbf{Z}}{\otimes} \mathfrak{a})], N_2 \text{ acts on } \mathbf{Z}G/(I_{N_1}) \text{ and } N_2 \text{ via group action and } F \text{ acts} \\ \text{ on } \mathbf{Z}G/(I_{N_1}) \text{ via group action, and we know that } \psi_2 \circ \varphi_1[\mathfrak{a}] = [\mathbf{Z}G_2] = 0 \text{ in } D_0(\mathbf{Z}G_2). \\ \text{Consequently we see that } (\psi_1 \oplus \psi_2) \circ (\varphi_1 \oplus \varphi_2) = id_{D_0(\mathbf{Z}G_1) \oplus D_0(\mathbf{Z}G_2). \\ \text{This implies that} \\ D_0(\mathbf{Z}G_1) \oplus D_0(\mathbf{Z}G_2) \text{ is a direct summand of } D_0(\mathbf{Z}G). \end{aligned}$

If $F = \{1\}$, then $D_0(\mathbb{Z}G) = D(\mathbb{Z}G)$ and $D_0(\mathbb{Z}G_i) = D(\mathbb{Z}G_i)$, hence we see that $D(\mathbb{Z}G_1) \oplus D(\mathbb{Z}G_2)$ is a direct summand of $D(\mathbb{Z}G)$. The assertion for $C(\mathbb{Z}G)$ can be proved in the same way as for $D(\mathbb{Z}G)$.

Throughout this paper p stands for a rational prime. In case where G is metacyclic, (1.1) will become as follows.

Proposition 1.2. Let $G = C_n \cdot C_q$ and define e_p by $p^{e_p}||n$ for each p|n. Denote by G_p the subgroup $C_{p^{e_p}} \cdot C_q$ of G. Assume that (n, q) = 1 and that $\operatorname{Ker}(C_q \to \operatorname{Aut} C_{p^{e_p}}) = C_r$ for every p|n. Let d denote the order of $C_q|C_r$. Then

$$D(\mathbf{Z}G) \cong D(\mathbf{Z}C_q) \oplus \bigoplus_{a \mid a} D_0(\mathbf{Z}G_p) \oplus M$$
,

where M is an extension of an abelian group whose exponent divides d by the group Ker $[Ind_{C_n \times C_r}^G D(\mathbb{Z}C_n \times C_r) \rightarrow \bigoplus_{b|n} Ind_{C_p^{e_p} \times C_r}^{G_p} D(\mathbb{Z}C_{p^{e_p}} \times C_r)].$

Proof. It follows from (1.1) that $D(\mathbb{Z}C_q) \oplus \bigoplus_{p|n} D_0(\mathbb{Z}G_p)$ is a direct summand of $D(\mathbb{Z}G)$. Now we determine the remaining factor M. Define the subgroup $D_1(\mathbb{Z}C_n \times C_r)$ (resp. $D_1(\mathbb{Z}C_{p^{e_p}} \times C_r)$) of $D(\mathbb{Z}C_n \times C_r)$ (resp. $D(\mathbb{Z}C_{p^{e_p}} \times C_r)$) as the complementary subgroup of $D(\mathbb{Z}C_r)$. Then there is a commutative diagram with exact rows and columns

where φ and φ' are the inclusion maps and α , β , and γ are the natural maps. By the induction theorem (cf. [3]) we know that the exponent of Coker φ divides

d, and hence the exponent of Ker γ also divides d. Next consider the commutative diagram with exact rows and columns

Since δ is injective, Ker $\delta = 0$ and so Ker $\alpha \simeq \text{Ker } \tilde{\alpha}$. This completes the proof.

Let $N \cdot F$ be the semidirect product of a group N by a group F. For a **Z**N-module M and each $\tau \in F$, we define another **Z**N-module structure on M to be $\sigma \cdot m = \tau^{-1} \sigma \tau m$ where $\sigma \in N$ and $m \in M$, and denote it by M^{τ} . This yields the action of F on $D(\mathbb{Z}N)$. Hence $D(\mathbb{Z}N)$ can be regarded as a module over F.

Proposition 1.3. Let $G = C_n \cdot C_q$ and define e_p by $p^{\epsilon_p} || n$ for each p | n. Assume that C_q acts faithfylly on each Sylow subgroup of C_n and that (n, q) = 1. Then

$$D(\mathbf{Z}G) \cong D(\mathbf{Z}C_q) \oplus \bigoplus_{p|n} D(\mathbf{Z}C_{p^e_p})^{C_q} \oplus \left(\mathbf{Z} \Big/ \frac{q}{(2,q)} \mathbf{Z} \right)^{p|n^{e_p}} \oplus \operatorname{Ind}_{C_n}^G D(\mathbf{Z}C_n)^{(q)} \oplus K,$$

where K is the complementary subgroup of $\bigoplus_{p|n} D(\mathbf{Z}C_{p^e_p})^{C_q}$ in $(D(\mathbf{Z}C_n)^{C_q})^{(q')}$.

