DOUBLY TRANSITIVE GROUPS OF EVEN DEGREE WHOSE ONE POINT STABILIZER HAS A NORMAL SUBGROUP ISOMORPHIC TO PSL($3,2^{n}$)

Yutaka HIRAMINE

(Received October 16, 1978)

1. Introduction

Let G be a doubly transitive permutation group on a finite set Ω and $\alpha \in \Omega$. By [4], the product of all minimal normal subgroups of G_{∞} is the direct product $A \times N$, where A is an abelian group and N is 1 or a nonabelian simple group.

In this paper we consider the case $N \simeq P S L(3, q)$ with q even and prove the following:

Theorem. Let G be a doubly transitive permutation group on Ω of even degree and let $\alpha, \beta \in \Omega(\alpha \neq \beta)$. If G_{a} has a normal subgroup N^{a} isomorphic to $\operatorname{PSL}(3, q), q=2^{n}$, then N^{α} is transitive on $\Omega-\{\alpha\}$ and one of the following holds:
(i) G has a regular normal subgroup E of order $q^{3}=2^{3 n}$, where n is odd and G_{a} is isomorphic to a subgroup of $\Gamma L(3, q)$. Moreover there exists an element g in $\operatorname{Sym}(\Omega)$ such that $\alpha^{g}=\alpha,\left(G_{a}\right)^{g}$ normalizes E and $A \Gamma L(3, q) \geq\left(G_{a}\right)^{g} E \geq A S L(3, q)$ in their natural doubly transitive permutation representation.
(ii) $|\Omega|=22, G^{\Omega}=M_{22}$ and $N^{a} \simeq P S L(3,4)$.
(iii) $|\Omega|=22, G^{\varrho}=\operatorname{Aut}\left(M_{22}\right)$ and $N^{\alpha} \simeq \operatorname{PSL}(3,4)$.

We introduce some notations.
$V(n, q) \quad: \quad$ a vector space of dimension n over $G F(q)$
$\Gamma L(n, q)$: the group of all semilinear automorphism of $V(n, q)$
$A \Gamma L(n, q)$: the semidirect product of $V(n, q)$ by $\Gamma L(n, q)$ in its natural action
$A S L(n, q)$: the semidirect product of $V(n, q)$ by $S L(n, q)$ in its natural action
$F(X) \quad$: the set of fixed poinis of a nonempty subset X of G
$X(\Delta) \quad$: the global stabilizer of a subset $\Delta(\subseteq \Omega)$ in X
$X_{\Delta} \quad$: the pointwise stabilizer of Δ in X
$X^{\Delta} \quad$: the restriction of X on Δ
$\operatorname{Sym}(\Delta)$: the symmetric group on Δ
$X^{H} \quad: \quad$ the set of H-conjugates of X
$|X|_{p} \quad$: the maximal power of a prime p dividing the order of X
$I(X) \quad: \quad$ the set of involutions contained in X
$E_{m} \quad: \quad$ an elementary abelian group of order m
Other notations are standard and taken from [1].

2. Preliminaries

Lemma 2.1 Let G be a doubly transitive permutation group on Ω of even degree, $\alpha \in \Omega$ and N^{a} a normal subgroup of G_{a} isomorphic to $\operatorname{PSL}(2, q), S z(q)$ or $\operatorname{PSU}(3, q)$ with $q(>2)$ even. Then $N^{\alpha} \simeq P S L(2, q), N^{\alpha} \neq S z(q), \operatorname{PSU}(3, q), N^{\infty}$ is transitive on $\Omega-\{\alpha\}$ and one of the following holds:
(i) G has a regular normal subgroup E of order $q^{2}, N_{\beta}^{\alpha}=N^{\alpha} \cap N^{\beta} \simeq E_{q}$ and G_{a} is isomorphic to a subgroup of $\Gamma L(2, q)$. Moreover there exists an element g in $\operatorname{Sym}(\Omega)$ such that $\alpha^{g}=\alpha,\left(G_{a}\right)^{g}$ normalizes E and $A \Gamma L(2, q) \geq\left(G_{a}\right)^{g} E \geq A S L(2, q)$ in their natural doubly transitive permutation representation.
(ii) $|\Omega|=6$ and $G^{\Omega}=A_{6}$ or S_{6}.

Proof. By Theorem 2 of [2], it suffices to consider the case that $N_{\beta}^{\alpha}=$ $N^{\alpha} \cap N^{\beta} \simeq E_{q}$ and G has a regular normal subgroup of order q^{2}. Since $\mid N^{\alpha}$: $N_{\beta}^{\alpha} \mid=q^{2}-1, N^{\omega}$ is transitive on $\Omega-\{\alpha\}$.

Let E be the regular normal subgroup of G. Then we may assume $\Omega=$ $E, \alpha=0 \in E$ and the semidirect product $G L(E) E$ is a subgroup of $\operatorname{Sym}(\Omega)$. There is a subgroup H of $G L(E)$ such that $H \simeq \Gamma L(2, q)$ and $H E \simeq A \Gamma L(2, q)$. Let L be the normal subgroup of H isomorphic to $S L(2, q)$. Then $L_{\beta} \simeq E_{q}$ for $\beta \in \Omega-\{\alpha\}$. Hence $\left(N^{\alpha}\right)^{\alpha-\{\alpha\}} \simeq L^{Q-\{\alpha\}}$ and so there are an automorphism f from N^{α} to L and $g \in \operatorname{Sym}(\Omega)$ satisfying $\alpha^{g}=\alpha$ and $\left(\beta^{x}\right)^{g}=\left(\beta^{g}\right)^{f(x)}$ for each $\beta \in$ $\Omega-\{\alpha\}$ and $x \in N^{\alpha}$. From this, $\left(\beta^{g}\right)^{g-1 x g}=\left(\beta^{x}\right)^{g}=\left(\beta^{g}\right)^{f(x)}$, so that $g^{-1} x g=f(x)$. Hence $g^{-1} N^{a} g=L$.

Set $S=L_{\beta}, X=\operatorname{Sym}(\Omega) \cap N(L), D=C_{X}(L)$ and $Y=N_{L}(S) . \quad$ By the properties of $A \Gamma L(2, q), L$ is transitive on $\Omega-\{\alpha\},|F(S)|=q$ and $Y / S \simeq Z_{q-1}$. Hence D is semi-regular on $\Omega-\{\alpha\}$ and $Y^{F(S)}$ is regular on $F(S)-\{\alpha\}$ and so $D \simeq$ $D^{F(S)} \leq Y^{F(S)}$ because $\left[D, N^{\alpha}\right]=1$. Therefore $D \leq Z_{q-1}$. Since $X / D L$ is isomorphic to a subgroup of the outer automorphism group of $S L(2, q)$, we have $|X| \leq$ $|\Gamma L(2, q)|$, while $\Gamma L(2, q) \simeq H \leq X$. Hence $X=H$ and X normalizes E. Therefore, as $\left(G_{\alpha}\right)^{g} \unrhd\left(N^{a}\right)^{g}=L$, we have $\left(G_{\alpha}\right)^{g} \leq H$. Thus Lemma 2.1 is proved.

Lemma 2.2 Let G be a doubly transitive permutation group on Ω of even degree and N^{a} a nonabelian simple normal subgroup of $G_{a}, \alpha \in \Omega$. If $C_{G}\left(N^{\alpha}\right) \neq 1$, then $N_{\beta}^{\alpha}=N^{\omega} \cap N^{\beta}$ for $\alpha \neq \beta \in \Omega$ and $C_{G}\left(N^{\alpha}\right)$ is semi-regular on $\Omega-\{\alpha\}$. Moreover $C_{G}\left(N^{a}\right)=0\left(N^{a}\right)$.

Proof. See Lemma 2.1 of [2].

Lemma 2.3 Let G be a transitive permutation group on a finite set Ω, H a stabilizer of a point of Ω and M a nonempty subset of G. Then

$$
|F(M)|=\left|N_{G}(M)\right| \times\left|\left\{M^{g} \mid M^{g} \subseteq H, g \in G\right\}\right| /|H| .
$$

Proof. See Lemma 2.2 of [2].
Lemma 2.4 Let H be a transitive permutation group on a finite set Δ and N a normal subgroup of H. Assume that a subgroup X of N satisfies $X^{H}=X^{N}$. Then
(i) $\left|F(X) \cap \beta^{N}\right|=\left|F(X) \cap \gamma^{N}\right|$ for $\beta, \gamma \in \Delta$.
(ii) $|F(X)|=\left|F(X) \cap \beta^{N}\right| \times r$, where r is the number of N-orbits on Δ.

