ON SOME DOUBLY TRANSITIVE PERMUTATION GROUPS IN WHICH $\operatorname{SOCLE}\left(\boldsymbol{G}_{\alpha}\right)$ IS NONSOLVABLE

Yutaka HIRAMINE

(Received July 3, 1978)

1. Introduction

Let G be a doubly transitive permutation group on a finite set Ω and $\alpha \in \Omega$. In [8], O'Nan has proved that socle $\left(G_{a}\right)=A \times N$, where A is an abelian group and N is 1 or a nonabelian simple group. Here socle $\left(G_{a}\right)$ is the product of all minimal normal subgroups of G_{a}.

In the previous paper [4], we have studied doubly transitive permutation groups in which N is isomorphic to $\operatorname{PSL}(2, q), S z(q)$ or $\operatorname{PSU}(3, q)$ with q even. In this paper we shall prove the following:

Theorem. Let G be a doubly transitive permutation group on a finite set Ω with $|\Omega|$ even and let $\alpha \in \Omega$. If G_{a} has a normal simple subgroup N^{α} isomorplic to $\operatorname{PSL}(2, q)$, where q is odd, then one of the following holds.
(i) G^{α} has a regular normal subgroup.
(ii) $G^{\Omega} \simeq A_{6}$ or $S_{6}, N^{a} \simeq P S L(2,5)$ and $|\Omega|=6$.
(iii) $\quad G^{a} \simeq M_{11}, N^{a} \simeq P S L(2,11)$ and $|\Omega|=12$.

In the case that G^{α} has a regular normal subgroup, by a result of Hering [3] we have $(|\Omega|, q)=(16,9),(16,5)$ or $(8,7)$.

We introduce some notations:
$F(X)$: the set of fixed points of a nonempty subset X of G
$X(\Delta)$: the global stabilizer of a subset $\Delta(\subseteq \Omega)$ in X
X_{Δ} : the pointwise stabilizer of Δ in X
$X^{\Delta} \quad$: the restriction of X on Δ
$m \mid n$: an integer m divides an integer n
$X^{H} \quad$: the set of H-conjugates of X
$|X|_{p}$: maximal power of p dividing the order of X
$I(X)$: the set of involutions in X
$D_{m} \quad$: dihedral group of order m
In this paper all sets and groups are finite.

2. Preliminairies

Lemma 2.1. Let G be a transitive permutation group on $\Omega, \alpha \in \Omega$ and N^{∞} a normal subgroup of G_{a} such that $F\left(N^{\alpha}\right)=\{\alpha\}$. Let the subgroup $X \leq N^{\infty}$ be conjugate in G_{a} to every group Y which lies in N^{∞} and which is conjugate to X in G. Then $N_{G}(X)$ is transitive on $\Delta=\left\{\gamma \in \Omega \mid X \leq N^{\gamma}\right\}$.

Proof. Let $\beta \in \Delta$ and let $g \in G$ such that $\beta^{g}=\alpha$. Then, as $X \leq N^{\beta}$, $X^{g} \leq N^{\rho^{g}}=N^{\omega}$. By assumption, $\left(X^{g}\right)^{h}=X$ for some $h \in G_{a}$. Hence $g h \in N_{G}(X)$ and $\alpha^{(g h)^{-1}}=\alpha^{g-1}=\beta$. Obviously $N_{G}(X)$ stabilizes Δ. Thus Lemma 2.1 holds.

Lemma 2.2. Let G be a doubly transitive permutation group on Ω of even degree and N^{∞} a nonabelian simple normal subgroup of G_{∞} with $\alpha \in \Omega$. If $C_{G}\left(N^{\alpha}\right) \neq 1$, then $N_{\beta}^{\alpha}=N^{\infty} \cap N^{\beta}$ for $\alpha \neq \beta \in \Omega$ and $C_{G}\left(N^{\alpha}\right)$ is semiregular on $\Omega-$ $\{\alpha\}$.

Proof. See Lemma 2.1 of [4].
Lemma 2.3. Let G be a transitive permutation group on Ω, H a stabilizer of a point of Ω and M a nonempty subset of G. Then

$$
|F(M)|=\left|N_{G}(M)\right| \times\left|M^{G} \cap H\right| /|H| .
$$

Here $M^{G} \cap H=\left\{g^{-1} M g \mid g^{-1} M g \subseteq H, g \in G\right\}$.
Proof. See Lemma 2.2 of [4].
Lemma 2.4. Let G be a doubly transitive permutation group on Ω and N^{∞} a normal subgroup of G_{∞} with $\alpha \in \Omega$. Assume that a subgroup X of N^{∞} satisfies $X^{G_{a}}=X^{N^{a}}$. Then the following hold.
(i) $\left|F(X) \cap \beta^{N^{\omega}}\right|=\left|F(X) \cap \gamma^{N^{\omega}}\right|$ for $\beta, \gamma \in \Omega-\{\alpha\}$.
(ii) $|F(X)|=1+\left|F(X) \cap \beta^{N}\right| \times r$, where r is the number of N^{ω}-orbits on $\Omega-$ $\{\alpha\}$.