Proof. We have the induction map $\varphi: D(\mathbb{Z}C_n) \to D_0(\mathbb{Z}G)$ and the restriction map $\psi: D_0(\mathbb{Z}G) \to D(\mathbb{Z}C_n)$. It is known that $\operatorname{Coker} \varphi \cong \left(\mathbb{Z} \middle/ \frac{q}{(2,q)} \mathbb{Z}\right)^{\sum_{p \mid n}^{p \mid n} e_p}$ ([1]). We see that $q \cdot \operatorname{Ker} \psi = 0$. Then we have that $\varphi: D(\mathbb{Z}C_n)^{(q')} \to D_0(\mathbb{Z}G)^{(q')}$ is surjective and that $\psi: D_0(\mathbb{Z}G)^{(q')} \to D(\mathbb{Z}C_n)^{(q')}$ is injective. On the other hand for a $\mathbb{Z}C_n$ -module M, $\mathbb{Z}G \otimes M \cong M \oplus M^{\tau} \oplus \cdots \oplus M^{\tau^{q-1}}$ as $\mathbb{Z}C_n$ -modules, where τ is a generator of C_q . So we see that $\psi \circ \varphi = \operatorname{trace}_{C_q}$. Since $q \cdot D(\mathbb{Z}C_n)^{C_q} \subseteq \operatorname{trace}_{C_q}(D(\mathbb{Z}C_n)) \subseteq D(\mathbb{Z}C_n)^{C_q}$, $\operatorname{trace}_{C_q}: (D(\mathbb{Z}C_n)^{C_q})^{(q')} \to (D(\mathbb{Z}C_n)^{C_q})^{(q')} \to D_0(\mathbb{Z}G)^{(q')} \to (D(\mathbb{Z}C_n)^{C_q})^{(q')} \to D_0(\mathbb{Z}G)^{(q')}$ is injective, and so both maps are bijective. Applying this argument to the subgroup $G_p = C_{p^{e_p}} \cdot C_p$ of G, we have the split exact sequence

$$0 \to D(\mathbf{Z}C_{p^e_p})^{c_q} \to D_0(\mathbf{Z}G_p) \to \left(\mathbf{Z}\Big/\frac{q}{(2,q)}\mathbf{Z}\right)^{e_p} \to 0 ,$$

we note here that $D(\mathbf{Z}C_{p^*p})$ is a *p*-group and that *p* is coprime to *q*.

Now applying (1.2), we get that

$$D(\mathbf{Z}G) \cong D(\mathbf{Z}C_q) \oplus \bigoplus_{p|n} D(\mathbf{Z}C_{p^e_p})^{C_q} \oplus \left(\mathbf{Z} \middle/ \frac{q}{(2, q)} \mathbf{Z} \right)^{\sum_{p|n} e_p} \oplus \operatorname{Ker}\left[\operatorname{Ind}_{C_n}^G D(\mathbf{Z}C_n) \to \bigoplus_{p|n} \operatorname{Ind}_{C_p^{e_p}}^{C_p} D(\mathbf{Z}C_{p^{e_p}})\right]$$

Trivially the last factor is isomorphic to $\operatorname{Ind}_{C_n}^G D(\mathbb{Z}C_n)^{(q)} \oplus \operatorname{Ker}[\operatorname{Ind}_{C_n}^G D(\mathbb{Z}C_n)^{(q')} \to \bigoplus_{p|n} \operatorname{Ind}_{C_{p'p}}^{G_p} D(\mathbb{Z}C_{p'p})]$, and further, from the above argument on the induction maps it follows that the second factor is isomorphic to the complementary subgroup of $\bigoplus_{p|n} D(\mathbb{Z}C_{p'p})^{C_q}$ in $(D(\mathbb{Z}C_n)^{C_q})^{(q')}$. This completes the proof.

2. Structure of $D(ZH_n)$

Throughout this section we assume that $n \ge 3$ is an odd integer.

Lemma 2.1. There are exact sequences

$$0 \to N \to D(\mathbf{Z}H_n) \to D(\mathbf{Z}D_n) \oplus D(\mathbf{Z}H_n/(\tau^2+1)) \to 0$$
$$0 \to N' \to D(\mathbf{Z}D_{2n}) \to D(\mathbf{Z}D_n) \oplus D(\mathbf{Z}D_n) \to 0$$

where both N and N' are of odd order.

