ON THE STRUCTURE OF THE CLASS GROUPS OF METACYCLIC GROUPS

Yumiko HIRONAKA

(Received September 18, 1978)
(Revised Jaunary 10, 1979)

Let Λ be a \boldsymbol{Z}-order in a semisimple \boldsymbol{Q}-algebra A. We mean by the class group of Λ the class group defined by using locally free left Λ-modules and denote it by $C(\Lambda)$. Define $D(\Lambda)$ to be the kernel of the natural surjection $C(\Lambda) \rightarrow C(\Omega)$ for a maximal Z-order Ω in A containing Λ and $d(\Lambda)$ to be the order of $D(\Lambda)$.

Let $\boldsymbol{Z} G$ be the integral group ring of a finite group G. Then $\boldsymbol{Z} G$ can be regarded as a \boldsymbol{Z}-order in the semisimple \boldsymbol{Q}-algebra $\boldsymbol{Q} G$, and hence $C(\boldsymbol{Z} G)$ and $D(\boldsymbol{Z} G)$ can be defined.

In this paper we consider only finite groups. We will treat the semidirect product $G=N \cdot F$ of a group N by a group F. Define $D_{0}(\boldsymbol{Z} G)\left(\right.$ resp. $\left.C_{0}(\boldsymbol{Z} G)\right)$ to be the kernel of the natural surjection $D(\boldsymbol{Z} G) \rightarrow D(\boldsymbol{Z} F)$ (resp. $C(\boldsymbol{Z} G) \rightarrow$ $C(\boldsymbol{Z} F)$). First we will give
[I] Let $N=N_{1} \times N_{2}$ be the direct product of groups N_{1} and N_{2} and $G=$ $N \cdot F$ be the semidirect product of the group N by a group F. Assume that F acts on each $N_{i}, i=1,2$. Denote by G_{i} the subgroup $N_{i} \cdot F$ of $G, i=1,2$. Then $D(\boldsymbol{Z} F) \oplus D_{0}\left(\boldsymbol{Z} G_{1}\right) \oplus D_{0}\left(\boldsymbol{Z} G_{2}\right)\left(\right.$ resp. $\left.C(\boldsymbol{Z} F) \oplus C_{0}\left(\boldsymbol{Z} G_{1}\right) \oplus C_{0}\left(\boldsymbol{Z} G_{2}\right)\right)$ is a direct summand of $D(\boldsymbol{Z} G)$ (resp. $C(\boldsymbol{Z} G)$).

For an abelian group A and a positive integer $q, A^{(q)}$ denotes the q-part of A and $A^{\left(q^{\prime}\right)}$ denotes the maximal subgroup of A whose order is coprime to q. In particular, we write $O(A)=A^{\left(2^{\prime}\right)}$. For any module M over a group H we define $M^{H}=\{m \in M \mid \tau m=m$ for every $\tau \in H\}$.

We will apply [I] to some metacyclic groups. Denote by C_{m} the cyclic group of order m. Using induction technique we will give, as a refinement of a result in [1],
[II] Let $G=C_{n} \cdot C_{q}$, and define e_{p} by $p^{e}{ }^{p} \| n$ for each prime divisor p of n. Assume that C_{q} acts faithfully on each Sylow subgroup of C_{n} and that $(n, q)=1$. Then

$$
D(\boldsymbol{Z} G) \cong D\left(\boldsymbol{Z} C_{q}\right) \oplus \underset{p \mid n}{\oplus} D\left(\boldsymbol{Z} C_{p^{e} p}\right)^{C_{q}} \oplus\left(\boldsymbol{Z} \left\lvert\, \frac{q}{(2, q)} \boldsymbol{Z}\right.\right)^{\frac{\mathcal{F} \mid n^{e p}}{e^{e}}} \oplus \operatorname{Ind}_{C_{n}}^{G} D\left(\boldsymbol{Z} C_{n}\right)^{(q)} \oplus K,
$$

where K is the complementary subgroup of $\underset{p \nmid n}{\oplus} D\left(\boldsymbol{Z} C_{p^{e_{p}}}\right)^{c_{q}}$ in $\left(D\left(\boldsymbol{Z} C_{n}\right)^{c_{q}}\right)^{\left(q^{\prime}\right)}(c f . \S 1)$.
Next we will study the class groups of generalized quaternion groups in connection with those of dihedral groups. Denote by H_{n} the generalized quaternion group of order $4 n ; H_{n}=\left\langle\sigma, \tau \mid \sigma^{n}=\tau^{4}=1, \tau^{-1} \sigma \tau=\sigma^{-1}\right\rangle$ and by D_{n} the dihedral group of order $2 n ; D_{n}=\left\langle\sigma, \tau \mid \sigma^{n}=\tau^{2}=1, \tau^{-1} \sigma \tau=\sigma^{-1}\right\rangle$. Fröhlich and Wilson have studied the 2-part of $D\left(\boldsymbol{Z} H_{p^{t}}\right)$ for an odd prime p ([5], [11]), and Cassou-Noguès has given some information on $D\left(\boldsymbol{Z} H_{n}\right)$ for an odd integer $n([2])$.
[III] Let $n \geqq 3$ be an odd integer and define e_{p} by $p^{{ }^{e}}{ }^{p} \| n$ for each prime divisor p of n. Then;
i) $D\left(\boldsymbol{Z} H_{n}\right) \oplus D\left(\boldsymbol{Z} D_{n}\right) \cong D\left(\boldsymbol{Z} H_{n} /\left(\tau^{2}+1\right)\right) \oplus D\left(\boldsymbol{Z} D_{2 n}\right)$
ii) $\quad D\left(\boldsymbol{Z} H_{n}\right) \cong O\left(D\left(\boldsymbol{Z} D_{2 n}\right)\right) \oplus D\left(\boldsymbol{Z} D_{n}\right)^{(2)} \oplus(\boldsymbol{Z} / 2 \boldsymbol{Z})^{\sum_{p \mid n}^{\mathcal{L}} e^{p}} \oplus L$,
where L is an extension of $D\left(Z D_{n}\right)^{(2)}$ by an elementary 2-group. In partiular, if $n=p^{t}$ for an odd prime p,

$$
D\left(\boldsymbol{Z} H_{p^{t}}\right) \cong D\left(\boldsymbol{Z} D_{2 p^{t}}\right) \oplus(\boldsymbol{Z} / 2 \boldsymbol{Z})^{t} .
$$

1. Decomposition of class groups

The following theorem will play an essential part in this paper.
Theorem 1.1. Let $N=N_{1} \times N_{2}$ be the direct product of groups N_{1} and N_{2} and $G=N \cdot F$ be the semidirect product of the group N by a group F. Assume that F acts on each $N_{i}, i=1,2$. Denote by G_{i} the subgroup $N_{i} \cdot F$ of $G, i=1,2$. Then $D(\boldsymbol{Z} F) \oplus D_{0}\left(\boldsymbol{Z} G_{1}\right) \oplus D_{0}\left(\boldsymbol{Z} G_{2}\right)\left(\right.$ resp. $\left.C(\boldsymbol{Z} F) \oplus C_{0}\left(\boldsymbol{Z} G_{1}\right) \oplus C_{0}\left(\boldsymbol{Z} G_{2}\right)\right)$ is a direst summand of $D(\boldsymbol{Z} G)($ resp. $C(\boldsymbol{Z} G))$. In particular, if $F=\{1\}, D\left(\boldsymbol{Z} G_{1}\right) \oplus D\left(\boldsymbol{Z} G_{2}\right)$ (resp. $\left.C\left(\boldsymbol{Z} G_{1}\right) \oplus C\left(\boldsymbol{Z} G_{2}\right)\right)$ is a direct summand of $D(\boldsymbol{Z} G)$ (resp. $C(\boldsymbol{Z} G)$).