Proof. Let $\Gamma=\left\{\Delta_{1}, \Delta_{2}, \cdots, \Delta_{r}\right\}$ be the set of N^{ω}-obrits on $\Omega-\{\alpha\}$. Since G_{a} is transitive on $\Omega-\{\alpha\}$ and $G_{a} \unrhd N^{a}$, we have $\left|\Delta_{i}\right|=\left|\Delta_{j}\right|$ for $1 \leq i, j \leq r$. By assumption, $G_{a}=N_{G_{\infty}}(X) N^{\infty}$ and so $N_{G_{x}}(X)$ is transitive on Γ. Hence for each i with $1 \leq i \leq r$ there exists $g \in N_{G_{o}}(X)$ such that $\left(\Delta_{1}\right)^{g}=\Delta_{i}$. Therefore $\left|F(X) \cap \Delta_{i}\right|=\left|F\left(X^{g}\right) \cap\left(\Delta_{1}\right)^{g}\right|=\left|F(X) \cap \Delta_{1}\right|$. Thus (i) holds and (ii) follows immediately from (i)

Lemma 2.5 (Huppert [5]). Let G be a doubly transitive permutation group on Ω. Suppose that $0_{2}(G) \neq 1$ and G_{a} is solvable. Then for any involution z in $G_{a},|F(z)|^{2}=|\Omega|$.

We list now some properties of $\operatorname{PSL}(2, q)$ with q odd which will be required
in the proof of our theorem.
Lemma 2.6 ([2], [6], [10]). \quad Set $N=P S L(2, q)$ and $G=A u t(N)$, where $q=$ p^{n} and p is an odd prime. Let z be an involution in N. Then the following hold.
(i) $|N|=(q-1) q(q+1) / 2, I(N)=z^{N}$ and $C_{N}(z) \simeq D_{q-\varepsilon}$, where $q \equiv \varepsilon \in\{ \pm 1\}$ (mod 4).
(ii) If $q \neq 3, N$ is a nonabelian simple group and a Sylow r-subgroup of N is cyclic when $r \neq 2, p$.
(iii) If X and Y are cyclic groups of N and $|X|=|Y| \neq 2, p$, then X is conjugate to Y in $\langle X, Y\rangle$ and $N_{N}(X) \simeq D_{q \pm 8}$.
(iv) If $X \leq N$ and $X \simeq Z_{2} \times Z_{2}, N_{N}(X)$ is isomorphic to A_{4} or S_{4}.
(v) If $|N|_{2} \geq 8, N$ has two conjugate classes of four-groups in N.
(vi) There exist a field automorphism f of N of order n and a diagonal automorphism d of N of order 2 and if we identify N with its inner automorphism group, $\langle d\rangle N \simeq P G L(2, q),\langle f\rangle\langle d\rangle N=G$ and $G / N \simeq Z_{2} \times Z_{n}$.
(vii) $C_{N}(d) \simeq D_{q+\varepsilon}$ and $C_{\langle d\rangle N}(z) \simeq D_{2(q-\varepsilon)}$.
(viii) Suppose $n=m k$ for positive integers m, k. Then $C_{N}\left(f^{m}\right) \simeq P S L\left(2, p^{m}\right)$ if k is odd and $C_{N}\left(f^{m}\right) \simeq P G L\left(2, p^{m}\right)$ if k is even.
(ix) Assume n is even and let u be a field automorphism of order 2. Then $I(G)=I(N) \cup d^{N} \cup u^{\langle d\rangle N}$. If n is odd, $I(G)=I(N) \cup d^{N}$.
(x) If H is a subgroup of N of odd index, then one of the following holds:
(1) H is a subgroup of $C_{N}(z)$ of odd index for some involution $z \in N$.
(2) $H \simeq P G L\left(2, p^{m}\right)$, where $n=2 m k$ and k is odd.
(3) $H \simeq P S L\left(2, p^{m}\right)$, where $n=m k$ and k is odd.
(4) $H \simeq A_{4}$ and $q \equiv 3,5(\bmod 8)$.
(5) $H \simeq S_{4}$ and $q \equiv 7,9(\bmod 16)$.
(6) $H \simeq A_{5}, q \equiv 3,5(\bmod 8)$ and $\left.5 \mid(q-1) q / q+1\right)$.