Proof. From the pullback diagrams

$$ZH_{n} \longrightarrow ZH_{n}/(\tau^{2}+1)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$ZD_{n} \cong ZH_{n}/(\tau^{2}-1) \longrightarrow F_{2}D_{n}$$

$$ZD_{2n} \longrightarrow ZD_{n}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$ZD_{n} \longrightarrow F_{2}D_{n}$$

we get the (Mayer-Vietoris) exact sequences (cf. [8])

$$K_{1}(\mathbb{Z}D_{n}) \oplus K_{1}(\mathbb{Z}H_{n}/(\tau^{2}+1)) \to K_{1}(\mathbb{F}_{2}D_{n}) \to D(\mathbb{Z}H_{n}) \to D(\mathbb{Z}D_{n}) \oplus D(\mathbb{Z}H_{n}/(\tau^{2}+1)) \to 0$$
$$K_{1}(\mathbb{Z}D_{n}) \oplus K_{1}(\mathbb{Z}D_{n}) \to K_{1}(\mathbb{F}_{2}D_{n}) \to D(\mathbb{Z}D_{2n}) \to D(\mathbb{Z}D_{n}) \oplus D(\mathbb{Z}D_{n}) \to 0.$$

Hence it is sufficient to show that Coker $[K_1(\mathbb{Z}D_n) \to K_1(\mathbb{F}_2D_n)]$ is of odd order. Write $D_{2n} = \langle \rho, \sigma, \tau | \rho^2 = \sigma^n = \tau^2 = 1$, $\rho\sigma = \sigma\rho$, $\rho\tau = \tau\rho$, $\tau^{-1}\sigma\tau = \sigma^{-1}\rangle$ and $D_n = \langle \sigma, \tau | \sigma^n = \tau^2 = 1$, $\tau^{-1}\sigma\tau = \sigma^{-1}\rangle$, and define $\Sigma_n \in \mathbb{Z}D_{2n}$ (resp. $\Sigma_n \in \mathbb{Z}D_n$) to be $\Sigma_n = \sum_{i=0}^{n-1} \sigma^i$. It has been shown [4] that $D(\mathbb{Z}D_{2n}) \cong D(\mathbb{Z}D_{2n}/(\Sigma_n))$ and $D(\mathbb{Z}D_n) \cong$

 $D(\mathbf{Z}D_n/(\Sigma_n))$. Then we have the commutative diagram with exact rows

We see that Coker $\varphi \cong$ Coker φ' and that the latter is of odd order, since $K_1(F_2D_n/(\Sigma_n))$ is so. This completes the proof.

Lemma 2.2. There is a commutative diagram with exact rows and columns

$$\begin{array}{ccc} 0 \to E \to D(\mathbf{Z}H_n) & \xrightarrow{\varphi} & D(\mathbf{Z}D_{2n}) \to 0 \\ & & & \parallel & \downarrow & \\ 0 \to E \to D(\mathbf{Z}H_n/(\tau^2+1)) & \xrightarrow{\varphi'} & D(\mathbf{Z}D_n) \to 0 \\ & & \downarrow & & \\ 0 & & 0 & & \downarrow & \\ 0 & & 0 & & , \end{array}$$

where E is an elementary 2-group.

Proof. We will use the following notation;

 R^d =the ring of integers of $Q(\zeta_d + \zeta_d^{-1})$, where ζ_d is a primitive *d*-th root of unity,

$$\begin{split} R^{d}_{p} &= \mathbf{Z}_{p} \bigotimes_{\mathbf{Z}} R^{d}, \quad \mathbf{Z}_{p} H_{m} = \mathbf{Z}_{p} \bigotimes_{\mathbf{Z}} Z H_{m}, \quad \mathbf{Z}_{p} D_{m} = \mathbf{Z}_{p} \bigotimes_{\mathbf{Z}} Z D_{m}. \\ \text{Write } H_{n} &= \langle \sigma, \tau | \sigma^{n} = \tau^{4} = 1, \ \tau^{-1} \sigma \tau = \sigma^{-1} \rangle \text{ and } \Sigma_{n} = \sum_{i=0}^{n-1} \sigma^{i} \in \mathbf{Z} H_{n}. \\ \text{Then we see that } \operatorname{Nrd}((\mathbf{Z}_{p} D_{2n} / (\Sigma_{n}))^{*}) = (\mathbf{Z}_{p} [\sigma + \sigma^{-1}, \rho] / (\Sigma_{n}))^{*} \text{ for every prime } p, \text{ because } \\ \mathbf{Z}_{p} D_{2n} / (\Sigma_{n}) \text{ is embedded into } M_{2} (\mathbf{Z}_{p} [\sigma + \sigma^{-1}, \rho] / (\Sigma_{n})). \\ \text{Since we can prove by the same method as in } [4, \S 3] \text{ that } D(\mathbf{Z} [\sigma + \sigma^{-1}, \rho]) \simeq D(\mathbf{Z} [\sigma + \sigma^{-1}, \rho] / (\Sigma_{n})), \text{ we have that } D(\mathbf{Z} D_{2n}) \cong D(\mathbf{Z} [\sigma + \sigma^{-1}, \rho]). \\ \text{Similarly we have that } D(\mathbf{Z} D_{n}) \cong D(\mathbf{Z} [\sigma + \sigma^{-1}, \rho]). \\ \text{Then we have } \end{split}$$