Proof. We denote the augmentation ideal of $\boldsymbol{Z N}$ (resp. $\boldsymbol{Z} N_{i}$) by I_{N} (resp. $I_{N_{i}}$). There is an exact sequence

$$
0 \rightarrow D_{0}(Z G) \rightarrow D(Z G) \stackrel{\alpha}{\rightarrow} D(Z F) \rightarrow 0,
$$

where α is induced by $M \rightarrow \boldsymbol{Z} G /\left(I_{N}\right) \underset{Z G}{\otimes} M$. Let $\beta: D(\boldsymbol{Z F}) \rightarrow D(\boldsymbol{Z} G)$ be the induction map. Then it is easy to see that $\alpha \circ \beta=i d_{D\left(Z_{F}\right)}$. So we have that $D(\boldsymbol{Z} G) \cong D(\boldsymbol{Z} F) \oplus D_{0}(\boldsymbol{Z} G)$ (cf. [10]).

Let \mathfrak{a} be a projective left ideal of $\boldsymbol{Z} G_{1}$ such that the class [a] is in $D_{0}\left(\boldsymbol{Z} G_{1}\right)$. Then $\boldsymbol{Z} G \underset{\boldsymbol{Z} G_{1}}{\otimes} \mathfrak{a}$ is isomorphic to $\boldsymbol{Z} N_{2} \otimes \underset{\boldsymbol{Z}}{ } \mathfrak{a}$ as $\boldsymbol{Z} G$-modules. Since $\left[\boldsymbol{Z} G /\left(I_{N}\right) \mathbb{Z G}^{\otimes}\right.$ $\left.\left(\boldsymbol{Z} N_{2} \underset{\boldsymbol{Z}}{\otimes} \mathfrak{a}\right)\right]=\left[\boldsymbol{Z} G_{1} /\left(I_{N_{1}}\right) \otimes_{\boldsymbol{Z}} \mathfrak{a}\right]=0$ in $D(\boldsymbol{Z} F),\left[\boldsymbol{Z} N_{2}{\underset{Z}{\boldsymbol{Z}}}^{\otimes} \mathfrak{a}\right]$ is in $D_{0}(\boldsymbol{Z} G)$. Hence we have the map $\varphi_{1}: D_{0}\left(\boldsymbol{Z} G_{1}\right) \rightarrow D_{0}(\boldsymbol{Z} G)$ and similarly we get the map $\varphi_{2}: D_{0}\left(\boldsymbol{Z} G_{2}\right) \rightarrow$
$D_{0}(\boldsymbol{Z} G)$. Further, for a projective left ideal \mathfrak{b} of $\boldsymbol{Z} G$ such that $[\mathfrak{b}] \in D_{0}(\boldsymbol{Z} G)$, $\left[\boldsymbol{Z} G_{1} /\left(I_{N_{1}}\right) \underset{\boldsymbol{Z} G_{1}}{\otimes}\left(\boldsymbol{Z} G /\left(I_{N_{2}}\right) \underset{\boldsymbol{Z G}}{\otimes \mathfrak{b}}\right)\right]=0$ in $D(\boldsymbol{Z} F)$, so $\left[\boldsymbol{Z} G /\left(I_{N_{2}}\right) \underset{\boldsymbol{Z G}}{\otimes \mathfrak{b}}\right] \in D_{0}\left(\boldsymbol{Z} G_{1}\right)$. Hence we have the map $\psi_{1}: D_{0}(\boldsymbol{Z} G) \rightarrow D_{0}\left(\boldsymbol{Z} G_{1}\right)$ and similarly we get the map $\psi_{2}: D_{0}(\boldsymbol{Z} G)$ $\rightarrow D_{0}\left(\boldsymbol{Z} G_{2}\right)$. For every projective left ideal \mathfrak{a} of $\boldsymbol{Z} G_{1}$ such that $[\mathfrak{a}] \in D_{0}\left(\boldsymbol{Z} G_{1}\right)$, $\psi_{1} \circ \varphi_{1}[\mathfrak{a}]=\left[\boldsymbol{Z} G /\left(I_{N_{2}}\right) \underset{\boldsymbol{Z} \boldsymbol{G}}{\otimes}\left(\boldsymbol{Z} N_{2} \otimes \underset{\boldsymbol{Z}}{\otimes} \mathfrak{a}\right)\right]=\left[\boldsymbol{Z} G_{1} \underset{\boldsymbol{Z G}}{ } \mathfrak{a}\right]=[\mathfrak{a}]$ in $D_{0}\left(\boldsymbol{Z} G_{1}\right) . \quad$ In $\psi_{2} \circ \varphi_{1}[\mathfrak{a}]=$ $\left[\boldsymbol{Z} G /\left(I_{N_{1}}\right) \otimes_{\boldsymbol{Z} G}\left(\boldsymbol{Z} N_{2} \otimes \mathfrak{Z}\right)\right], N_{2}$ acts on $\boldsymbol{Z} G /\left(I_{N_{1}}\right)$ and N_{2} via group action and F acts on $\boldsymbol{Z} G /\left(I_{N_{1}}\right)$ via group action, and we know that $\psi_{2} \circ \varphi_{1}[\mathfrak{a}]=\left[\boldsymbol{Z} G_{2}\right]=0$ in $D_{0}\left(\boldsymbol{Z} \boldsymbol{G}_{2}\right)$. Consequently we see that $\left(\psi_{1} \oplus \psi_{2}\right) \circ\left(\varphi_{1} \oplus \varphi_{2}\right)=i d_{D_{0}\left(Z G_{1}\right) \oplus D_{0}\left(Z G_{2}\right)}$. This implies that $D_{0}\left(\boldsymbol{Z} G_{1}\right) \oplus D_{0}\left(\boldsymbol{Z} G_{2}\right)$ is a direct summand of $D_{0}(\boldsymbol{Z} G)$.

If $F=\{1\}$, then $D_{0}(\boldsymbol{Z} G)=D(\boldsymbol{Z} G)$ and $D_{0}\left(\boldsymbol{Z} G_{i}\right)=D\left(\boldsymbol{Z} G_{i}\right)$, hence we see that $D\left(\boldsymbol{Z} G_{1}\right) \oplus D\left(\boldsymbol{Z} G_{2}\right)$ is a direct summand of $D(\boldsymbol{Z} G)$. The assertion for $C(\boldsymbol{Z} G)$ can be proved in the same way as for $D(\boldsymbol{Z} G)$.