Proof. By the same argument as in the proof of Lemma 2.4 of [3], we obtain Lemma 2.4.
2.5 Properties of $\operatorname{PSL}(3, q), q=2^{n}$.

Let $N_{1}=S L(3, q), S_{1}=\left\{\left.\left(\begin{array}{lll}1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1\end{array}\right) \right\rvert\, a, b, c \in G F(q)\right\}, \quad A_{1}=\left\{\left.\left(\begin{array}{lll}1 & a & b \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) \right\rvert\, a, b \in\right.$ $G F(q)\}, \quad B_{1}=\left\{\left.\left(\begin{array}{lll}1 & 0 & b \\ 0 & 1 & c \\ 0 & 0 & 1\end{array}\right) \right\rvert\, b, c \in G F(q)\right\}$ and $Z=\left\{\left.\left(\begin{array}{lll}d & 0 & 0 \\ 0 & d & 0 \\ 0 & 0 & d\end{array}\right) \right\rvert\, d \in G F(q), d^{3}=1\right\}$. Then $|Z|=(3, q-1)$ and $\bar{N}_{1}=N_{1} / Z$ is isomorphic to $\operatorname{PSL}(3, q)$. Set $N=\bar{N}_{1}$, $S=\bar{S}_{1}, A=\bar{A}_{1}$ and $B=\bar{B}_{1}$. Then the following hold.
(i) N is a nonabelian simple group of order $q^{3}(q-1)^{3}(q+1)\left(q^{2}+q+1\right) /$ (3, q-1).
(ii) $|S|=q^{3}, S^{\prime}=\Phi(S)=Z(S)=\left\{x^{2} \mid x \in S\right\}=\left\{\left.\left(\begin{array}{lll}1 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) \right\rvert\, b \in G F(q)\right\} \simeq E_{q}$, $S / S^{\prime} \simeq E_{q^{2}}$ and S is a Sylow 2-subgroup of N.
(iii) $S=\langle A, B\rangle, A \cap B=Z(S), I(S) \subseteq A \cup B$ and each elementary abelian subgroup of S is contained in A or B. Let $z \in I(S)-Z(S)$. Then $C_{S}(z)=$ A or B.
(iv) Set $M_{1}=A^{N}, M_{2}=B^{N}$. Then $M_{1} \neq M_{2}$ and $M_{1} \cup M_{2}$ is the set of all subgroup of N isomorphic to $E_{q^{2}}$.
(v) Let z be an involution of N. Then $I(N)=z^{N}$ and $\left|C_{N}(z)\right|=(q-1) q^{3} \mid$ (3, $q-1$).
(vi) Let E denote A or B. Then $\left|N_{N}(E)\right|=(q-1)^{2}(q+1) q^{3} /(3, q-1), N_{N}(E) /$ $E \simeq Z_{k} \times P S L(2, q)$, where $k=(q-1) /(3, q-1)$ and $N_{N}(E)$ is a maximal subgroup of N.
(vii) Set $M=\left(N_{N}(E)\right)^{\prime}$. If $q>2$, then $M=M^{\prime}, M \unrhd E, M / E \simeq P S L(2, q)$ and M acts irreducibly on E.
(viii) Set $\Delta=E^{N}$. Then $|\Delta|=q^{2}+q+1$ and by conjugation N is doubly transitive on Δ, which is an usual doubly transitive permuation representation
of N. If $C \in\{A, B\}-\{E\},|F(C)|=q+1, C$ is a Sylow 2-subgroup of $N_{F(C)}$ and C is semi-regular on $\Delta-F(C)$.

Lemma 2.6 ([6]). Let notations be as in (2.5) and set $G=A u t(N)$. Then the following hold.
(i) There exist in G a diagonal automorphism d, a field automorphism f and a graph automorphism g and satisfy the following:
$G=\langle g, f, d\rangle N \unrhd H_{1}=\langle f, d\rangle N \unrhd H_{2}=\langle d\rangle N, H_{1}=P \Gamma L(3, q), H_{2}=P G L(3, q)$
$H_{2} / N \simeq Z_{r}$, where $r=(3, q-1), G / H_{1} \simeq Z_{2}, H_{1} / H_{2} \simeq Z_{n}$ and $G / H_{2} \simeq Z_{2} \times Z_{n}$.
(ii) $M_{1}=A^{H_{1}}, M_{2}=B^{H_{1}}$ and $A^{g}=B$.

Lemma 2.7 Let $N=P S L(3, q)$, where $q=2^{n}$. Let R be a cyclic subgroup of N of order $q+1$ and Q a nontrivial subgroup of R. Then $N_{N}(Q)=N_{N}(R) \simeq Z_{k} \times$ $D_{2(q+1)}$, where $k=(q-1) /(3, q-1)$ and $D_{2(q+1)}$ is a dihedral group of order $2(q+1)$.

Proof. We consider the group N as a doubly transitive permutation group on $\Delta=P G(2, q)$ with $q^{2}+q+1$ points. By (2.5) (i), R is a cyclic Hall subgroup of N and so we may assume $R \leq N_{a}$, where $\alpha=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right) \in P G(2, q)$. Since $\left|N_{\alpha \beta}\right|=(q-1)^{2} q^{2} /(3, q+1)$ for $\alpha \neq \beta \in \Delta$ and $\left(q+1,(q-1)^{2} q^{2}\right)=1, R$ is semiregular on $\Delta-\{\alpha\}$. Hence $N_{N}(Q) \leq N_{\alpha}$. Put $E=0_{2}\left(N_{\alpha}\right)$. Then $N_{\alpha}=N_{N}(E)$ by (2.5) (viii) and $N_{N}(Q) E / E \simeq Z_{k} \times D_{2(q+1)}$ by (2.5) (vi). Since $N_{N}(Q) \cap E=C_{E}(Q)=1$ by (2.5) (v). Hence $N_{N}(Q) \simeq Z_{k} \times D_{2(q+1)}$. As R is cyclic, $N_{N}(R) \leq N_{N}(Q)$. Thus $N_{N}(Q)=N_{N}(R) \simeq Z_{k} \times D_{2(q+1)}$.

Lemma 2.8 Let $N=P S L(3, q), q=2^{n}$ and let $H(\neq N)$ be a subgroup of N of odd index. Then $H \leq N_{N}(E)$ for an elementary abelian subgroup E of N of order q^{2}.

Proof. Let S, A and B be as in (2.5) and let Δ be as in Lemma 2.7. Since $|N: H|$ is odd, H contains a Sylow 2-subgroup of N and so we may assume $S \leq H . \quad$ Set $\alpha=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), \beta=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right), \gamma=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$. Then $S \leq N_{a}=N_{N}(A), S_{\beta}=B, S_{\gamma}=$ $\left\{\left.\left(\begin{array}{lll}1 & a & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) \right\rvert\, a \in G F(q)\right\} \simeq E_{q}$ and hence $\left|\alpha^{s}\right|=1,\left|\beta^{s}\right|=q$ and $\left|\gamma^{s}\right|=q^{2}$.

If $\alpha^{H}=\{\alpha\}, H \leq N_{\alpha}=N_{N}(A)$ and the lemma holds. Bv (2.5) (i), ($q^{2}+1$, $|N|)=1$. Hence $\alpha^{H} \neq\{\alpha\} \cup \gamma^{S}$, so that we may assume either $\alpha^{H}=\{\alpha\} \cup \beta^{H}$ or $\alpha^{H}=\Delta$.

If $\alpha^{H}=\{\alpha\} \cup \beta^{H}, \alpha^{H}=F(B)$ and B is a unique Sylow 2-subgroup of $H_{F(B)}$ by (2.5) (viii). Hence $H \unrhd B \simeq E_{q^{2}}$ and the lemma holds.