$$D(\mathbf{Z}H_n) \simeq \frac{\prod_{\substack{p\mid 2n}} \prod_{1\pm d\mid n} (R^d * \times R^d * p^*)}{\prod_{1\pm d\mid n} (R^d * \times R^d * p^*) \prod_{\substack{p\mid 2n}} n(\mathbf{Z}_p H_n^*)},$$

where $n(\mathbf{Z}_p H_n^*) = \{ \operatorname{Nrd}(x) | (1, x) \in \mathbf{Z}_p H_n^* \hookrightarrow \mathbf{Z}_p \langle \tau \rangle^* \times \mathbf{Z}_p H_n / (\Sigma_n)^* \}$ and $R^{d_+} = \{ u \in R^{d_+} | u \text{ is positive at all real places of } R^d \},$

$$D(\mathbf{Z}D_{2n}) \simeq \frac{\prod\limits_{\substack{p\mid 2n}}\prod\limits_{\substack{1\neq d\mid n}} (R^{d} * \times R^{d} *)}{\prod\limits_{\substack{1\neq d\mid n}} (R^{d} * \times R^{d} *)\prod\limits_{\substack{p\mid 2n}} u(\mathbf{Z}_{p}[\sigma + \sigma^{-1}, \rho])},$$

where

$$u(\boldsymbol{Z}_{p}[\sigma+\sigma^{-1},\rho]) = \{y \mid (1, y) \in \boldsymbol{Z}_{p}[\sigma+\sigma^{-1},\rho]^{*} \subseteq \boldsymbol{Z}_{p} \langle \rho \rangle^{*} \times \boldsymbol{Z}_{p}[\sigma+\sigma^{-1},\rho]/(\boldsymbol{\Sigma}_{n})^{*}\},$$

$$D(ZH_n/(\tau^2+1)) \simeq \frac{\prod_{p|n} \prod_{1 \neq d|n} R^{d} R^{d}}{\prod_{1 \neq d|n} R^{d} R^{d} \prod_{p|n} n(Z_pH_n/(\tau^2+1)^*)},$$

where $n(\mathbf{Z}_p H_n/(\tau^2+1)^*) =$ $\{\operatorname{Nrd}(x) \mid (1, x) \in \mathbf{Z}_p H_n/(\tau^2+1)^* \hookrightarrow \mathbf{Z}_p[\overline{\tau}]^* \times \mathbf{Z}_p H_n/(\Sigma_n, \tau^2+1)^*\}, \text{ and}$ $D(\mathbf{Z}D_n) \simeq \frac{\prod_{p \mid n} \prod_{1 \neq d \mid n} R^d_p^*}{\prod_{p \mid n} R^d * \prod_{p \mid n} u(\mathbf{Z}_p[\sigma+\sigma^{-1}])},$

where $u(\mathbf{Z}_p[\sigma+\sigma^{-1}]) = \{y \mid (1, y) \in \mathbf{Z}_p[\sigma+\sigma^{-1}]^* \hookrightarrow \mathbf{Z}_p^* \times \mathbf{Z}_p[\sigma+\sigma^{-1}]/(\Sigma_n)^*\}.$ Hence there exist natural surjections $\varphi \colon D(\mathbf{Z}H_n) \to D(\mathbf{Z}D_{2n})$ and

 $\varphi': D(\mathbf{Z}H_n/(\tau^2+1)) \rightarrow D(\mathbf{Z}D_n)$. Then

$$\operatorname{Ker} \varphi \simeq \frac{\prod\limits_{\substack{1 \neq d \mid n}} (R^{d*} \times R^{d*}) \prod\limits_{\substack{p \mid 2n}} u(\boldsymbol{Z}_{p}[\sigma + \sigma^{-1}, \rho])}{\prod\limits_{\substack{1 \neq d \mid n}} (R^{d*} \times R^{d*}) \prod\limits_{\substack{p \mid 2n}} n(\boldsymbol{Z}_{p}H_{n}^{*})}$$

Trivially $(\mathbb{R}^{d*})^2 \subseteq \mathbb{R}^{d*}_+$ for every $d|n, d \neq 1$. Since the degree of $\mathbb{Z}_p H_n/(\Sigma_n)$ over its center is 4, $u(\mathbb{Z}_p[\sigma+\sigma^{-1}, \rho])^2 \subseteq n(\mathbb{Z}_p H_n^*)$ for every p|n. Hence Ker φ is an elementary 2-group. Similarly we can show that Ker φ' is an elementary 2group.