Lemma 2.7. Let G, N, d and f be as defined in Lemma 2.6 and H an $\langle f, d\rangle$-invariant subgroup of N isomorphic to $D_{q-\varepsilon}$. Let W be a cyclic subgroup of $\langle d\rangle H$ of index 2 (cf. (vii) of Lemma 2.6) and set $Y=0_{2}(W \cap H)$. Then $C_{G}(Y)=W \cdot C_{\left.<_{f}\right\rangle}(Y)$.

Proof. By (viii) of Lemma 2.6, we can take an involution t satisfying $\langle d\rangle H=\langle t\rangle W$ and $[f, t]=1$. Since $N_{G}(Y)=\langle f, d\rangle N_{N}(Y)=\langle f, d\rangle H, C_{G}(Y)=$ $C_{\left\langle_{f} \backslash_{d\rangle H}\right.}(Y)=W \cdot C_{\langle f\rangle \times\langle t\rangle}(Y)$. Suppose $h t \in C(Y)$ for some $h \in\langle f\rangle$. Since t inverts Y, h also inverts Y and so h^{2} centralizes Y. Hence some nontrivial 2-element $g \in\langle h\rangle$ inverts Y, so that $C_{H}(g)$ contains no element of order 4, contrary to (viii) of Lemma 2.6.

Throughout the rest of the paper, G^{α} will always denote a doubly transitive permutation group satisfying the hypothesis of our theorem and we assume $G^{\boldsymbol{\alpha}}$ has no regular normal subgroup.

Notation. $C^{\omega}=C_{G}\left(N^{\alpha}\right)$, which is semi-regular on $\Omega-\{\alpha\}$ by Lemma 2.2. Let r be the number of N^{ω}-orbits on $\Omega-\{\alpha\}$.

Since $G_{\infty} \unrhd N^{\omega},\left|\beta^{N^{\omega}}\right|=\left|\gamma^{N^{\omega}}\right|$ for $\beta, \gamma \in \Omega-\{\alpha\}$ and so $|\Omega|=1+r \times\left|\beta^{N^{\omega}}\right|$. Hence r is odd and N_{β}^{α} is a subgroup of N^{α} of odd index. Therefore N_{β}^{α} is isomorphic to one of the groups listed in (x) of Lemma 2.6. Accordingly the proof of our theorem will be divided in six cases.

Lemma 2.8. Let Z be a cyclic subgroup of N_{β}^{α} with $|Z| \neq 1, p$. Then
(i) If $|Z|=2,|F(Z)|=1+(q-\varepsilon)\left|I\left(N_{\beta}^{\alpha}\right)\right| r| | N_{\beta}^{\alpha} \mid$.
(ii) If $|Z| \neq 2,|F(Z)|=1+\left|N_{N^{\alpha}}(Z)\right| r| | N_{N_{B}^{\alpha}}(Z) \mid$.

Proof. It follows from Lemma 2.3, 2.4 and 2.6 (i), (iii).
Lemma 2.9. If $N_{\beta}^{\alpha} \neq D_{q-\varepsilon}$ and Z is a cyclic subgroup of N_{β}^{α} with $|Z| \neq 1, p$ and $N_{G}(Z)^{F(Z)}$ is doubly transitive. Then $C^{a}=1$ and one of the following holds.
(i) $N_{G}(Z)^{F(Z)} \leq A \Gamma L\left(1, q_{1}\right)$ for some q_{1}.
(ii) $\quad C_{G}(Z)^{F(Z)} \unrhd P S L\left(2, p_{1}\right), r=1$ and $|F(Z)|-1=\left|N_{N^{\alpha}}(Z): N_{N_{\beta}^{\alpha}}(Z)\right|=p_{1}$, where $p_{1}(\geq 5)$ is a prime.
(iii) $N_{G}(Z)^{F(Z)}=R(3)$, the smallest Ree group, $|F(Z)|=28$.

Proof. Set $N_{G}(Z)=L$ and $F(Z)=\Delta$. By Lemma 2.6(iii), $L \cap N^{\alpha} \simeq D_{q \pm 8}$ and $L \cap N^{a}=\langle t\rangle Y \unrhd Y \geq Z$, where $0(t)=2, Y \simeq Z_{(q \pm \mathrm{s}) / 2}$.