If $\alpha^{H}=\Delta$, by (2.5) (iv), $N_{H}(A)^{F(A)}$ is transitive and so $|H|$ is divisible by $q+1$. Since $\left(q^{2}+q+1, q+1\right)=1,\left|H_{\infty}\right|$ is divisible by $q+1$. By (2.5) (vi) and by the structure of $P S L(2, q), Z_{m} \times P S L(2, q) \simeq H_{a} / A \leq N_{N}(A) / A$, where m is a divisor of $(n-1) /(3, n-1)$. Therefore $|N: H| \leq q-1$. We now consider the action of N on the coset $\Gamma=N / H . \quad$ As $|\Gamma| \neq 1$ and N is a simple group, N^{Γ} is faithful. But N has a cyclic subgroup of order $q+1$ and so $|\Gamma|>q+1$, which implies $|N: H|>q+1$, a contradiction.

Lemma 2.9 Let $N=P S L(3, q)$, where $q=2^{2 m}$ and t a field automorphism of N of order 2. Let S be a t-invariant Sylow 2-subgroup of N. Then the following hold.
(i) $Z(\langle t\rangle S) \simeq E_{\sqrt{q}}$.
(ii) If S_{1} is a subgroup of $\langle t\rangle S$ isomorphic to S, then $S_{1}=S$.

Proof. Since $C_{s}(t)$ is isomorphic to a Sylow 2-subgroup of $\operatorname{PSL}(3, \sqrt{ } \bar{q})$, $Z\left(C_{S}(t)\right) \simeq E_{\sqrt{\bar{q}}}$ and $Z\left(C_{S}(t)\right) \leq Z(S)$ by (2.5) (ii). Hence $Z(\langle t\rangle S)=Z(\langle t\rangle S) \cap$ $\langle t\rangle C_{S}(t) \cap C(Z(S))=Z(\langle t\rangle S) \cap C_{S}(t)=Z\left(C_{S}(t)\right) \simeq E_{\sqrt{q}}$. Thus we have (i).

Suppose $S_{1} \neq S$. Then $\langle t\rangle S=S_{1} S \unrhd S_{1}$ and $[\langle t\rangle S: S]=\left[S_{1}: S_{1} \cap S\right]=2$. If $Z\left(S_{1}\right) \nleftarrow S$, we have $S_{1}=\langle z\rangle \times\left(S_{1} \cap S\right)$ for an involution z in $Z\left(S_{1}\right)-S$. By (2.5) (ii), $z \in \Phi\left(S_{1}\right)$ and so $S_{1}=\left\langle z, S_{1} \cap S\right\rangle=S_{1} \cap S$, a contradiction. Hence $Z\left(S_{1}\right) \leq S$.

If $Z\left(S_{1}\right)=Z(S), E_{q} \simeq Z(S) \leq Z\left(S_{1} S\right)=Z(\langle t\rangle S) \simeq E_{\sqrt{q}}$ by (i), which is a contradiction. Hence $Z\left(S_{1}\right) \neq Z(S)$.

Let z be an involution in $Z\left(S_{1}\right)-Z(S)$. Then $C_{S}(z) \simeq E_{q^{2}}$ by (2.5) (iii). On the other hand, $S_{1} \leq C_{\langle t\rangle s}(z)$ and $\left[C_{\langle t\rangle s}(z): C_{S}(z)\right]=1$ or 2 . From this S_{1} has an elementary abelian subgroup of index 2 . Hence $q=2$, a contradiction. Thus we have (ii).

3. Proof of the theorem

Throughout the rest of the paper, G^{Ω} always denote a doubly transitive permutation group satisfying the hypotheses of the theorem.

Since $G_{a} \unrhd N^{\omega},\left|\beta^{N^{\omega}}\right|=\left|\gamma^{N^{\omega}}\right|$ for $\beta, \gamma \in \Omega-\{\alpha\}$ and so $|\Omega|=1+r\left|\beta^{N^{\infty}}\right|$, where r is the number of N^{α}-orbirs on $\Omega-\{\alpha\}$. Hence r is odd and N_{β}^{α} is a proper subgroup of N^{∞} of odd index for $\alpha \neq \beta \in \Omega$. Therefore, by Lemma 2.8 $N_{\beta}^{\alpha} \unrhd A$ for some elementary abelian subgroup A of order q^{2}. Let S be a Sylow 2-subgroup of N_{β}^{α}. Then, by (2.5) (iii) there exists a unique elementary abelian 2-subgroup B of S such that $A \simeq B \simeq E_{q^{2}}$ and $A \neq B$. Set $M_{1}=A^{N^{\omega}}, M_{2}=B^{N^{\omega}}$ and $K=G_{a}\left(M_{1}\right)=G_{a}\left(M_{2}\right)$. By (2.5) (iv), $M_{1} \cup M_{2}$ is the set of all elementary abelian 2-subgroup of N^{a} of order q^{2} and G_{a} acts on $\left\{M_{1}, M_{2}\right\}$, so that $G_{a} / K \leq$ Z_{2}. Hence K is transitive on $\Omega-\{\alpha\}$.
(3.1) Let $E=A$ or B. Then $N_{G_{\omega}}(E)$ is transitive on $F(E)-\{\alpha\}$.

Proof. If $E^{h} \leq K_{\beta}$ for some $h \in K, E^{h} \leq N^{\infty} \cap K_{\beta}=N_{\beta}^{\alpha}$. Since $E^{N^{\omega}}=E^{K}$ and $A^{K} \neq B^{K}, E^{h}$ is conjugate to E in N_{β}^{α}. By a Witt's theorem $N_{K}(E)$ is transitive on $F(E)-\{\alpha\}$. Thus $N_{G_{\alpha}}(E)$ is transitive on $F(E)-\{\alpha\}$.
(3.2) If $q=2, G^{\alpha}$ is of type (i) of the theorem.

Proof. Assume $q=2$. We note that $\operatorname{PSL}(3,2)$ is isomorphic to $\operatorname{PSL}(2,7)$. It follows from [3] that G has a regular normal subgroup R.

Since K is transitive on $\Omega-\{\alpha\}$, by Lemmas 2.3 and 2.4

$$
\begin{aligned}
& |F(A)|=1+\frac{\left|N^{\alpha} \cap N(A)\right|}{\left|N_{\beta}^{\alpha}\right|} r=\frac{24 r}{\left|N_{\beta}^{\alpha}\right|}+1 \quad \text { and } \\
& |F(B)|=1+\frac{\left|N^{\alpha} \cap N(B)\right|\left|N_{\beta}^{\alpha}: N_{\beta}^{\alpha} \cap N(B)\right|}{\left|N_{\beta}^{\alpha}\right|} r=\frac{24 r}{\left|N_{\beta}^{\alpha} \cap N(B)\right|}+1 .
\end{aligned}
$$

Let $E=A$ or B. As $N_{R}(E) \neq 1, N_{G}(E)^{F(E)}$ is doubly transitive by (3.1). Hence $E \leq N^{\beta}$ and $|F(A)|=2^{a},|F(B)|=2^{b}$ for some integers a, b. From this $S=$ $\langle A, B\rangle \leq N^{\alpha} \cap N^{\beta}$ and $\left|N_{\beta}^{\alpha}: N^{\alpha} \cap N^{\beta}\right|$ is odd. Hence, if $S^{g} \leq G_{\alpha \beta}, S^{g} \leq N_{\beta}^{\gamma} \cap N_{\beta}^{\gamma}$, where $\gamma=\alpha^{g}$ and so $S^{g} \leq N^{a} \cap N^{\beta}$. Since S and S^{g} are Sylow 2-subgroups of $N^{\alpha} \cap N^{\beta}, S^{g}$ is conjugate to S in $N^{\infty} \cap N^{\beta}$. By a Witt's theorem $N_{G}(S)^{F(S)}$ is a doubly transitive permutation group with a regular normal subgroup $N_{R}(S)$. Hence $|F(S)|=2^{c}$ for an integer c. By Lemmas 2.3 and 2.4,

$$
|F(S)|=1+\frac{8 \times\left|N_{\beta}^{\alpha}: S\right|}{\left|N_{\beta}^{\alpha}\right|} r=r+1=2^{c} .
$$

Let z be an involution of $Z(S)$ and assume $z^{g} \in G_{\alpha}$ for some $g \in G$. Then $z^{g} \in N_{a}^{\gamma}$, where $\gamma=\alpha^{g}$. Since $\left|N_{\alpha}^{\gamma}: N^{\gamma} \cap N^{\alpha}\right|$ is odd, z^{g} is contained in N^{a}. By (2.5) (v), z^{g} is conjugate to z in N^{a}. Hence $C_{G}(z)$ is transitive on $F(z)$ and by Lemmas 2.3 and 2.4,

$$
|F(z)|=1+\frac{8 \times\left|I\left(N_{\beta}^{\alpha}\right)\right|}{\left|N_{\beta}^{\alpha}\right|} r .
$$

Suppose $N_{\beta}^{\alpha}=S$. Then $|F(A)|=3 r+1=2^{a}=2^{c}+2 r$ and $|F(z)|=5 r+1$. Hence $r=1$. Since $N_{R}(A)=C_{R}(A) \leq C_{G}(z)$ and $N_{R}(A) \simeq E_{4},|F(z)|$ is divisible by 4. But $|F(z)|=5 r+1=6$. This is a contradiction.