Let $\psi: D(\mathbb{Z}H_n) \to D(\mathbb{Z}H_n/(\tau^2+1))$ and $\psi': D(\mathbb{Z}D_{2n}) \to D(\mathbb{Z}D_n)$ be the maps defined as follows; for $(x, y) \in (\prod_{p \mid 2n} \prod_{1 \neq d \mid n} \mathbb{R}^{d_p^*}) \times (\prod_{p \mid 2n} \prod_{1 \neq d \mid n} \mathbb{R}^{d_p^*}), \psi$ (the class of (x, y))=the class of y, and ψ' (the class of (x, y))=the class of y. In fact ψ (resp. ψ') is the map induced by the natural surjection $\mathbb{Z}H_n \to \mathbb{Z}H_n/(\tau^2+1)$ (resp. $\mathbb{Z}D_{2n} \to \mathbb{Z}D_{2n}/(\rho+1) \cong \mathbb{Z}D_n$). It is clear that both ψ and ψ' are surjective. Further we have the commutative diagram with exact rows and columns

$$\begin{array}{c} 0 \to N \to D(\mathbf{Z}H_n) \xrightarrow{(,\psi)} D(\mathbf{Z}D_n) \oplus D(\mathbf{Z}H_n/(\tau^2+1)) \to 0 \\ \downarrow \varphi & \downarrow id \oplus \varphi' \\ 0 \to N' \to D(\mathbf{Z}D_{2n}) \xrightarrow{(,\psi')} D(\mathbf{Z}D_n) \oplus D(\mathbf{Z}D_n) \longrightarrow 0. \\ \downarrow & \downarrow 0 \end{array}$$

Since Ker φ and Ker φ' are 2-group, we get by (2.1) that Ker $\varphi \cong$ Ker φ' . Thus we conclude the proof.

Theorem 2.3. Let $n \ge 3$ be an odd integer and define e_p by $p^{e_p}||n$ for each p|n. Then:

i)
$$D(\mathbf{Z}H_n) \oplus D(\mathbf{Z}D_n) \cong D(\mathbf{Z}H_n/(\tau^2+1)) \oplus D(\mathbf{Z}D_{2n})$$

ii) $D(\mathbf{Z}H_n) \simeq O(D(\mathbf{Z}D_{2n})) \oplus D(\mathbf{Z}D_n)^{(2)} \oplus (\mathbf{Z}/2\mathbf{Z})^{\sum_{p\mid n} e_p} \oplus L,$

where L is an extension of $D(\mathbb{Z}D_n)^{(2)}$ by an elementary 2-group. In particular, if $n=p^t$ for an odd prime p,

$$D(\mathbf{Z}H_{p^t}) \cong D(\mathbf{Z}D_{2p^t}) \oplus (\mathbf{Z}/2\mathbf{Z})^t.$$

Proof. By (2.2) we have the commutative diagram with exact rows and columns

Since ψ' splits by (1.2), ψ splits also. Therefore

$$D(\mathbf{Z}H_n) \oplus D(\mathbf{Z}D_n) \simeq D(\mathbf{Z}H_n/(\tau^2+1)) \oplus F \oplus D(\mathbf{Z}D_n)$$

$$\simeq D(\mathbf{Z}H_n/(\tau^2+1)) \oplus D(\mathbf{Z}D_{2n}).$$

For the proof of ii) we begin with the case $n=p^t$. It has been shown (e.g. [1], [4]) that $d(\mathbb{Z}D_{p^t})$ and $d(\mathbb{Z}D_{2p^t})$ are odd, and hence in this case the exact sequences in (2.2) split. On the other hand it is known that the 2-part of $D(\mathbb{Z}H_{p^t}/(\tau^2+1))$ is an elementary 2-group of rank t ([11]). Therefore we see that

$$D(\mathbf{Z}H_{p^t}) \simeq D(\mathbf{Z}D_{2p^t}) \oplus (\mathbf{Z}/2\mathbf{Z})^t$$
.

Next consider the general case. By (2.1) we see that

$$D(ZH_n)^{(2)} \simeq D(ZD_n)^{(2)} \oplus D(ZH_n/(\tau^2+1))^{(2)}$$
.