Throughout this paper p stands for a rational prime. In case where G is metacyclic, (1.1) will become as follows.

Proposition 1.2. Let $G=C_{n} \cdot C_{q}$ and define e_{p} by $p^{e} \phi \mid n$ for each $p \mid n$. Denote by G_{p} the subgroup $C_{p^{e} p} \cdot C_{q}$ of G. Assume that $(n, q)=1$ and that $\operatorname{Ker}\left(C_{q} \rightarrow \operatorname{Aut} C_{p^{e p}}\right)=C_{r}$ for every $p \mid n . \quad$ Let d denote the order of C_{q} / C_{r}. Then

$$
D(\boldsymbol{Z} G) \cong D\left(Z C_{q}\right) \oplus \underset{p \mid n}{\oplus} D_{0}\left(Z G_{p}\right) \oplus M
$$

where M is an extension of an abelian group whose exponent divides d by the group $\operatorname{Ker}\left[\operatorname{Ind}_{C_{n} \times C_{r}}^{G} D\left(\boldsymbol{Z} C_{n} \times C_{r}\right) \rightarrow \underset{p \mid n}{\oplus} \operatorname{Ind}_{C_{p}} \stackrel{{ }^{G_{p}} \times C_{r}}{ } D\left(\boldsymbol{Z} C_{p^{e p}} \times C_{r}\right)\right]$.

Proof. It follows from (1.1) that $D\left(\boldsymbol{Z} C_{q}\right) \oplus \underset{p \mid n}{\oplus} D_{0}\left(\boldsymbol{Z} G_{p}\right)$ is a direct summand of $D(\boldsymbol{Z} G)$. Now we determine the remaining factor M. Define the subgroup $D_{1}\left(\boldsymbol{Z} C_{n} \times C_{r}\right)\left(\right.$ resp. $\left.D_{1}\left(\boldsymbol{Z} C_{p^{e p}} \times C_{r}\right)\right)$ of $D\left(\boldsymbol{Z} C_{n} \times C_{r}\right)\left(\right.$ resp. $\left.D\left(\boldsymbol{Z} C_{p^{e p}} \times C_{r}\right)\right)$ as the complementary subgroup of $D\left(\boldsymbol{Z} C_{r}\right)$. Then there is a commutative diagram with exact rows and columns

where φ and φ^{\prime} are the inclusion maps and α, β, and γ are the natural maps. By the induction theorem (cf. [3]) we know that the exponent of Coker φ divides
d, and hence the exponent of Ker γ also divides d. Next consider the commutative diagram with exact rows and columns

Since δ is injective, $\operatorname{Ker} \delta=0$ and so $\operatorname{Ker} \alpha \cong \operatorname{Ker} \widetilde{\alpha}$. This completes the proof.
Let $N \cdot F$ be the semidirect product of a group N by a group F. For a $\boldsymbol{Z} N$-module M and each $\tau \in F$, we define another $\boldsymbol{Z} N$-module structure on M to be $\sigma \cdot m=\tau^{-1} \sigma \tau m$ where $\sigma \in N$ and $m \in M$, and denote it by M^{τ}. This yields the action of F on $D(\boldsymbol{Z} N)$. Hence $D(\boldsymbol{Z} N)$ can be regarded as a module over F.

Proposition 1.3. Let $G=C_{n} \cdot C_{q}$ and define e_{p} by $p^{e} p \| n$ for each $p \mid n$. Assume that C_{q} acts faithfylly on each Sylow subgroup of C_{n} and that $(n, q)=1$. Then

$$
D(\boldsymbol{Z} G) \cong D\left(\boldsymbol{Z} C_{q}\right) \oplus \underset{p \mid n}{\oplus} D\left(\boldsymbol{Z} C_{p^{e} p}\right)^{c_{n}} \oplus\left(\boldsymbol{Z} \left\lvert\, \frac{q}{(2, q)} \boldsymbol{Z}\right.\right)^{\sum_{p^{p / n} e_{p}}} \oplus \operatorname{Ind}_{C_{n}}^{G} D\left(\boldsymbol{Z} C_{n}\right)^{(q)} \oplus K
$$

where K is the complementary subgroup of $\underset{p \nmid n}{\oplus} D\left(\boldsymbol{Z} C_{p^{e} p}\right)^{c_{q}}$ in $\left(D\left(\boldsymbol{Z} C_{n}\right)^{C_{q}}\right)^{\left(q^{\prime}\right)}$.
Proof. We have the induction map $\varphi: D\left(\boldsymbol{Z} C_{n}\right) \rightarrow D_{0}(\boldsymbol{Z} G)$ and the restriction map $\psi: D_{0}(\boldsymbol{Z} G) \rightarrow D\left(\boldsymbol{Z} C_{n}\right)$. It is known that $\operatorname{Coker} \varphi \cong\left(\boldsymbol{Z} / \frac{q}{(2, q)} \boldsymbol{Z}\right)^{\sum_{p, n}^{p_{p}}}$ ([1]). We see that $q \cdot \operatorname{Ker} \psi=0$. Then we have that $\varphi: D\left(\boldsymbol{Z} C_{n}\right)^{\left(q^{\prime}\right)} \rightarrow D_{0}(\boldsymbol{Z} G)^{\left(q^{\prime}\right)}$ is surjective and that $\psi: D_{0}(\boldsymbol{Z} G)^{\left(q^{\prime}\right)} \rightarrow D\left(\boldsymbol{Z} C_{n}\right)^{\left(q^{\prime}\right)}$ is injective. On the other hand for a $\boldsymbol{Z} C_{n}$-module $M, \boldsymbol{Z} G \otimes M \cong M \oplus M^{\boldsymbol{\tau}} \oplus \cdots \oplus M^{\boldsymbol{\tau}-1}$ as $\boldsymbol{Z} C_{n}$-modules, where τ is a generator of C_{q}. So we see that $\psi \circ \varphi=\operatorname{trace}_{C_{q}}$. Since $q \cdot D\left(\boldsymbol{Z} C_{n}\right)^{\boldsymbol{q}_{q} \subseteq}$ $\operatorname{trace}_{C_{q}}\left(D\left(\boldsymbol{Z} C_{n}\right) \subseteq D\left(\boldsymbol{Z} C_{n}\right)^{c_{q}}, \operatorname{trace}_{C_{q}}:\left(D\left(\boldsymbol{Z} C_{n}\right)^{c_{q}}\right)^{\left(q^{\prime}\right)} \rightarrow\left(D\left(\boldsymbol{Z} C_{n}\right)^{C_{q}}\right)^{\left(q^{\prime}\right)}\right.$ is bijective. Hence $\psi: D_{0}(\boldsymbol{Z} G)^{\left(q^{\prime}\right)} \rightarrow\left(D\left(\boldsymbol{Z} C_{n}\right)^{C_{q}}\right)^{\left.q^{\prime}\right)}$ is surjective and $\varphi:\left(D\left(\boldsymbol{Z} C_{n}\right)^{C_{q}}\right)^{\left(q^{\prime}\right)} \rightarrow$ $D_{0}(\boldsymbol{Z} G)^{\left(q^{\prime}\right)}$ is injective, and so both maps are bijective. Applying this argument to the subgroup $G_{p}=C_{p^{e} p} \cdot C_{p}$ of G, we have the split exact sequence