Suppose $N_{\beta}^{\alpha} \neq S$. Then $N_{\beta}^{\alpha}=N_{N^{a}}(A)$ as $N_{N^{a}}(A) \simeq S_{4}$. From this, $|F(B)|$ $=2^{b}=2^{c}+2 r$ and so $r=1$. Hence $|\Omega|=1+\left|N^{a}: N_{\beta}^{\alpha}\right|=8$. Thus $|R|=8$ and $G_{a} \simeq G L(3,2)$, hence $G \simeq A L(2,3)$.

By (3.2), it suffices to consider the case $q>2$ to prove the theorem. From now on we assume the following.

Hypothesis (*): $q=2^{n} \geq 4$

The following hold.

(i) $\left|N_{\beta}^{\alpha}\right| N^{a} \cap N^{\beta} \mid$ is odd.
(ii) Let $\gamma \in \Omega$ and S_{0} a 2-subgroup of N^{γ}. Then $F\left(S_{0}\right)=\left\{\delta \in \Omega \mid S_{0} \leq N^{\curvearrowright}\right\}$.

Proof. Suppose false and let T be a Sylow 2-subgroup of $N_{\alpha}^{\beta} N_{\beta}^{\alpha}$ such that $T \geq S$. Then $T \neq S$. Set $S_{1}=T \cap N_{\beta}^{\alpha}$ and $S_{2}=T \cap N^{a} \cap N^{\beta}$. Then S_{1} is a Syow 2-subgroup of $N_{\alpha}^{\beta}, S_{1} \neq S$ and S_{1}, S_{2} and S are normal subgroups of T. By Lemma 2.2, $S_{1} N^{\infty} / N^{a}$ is isomorphic to a subgroup of the outer automorphism group of N^{a}. It foilows from Lemma 2.6 that $S_{1} N^{a} / N^{a}$ is abelian of 2-rank at most 2. Since $S_{1} N^{a} / N^{a} \simeq S_{1} / S_{2}$ and $S_{1} \simeq S$, we have $S_{1} / S_{2} \leq E_{4}$ by (2.5) (ii).

Let A_{1}, B_{1} be the subgroups of S_{1} such that $A_{1} \simeq B_{1} \simeq E_{q^{2}}$ and $A_{1} \cap S_{2} \leq$ $A, B_{1} \cap S_{2} \leq B$. Since $A_{1} / A_{1} \cap S_{2} \simeq A_{1} S_{2} / S_{2} \leq S_{1} / S_{1} \leq E_{4}$ and by the hypothesis (*), $q \geq 4$, we have $\left|A_{1} \cap S_{2}\right| \geq q^{2} / 4$. Therefore, if $A_{1} \cap S_{2} \leq Z(S)$, then $q=4$, $A_{1} \cap S_{2}=Z(S)$ and $T=A_{1} S$ and so $Z(S) \leq Z(T)$, contrary to Lemma 2.9. Hence $A_{1} \cap S_{2} \nleftarrow Z(S) . \quad$ Similarly $B_{1} \cap S_{2} \nleftarrow Z(S)$.

Let $x \in A_{1} \cap S_{2}-Z(S)$. Then $x \in A^{y} \leq S$ for each $y \in A_{1}$ and so A_{1} normalizes A. Hence A_{1} normalizes B. Similarly B_{1} normalizes A and B. From this $T=$ $\left\langle A_{1}, B_{1}\right\rangle S \unrhd A, B$ and so $S_{1} N^{\alpha} \leq K$. Hence $S_{1} N^{\alpha} / N^{\alpha} \simeq S_{1} / S_{2} \simeq Z_{2}$, so that there exists a field automorphism t of order 2 such that $T=\langle t\rangle S \triangleright S$. Since $S_{1} \leq T$ and $S_{1} \simeq S$, we have $S_{1}=S$ by Lemma 2.9, a contradiction. Thus (i) holds.

Let $\delta \in F\left(S_{0}\right)-\{\gamma\}$. Then $S_{0} \leq N_{\delta}^{\gamma}$. Since $N_{\delta}^{\gamma} \unrhd N^{\gamma} \cap N^{\delta}$ and $\left|N_{\delta}^{\gamma} / N^{\gamma} \cap N^{\delta}\right|$ is odd by (i), $S_{0} \leq N^{\gamma} \cap N^{\delta} \leq N^{\delta}$. Hence $F\left(S_{0}\right) \subseteq\left\{\delta \in \Omega \mid S_{0} \leq N^{\delta}\right\}$. The converse implication is clear. Thus (ii) holds.
(3.4) The following hold.
(i) $N_{G}(B)^{F(B)}$ is doubly transitive.
(i1) If $F(A) \neq\{\alpha, \beta\}, N_{G}(A)^{F(A)}$ is doubly transitive.
Proof. Let $E=A$ or B. By (3.3) (i), S is a Sylow 2-subgroup of N_{β}^{α}. Therefore, by a similar argument as in (3.1), $N_{G_{\beta}}(E)$ is transitive on $F(E)-\{\beta\}$. Suppose $N_{G}(E)^{F(E)}$ is not doubly transitive. Then, $F(E)=\{\alpha, \beta\}$ by (3.1) and (3.3). Since $N_{N^{\alpha}}(E)$ acts on $F(E)$ and fixes $\{\alpha\}$, we have $N_{N^{\alpha}}(E) \leq N_{\beta}^{\alpha}$. On the other hand $N_{N^{\alpha}}(E)$ is a maximal subgroup of N^{a} by (2.5) (vi). Hence $N_{N^{\alpha}}(E)=N_{\beta}^{\alpha}$. If $E=B$, then $N_{\beta}^{\alpha} \pm A$, a contradiction. Thus $E=A$ and (3.4) follows.
(3.5) The following hold.
(i) Put $M=\left(N_{N^{\alpha}}(A)\right)^{\prime}$. Then $F(M)=F(A)$.
(ii) $N_{\beta}^{\alpha}=N_{\gamma}^{\alpha}$ for each $\gamma \in F(A)-\{\alpha\}$.

Proof. Suppose $F(M) \neq F(A)$. Then $M \nsubseteq N_{G}(A)_{F(A)}$. It follows from (3.4) that $F(A) \neq\{\alpha, \beta\}$ and $N_{G}(A)^{F(A)}$ is doubly transitive. Moreover by (2.5) (vii) $N_{G_{\alpha}}(A)^{F(A)} \unrhd M^{F(A)} \simeq P S L(2, q)$ as $q>2$. By Lemma 2.1, $r=1$ and either (1) $q=$

4 and $N_{G}(A)^{F(A)}=A_{6}$ or S_{6} or (2) $|F(A)|=q^{2}$.
If (1) holds, $|F(A)|=1+\left|N_{N^{\alpha}}(A): N_{\beta}^{\alpha}\right|=1+2^{6} \cdot 3 \cdot 5 /\left|N_{\beta}^{\alpha}\right|=6$ and so $\left|N_{\beta}^{\alpha}\right|$ $=2^{6} 3$. Hence $|\Omega|=1+\left|N^{\alpha}: N_{\beta}^{\alpha}\right|=1+2^{6} \cdot 3^{2} \cdot 5 \cdot 7 / 2^{6} \cdot 3=2 \cdot 53$. Let z be an involution of $N^{a} \cap N^{\beta}$. Then, by (2.5) (v) and (3.3), $z^{G} \cap G_{a}=z^{G_{a}}$, so that $C_{G}(z)^{F(z)}$ is transitive by a Witt's theorem. On the other hand $|F(z)|=1+$ $\frac{\left|C_{N^{\alpha}}(z)\right| \times\left|I\left(N_{\beta}^{\alpha}\right)\right|}{\left|N_{\beta}^{\alpha}\right|}=1+2^{6} \cdot 3^{3} / 2^{6} \cdot 3=10$. In particular $\left|C_{G}(z)\right|$ is divisible by 5. Let R be a Sylow 5 -subgroup of $C_{G}(z)$. Then $|\Omega|,\left|G_{\infty}: N^{\infty}\right|$ and $\left|N_{\beta}^{\alpha}\right|$ are not divisible by 5 and so $F(R)=\{\gamma\}$ and $R \leq N^{\gamma}$ for some $\gamma \in \Omega$. Therefore $\langle z\rangle$ $\times R \leq N^{\gamma}$ by (3.3) (ii). But $\left|C_{N^{\gamma}}(z)\right|=2^{6}$ by (2.5) (v). This is a contradiction.