If $\left(L \cap N^{a}\right)^{\Delta}=1$, then $L \cap N^{a}=N_{\beta}^{\alpha}$ because $L \cap N^{a}$ is a maximal subgroup of N^{a}. Since $\left|N^{a}: N_{\beta}^{a}\right|$ is odd, $L \cap N^{a}=N_{\beta}^{a} \simeq D_{q-\varepsilon}$, contrary to the assumption. Hence $\left(L \cap N^{\omega}\right)^{\Delta} \neq 1$ and as $L_{\alpha} \unrhd L_{\infty} \cap N^{\omega}$ and $L_{\alpha} \unrhd Y,\left(L_{\infty}\right)^{\Delta}$ has a nontrivial cyclic normal subgroup. By Theorem 3 of [1], one of the following occurs:
(a) L^{Δ} has a regular normal subgroup
(b) $L^{\Delta} \unrhd P S L\left(2, p_{1}\right),|\Delta|=p_{1}+1$, where $p_{1}(\geq 5)$ is a prime
(c) $L^{\Delta} \unrhd P S L\left(3, p_{1}\right), p_{1} \geq 3,|\Delta|=\left(p_{1}\right)^{3}+1$
(d) $L^{\Delta}=R(3),|\Delta|=28$.

Suppose $C^{\infty} \neq 1$. Then there exists a subgroup D of C^{a} of prime order such that $\left(L_{\alpha}\right)^{\Delta} \triangleright D^{\Delta}$. Since $\left[L_{\alpha}, D\right] \leq D \cdot L_{\Delta} \cap C^{\infty}=D\left(L_{\Delta} \cap C^{\alpha}\right)=D, D$ is a normal subgroup of L_{a}. By (i) and (iii) of Lemma 2.6, $G_{a}=L_{a} \cdot N^{\alpha}$ and so D is a normal subgroup of G_{a}. By Theorem 3 of [1], G^{Ω} has a regular normal subgroup, contrary to the hypothesis. Thus $C^{a}=1$.

If (a) occurs, L^{Δ} is solvable because $L_{a} / L \cap N^{a} \simeq L_{\alpha} N^{\alpha} / N^{a} \leq \operatorname{Out}\left(N^{\alpha}\right)$ and $L \cap N^{\alpha} \simeq D_{q \pm 8}$. Hence by [5], (i) holds in this case.

If (b) occurs, we have $Y^{\Delta} \neq 1$, for otherwise $\left(L \cap N^{a}\right)^{\Delta}=1$ and so $N_{\beta}^{a}=L \cap$ $N^{\omega} \simeq D_{q-\varepsilon}$, a contradiction. Hence $1 \neq C_{G}(Z)^{\Delta} \unlhd L^{\Delta}$ and so $C_{G}(Z)^{\Delta} \unrhd P S L\left(2, p_{1}\right)$ and $Y^{\Delta} \simeq Z_{p_{1}}$. Therefore $\left|\Delta \cap \beta^{N^{\omega}}\right|=p_{1}$ and $r=1$ by Lemma 2.4 (ii). Since $\left|\beta^{Y}\right|=p_{1}$, we have $\left|\beta^{L \cap N^{a}}\right|=p_{1}$, so that $\left|L \cap N^{a}: L \cap N_{\beta}^{\alpha}\right|=p_{1}$. Thus (ii) holds in this case.

The case (c) does not cocur, for otherwise, by the structure of $\operatorname{PSU}\left(3, p_{1}\right)$,
a Sylow p_{1}-subgroup of $\left(L_{\alpha}^{\Delta}\right)^{\prime}$ is not cyclic, while $\left(L_{\alpha}\right)^{\prime} \leq L \cap N^{\omega} \simeq D_{q \pm \text { e }}$, a contradiction.

3. Case (I)

In this section we assume that $N_{\beta}^{\alpha} \leq D_{q-\varepsilon}$, where $\beta \neq \alpha, q=p^{n}$.
(i) If $N_{\beta}^{\alpha} \neq Z_{2} \times Z_{2}, N_{N^{\alpha}}\left(N_{\beta}^{\alpha}\right)=N_{\beta}^{\alpha}$ and $\left|F\left(N_{\beta}^{\alpha}\right)\right|=r+1$.
(ii) If $N_{\beta}^{\alpha} \simeq Z_{2} \times Z_{2}, N_{N^{\alpha}}\left(N_{\beta}^{\alpha}\right) \simeq A_{4}$ and $\left|F\left(N_{\beta}^{\alpha}\right)\right|=3 r+1$.