$$
0 \rightarrow D\left(Z C_{p_{p}^{e}}\right)^{c_{q}} \rightarrow D_{0}\left(\boldsymbol{Z} G_{p}\right) \rightarrow\left(\boldsymbol{Z} / \frac{q}{(2, q)} \boldsymbol{Z}\right)^{e} \rightarrow 0
$$

we note here that $D\left(\boldsymbol{Z} C_{\boldsymbol{p}^{e} p}\right)$ is a p-group and that p is coprime to q.
Now applying (1.2), we get that

$$
\begin{aligned}
D(\boldsymbol{Z} G) & \cong D\left(\boldsymbol{Z} C_{q}\right) \oplus \underset{p \mid n}{\oplus} D\left(\boldsymbol{Z} C_{\boldsymbol{p}^{e} p}\right)^{C_{q}} \oplus\left(\boldsymbol{Z} \left\lvert\, \frac{q}{(2, q)} \boldsymbol{Z}\right.\right)^{\sum_{p, n} e_{p}} \oplus \\
\operatorname{Ker}\left[\operatorname{Ind}_{C_{n}}^{G} D\left(\boldsymbol{Z} C_{n}\right)\right. & \left.\rightarrow \underset{p \mid n}{\oplus} \operatorname{Ind}_{C_{p^{e} p}} C_{p} D\left(\boldsymbol{Z} C_{\boldsymbol{p}^{e} p}\right)\right] .
\end{aligned}
$$

Trivially the last factor is isomorphic to $\operatorname{Ind}_{C_{n}}^{G} D\left(Z C_{n}\right)^{(q)} \oplus \operatorname{Ker}\left[\operatorname{Ind}_{C_{n}}^{G} D\left(Z C_{n}\right)^{\left(q^{\prime}\right)}\right.$ $\left.\rightarrow \underset{p \mid n}{\bigoplus} \operatorname{Ind} C_{\boldsymbol{p}^{\delta_{p}}}^{G_{p}} D\left(\boldsymbol{Z} C_{p^{\phi_{p}}}\right)\right]$, and further, from the above argument on the induction maps it follows that the second factor is isomorphic to the complementary subgroup of $\underset{p \mid n}{\oplus} D\left(Z C_{p^{e} p}\right)^{c_{q}}$ in $\left(D\left(Z C_{n}\right)^{C_{q}}\right)^{\left(q^{\prime}\right)}$. This completes the proof.

2. Structure of $\boldsymbol{D}\left(\boldsymbol{Z H}_{\boldsymbol{n}}\right)$

Throughout this section we assume that $n \geqq 3$ is an odd integer.
Lemma 2.1. There are exact sequences

$$
\begin{aligned}
& 0 \rightarrow N \rightarrow D\left(\boldsymbol{Z} H_{n}\right) \rightarrow D\left(\boldsymbol{Z} D_{n}\right) \oplus D\left(\boldsymbol{Z} H_{n} /\left(\tau^{2}+1\right)\right) \rightarrow 0 \\
& 0 \rightarrow N^{\prime} \rightarrow D\left(\boldsymbol{Z} D_{2 n}\right) \rightarrow D\left(\boldsymbol{Z} D_{n}\right) \oplus D\left(\boldsymbol{Z} D_{n}\right) \rightarrow 0
\end{aligned}
$$

where both N and N^{\prime} are of odd order.
Proof. From the pullback diagrams

we get the (Mayer-Vietoris) exact sequences (cf. [8])

$$
\begin{aligned}
& K_{1}\left(\boldsymbol{Z} D_{n}\right) \oplus K_{1}\left(\boldsymbol{Z} H_{n} /\left(\tau^{2}+1\right)\right) \rightarrow K_{1}\left(\boldsymbol{F}_{2} D_{n}\right) \rightarrow D\left(\boldsymbol{Z} H_{n}\right) \rightarrow \\
& D\left(\boldsymbol{Z} D_{n}\right) \oplus D\left(\boldsymbol{Z} H_{n} /\left(\tau^{2}+1\right)\right) \rightarrow 0 \\
& K_{1}\left(\boldsymbol{Z} D_{n}\right) \oplus K_{1}\left(\boldsymbol{Z} D_{n}\right) \rightarrow K_{1}\left(\boldsymbol{F}_{2} D_{n}\right) \rightarrow D\left(\boldsymbol{Z} D_{2 n}\right) \rightarrow D\left(\boldsymbol{Z} D_{n}\right) \oplus D\left(\boldsymbol{Z} D_{n}\right) \rightarrow 0 .
\end{aligned}
$$

Hence it is sufficient to show that Coker $\left[K_{1}\left(\boldsymbol{Z} D_{n}\right) \rightarrow K_{1}\left(\boldsymbol{F}_{2} D_{n}\right)\right]$ is of odd order. Write $D_{2 n}=\left\langle\rho, \sigma, \tau \mid \rho^{2}=\sigma^{n}=\tau^{2}=1, \rho \sigma=\sigma \rho, \rho \tau=\tau \rho, \tau^{-1} \sigma \tau=\sigma^{-1}\right\rangle$ and $D_{n}=$ $\left\langle\sigma, \tau \mid \sigma^{n}=\tau^{2}=1, \tau^{-1} \sigma \tau=\sigma^{-1}\right\rangle$, and define $\Sigma_{n} \in \boldsymbol{Z} D_{2 n}$ (resp. $\Sigma_{n} \in Z D_{n}$) to be $\Sigma_{n}=\sum_{i=0}^{n-1} \sigma^{i}$. It has been shown [4] that $D\left(\boldsymbol{Z} D_{2 n}\right) \cong D\left(\boldsymbol{Z} D_{2 n} /\left(\Sigma_{n}\right)\right)$ and $D\left(\boldsymbol{Z} D_{n}\right) \cong$
$D\left(\boldsymbol{Z} D_{n} /\left(\Sigma_{n}\right)\right)$. Then we have the commutative diagram with exact rows

$$
\begin{gathered}
K_{1}\left(\boldsymbol{Z} D_{n}\right) \xrightarrow{\varphi} K_{1}\left(\boldsymbol{F}_{2} D_{n}\right) \rightarrow D\left(\boldsymbol{Z} \boldsymbol{D}_{2 n}\right) \rightarrow D\left(\boldsymbol{Z} D_{n}\right) \oplus D\left(\boldsymbol{Z} D_{n}\right) \rightarrow 0 \\
\imath \downarrow \\
\sum_{1}\left(\boldsymbol{Z} D_{n} /\left(\Sigma_{n}\right)\right) \xrightarrow{\varphi^{\prime}} K_{1}\left(\boldsymbol{F}_{2} D_{2 n} /\left(\Sigma_{n}\right)\right) \rightarrow D\left(\boldsymbol{Z} D_{2 n} /\left(\Sigma_{n}\right)\right) \rightarrow D\left(\boldsymbol{Z} D_{n} /\left(\Sigma_{n}\right)\right) \oplus D\left(\boldsymbol{Z} D_{n} /\left(\Sigma_{n}\right)\right) \rightarrow 0 .
\end{gathered}
$$

We see that Coker $\varphi \cong$ Coker φ^{\prime} and that the latter is of odd order, since $K_{1}\left(\boldsymbol{F}_{2} D_{n} /\left(\Sigma_{n}\right)\right)$ is so. This completes the proof.