If (2) holds, $q^{2}=|F(A)|=1+\left|N_{N^{\alpha}}(A): N_{\beta}^{\alpha}\right|$, hence $\left|N_{\beta}^{\alpha}\right|=(q-1) q^{3} /(3, q-1)$. From this $|\Omega|=1+\left|N^{\omega}: N_{\beta}^{\boldsymbol{\alpha}}\right|=1+(q-1)(q+1)\left(q^{2}+q+1\right)=q\left(q^{3}+q^{2}-1\right)$. Hence $|G|_{2}=|\Omega|_{2} \times\left|G_{\alpha}\right|_{2}=q \times\left|G_{a}: K\right| \times|K|_{2}$. On the other hand $\left|N_{G}(A)\right|_{2}$ $=|F(A)| \times\left|N_{G_{a}}(A)\right|_{2}=q^{2}|K|_{2}$ because $K=N_{G_{a}}(A) N^{\omega}$. Therefore $q^{2}|K|_{2}=$ $\left|N_{G}(A)\right|_{2} \leq|G|_{2}=q \times\left|G_{\infty}: K\right| \times|K|_{2} \leq 2 q|K|_{2}$ and we obtain $q=2$, contrary to the hypothesis (*). Thus we have (i).

Let $\gamma \in F(A)-\{\alpha\}$. By (i) and (3.4) (ii), $N_{\gamma}^{\alpha} \unrhd A$ and $M \leq N_{\gamma}^{\alpha}$. Since $N_{N^{a}}(A) \mid M \simeq Z_{k}$, where $k=(q-1) /(3, q-1)$ and $\left|N_{\beta}^{\alpha}\right| M\left|=\left|N_{\gamma}^{\alpha} / M\right|\right.$, we have $N_{\beta}^{\alpha}=N_{\gamma}^{\alpha} . \quad$ Thus (ii) holds.
(3.6) $B \notin A^{G}$ and $G_{a}=K$.

Proof If $B \in A^{G}$, by (3.4) (i), there is an element $g \in G_{\alpha \beta}$ such that $B=A^{g}$. Hence $N_{\beta}^{\alpha}=g^{-1} N_{\beta}^{\alpha} g \unrhd g^{-1} A g=B$ and so M normalizes $\langle A, B\rangle=S$, a contradiction.
(3.7) Set $L=\left(N_{N^{\alpha}}(B)\right)^{\prime}$. Then $r=1, L_{F(B)}=B, L^{F(B)}=L \mid B \simeq P S L(2, q)$, $L_{\beta}=S$ and one of the following holds.
(i) $C_{G}\left(N^{a}\right)=1,|F(B)|=6, q=4$ and $N_{G}(B)^{F(B)}=A_{6}$ or S_{6}.
(ii) $\quad C_{G}\left(N^{\alpha}\right) \leq Z_{q-1},|F(B)|=q^{2}$ and $N_{G}(B)^{F(B)}$ has a regular normal subgroup.

Proof. By (3.4) (i), $N_{G}(B)^{F(B)}$ is doubly transitive. If $L \leq G_{\alpha \beta}$, then $L \leq$ N_{β}^{α} and so $B \unlhd L=L^{\prime} \leq\left(N_{\beta}^{\alpha}\right)^{\prime}=M$. Therefore $L=M$ and $M \unrhd\langle A, B\rangle=S$, a contradiction. Hence $L \nleftarrow G_{a \beta}$. From this $N_{G_{\alpha}}(B)^{F(B)} \unrhd L^{F(B)} \simeq P S L(2, q)$ and (3.7) follows from Lemmas 2.1 and 2.2.
(3.8) If (i) of (3.7) occurs, then we have (ii) or (iii) of the theorem.

Proof. Since $|F(B)|=1+\left|N_{N^{\alpha}}(B): N_{N_{\beta}^{\alpha}}(B)\right|=6$ and $\left|N_{\beta}^{\alpha}: N_{N_{\beta}^{\alpha}}(B)\right|=\mid N_{\beta}^{\alpha}$: $N_{N_{\beta}^{\alpha}}(S) \mid=5$, we have $\left|N_{\beta}^{\alpha}\right|=2^{6} \cdot 3 \cdot 5$. Hence $N_{\beta}^{\alpha}=N_{N^{\alpha}}(A)$ and so $|\Omega-\{\alpha\}|$ $=\left|N^{a}: N_{\beta}^{\alpha}\right|=21$. By (3.6), $\operatorname{PSL}(3,4) \leq\left(G_{a}\right)^{\alpha-[a]} \leq P \Gamma L(3,4)$ in their natural doubly transitive permutation representation and hence (3.8) follows from Satz 7 of [7].

In the rest of this paper, we consider the case (ii) of (3.7). From now on
we assume the following.
Hypothesis (**): $r=1, q=2^{n}>2,|F(B)|=q^{2}$ and $N_{G}(B)^{F(B)}$ is a doubly transitive permutation group with a regular normal subgroup.
(3.9) The following hold.
(i) $N_{\beta}^{\alpha}=N^{\alpha} \cap N^{\beta}=M$ and $\left|N_{\beta}^{\alpha}\right|=(q-1)(q+1) q^{3}$.
(ii) n is odd.
(iii) $|F(A)|=q$.

Proof. Since $q^{2}=|F(B)|=1+\left|N_{N^{\alpha}}(B): N_{N_{\beta}^{\alpha}}(B)\right|$ by (3.7), we have $\left|N_{N_{\beta}^{\alpha}}^{\alpha}(B)\right|=\left|N_{N^{\alpha}}(B)\right| /\left(q^{2}-1\right)=(q-1) q^{3} /(3, q-1) . \quad$ As $\quad N_{\beta}^{\alpha} \unrhd A, \quad N_{N_{\beta}^{\alpha}}(B)=$ $N_{N_{\beta}^{\alpha}}^{\alpha}(\langle A, B\rangle)=N_{N_{\beta}^{\alpha}}(S)$. On the other hand, from (2.5) (vi) $\left|N_{N_{\beta}^{\alpha}}(S)\right|=\mid N_{\beta}^{\alpha}$: $M\left|\times\left|N_{M}(S)\right|=\left|N_{\beta}^{\alpha}: M\right| \times(q-1) q^{3}\right.$. Therefore ($3, q-1$) $=1$ and $| N_{\beta}^{\alpha}: M \mid=1$. Hence $N_{\beta}^{\alpha}=M$ and n is odd. By (3.3) (i) and (2.5) (vii), $N_{\beta}^{\alpha}=N^{\alpha} \cap N^{\beta}$. Hence $F(A)=1+\left|N_{N^{\alpha}}(A)\right| /\left|N^{\alpha}\right|=q$. Thus we have (3.9).
(3.10) Put $m=\left|G_{a}: N^{a}\right|$. Then the following hold.
(i) m is odd and S is a Sylow 2-subgroup of G_{α}.
(ii) $|\Omega|=q^{3}$ and $|G|=q^{6}(q-1)^{2}(q+1)\left(q^{2}+q+1\right) m$.