On the other hand, by (2.2), we have that $O(D(\mathbb{Z}H_n)) \cong O(D(\mathbb{Z}D_{2n}))$. Thus we get

$$D(\mathbf{Z}H_n) \simeq O(D(\mathbf{Z}D_{2n})) \oplus D(\mathbf{Z}D_n)^{(2)} \oplus D(\mathbf{Z}H_n/(\tau^2+1))^{(2)}.$$

There is a commutative diagram with exact rows

$$\begin{array}{ccc} 0 & \longrightarrow E & \longrightarrow & D(ZH_n/(\tau^2+1)) & \longrightarrow & D(ZD_n) & \longrightarrow & 0 \\ & & \downarrow & & \downarrow & & \downarrow \\ 0 & \rightarrow (Z/2Z)^{p_{|n}} & \rightarrow & \bigoplus_{p_{|n}} D(ZH_{p^{e_p}}/(\tau^2+1)) & \rightarrow & \bigoplus_{p_{|n}} D(ZD_{p^{e_p}}) & \rightarrow & 0 \end{array}$$

It can be shown along the same line as in (1.2) that α is surjective and split, and by (2.2) *E* is an elementary 2-group. Therefore we see that

$$D(\mathbf{Z}H_n/(\tau^2+1))^{(2)} \simeq (\mathbf{Z}/2\mathbf{Z})^{\sum_{p\mid n} e_p} \oplus L,$$

where L is an extension of $D(\mathbb{Z}D_n)^{(2)}$ by an elementary 2-group. We conclude the proof.

REMARK 2.4. When $n=p^t$, rank E=t. But it may be conjectured that rank $E-\sum_{p\mid n}e_p>0$ unless n is a power of an odd prime. In fact, when n=15, $E\cong C_2\times C_2\times C_2$ and in this case we get that $D(\mathbf{Z}H_{15})\cong C_2\times C_2\times C_2$. We note here the outline of the computation.

Since $D(ZD_{30}) = D(ZD_{15}) = \{1\}$ ([4]), the commutative diagram in the proof of (2.3) shows that $F = \{1\}$, and hence

$$E \simeq D(ZH_{15}) \simeq D(ZH_{15}/(\tau^2+1))$$
.

Along the same line as in the proof of [1, Théorème 3] we get that for an odd square-free integer n,

$$D(\mathbf{Z}H_n/(\tau^2+1)) \cong \bigoplus_{\substack{p \mid n}} D(\mathbf{Z}H_p/(\tau^2+1)) \oplus \bigoplus_{\substack{1 \neq d \mid n \\ d \neq \text{prime}}} (R^d/I^d)^*/\operatorname{Im} R^{d*}_+,$$

where $I^d = \prod_{\substack{p|d \\ l \neq d|n}} (1 - \zeta_p)(1 - \zeta_p^{-1})R^d$. Further we see that there is a natural surjection $\bigoplus_{\substack{1 \neq d|n \\ d \neq prime}} (R^d/I^d)^*/\operatorname{Im} R^d \stackrel{*}{\to} D(ZH_n/(\Sigma_n, \tau^2 + 1))$. On the other hand, we

know that $\operatorname{Ker}\left[D(ZH_n/(\tau^2+1)) \rightarrow D(ZH_n/(\Sigma_n, \tau^2+1))\right]$ is an elementary 2-group of rank $\sum_{p|n} 1$. Though this is true for every odd integer, here we give the proof for the square-free case. Expressing both groups in idelic form (cf. the proof of (2.2)), we know that

$$\operatorname{Ker}\left[D(ZH_{n}/(\tau^{2}+1)) \rightarrow D(ZH_{n}/(\Sigma_{n}, \tau^{2}+1))\right]$$

$$\approx \frac{\prod_{\substack{1 \neq d \mid n}} R^{d*} \prod_{\substack{p \mid n}} \operatorname{Nrd}(Z_{p}H_{n}/(\Sigma_{n}, \tau^{2}+1)^{*})}{\prod_{\substack{1 \neq d \mid n}} R^{d*} \prod_{\substack{p \mid n}} n(Z_{p}H_{n}/(\tau^{2}+1)^{*})}$$

$$\approx \prod_{\substack{p \mid n}} \left(\frac{R^{p*} \operatorname{Nrd}(Z_{p}H_{p}/(\Sigma_{p}, \tau^{2}+1)^{*})}{R^{p*} n(Z_{p}H_{p}/(\tau^{2}+1)^{*})}\right)$$

$$\approx \bigoplus_{\substack{p \mid n}} \operatorname{Ker}\left[D(ZH_{p}/(\tau^{2}+1)) \rightarrow D(ZH_{p}/(\Sigma_{p}, \tau^{2}+1))\right]$$

$$\approx (Z/2Z)^{\sum_{p \mid n}^{\sum_{1} 1}}.$$

Hence we have that for an odd square-free integer n

$$D(ZH_n/(\tau^2+1)) \simeq \bigoplus_{p|n} D(ZH_p/(\tau^2+1)) \oplus D(ZH_n/(\Sigma_n, \tau^2+1))$$
$$\simeq (Z/2Z)^{\sum_{p|n}^{j}} \oplus D(ZH_n/(\Sigma_n, \tau^2+1)).$$