Lemma 2.2. There is a commutative diagram with exact rows and columns
where E is an elementary 2-group.
Proof. We will use the following notation;
$R^{d}=$ the ring of integers of $\boldsymbol{Q}\left(\zeta_{d}+\zeta_{d}^{-1}\right)$, where ζ_{d} is a primitive d-th root of unity,

$$
R_{p}^{d}=\boldsymbol{Z}_{p} \otimes \mathbb{Z}_{\boldsymbol{Z}}^{d}, \quad \boldsymbol{Z}_{p} H_{m}=\boldsymbol{Z}_{p} \otimes \boldsymbol{Z} \boldsymbol{Z}_{m}, \quad \boldsymbol{Z}_{p} D_{m}=\boldsymbol{Z}_{n-1} \bigotimes_{\boldsymbol{Z}} \boldsymbol{Z} D_{m}
$$

Write $H_{n}=\left\langle\sigma, \tau \mid \sigma^{\boldsymbol{Z}}=\boldsymbol{\tau}^{4}=1, \tau^{-1} \sigma \tau=\sigma^{-1}\right\rangle$ and $\Sigma_{n}=\sum_{i=0}^{n-1} \sigma^{\boldsymbol{Z}} \in \boldsymbol{Z} Z H_{n}$. Then we see that $\operatorname{Nrd}\left(\left(\boldsymbol{Z}_{p} D_{2 n} /\left(\Sigma_{n}\right)\right)^{*}\right)=\left(\boldsymbol{Z}_{p}\left[\sigma+\sigma^{-1}, \rho\right] /\left(\Sigma_{n}\right)\right)^{*}$ for every prime p, because $\boldsymbol{Z}_{p} D_{2 n} /\left(\Sigma_{n}\right)$ is embedded into $M_{2}\left(\boldsymbol{Z}_{p}\left[\sigma+\sigma^{-1}, \rho\right] /\left(\Sigma_{n}\right)\right)$. Since we can prove by the same method as in $[4, \S 3]$ that $D\left(\boldsymbol{Z}\left[\sigma+\sigma^{-1}, \rho\right]\right) \cong D\left(\boldsymbol{Z}\left[\sigma+\sigma^{-1}, \rho\right] /\left(\Sigma_{n}\right)\right)$, we have that $D\left(\boldsymbol{Z} D_{2 n}\right) \cong D\left(\boldsymbol{Z}\left[\sigma+\sigma^{-1}, \rho\right]\right)$. Similarly we have that $D\left(\boldsymbol{Z} D_{n}\right) \cong$ $D\left(\boldsymbol{Z}\left[\sigma+\sigma^{-1}\right]\right)$. Now we express the class groups in idèlic form (cf. [6]). Then we have

$$
D\left(Z H_{n}\right) \cong \frac{\prod_{p \mid 2 n} \prod_{1 \neq d \mid n}\left(R_{p}^{d} * \times R_{p}^{d}{ }^{*}\right)}{\prod_{1 \neq d \mid n}\left(R^{d *} \times R^{d *}\right) \prod_{p \mid 2 n} n\left(Z_{p} H_{n}^{*}\right)}
$$

where $n\left(\boldsymbol{Z}_{p} H_{n}{ }^{*}\right)=\left\{\operatorname{Nrd}(x) \mid(1, x) \in \boldsymbol{Z}_{p} H_{n}{ }^{*} \hookrightarrow \boldsymbol{Z}_{p}\langle\tau\rangle^{*} \times \boldsymbol{Z}_{p} H_{n} /\left(\Sigma_{n}\right)^{*}\right\}$ and $R_{+}^{d *}=$ $\left\{u \in R^{d *} \mid u\right.$ is positive at all real places of $\left.R^{d}\right\}$,

$$
D\left(Z D_{2 n}\right) \cong \frac{\prod_{p \mid 2 n} \prod_{1 \neq d \mid n}\left(R_{p}^{d} * \times R_{p}^{d} *\right)}{\prod_{1 \neq d \mid n}\left(R^{d *} \times R^{d *}\right) \prod_{p \mid 2 n} u\left(Z_{p}\left[\sigma+\sigma^{-1}, \rho\right]\right)}
$$

where
$u\left(\boldsymbol{Z}_{p}\left[\sigma+\sigma^{-1}, \rho\right]\right)=\left\{y \mid(1, y) \in \boldsymbol{Z}_{p}\left[\sigma+\sigma^{-1}, \rho\right]^{*} \hookrightarrow \boldsymbol{Z}_{p}\langle\rho\rangle^{*} \times \boldsymbol{Z}_{p}\left[\sigma+\sigma^{-1}, \rho\right] /\left(\Sigma_{n}\right)^{*}\right\}$,

$$
D\left(Z H_{n} /\left(\tau^{2}+1\right)\right) \cong \frac{\prod_{p \mid n} \prod_{1 \neq d \mid n} R^{d}{ }_{p} *}{\prod_{1 \neq d \mid n} R^{d}{ }_{+} \prod_{p \mid n} n\left(Z_{p} H_{n} /\left(\tau^{2}+1\right)^{*}\right)},
$$

where $n\left(Z_{p} H_{n} /\left(\tau^{2}+1\right)^{*}\right)=$
$\left\{\operatorname{Nrd}(x) \mid(1, x) \in \boldsymbol{Z}_{p} H_{n} /\left(\tau^{2}+1\right)^{*} \hookrightarrow \boldsymbol{Z}_{p}[\bar{\tau}]^{*} \times \boldsymbol{Z}_{p} H_{n} /\left(\Sigma_{n}, \tau^{2}+1\right)^{*}\right\}$, and

$$
D\left(Z D_{n}\right) \cong \frac{\prod_{p \mid n} \prod_{1 \neq d \mid n} R_{p}^{d} *}{\prod_{1 \neq d \mid n} R^{d *} \prod_{p \mid n} u\left(Z_{p}\left[\sigma+\sigma^{-1}\right]\right)},
$$

where $u\left(\boldsymbol{Z}_{p}\left[\sigma+\sigma^{-1}\right]\right)=\left\{y \mid(1, y) \in \boldsymbol{Z}_{p}\left[\sigma+\sigma^{-1}\right]^{*} \hookrightarrow \boldsymbol{Z}_{p} * \times \boldsymbol{Z}_{p}\left[\sigma+\sigma^{-1}\right] /\left(\Sigma_{n}\right)^{*}\right\}$.
Hence there exist natural surjections $\varphi: D\left(\boldsymbol{Z} H_{n}\right) \rightarrow D\left(\boldsymbol{Z} D_{2 n}\right)$ and $\varphi^{\prime}: D\left(\boldsymbol{Z} H_{n} /\left(\tau^{2}+1\right)\right) \rightarrow D\left(\boldsymbol{Z} D_{n}\right)$. Then

$$
\operatorname{Ker} \varphi \cong \frac{\prod_{1 \neq d \mid n}\left(R^{d *} \times R^{d *}\right) \prod_{p \mid 2 n} u\left(Z_{p}\left[\sigma+\sigma^{-1}, \rho\right]\right)}{\prod_{1 \neq d \mid n}\left(R^{d *} \times R^{d *}\right) \prod_{p \mid 2 n} n\left(Z_{p} H_{n}{ }^{*}\right)} .
$$