Proof. Set $C^{a}=C_{G}\left(N^{a}\right)$. By (3.6), (3.9) (ii) and Lemma 2.6, $\left|G_{a} / C^{a} N^{a}\right|$ is odd. Since $C^{\infty} \cap N^{\infty}=1, m=\left|G_{a} / C^{\infty} N^{\infty}\right| \cdot\left|C^{\infty}\right|$ and so m is odd by Lemma 2.2. Therefore S is a Sylow 2-subgroup of G_{∞} and so (i) holds.

Since $|\Omega|=1+\left|N^{a}: N_{\beta}^{\alpha}\right|,|\Omega|=q^{3}$ by (3.9). From this $|G|=|\Omega| \times\left|G_{\infty}\right|$ $=q^{3} m\left|N^{\infty}\right|=q^{6}(q-1)^{2}(q+1)\left(q^{2}+q+1\right) m$. Thus (ii) holds.
(3.11) Let z be an involution of G_{α}. Then $|F(z)|=q^{2}$. In particular B is semi-regular on $\Omega-F(B)$.

Proof. By (3.10) (ii), z is contained in N^{ω}. By (2.5) (vii) and (3.9) (ii), $\left|I\left(N_{\beta}^{\alpha}\right)\right|=\left|N_{\beta}^{\alpha}: N_{N_{\beta}^{\alpha}}(S)\right| \times\left(q^{2}-q\right)+q^{2}-1=(q+1)\left(q^{2}-q\right)+q^{2}-1=(q-1)(q+1)^{2}$, hence $|F(z)|=1+q^{3}(q-1) \times(q-1)(q+1)^{2} / q^{3}(q-1)(q+1)=q^{2}$ by Lemma 2.3. As $|F(B)|=q^{2}, B$ is semi-regular on $\Omega-F(B)$.
(3.12) Set $\Delta=F(B)$. Then the following hold.
(i) $G_{\Delta} \unrhd B$ and B is a Sylow 2-subgroup of G_{Δ}.
(ii) $\quad G(\Delta)=N_{G}(B)$ and $\left|N_{G}(B)\right|=q^{5}(q-1)^{2}(q+1) m$.

Proof. Since $N_{N^{\alpha}}(B) \leq N^{a}(\Delta) \neq N^{a}$ and $N_{N^{\alpha}}(B)$ is a maximal subgroup of N^{a}, we have $N_{N^{\alpha}}(B)=N^{a}(\Delta)$. By (3.7), B is a normal Sylow 2-subgroup of $\left(N^{a}\right)_{\Delta}$ and (i) follows immediately from (3.10) (i).

Since $G(\Delta) \unrhd G_{\Delta}$ and B is a characteristic subgroup of G_{Δ} by (i), we have $G(\Delta) \leq N_{G}(B)$. The converse implication is clear. Thus $G(\Delta)=N_{G}(B)$. By (3.6), $G_{\alpha}=N_{G_{\alpha}}(B) N^{a}$ and so $\left|N_{G_{\alpha}}(B): N_{N^{\alpha}}(B)\right|=\left|G_{a}: N^{a}\right|=m$. Hence $\left|N_{G}(B)\right|$
$=|F(B)| \times\left|N_{G_{a x}}(B)\right|=q^{2} m \times\left|N_{N^{a}}(B)\right|=q^{5}(q-1)^{2}(q+1) m$. Thus we have (ii).
(3.13) Let T_{1} be a Sylow 2-subgroup of $N_{G}(B)$ and T_{2} a Sylow 2-subgroup of $N_{G}\left(T_{1}\right)$. Then $T_{1} \neq T_{2}$. Let x be an element of $T_{2}-T_{1}$ and set $U=B B^{x}$. Then $U \simeq E_{q^{4}}$ and for each $\gamma \in \Omega, U_{\gamma} \simeq E_{q^{2}}, U_{\gamma} \in B^{G}, \gamma^{U}=F\left(U_{\gamma}\right)$ and $\left|\gamma^{U}\right|=q^{2} . \quad$ Moreover $U_{\gamma}=U_{\delta}$ for all $\delta \in \gamma^{U}$.

Proof. If $B \cap B^{x} \neq 1$, by (3.11) and (3.12) (i), we have $B=B^{x}$ and so $x \in$ T_{1}, contrary to the choice of x. Hence $B \cap B^{x}=1$. As $T_{1} \unrhd B$ and $T_{1}=T_{1}^{x} \unrhd B^{x}$, $U=B \times B^{x}$ and $U \simeq E_{q^{4}}$.

Let $\gamma \in \Omega$ and put $D=U_{\gamma}$. Then $F(D) \supseteq \gamma^{U}$ as U is abelian. Therefore $|U: D|=\left|\gamma^{U}\right| \leq q^{2}$ by (3.11), while $|D| \leq q^{2}$ because D is an elementary abelian subgroup of N^{γ}. Hence $D \simeq E_{q^{2}}$ and $|F(D)|=\left|\gamma^{U}\right|=q^{2}$. By (3.6) and (3.9) (iii), $D \in B^{G}$. Since $U_{\gamma} \leq U_{\delta} \simeq E_{q^{2}}$ for each $\delta \in \gamma^{U}$, we have $U_{\gamma}=U_{\delta}$.
(3.14) Let U be as in (3.13). Let $\Gamma=\left\{X_{i} \mid 1 \leq i \leq s\right\}$ be the set of U-orbits on Ω and set $B_{i}=U_{\gamma}$ for $\gamma \in X_{i}$ with $1 \leq i \leq s$. Then the following hold.
(i) $s=q, \Omega=\bigcup_{i=1}^{q} X_{i}$ and $\left|X_{i}\right|=q^{2}$.
(ii) B_{i} is semi-regular on $\Omega-X_{i}$ and $B_{i} \cap B_{j}=1$ for each i, j with $i \neq j$.

Proof. By (3.10) (ii) and (3.13), $\left|X_{t}\right|=q^{2}$ and $|\Omega|=q^{3}$, hence $s=q$. Cleary $\Omega=\bigcup_{i=1}^{q} X_{i}$. Thus we have (i).

By (3.13) (ii), B_{i} is conjugate to B for each i. Hence B_{i} is semi-regular on $\Omega-X_{i}$ by (3.11). Therefore, if $B_{i} \cap B_{j} \neq 1$, then $X_{i}=F\left(B_{i}\right)=F\left(B_{j}\right)=X_{j}$, so that $i=j$. Thus we have (ii).
(3.15) Set $Y=\left\{B_{i} \mid 1 \leq i \leq q\right\}$ and let $D \in Y$. Then $N_{G}(D) \leq N_{G}(U)$ and U is a unique Sylow 2-subgroup of $C_{G}(D)$.

Proof. Suppose $N_{G}(D) \nleftarrow N_{G}(U)$. Since $\left[N_{G}(D), U\right] \nleftarrow U$, there exist $g \in$ $N_{G}(D)$ and $B_{i} \in Y-\{D\}$ such that $\left(B_{i}\right)^{g} \nleftarrow U$. Set $D_{1}=\left(B_{i}\right)^{g}$. Since $\left[D_{1}, D\right]=$ $\left[B_{i}, D\right]^{g}=1$, it follows from (3.10) (i) that $F\left(D_{1}\right) \cap F(D)=\phi$ and so D is regular on $F\left(D_{1}\right)$ by (3.11). Hence $F\left(D_{1}\right)=\gamma^{D}=\gamma^{U}$ for $\gamma \in F\left(D_{1}\right)$. By (3.14), $F\left(D_{1}\right)=$ $F\left(B_{j}\right)$ for some $B_{j} \in Y$. By (3.12) (i), $D_{1}=B_{j}$, so that $D_{1} \leq U$, a contradiction. Thus we have $N_{G}(D) \leq N_{G}(U)$. Hence $U \leq 0_{2}\left(C_{G}(D)\right)$. Since $U \leq C_{G}(B), C_{G}(B)$ is transitive on $F(B)$. Hence $\left|C_{G}(B)\right|_{2}=|F(B)| \times\left|C_{G_{\infty}}(B)\right|_{2}=q^{4}$ by (3.10) (i). Therefore $\left|C_{G}(D)\right|_{2}=q^{4}$ as $D \in B^{G}$ and so U is a unique Sylow 2-subgroup of $C_{G}(D)$.

$$
\begin{equation*}
\left|N_{G}(U)\right|=q^{6}(q-1)^{2}(q+1) m \tag{3.16}
\end{equation*}
$$

Proof. Let S_{1} be a Sylow 2-subgroup of $N_{G}(U)$ and S_{2} be a Sylow 2subgroup of $N_{G}\left(S_{1}\right)$. Suppose $S_{1} \neq S_{2}$ and let w be an element of $S_{2}-S_{1}$.