Proof. Put $X=N_{N^{\alpha}}\left(N_{\beta}^{\alpha}\right)$. Let S be a Sylow 2-subgroup of N_{β}^{α} and Y a cyclic subgroup of N_{β}^{α} of index 2.

If $N_{\beta}^{\alpha} \not \not \not Z_{2} \times Z_{2}$, then $|Y|>2$ and so Y is characteristic in N_{β}^{α}. Hence $X \leq N_{N^{a}}(Y) \simeq D_{q-\varepsilon}$. From this $\left[N_{X}(S), S \cap Y\right] \leq S \cap Y$ and $0^{2}\left(N_{X}(S)\right)$ stabilizes a normal series $S \unrhd S \cap Y \unrhd 1$, so that $0^{2}\left(N_{X}(S)\right) \leq C_{N^{\alpha}}(S)$ by Theorem 5.3.2 of [2]. By Lemma 2.6(i), $C_{N^{a}}(S) \leq S$ and hence $N_{X}(S)=S$. On the other hand by a Frattini argument, $X=N_{X}(S) N_{\beta}^{\alpha}$ and so $X=N_{\beta}^{\alpha}$. By Lemma 2.6(i), $\left(N_{\beta}^{\alpha}\right)^{c_{\alpha}}$ $=\left(N_{\beta}^{\alpha}\right)^{N^{a}}$ and so by Lemmas 2.3 and 2.4 (ii), $\left|F\left(N_{\beta}^{\alpha}\right)\right|=1+\left|F\left(N_{\beta}^{\alpha}\right) \cap \beta^{N^{\omega}}\right| \times r=$ $1+\left|N_{\beta}^{\alpha}\right| r| | N_{\beta}^{\alpha} \mid=r+1$. Thus (i) holds.

If $N_{\beta}^{\alpha} \simeq Z_{2} \times Z_{2}, N_{N^{\alpha}}\left(N_{\beta}^{\alpha}\right) \simeq A_{4}$ by Lemma 2.6 (iv). Similarly as in the case $N_{\beta}^{\alpha} \neq Z_{2} \times Z_{2}$, we have $\left|F\left(N_{\beta}^{\alpha}\right)\right|=3 r+1$.
(3.2) $\quad N_{\beta}^{\alpha} / N^{\alpha} \cap N^{\beta} \leq Z_{2} \times Z_{2}$.

Proof. By Lemma 2.2, it suffices to consider the case $C^{a}=1$. Suppose $C^{\omega}=1$. Then $N_{\beta}^{\alpha} / N^{\alpha} \cap N^{\beta} \simeq N_{\beta}^{\alpha} N^{\beta} / N^{\beta} \leq \operatorname{Out}\left(N^{\alpha}\right) \simeq Z_{2} \times Z_{n}$ by Lemma 2.6 (vi) and hence $\left(N_{\beta}^{\alpha}\right)^{\prime} \leq N^{\alpha} \cap N^{\beta}$. Since N_{β}^{α} is dihedral, $N_{\beta}^{\alpha} /\left(N_{\beta}^{\alpha}\right)^{\prime} \simeq Z_{2} \times Z_{2}$, so that $N_{\beta}^{a} / N^{\alpha} \cap N^{\beta} \leq Z_{2} \times Z_{2}$.
(3.3) Suppose $N_{\beta}^{\alpha}=N^{a} \cap N^{\beta}$ and let U be a subgroup of N_{β}^{α} isomorphic to $\mathrm{Z}_{2} \times Z_{2}$. Then $|F(U)|=3 r+1$ and $N_{G}(U)^{F(U)}$ is doubly transitive.

Proof. Sex $X=N_{G}\left(N_{\beta}^{\alpha}\right), \Delta=F\left(N_{\beta}^{\alpha}\right)$ and let $\left\{\Delta_{1}, \Delta_{2}, \cdots, \Delta_{r}\right\}$ be the set of N^{α}-orbits on $\Omega-\{\alpha\}$. If $g^{-1} N_{\beta}^{\alpha} g \leq G_{\alpha \beta}$, then $g^{-1} N_{\beta}^{\alpha} g \leq N_{\alpha}^{\gamma} \cap N_{\beta}^{\gamma}=N_{\gamma}^{\alpha} \cap N_{\gamma}^{\beta} \leq N_{\beta}^{\alpha}$, where $\gamma=\alpha^{g}$. By a Witt's theorem, X^{Δ} is doubly transitive.