Trivially $\left(R^{d *}\right)^{2} \subseteq R^{d *}$ for every $d \mid n, d \neq 1$. Since the degree of $\boldsymbol{Z}_{p} H_{n} /\left(\Sigma_{n}\right)$ over its center is $4, u\left(\boldsymbol{Z}_{p}\left[\sigma+\sigma^{-1}, \rho\right]\right)^{2} \subseteq n\left(\boldsymbol{Z}_{p} H_{n}{ }^{*}\right)$ for every $p \mid n$. Hence $\operatorname{Ker} \varphi$ is an elementary 2-group. Similarly we can show that $\operatorname{Ker} \varphi^{\prime}$ is an elementary 2group.

Let $\psi: D\left(\boldsymbol{Z} H_{n}\right) \rightarrow D\left(\boldsymbol{Z} H_{n} /\left(\tau^{2}+1\right)\right)$ and $\psi^{\prime}: D\left(\boldsymbol{Z} D_{2 n}\right) \rightarrow D\left(\boldsymbol{Z} D_{n}\right)$ be the maps defined as follows; for $(x, y) \in\left(\prod_{p \mid 2 n} \prod_{1 \neq d \mid n} R_{p}^{d}{ }^{*}\right) \times\left(\prod_{p \mid 2 n} \prod_{1 \neq d \mid n} R^{d}{ }_{p}^{*}\right), \psi$ (the class of $(x, y))=$ the class of y, and ψ^{\prime} (the class of $\left.(x, y)\right)=$ the class of y. In fact ψ (resp. ψ^{\prime}) is the map induced by the natural surjection $\boldsymbol{Z} H_{n} \rightarrow \boldsymbol{Z} H_{n} /\left(\tau^{2}+1\right)$ (resp. $\left.\boldsymbol{Z} D_{2 n} \rightarrow \boldsymbol{Z} D_{2 n} /(\rho+1) \cong \boldsymbol{Z} D_{n}\right)$. It is clear that both ψ and ψ^{\prime} are surjective. Further we have the commutative diagram with exact rows and columns

$$
\begin{aligned}
& 0 \rightarrow N \rightarrow D\left(\boldsymbol{Z H}_{n}\right) \xrightarrow{(, \psi)} D\left(\boldsymbol{Z} D_{n}\right) \oplus D\left(\boldsymbol{Z} H_{n} /\left(\tau^{2}+1\right)\right) \rightarrow 0
\end{aligned}
$$

Since $\operatorname{Ker} \varphi$ and $\operatorname{Ker} \varphi^{\prime}$ are 2 -group, we get by (2.1) that $\operatorname{Ker} \varphi \cong \operatorname{Ker} \varphi^{\prime}$. Thus we conclude the proof.

Theorem 2.3. Let $n \geqq 3$ be an odd integer and define e_{p} by $p^{e} p \| n$ for each $p \mid n$. Then:
i) $D\left(\boldsymbol{Z} H_{n}\right) \oplus D\left(\boldsymbol{Z} D_{n}\right) \cong D\left(\boldsymbol{Z} H_{n} /\left(\tau^{2}+1\right)\right) \oplus D\left(\boldsymbol{Z} D_{2 n}\right)$
ii) $\quad D\left(\boldsymbol{Z} H_{n}\right) \cong O\left(D\left(Z D_{2 n}\right)\right) \oplus D\left(Z D_{n}\right)^{(2)} \oplus(Z / 2 Z)^{\sum_{p, n}^{p e p}} \oplus L$,
where L is an extension of $D\left(Z D_{n}\right)^{(2)}$ by an elementary 2-group. In particular, if $n=p^{t}$ for an odd prime p,

$$
D\left(Z H_{p^{t}}\right) \cong D\left(Z D_{2 p^{t}}\right) \oplus(\boldsymbol{Z} / 2 \boldsymbol{Z})^{t} .
$$

Proof. By (2.2) we have the commutative diagram with exact rows and columns

Since ψ^{\prime} splits by (1.2), ψ splits also. Therefore

$$
\begin{aligned}
& D\left(Z H_{n}\right) \oplus D\left(\boldsymbol{Z} D_{n}\right) \cong D\left(Z H_{n} /\left(\tau^{2}+1\right)\right) \oplus F \oplus D\left(Z D_{n}\right) \\
\cong & D\left(Z H_{n} /\left(\tau^{2}+1\right)\right) \oplus D\left(Z D_{2 n}\right) .
\end{aligned}
$$

For the proof of ii) we begin with the case $n=p^{t}$. It has been shown (e.g. [1], [4]) that $d\left(\boldsymbol{Z} D_{p^{t}}\right)$ and $d\left(\boldsymbol{Z} D_{2 p^{t}}\right)$ are odd, and hence in this case the exact sequences in (2.2) split. On the other hand it is known that the 2-part of $D\left(Z H_{p^{t}} /\left(\tau^{2}+1\right)\right)$ is an elementary 2-group of rank $t([11])$. Therefore we see that

$$
D\left(Z H_{p^{t}}\right) \cong D\left(Z D_{2 p^{t}}\right) \oplus(\boldsymbol{Z} / 2 \boldsymbol{Z})^{t}
$$

Next consider the general case. By (2.1) we see that

$$
D\left(Z H_{n}\right)^{(2)} \cong D\left(Z D_{n}\right)^{(2)} \oplus D\left(Z H_{n} /\left(\tau^{2}+1\right)\right)^{(2)}
$$

On the other hand, by (2.2), we have that $O\left(D\left(Z H_{n}\right)\right) \cong O\left(D\left(Z D_{2 n}\right)\right)$. Thus we get

$$
D\left(Z H_{n}\right) \cong O\left(D\left(Z D_{2 n}\right)\right) \oplus D\left(Z D_{n}\right)^{(2)} \oplus D\left(Z H_{n} /\left(\tau^{2}+1\right)\right)^{(2)}
$$

There is a commutative diagram with exact rows

It can be shown along the same line as in (1.2) that α is surjective and splir, and by (2.2) E is an elementary 2 -group. Therefore we see that

$$
D\left(Z H_{n} /\left(\tau^{2}+1\right)\right)^{(2)} \cong(Z / 2 Z)^{\sum_{p_{n}} e_{p}} \oplus L,
$$

where L is an extension of $D\left(\boldsymbol{Z} D_{n}\right)^{(2)}$ by an elementary 2-group. We conclude the proof.

Remark 2.4. When $n=p^{t}$, rank $E=t$. But it may be conjectured that $\operatorname{rank} E-\sum_{p \mid n} e_{p}>0$ unless n is a power of an odd prime. In fact, when $n=15$, $E \cong C_{2} \times C_{2} \times C_{2}$ and in this case we get that $D\left(Z H_{15}\right) \cong C_{2} \times C_{2} \times C_{2}$. We note here the outline of the computation.