Set $\gamma=\alpha^{w^{-1}}$. Then $\left(U_{\gamma}\right)^{w} \in B^{G}$ by (3.13) and $\left(U_{\gamma}\right)^{w} \leq\left(G_{\gamma}\right)^{w}=G_{\alpha} . \quad$ Since U and U^{w} are normal subgroups of $S_{1},\left\langle B,\left(U_{\gamma}\right)^{w}\right\rangle$ is 2-subgroup of $G_{\omega} \cap S_{1}=S$. Hence $B=\left(U_{\gamma}\right)^{w}$ by (2.5) (iii) and (3.6). Therefore $U, U^{w} \leq C_{G}(B)$, so that $U=U^{w}$ by (3.15) and $w \in S_{2} \cap N_{G}(U)=S_{1}$, contrary to the choice of w. Hence $S_{1}=S_{2}$ and S_{1} is a Sylow 2-subgroup of G. It follows from (3.10) that $\left|S_{1}\right|=q^{6}$.

We now consider the action of $N_{G}(U)$ on $\Gamma=\left\{X_{i} \mid 1 \leq i \leq q\right\}$. Set $\Delta=F(B)$. By (3.12), $S_{1}(\Delta) \leq G(\Delta)=N_{G}(B)$ and $\left|N_{G}(B)\right|_{2}=q^{5}$ and so $\left|S_{1}: S_{1}(\Delta)\right|$ is divisible by q. Hence S_{1} is transitive on Γ and so $N_{G}(U)$ is transitive on Γ. Therefore $\left|N_{G}(U)\right|=q \times\left|N_{G}(U) \cap N_{G}(B)\right|=q \times\left|N_{G}(B)\right|=q^{6}(q-1)^{2}(q+1) m$ by (3.12) (ii) and (3.15).
(3.17) Let R be a cyclic subgroup of N_{β}^{α} of order $q+1$. Then $|F(R)|=q$ and R is semi-regular on $\Omega-F(R)$.

Proof. Since $N_{\beta}^{\alpha} / A \simeq P S L(2, q)$, there exists a cyclic subgroup R of N_{β}^{α} of order $q+1$. Let $Q \neq 1$ be a subgroup of R. Then, by Lemma $2.7|F(Q)|$ $=1+\frac{\left|N_{N^{\alpha}}(Q)\right| \times\left|N_{\beta}^{\alpha}: N_{N_{\beta}^{\alpha}}(Q)\right|}{\left|N_{\beta}^{\alpha}\right|}=1+\frac{2(q-1)(q+1)}{2(q+1)}=q$. Thus (3.17) holds.
(3.18) Let $V \in U^{G}$. If $V \neq U$, then $\left|F\left(U_{\gamma}\right) \cap F\left(V_{\gamma}\right)\right|=1$ or q for $\gamma \in \Omega$.

Proof. Suppose $\gamma \neq \delta \in F\left(U_{\gamma}\right) \cap F\left(V_{\gamma}\right)$. By (3.13), $U_{\gamma}, V_{\gamma} \in B^{G}$ and so by (3.3) (ii), $U_{\gamma}, V_{\gamma} \leq N^{\gamma} \cap N^{\delta}$. Set $H=0_{2}\left(N_{\delta}^{\gamma}\right)$. Then, by (3.6) and (3.9) (i), $U_{\gamma} H$ and $V_{\gamma} H$ are Sylow 2-subgroups of N_{δ}^{γ}. If $U_{\gamma} H=V_{\gamma} H$, then $U_{\gamma}=V_{\gamma}$ and U, V $\leq C_{G}\left(U_{\gamma}\right)$. By (3.15) we have $U=V$, a contradiction. Therefore $U_{\gamma} H \neq V_{\gamma} H$. Set $X=\left\langle U_{\gamma}, V_{\gamma}\right\rangle$. Then $X H=N_{\delta}^{\gamma}$ because $N_{\delta}^{\gamma} / H \simeq P S L(2, q), q=2^{n}$, and $\operatorname{PSL}(2, q)$ is generated by its two distinct Sylow 2-subgroups. Hence $N_{\delta}^{\gamma} \unrhd X \cap H$. By (2.5) (iii), $E_{q} \simeq U_{\gamma} \cap H \leq X \cap H$. Since N_{δ}^{γ} acts irreducibly on H by (2.5) (vii), $X \cap H=H$ and hence $H \leq X$. From this $X=N_{\delta}^{\gamma}$. Thus, by (3.5)(i) and (3.9), $\left|F\left(U_{\gamma}\right) \cap F\left(V_{\gamma}\right)\right|=|F(X)|=\left|F\left(N_{\delta}^{\gamma}\right)\right|=q$.
(3.19) Let Q be a cyclic subgroup of $N_{N^{a}}(B)$ of order $q+1, V \in U^{G}$ and set $P=N_{Q}(V)$. Then the following hold.
(i) Q is semi-regular on $\Omega-F(Q)$ and $|F(Q)|=q$.
(ii) If $P \neq 1$ and $V \geq D \in B^{G}$, then P normalizes D and $|F(P) \cap F(D)|=1$.

Proof. Since $N_{N^{a}}(B) / B \simeq P S L(2, q)$, there exists a cyclic subgroup Q of $N_{N^{\alpha}}(B)$ of order $q+1$. Clearly Q is a cyclic Hall subgroup of N^{a}, hence Q is conjugate to R defined in (3.17). By (3.17), Q is semi-regular on $\Omega-F(Q)$ and $|F(Q)|=q$. Thus (i) holds.

Suppose $P \neq 1$ and let $\gamma \in F(P)$. Then, by (3.9) (i), $P \leq N^{\gamma}$ and hence P normalizes $N^{\gamma} \cap V$. By (3.10) (i) and (3.13), $N^{\gamma} \cap V=V_{\gamma}$ and $V_{\gamma} \in B^{G}$ and so $P \leq N_{N^{\gamma}}\left(V_{\gamma}\right)$ and $N_{G}\left(V_{\gamma}\right)^{F\left(V_{\gamma}\right)} \simeq N_{G}(B)^{F(B)}$. Hence we have $F(P) \cap F\left(V_{\gamma}\right)=\{\gamma\}$ by (3.7). As $|F(P)|=q$ by (i), (ii) holds.
(3.20) Let $V \in U^{G}-\{U\}$ and let Q be a cyclic subgroup of $N_{N^{a}}(B)$ of order $q+1$. Then $N_{Q}(V)=1$.

Proof. Set $P=N_{Q}(V)$ and assume $P \neq 1$. Let $\gamma \in \Omega-F(Q)$ and set $B_{1}=U_{\gamma}$, $B_{2}=V_{\gamma}$. By (3.15), Q normalizes U and so by (3.19) Q normalizes B_{1}. Similarly P normalizes B_{2}. Therefore $F\left(B_{1}\right) \cap F\left(B_{2}\right) \geq \gamma^{P} \neq\{\gamma\}$ as $P \neq 1$ and P is semiregular on $\Omega-F(Q)$. By (3.18), we have $\left|F\left(B_{1}\right) \cap F\left(B_{2}\right)\right|=q$. Since P acts on $F\left(B_{1}\right) \cap F\left(B_{2}\right)$ and $|P|$ divides $q+1, P$ fixes at least two points of $F\left(B_{1}\right) \cap F\left(B_{2}\right)$, which contradicts to (3.19).
(3.21) Let T be a Sylow 2-subgroup of $N_{G}(U)$. Then, for each $V \in U^{G}-\{U\}$, $\left|T: N_{T}(V)\right|$ is divisible by q.