Now let us return to the case n=15. It is sufficient to show that $D = D(\mathbf{Z}H_{15}/(\Sigma_{15}, \tau^2+1)) \cong \mathbf{Z}/2\mathbf{Z}$. From the pullback diagram

$$ZH_{15}/(\Sigma_{15}, \tau^{2}+1)) \longrightarrow Z[\zeta_{15}, \tau]$$

$$\downarrow \qquad \qquad \downarrow$$

$$Z[\zeta_{3}, \tau] \oplus Z[\zeta_{5}, \tau] \rightarrow F_{5}[\zeta_{3}, \tau] \oplus F_{3}[\zeta_{5}, \tau]$$

we get the exact sequence

$$K_{1}(\boldsymbol{Z}[\zeta_{3}, \, \overline{\tau}]) \oplus K_{1}(\boldsymbol{Z}[\zeta_{5}, \, \overline{\tau}]) \oplus K_{1}(\boldsymbol{Z}[\zeta_{15}, \, \overline{\tau}]) \rightarrow K_{1}(F_{5}[\zeta_{3}, \, \overline{\tau}]) \oplus K_{1}(F_{5}[\zeta_{5}, \, \overline{\tau}]) \rightarrow D \rightarrow 0 .$$

Taking the reduced norm, we have the exact sequence

 $\boldsymbol{Z}_{+}^{*} \oplus \boldsymbol{Z}[\zeta_{5}+\zeta_{5}^{-1}]_{+}^{*} \oplus \boldsymbol{Z}[\zeta_{15}+\zeta_{15}^{-1}]_{+}^{*} \rightarrow \boldsymbol{F}_{5}^{*} \oplus \boldsymbol{F}_{3}[\zeta_{5}+\zeta_{5}^{-1}]^{*} \rightarrow D \rightarrow 0.$

On the other hand $\mathbf{Z}[\zeta_{15}+\zeta_{15}^{-1}]_+^*=\{\varepsilon_1^a\varepsilon_2^b\varepsilon_3^c \mid a, b \text{ and } c \text{ are all odd or all even}\}$, where $\varepsilon_1=\zeta_{15}+\zeta_{15}^{-1}-1$, $\varepsilon_2=\zeta_{15}^2+\zeta_{15}^{-2}-1$ and $\varepsilon_3=\zeta_{15}^3+\zeta_{15}^{-3}+1$. A direct computation shows that $D\simeq \mathbf{Z}/2\mathbf{Z}$.

REMARK 2.5. Let $\Lambda_{2n} = \mathbb{Z}C_{2n} \cap \prod_{d \mid n} \mathbb{R}^d \times \mathbb{R}^d$. Cassou-Noguès has shown in [2] that there exists a surjection of $D(\mathbb{Z}H_n)$ in $D(\Lambda_{2n})$ whose kernel is an elementary 2-group. It is seen in the proof of (2.2) that $D(\Lambda_{2n}) \cong D(\mathbb{Z}D_{2n})$. Hence a part of (2.2) and the final assertion of (2.3) are only restatements of the results of Cassou-Noguès.

REMARK 2.6. Recently, after this manuscript was written, T. Miyata has shown [9] that Res: $D(\mathbb{Z}D_m) \rightarrow D(\mathbb{Z}C_m)$ is injective for every integer m > 1. Using this we know that the map φ in (2.2) has a close relation to the restriction $\operatorname{Res}_{C_{2n}}^{H_n}: D(\mathbb{Z}H_n) \rightarrow D(\mathbb{Z}C_{2n})$. Further we can extend the results to the case where *n* is even. Let m > 1 be an integer and $H_m = \langle \sigma, \tau | \sigma^{2m} = 1, \sigma^m = \tau^2, \tau^{-1}\sigma\tau = \sigma^{-1} \rangle$. Then there is a natural surjection $\varphi: D(\mathbb{Z}H_m) \rightarrow D(\mathbb{Z}D_{2m})$ such that $\operatorname{Res}_{C_{2m}}^{D_{2m}} \varphi = \operatorname{Res}_{C_{2m}}^{H_m}$. (When *m* is odd, φ is the map defined in (2.2).) From this we see that $\operatorname{Res}_{C_{2m}}^{H_m}(D(\mathbb{Z}H_m)) \cong D(\mathbb{Z}D_{2m})$ and $\operatorname{Ker} \varphi = \operatorname{Ker} \operatorname{Res}_{C_{2m}}^{H_m}$ is an elementary 2-group.