Since $D\left(Z D_{30}\right)=D\left(Z D_{15}\right)=\{1\}([4])$, the commutative diagram in the proof of (2.3) shows that $F=\{1\}$, and hence

$$
E \cong D\left(Z H_{15}\right) \cong D\left(Z H_{15} /\left(\tau^{2}+1\right)\right)
$$

Along the same line as in the proof of [1, Theorème 3] we get that for an odd square-free integer n,

$$
D\left(Z H_{n} /\left(\tau^{2}+1\right)\right) \cong \underset{p \mid n}{\oplus} D\left(Z H_{p} /\left(\tau^{2}+1\right)\right) \oplus \underset{\substack{1 \neq d \mid n \\ d \neq \text { prime }}}{\oplus}\left(R^{d} / I^{d}\right)^{*} / \operatorname{Im} R^{d *},
$$

where $I^{d}=\prod_{p l d}\left(1-\zeta_{p}\right)\left(1-\zeta_{p}^{-1}\right) R^{d}$. Further we see that there is a natural surjection $\underset{\substack{\neq d \| n \\ d \neq \text { prime }}}{\oplus}\left(R^{d} / I^{d}\right)^{*} / \operatorname{Im} R^{d *} \rightarrow D\left(Z H_{n} /\left(\Sigma_{n}, \tau^{2}+1\right)\right)$. On the other hand, we know that $\operatorname{Ker}\left[D\left(\boldsymbol{Z} H_{n} /\left(\tau^{2}+1\right)\right) \rightarrow D\left(\boldsymbol{Z} H_{n} /\left(\Sigma_{n}, \tau^{2}+1\right)\right)\right]$ is an elementary 2-group of rank $\sum_{p \mid n} 1$. Though this is true for every odd integer, here we give the proof for the square-free case. Expressing both groups in idèlic form (cf. the proof of (2.2)), we know that

$$
\begin{aligned}
& \operatorname{Ker}\left[D\left(Z H_{n} /\left(\tau^{2}+1\right)\right) \rightarrow D\left(\boldsymbol{Z} H_{n} /\left(\Sigma_{n}, \tau^{2}+1\right)\right)\right] \\
& \prod_{1 \neq d \mid n} R^{2 *} \prod_{p \mid n} \operatorname{Nrd}\left(Z_{p} H_{n} /\left(\Sigma_{n}, \tau^{2}+1\right)^{*}\right) \\
& \prod_{1 \neq d \mid n} R_{+}^{d *} \prod_{p \mid n} n\left(Z_{p} H_{n} /\left(\tau^{2}+1\right)^{*}\right) \\
& \cong \prod_{p \mid n}\left(\frac{R^{p}{ }^{*} \operatorname{Nrd}\left(Z_{p} H_{p} /\left(\Sigma_{p}, \tau^{2}+1\right)^{*}\right)}{R^{p *} n\left(Z_{p} H_{p} /\left(\tau^{2}+1\right)^{*}\right)}\right) \\
& \cong \bigoplus_{p \mid n} \operatorname{Ker}\left[D\left(\boldsymbol{Z} H_{p} /\left(\tau^{2}+1\right)\right) \rightarrow D\left(Z H_{p} /\left(\Sigma_{p}, \tau^{2}+1\right)\right)\right] \\
& \cong(\boldsymbol{Z} / 2 Z)^{\sum_{p \mid n}{ }^{1}}
\end{aligned}
$$

Hence we have that for an odd square-free integer n

$$
\begin{aligned}
D\left(Z H_{n} /\left(\tau^{2}+1\right)\right) & \cong \underset{p \mid n}{\oplus} D\left(Z H_{p} /\left(\tau^{2}+1\right)\right) \oplus D\left(Z H_{n} /\left(\Sigma_{n}, \tau^{2}+1\right)\right) \\
& \cong(\boldsymbol{Z} / 2 \boldsymbol{Z})^{\sum_{p n}{ }^{1}} \oplus D\left(Z H_{n} /\left(\Sigma_{n}, \tau^{2}+1\right)\right) .
\end{aligned}
$$

Now let us return to the case $n=15$. It is sufficient to show that $D=$ $D\left(\boldsymbol{Z} H_{15} /\left(\Sigma_{15}, \boldsymbol{\tau}^{2}+1\right)\right) \cong \boldsymbol{Z} / 2 \boldsymbol{Z}$. From the pullback diagram

$$
\begin{aligned}
& \left.\boldsymbol{Z} H_{15} /\left(\Sigma_{15}, \boldsymbol{\tau}^{2}+1\right)\right) \longrightarrow \boldsymbol{\downarrow}\left[\zeta_{15}, \bar{\tau}\right] \\
& \boldsymbol{Z}\left[\zeta_{3}, \bar{\tau}\right] \oplus \boldsymbol{Z}\left[\zeta_{5}, \bar{\tau}\right] \rightarrow \boldsymbol{F}_{5}\left[\zeta_{3}, \bar{\tau}\right] \oplus \boldsymbol{F}_{3}\left[\zeta_{5}, \bar{\tau}\right]
\end{aligned}
$$

we get the exact sequence

$$
\begin{aligned}
& K_{1}\left(\boldsymbol{Z}\left[\zeta_{3}, \bar{\tau}\right]\right) \oplus K_{1}\left(\boldsymbol{Z}\left[\zeta_{5}, \bar{\tau}\right]\right) \oplus K_{1}\left(\boldsymbol{Z}\left[\zeta_{15}, \bar{\tau}\right]\right) \rightarrow \\
& K_{1}\left(\boldsymbol{F}_{5}\left[\zeta_{3}, \bar{\tau}\right]\right) \oplus K_{1}\left(\boldsymbol{F}_{3}\left[\zeta_{5}, \bar{\tau}\right]\right) \rightarrow D \rightarrow 0 .
\end{aligned}
$$

Taking the reduced norm, we have the exact sequence

$$
Z_{+}^{*} \oplus Z\left[\zeta_{5}+\zeta_{5}^{-1}\right]^{*} \oplus \boldsymbol{Z}\left[\zeta_{15}+\zeta_{15}^{-1}\right]_{+}^{*} \rightarrow F_{5}^{*} \oplus F_{3}\left[\zeta_{5}+\zeta_{5}^{-1}\right]^{*} \rightarrow D \rightarrow 0 .
$$

On the other hand $\boldsymbol{Z}\left[\zeta_{15}+\zeta_{15}^{-1}\right]^{*}=\left\{\varepsilon_{1}{ }^{a} \varepsilon_{2}{ }^{b} \varepsilon_{3}{ }^{c} \mid a, b\right.$ and c are all odd or all even $\}$, where $\varepsilon_{1}=\zeta_{15}+\zeta_{15}^{-1}-1, \varepsilon_{2}=\zeta_{15}^{2}+\zeta_{15}^{-2}-1$ and $\varepsilon_{3}=\zeta_{15}^{3}+\zeta_{15}^{-3}+1$. A direct computation shows that $D \cong \boldsymbol{Z} / 2 \boldsymbol{Z}$.