If U is a Sylow 2-subgroup of N_{β}^{α}, by a Witt's theorem, $N_{G}(U)^{F(U)}$ is doubly transitive. Moreover $N_{N^{\alpha}}(U) \simeq A_{4}$ and so by Lemmas 2.3 and 2.4 (ii), $|F(U)|=$ $1+\left|A_{4}\right| \times\left|N_{\beta}^{\alpha}: N_{N_{\beta}^{\alpha}}^{\alpha}(U)\right| \times r| | N_{\beta}^{\alpha} \mid=3 r+1$.

If $\left|N_{\beta}^{\alpha}\right|_{2}>4$, by Lemma 2.6 (iv) and (v), $N_{N^{\alpha}}(U) \simeq S_{4}$ and N_{β}^{α} has two conjugate classes of four-groups, say $\pi=\left\{K_{1}, K_{2}\right\}$. Set $X_{\pi}=M$. Then $M \unrhd N_{\beta}^{\alpha}$ and $X / M \leq Z_{2}$. Clearly $F(U) \cap \Delta_{i} \neq \phi$ for each i and so $\left|F(U) \cap \Delta_{i}\right|=3$ by Lemma 2.3. Hence $|F(U)|=3 r+1$. Since $N_{N} \beta(U) \simeq S_{4}$, we may assume $r>1$. Hence by (3.1) (i) $|\Delta|=r+1 \geq 4$, so that M^{Δ} is doubly transitive. Since $M=$ $N_{\beta}^{\alpha} N_{M}(U), N_{M}(U)^{\Delta}$ is also doubly transitive and so $N_{M_{\alpha}}(U)$ is transitive on $\Delta-$
$\{\alpha\}$. As $\left|\Delta \cap \Delta_{i}\right|=1, \Delta \cap \Delta_{i} \subseteq F(U)$ and $N_{N^{a}}(U)$ is transitive on $F(U) \cap \Delta_{i}$ for each $i, N_{G}(U)^{F(U)}$ is doubly transitive.
(i) $C^{\infty}=1$.
(ii) Let U be a subgroup of N_{β}^{α} isomorphic to $Z_{2} \times Z_{2}$. If $N_{\beta}^{\alpha}=N^{\alpha} \cap N^{\beta}$, then $N_{G}(U)^{F(U)}$ has a regular normal 2-subgroup. In particular $|F(U)|=3 r+1=2^{b}$ for positive integer b.

Proof. Since $N_{G_{\infty}}(U)^{F(U)} \unrhd N_{N^{\alpha}}(U)^{F(U)} \simeq S_{3}$ or Z_{3}, by (3.3) and Theorem 3 of [1], $N_{G}(U)^{F(U)}$ has a regular normal subgroup, $N_{G}(U)^{F(U)} \unrhd P S U(3,3)$ or $N_{G}(U)^{F(U)}=R(3)$.

Suppose $C^{\infty} \neq 1$. Let D be a minimal characteristic subgroup of C^{ω}. Clearly $G_{a} \triangleright D$. If $N_{G}(U)^{F(U)} \neq R(3), D$ is cyclic. By Theorem 3 of [1], G^{Ω} has a regular normal subgroup, contrary to the hypothesis. Hence $N_{G}(U)^{F(U)}=R(3)$. Therefore $\left(N_{G_{\omega}}(U)^{F(U)}\right)^{\prime}$ contains an element of order 9. Since $N_{G_{\alpha}}(U) / C^{a x} N_{N^{\alpha}}(U)$ $\simeq N_{G_{\infty}}(U) C^{\infty} N^{\infty} / C^{a} N^{a} \leq \operatorname{Out}\left(N^{a}\right)$, by (vi) of Lemma 2.6 we have $\left(N_{G_{\infty}}(U)\right)^{\prime} \leq C^{a}$ $\times N_{N^{\alpha}}(U)$. From this, C^{∞} contains an element of order 9 and so $C^{\infty} \simeq Z_{9}$ or $M_{3}(3)$. In both cases, C^{∞} contains a caracteristic subgroup of order 3. Since $G_{a} \triangleright D$, by Theorem 3 of [1] G^{α} has a regular normal subgroup, a contradiction. Thus $C^{\infty}=1$.

Let R be a Sylow 3-subgroup of $N_{G_{o}}(U)$. Since $N_{G_{w}}(U) / N_{N^{\alpha}}(U) \simeq$ $N_{G_{\alpha}}(U) N^{a} / N^{a} \leq \operatorname{Out}\left(N^{\alpha}\right) \simeq Z_{2} \times Z_{n}, R / R \cap N_{N^{\alpha}}(U)$ is cyclic. Clearly $R \cap N_{N^{\alpha}}(U)$ $\simeq Z_{3}$. Therefore $N_{G}(U)^{F(U)} \Perp P S U(3,3), R(3)$. Thus (3.4) holds.