We give here the outline of the proof. There are isomorphisms (for details see [6], [7])

$$C(\mathbf{Z}G) \simeq J_{\mathbf{Q}G} / [J_{\mathbf{Q}G}, J_{\mathbf{Q}G}](\mathbf{Q}G)^* U(\mathbf{Z}G)$$

$$\simeq \operatorname{Hom}_{\mathfrak{Q}_{\mathbf{Q}}}(R_G, J_F) / \operatorname{Hom}_{\mathfrak{Q}_{\mathbf{Q}}}(R_G, F^*) \operatorname{Det}(U(\mathbf{Z}G)),$$

where R_G is the Grothendieck group of virtual characters of G. For each element of $D(\mathbf{Z}G)$ we can choose representatives as follows;

a projective left ideal M

 $\leftrightarrow \alpha = (\alpha_p) \in U(\mathfrak{M}) \subseteq J_{QG}, \text{ where } \mathfrak{M} \text{ is a maximal order of } QG$ containing ZG, such that $M = \bigcap (Z_p G \alpha_p \cap QG)$

 $\leftrightarrow \mathrm{Det}(\alpha) \in \mathrm{Hom}_{\Omega_{\boldsymbol{a}}}(R_G, J_F).$

For a subgroup H of G, $\operatorname{Res}_{H}^{G}(M)$ has the representative $\rho_{G/H}(\operatorname{Det}(\alpha))$, where $\rho_{G/H}(\operatorname{Det}(\alpha))(\chi) = \operatorname{Det}_{\operatorname{Ind}_{H}^{G}\chi}(\alpha)$ for $\chi \in R_{H}$ (for details see Appendix in [7]).

Now we compute $\operatorname{Res}_{C_{2m}}^{H_m}$ and $\operatorname{Res}_{C_{2m}}^{D_{2m}}$ by using $\rho_{H_m/C_{2m}}$ and $\rho_{D_{2m}/C_{2m}}$. When *m* is odd, we have the commutative diagram with exact row and column

(*)
$$0 \to \operatorname{Ker} \varphi \to D(\mathbb{Z}H_m) \xrightarrow{\varphi} D(\mathbb{Z}D_{2m}) \to 0$$
$$\downarrow^{\mathbb{Res}_{C_{2m}}^{D_{2m}}} D(\mathbb{Z}D_{2m}) \to 0$$
$$\downarrow^{\mathbb{Res}_{C_{2m}}^{D_{2m}}} p(\mathbb{Z}C_{2m}),$$

where φ is the map defined in (2.2). Let *m* be even. Since $\operatorname{Res}_{C_{2m}}^{D_{2m}}$ is injective, we know that the natural map φ of $D(ZH_m) \simeq U(\mathcal{O})_+ / \mathcal{O}_+^* \operatorname{Nrd}(U(ZH_m))$ to $D(ZD_{2m}) \simeq U(\mathcal{O}) / \mathcal{O}^* \operatorname{Nrd}(U(ZD_{2m}))$, where $\mathcal{O} = Z \oplus Z \oplus Z \oplus Z \oplus Z \oplus A^d$, is well $d_{d \equiv 1,2}^{d = 1,2}$

defined. Hence we also have the diagram (*). Finally, Ker $\varphi = \text{Ker Res}_{C_{2m}}^{H_m}$ is annihilated by 2 (the Artin exponent of H_m).

UNIVERSITY OF TSUKUBA

References

- P. Cassou-Noguès: Groupe des classes de l'algebre d'un groupe métacyclique, J. Algebra 41 (1976), 116-136.
- [2] P. Cassou-Noguès: *Quelques théorèmes de base normale d'entiers*, to appear in Ann. Inst. Fourier.
- [3] S. Endo and T. Miyata: Quasi-permutation modules over finite groups, II, J. Math. Soc. Japan 26 (1974), 698-713.
- [4] S. Endo and T. Miyata: On the class groups of dihedral groups, to appear in J. Algebra.
- [5] A. Fröhlich: Module invariants and root numbers for quaternion fields of degree 4l^r, Proc. Cambridge Philos. Soc. 76 (1974), 393-399.
- [6] A. Fröhlich: Locally free modules over arithmetic orders, Crelles J. 274/275 (1975), 112–138.
- [7] A. Fröhlich: Arithmetic and Galois module structure for tame extensions, Crelles J. 286/287 (1976), 380-440.
- [8] J. Milnor: Introduction to algebraic K-theory, Annals of Math. Studies, 72, Princeton Univ. Press, 1971.
- [9] T. Miyata: A normal integral basis theorem for dihedral groups, to appear in Tôhoku Math. J.
- [10] I. Reiner: Projective class groups of symmetric and alternating groups, Linear and Multilinear Algebra 3 (1975), 147-153.
- [11] S.M.J. Wilson: Reduced norms in the K-theory of orders, J. Algebra 46 (1977), 1-11.