Remark 2.5. Let $\Lambda_{2 n}=\boldsymbol{Z} C_{2 n} \cap \prod_{d \mid n} R^{d} \times R^{d}$. Cassou-Noguès has shown in [2] that there exists a surjection of $D\left(\boldsymbol{Z} H_{n}\right)$ in $D\left(\Lambda_{2 n}\right)$ whose kernel is an elementary 2-group. It is seen in the proof of (2.2) that $D\left(\Lambda_{2 n}\right) \cong D\left(Z D_{2 n}\right)$. Hence a part of (2.2) and the final assertion of (2.3) are only restatements of the results of Cassou-Noguès.

Remark 2.6. Recently, after this manuscript was written, T. Miyata has shown [9] that Res: $D\left(\boldsymbol{Z} D_{m}\right) \rightarrow D\left(\boldsymbol{Z} C_{m}\right)$ is injective for every integer $m>1$. Using this we know that the map φ in (2.2) has a close relation to the restriction $\operatorname{Res}_{C_{2 n}}^{H_{n}}$: $D\left(\boldsymbol{Z} H_{n}\right) \rightarrow D\left(\boldsymbol{Z} C_{2 n}\right)$. Further we can extend the results to the case where n is even. Let $m>1$ be an integer and $H_{m}=\langle\sigma, \tau| \sigma^{2 m}=1, \sigma^{m}=\tau^{2}$, $\left.\boldsymbol{\tau}^{-1} \sigma \tau=\sigma^{-1}\right\rangle$. Then there is a natural surjection $\varphi: D\left(Z H_{m}\right) \rightarrow D\left(Z D_{2 m}\right)$ such
 From this we see that $\operatorname{Res}{ }_{C_{2 m}}^{H_{m}}\left(D\left(\boldsymbol{Z} H_{m}\right)\right) \cong D\left(\boldsymbol{Z} D_{2 m}\right)$ and $\operatorname{Ker} \varphi=\operatorname{Ker} \operatorname{Res}_{C_{2 m}}^{H_{m}}$ is an elementary 2-group.

We give here the outline of the proof. There are isomorphisms (for details see [6], [7])

$$
\begin{aligned}
C(\boldsymbol{Z} G) & \cong J_{Q G} /\left[J_{\boldsymbol{Q G}}, J_{\boldsymbol{Q G}}\right](\boldsymbol{Q} G)^{*} U(\boldsymbol{Z} G) \\
& \cong \operatorname{Hom}_{\mathrm{Q}_{\boldsymbol{Q}}}\left(R_{G}, J_{F}\right) / \operatorname{Hom}_{\mathbf{\Omega}_{\boldsymbol{Q}}}\left(R_{G}, F^{*}\right) \operatorname{Det}(U(\boldsymbol{Z} G)),
\end{aligned}
$$

where R_{G} is the Grothendieck group of virtual characters of G. For each element of $D(\boldsymbol{Z} G)$ we can choose representatives as follows;
a projective left ideal M

$$
\begin{aligned}
& \leftrightarrow \alpha=\left(\alpha_{p}\right) \in U(\mathfrak{M}) \subseteq J_{\boldsymbol{Q} G}, \text { where } \mathfrak{M} \text { is a maximal order of } \boldsymbol{Q} G \\
& \quad \text { containing } \boldsymbol{Z} G \text {, such that } M=\bigcap_{p}\left(\boldsymbol{Z}_{p} G \alpha_{p} \cap \boldsymbol{Q} G\right) \\
& \leftrightarrow \operatorname{Det}(\alpha) \in \operatorname{Hom}_{Q_{\boldsymbol{Q}}}\left(R_{G}, J_{F}\right) .
\end{aligned}
$$

For a subgroup H of $G, \operatorname{Res}_{H}^{G}(M)$ has the representative $\rho_{G / H}(\operatorname{Det}(\alpha))$, where $\rho_{G / H}(\operatorname{Det}(\alpha))(\chi)=\operatorname{Det}_{\operatorname{Ind}_{H}}(\alpha)$ for $\chi \in R_{H}$ (for details see Appendix in [7]).

Now we compute $\operatorname{Res}{ }_{C_{2 m}}^{H_{m}}$ and $\operatorname{Res}_{C_{2 m}}^{D_{2 m}}$ by using $\rho_{H_{m} / c_{2 m}}$ and $\rho_{D_{2 m} / c_{2 m}}$. When m is odd, we have the commutative diagram with exact row and column

where φ is the map defined in (2.2). Let m be even. Since $\operatorname{Res}_{C_{2 m}}^{D_{2 m}}$ is injective, we know that the natural map φ of $D\left(\boldsymbol{Z} H_{m}\right) \cong U(\Theta)_{+} / \theta_{+}^{*} \operatorname{Nrd}\left(U\left(\boldsymbol{Z} H_{m}\right)\right)$ to $D\left(\boldsymbol{Z} D_{2 m}\right) \cong U(\mathcal{O}) / \mathcal{O}^{*} \operatorname{Nrd}\left(U\left(\boldsymbol{Z} D_{2 m}\right)\right)$, where $\mathcal{O}=\boldsymbol{Z} \oplus \boldsymbol{Z} \oplus \boldsymbol{Z} \oplus \boldsymbol{Z} \oplus \underset{\substack{d 12 m \\ d \neq 1,2}}{\oplus} R^{d}$, is well defined. Hence we also have the diagram (*). Finally, $\operatorname{Ker} \varphi=\operatorname{Ker} \operatorname{Res}{ }_{C_{2 m}}^{H_{m}}$ is annihilated by 2 (the Artin exponent of H_{m}).

University of Tsukuba

References

[1] P. Cassou-Noguès: Groupe des classes de l'algebre d'un groupe métacyclique, J. Algebra 41 (1976), 116-136.
[2] P. Cassou-Noguès: Quelques théorèmes de base normale d'entiers, to appear in Ann. Inst. Fourier.
[3] S. Endo and T. Miyata: Quasi-permutation modules over finite groups, II, J. Math. Soc. Japan 26 (1974), 698-713.
[4] S. Endo and T. Miyata: On the class groups of dihedral groups, to appear in J. Algebra.
[5] A. Fröhlich: Module invariants and root numbers for quaternion fields of degree $4 l^{r}$, Proc. Cambridge Philos. Soc. 76 (1974), 393-399.
[6] A. Fröhlich: Locally free modules over arithmetic orders, Crelles J. 274/275 (1975), 112-138.
[7] A. Fröhlich: Arithmetic and Galois module structure for tame extensions, Crelles J. 286/287 (1976), 380-440.
[8] J. Milnor: Introduction to algebraic K-theory, Annals of Math. Studies, 72, Princeton Univ. Press, 1971.
[9] T. Miyata: A normal integral basis theorem for dihedral groups, to appear in Tôhoku Math. J.
[10] I. Reiner: Projective class groups of symmetric and alternating groups, Linear and Multilinear Algebra 3 (1975), 147-153.
[11] S.M.J. Wilson: Reduced norms in the K-theory of orders, J. Algebra 46 (1977), 1-11.