Since N_{β}^{α} is dihedral, we set $N_{\beta}^{\alpha}=\langle t\rangle W$ and $Y=W \cap N^{\alpha} \cap N^{\beta}$, where W is a cyclic subgroup of N_{β}^{α} of index 2 and t is an involution in N_{β}^{α} which inverts W.
(3.5) (i) If $|Y| \geq 3, N_{G}(Y)^{F(Y)}$ is doubly transitive.
(ii) If $|Y|<3, N_{\beta}^{\alpha} \simeq Z_{2} \times Z_{2}$ or $N_{\beta}^{\alpha} \simeq D_{8}$ and $N^{\omega} \cap N^{\beta} \leq Z_{2} \times Z_{2}$.

Proof. Suppose $|Y| \geq 3$. If $Y^{g} \leq G_{\alpha \beta}, Y^{g} \leq N^{\gamma} \cap G_{\alpha \beta} \leq N_{\alpha}^{\gamma}$, where $\gamma=\alpha^{g}$. If $\gamma=\alpha$, obviously $Y^{g} \leq N^{a}$. If $\gamma \neq \alpha, N_{\alpha}^{\gamma} \simeq N_{\beta}^{\alpha}$. Therefore, as $|Y| \geq 3, N_{\alpha}^{\gamma}$ has a unique cyclic subgroup of order $|Y|$. Hence $Y^{g} \leq N^{\gamma} \cap N^{a} \leq N^{a}$, so that $Y^{g} \leq$ N^{ω}. Similarly $Y^{g} \leq N^{\beta}$. Thus $Y^{g} \leq N^{\alpha} \cap N^{\beta}$ and so $Y^{g}=Y$. By a Witt's theorem, $N_{G}(Y)$ is doubly transitive on $F(Y)$.

Suppose $|Y|<3$. Since $\left|N^{a} \cap N^{\beta}: Y\right| \leq 2$, we have $N^{a} \cap N^{\beta} \leq Z_{2} \times Z_{2}$. On the other hand, as N_{β}^{α} is dihedral, $\left(N_{\beta}^{\alpha}\right)^{\prime}$ is cyclic. Hence (ii) follows immediately from (3.2).
(3.6) Set $\Delta=F\left(N_{\beta}^{\alpha}\right), L=G(\Delta), K=G_{\Delta}$ and suppose $N_{\beta}^{\alpha} \neq Z_{2} \times Z_{2}$. Then $L_{a} \unrhd N_{\beta}^{\alpha},\left(L_{\alpha}\right)^{\prime} \leq N_{\beta}^{\alpha}, K^{\prime} \leq N^{a} \cap N^{\beta}$ and $\left(L_{\alpha}\right)^{\Delta} \simeq Z_{r}$. If $r \neq 1, L^{\Delta}$ is a doubly transitive Frobenius group of degree $r+1$.

Proof. By Corollary B1 of [7] and (i) of (3.1), L^{Δ} is doubly transitive and
$|\Delta|=r+1$. Since $N^{a} \cap L \unrhd N^{a} \cap K=N_{\beta}^{a}$, by (i) of (3.1), we have $N^{a} \cap L=N_{\beta}^{\alpha}$. Hence $L_{\alpha} \unrhd N_{\beta}^{\alpha}$. By (i) of (3.4), $L_{\alpha} / N_{\beta}^{\alpha} \simeq L_{\alpha} N^{\infty} / N^{a} \leq \operatorname{Out}\left(N^{\alpha}\right) \simeq Z_{2} \times Z_{n}$ and so $\left(L_{\alpha}\right)^{\prime} \leq N_{\beta}^{\alpha}$ and $\left(L_{\alpha}\right)^{\Delta} \simeq Z_{r}$. If $r \neq 1$, then $\left(L_{a}\right)^{\Delta} \neq 1$. On the other hand $\left(L_{\alpha \beta}\right)^{\Delta}=1$ as $\left(L_{a}\right)^{\Delta}$ is abelian. Hence L^{Δ} is a Frobenius group.
(3.7) Suppose $|Y| \geq 3$. Then there exists an involution \approx in $N_{\beta}^{\alpha} \cap Y$ such that $Z\left(N_{\beta}^{a}\right)=\langle z\rangle$.