Proof. Suppose $\left|T: N_{T}(V)\right|<q$ and set $T_{1}=N_{T}(V)$. Then $\left|T_{1}\right|>q^{5}$ as $|T|=q^{6}$ by (3.16). Hence $q>\left|T_{1} V: T_{1}\right|=\left|V: V \cap T_{1}\right|$ and so $\left|V \cap T_{1}\right|>q^{3}$. Therefore, for each $B_{1} \in B^{G}$ such that $B_{1} \leq V, q>\left|B_{1}\left(V \cap T_{1}\right): V \cap T_{1}\right|=\mid B_{1}$: $B_{1} \cap T_{1}\left|=\left|B_{1}: B_{1} \cap T\right|\right.$. Hence $| B_{1} \cap T \mid>q$. Let $\gamma \in F\left(B_{1} \cap T\right)$ and set $B_{2}=U_{\gamma}$. Then $\left\langle B_{1} \cap T, B_{2}\right\rangle \leq N^{\gamma} \cap T$. As $\left|B_{1} \cap T\right|>q$ by (2.5) (iii), $B_{1} \cap T \cap B_{2} \neq 1$. By (3.11), $\left\langle B_{1} \cap T, B_{2}\right\rangle \leq G_{F\left(B_{2}\right)}$. By (3.12) (i), we have $B_{1} \cap T \leq B_{2}$, so that $F\left(B_{1}\right)$ $=F\left(B_{1} \cap T\right)=F\left(B_{2}\right)$. Again, by (3.12) (i), $B_{1}=B_{2}$ and so $U, V \leq C_{G}\left(B_{2}\right)$. Therefore $U=V$ by (3.15), a contradiction.
(3.22) Put $W=U^{G}$. Then $|W|=q^{2}+q+1$ and G^{W} is doubly transitive.

Proof. Set $H=N_{G}(U)$. By (3.10) (ii) and (3.16), $|W|=|G: H|=q^{2}+q+1$. Let $V \in W-\{U\}$ and let Q be as defined in (3.20). By (3.15), $Q \leq H$ and by (3.20), Q acts semi-regularly on $W-\{U\}$. Hence $\left|V^{H}\right|$ is divisible by $q+1$. On the other hand, by (3.21), $\left|V^{H}\right|$ is divisible by q and so we have $\left|V^{H}\right|=$ $q(q+1)$. Thus (3.22) holds.
(3.23) $\quad G_{W} \cap U \neq 1$.

Proof. Suppose $G_{W} \cap U=1$. Since $G \unrhd G_{W}$ and $H \unrhd U,\left[G_{W}, U\right] \leq G_{W} \cap U$ $=1$. Hence $G_{W} \leq C_{G}(U)$. By (3.15), U is a unique Sylow 2-subgroup of $C_{G}(U)$ and so $G_{W} \leq 0(G)$. On the other hand, as $|\Omega|$ is even and G is doubly transitive on Ω, we have $0(G)=1$. Therefore $G_{W}=1$ and hence G acts faithfully on W. Since U is not semi-regular on $W-\{U\}$, by [4], $\operatorname{PSL}\left(n_{1}, q_{1}\right) \leq G \leq P \Gamma L\left(n_{1} q_{1}\right)$ for some $n_{1} \geq 3$ and q_{1} with q_{1} even. As $|W|=q^{2}+q+1=q_{1}{ }^{n_{1}-1}+\cdots+q_{1}+1$, $q(q+1)=q_{1}\left(q_{1}{ }^{n_{1}-2}+\cdots+1\right)$ and so $q=q_{1}$ and $n_{1}=3$. Therefore $\operatorname{PSL}(3, q) \leq G \leq$ $P \Gamma L(3, q)$. But $|P \Gamma L(3, q)|_{2}=q^{3}$ by (3.9) (ii) and Lemma 2.6. Hence $q^{3}=q^{6}$ by (3.10) (ii). This is a contradiction. Thus $G_{W} \cap U \neq 1$.
(3.24) $\quad G^{\circ}$ has a regular normal subgroup.

Proof. Since $G_{W} \leq N_{G}(U), G_{W} \cap U$ is a normal subgroup of G_{W}. As $G_{W} \cap$
$U \leq 0_{2}\left(G_{W}\right)$ and $G \unrhd G_{W}, 0_{2}\left(G_{W}\right)$ is a normal subgroup of G. Let E be a minimal normal subgroup of G contained in $0_{2}\left(G_{W}\right)$. Then E is an elementary abelian 2 -subgroup of G and acts regularly on Ω.
(3.25) If (ii) of (3.7) occurs, we have (i) of the theorem.

Proof. By (3.9), (3.10) and (3.24), G has a regular normal isubgroup E of order q^{3}, where $q=2^{n}$ and $n \equiv 1(\bmod 2)$ and N^{a} is transitive on $\Omega-\{\alpha\}$. Moreover $G=G_{a} E$ and G_{a} is isomorphic to a subgroup of $G L(E)$. As in the proof of Lemma 2.1, we may assume $\Omega=E, \alpha=0 \in E$ and $G L(E) E \leq \operatorname{Sym}(\Omega)$. There exists a subgroup H of $G L(E)$ such that $H \simeq \Gamma L(3, q)$ and $H E \simeq A \Gamma L(3, q)$. Let L be a normal subgroup of H isomorphic to $S L(3, q)$. Since $q=2^{n}$ and $n \equiv 1(\bmod 2), L$ is isomorphic to $\operatorname{PSL}(3, q)$.

By (3.9) (i) and by the structure of $A \Gamma L(3, q)$, there exist an automorphism f from N^{∞} to L and $g \in \operatorname{Sym}(\Omega)$ such that $\alpha^{g}=\alpha$ and $\left(\beta^{x}\right)^{g}=\left(\beta^{g}\right)^{f(x)}$ for each $\beta \in \Omega-\{\alpha\}$ and $x \in N^{\alpha}$. From this $\left(\beta^{g}\right)^{g^{-1} x g}=\left(\beta^{x}\right)=\left(\beta^{g}\right)^{f(x)}$ for each $\beta \in \Omega-$ $\{\alpha\}$ and so $g^{-1} x g=f(x)$. Hence $g^{-1} N^{a} g=L$.

Set $X=N(L) \cap \operatorname{Sym}(\Omega)$ and $D=C_{X}(L)$. Then D is semi-regular on $\Omega-\{\alpha\}$ as L is transitive on $\Omega-\{\alpha\}$. Put $T=f(A)$. Then $N_{L}(T)^{F(T)} \simeq Z_{q-1}$ and it is semi-regular on $F(T)-\{\alpha\}$ by (3.5) (i) and (3.9) (i), (iii). It follows that $D \leq$ Z_{q-1}. Since $X / D L$ is isomorphic to a subgroup of the outer automorphism group of $\operatorname{PSL}(3, q)$ and $f(A)$ and $f(B)$ are not conjugate in $\operatorname{Sym}(\Omega)$ by the hypothesis (**) and (3.9) (ii), it follows from Lemma 2.6 (i) that $|X| D L \mid \leq n$. Hence $|X| \leq n(q-1)|L|=|\Gamma L(3, q)|$. On the other hand $\Gamma L(3, q) \simeq H<X$ and so $X=H$. Therefore $g^{-1} G_{a} g \unrhd g^{-1} N^{\omega} g=L$ and $g^{-1} G_{\alpha} \leq X=H$. Thus we have (3.25).

The conclusion of the theorem now follows immediately from steps (3.2), (3.7), (3.8) and (3.25).

Osaka Kyoiku University

References

[1] D. Gorenstein: Finite groups, Harper and Row, New York, 1968.
[2] Y. Hiramine: On doubly transitive permutation groups, Osaka J. Math. 15 (1978), 613-631.
[3] Y. Hiramine: On some doubly transitive permutation group in which socle $\left(G_{a}\right)$ is nonsolvable, Osaka J. Math. 16 (1979), 797-816.
[4] M. O'Nan: A characterization of $L_{n}(q)$ as a permutation group, Math. Z. 127 (1972), 301-314.
[5] M. O'Nan: Normal structure of one-point stabilizer of a doubly transitive permutation group II, Trans. Amer. Math. Soc. 214 (1975), 43-74.
[6] R. Steinberg: Automorphism of finite linear groups, Canad. J. Math. 12 (1960),

606-615.
[7] H. Zassenhaus: Über transitive Erweiterungen gewisser Gruppen aus Automorphismen endlicher mehrdimensionaler Geometrien, Math. Ann. 111 (1935), 748-759.