Proof. Since $N_{\beta}^{\alpha} \neq Z_{2} \times Z_{2},\left|N_{\beta}^{\alpha}\right|_{2} \geq 2^{2}$ and N_{β}^{α} is dihedral, we have $\langle I(W)\rangle$ $=Z\left(N_{\beta}^{\alpha}\right) \simeq Z_{2}$ and $N_{\beta}^{\alpha} /\left(N_{\beta}^{\alpha}\right)^{\prime} \simeq Z_{2} \times Z_{2}$. Let $Z\left(N_{\beta}^{\alpha}\right)=\langle z\rangle$ and suppose that z is not contained in Y. By (3.2), $\left(N_{\beta}^{\alpha}\right)^{\prime} \leq N^{\alpha} \cap N^{\beta} \cap W=Y$ and so $\left|\left(N_{\beta}^{\alpha}\right)^{\prime}\right|$ is odd. Hence $\left|N_{\beta}^{\alpha}\right|_{2}=4$ and $q \equiv p^{n}=3$ or $5(\bmod 8)$, so that n is odd. By (3.2) and (i) of (3.4), $N_{\beta}^{\alpha} / N^{\alpha} \cap N^{\beta} \simeq N_{\beta}^{\alpha} N^{\beta} / N^{\beta} \simeq 1$ or Z_{2}. If $N_{\beta}^{\alpha}=N^{\omega} \cap N^{\beta}$, then $W=Y$ and so $z \in Y$, contrary to the assumption. Therefore we have $N_{\beta}^{\alpha} \mid N^{\alpha} \cap N^{\beta} \simeq Z_{2}$ and $N_{\beta}^{\alpha}=\langle z\rangle$ $\times\left(N^{\infty} \cap N^{\beta}\right)$. Since n is odd and $z \in N_{\beta}^{\alpha} N^{\beta}-N^{\beta}$, by Lemma 2.6 (vi), (vii) and (ix), $N_{\beta}^{\alpha} N^{\beta} \simeq P G L(2, q)$ and $C_{N}{ }^{\beta}(z) \simeq D_{q+\varepsilon}$. But $N^{a} \cap N^{\beta} \leq C_{N}{ }^{\beta}(z)$ and besides it is isomorphic to a subgroup of $D_{q-\varepsilon}$. Hence $N^{\alpha} \cap N^{\beta} \simeq Z_{2}$ and $N_{\beta}^{\alpha} \simeq Z_{2} \times Z_{2}$, a contradiction.
(3.8) Suppose $|Y| \geq 3$. Then $N_{\beta}^{\alpha}=N^{a} \cap N^{\beta}$.

Proof. Suppose $N_{\beta}^{\alpha} \neq N^{\alpha} \cap N^{\beta}$ and let Δ, L, K be as defined in (3.6) and $x \in L_{\infty}$ such that its order is odd and $\langle x\rangle$ is transitive on $\Delta-\{\alpha\}$. As $|Y|$ $\geq 3, W$ is characteristic in N_{β}^{α} and hence by (3.6), x stabilizes a normal series $L_{\alpha} \unrhd N_{\beta}^{\alpha} \unrhd W \unrhd\left(N_{\beta}^{\alpha}\right)^{\prime}$. By Theorem 5.3.2 of [2], $\left[x, 0_{2}\left(L_{\alpha} /\left(N_{\beta}^{\alpha}\right)^{\prime}\right)\right]=1$. Since $L_{\alpha} /\left(N_{\beta}^{\alpha}\right)^{\prime}$ has a normal Sylow 2-subgroup and $\left(N_{\beta}^{\alpha}\right)^{\prime} \leq K^{\prime}$, we have $\left[x, 0_{2}\left(L_{\alpha} / K^{\prime}\right)\right]$ $=1$, so that $\left[x, N_{\alpha}^{\beta}\right] \leq K^{\prime} \leq N^{\alpha} \cap N^{\beta}$ by (3.6). If $r \neq 1$, then $\beta^{x} \neq \beta$ and $\beta^{x} \in \Delta$, hence $N_{\alpha}^{\beta}=x^{-1} N_{\alpha}^{\beta} x=N_{\alpha}^{\gamma}$, where $\gamma=\beta^{x}$. Since $\gamma \in \Delta$ and $\Delta=F\left(N_{\alpha}^{\beta}\right), N_{a}^{\beta} \leq N^{\beta} \cap$ $G_{\gamma}=N_{\gamma}^{\beta}$ and so $N_{\alpha}^{\beta}=N_{\gamma}^{\beta}$. Similarly $N_{\alpha}^{\gamma}=N_{\beta}^{\gamma}$. Hence $N_{\gamma}^{\beta}=N_{\beta}^{\gamma}$, which implies $N_{\gamma}^{\beta}=N^{\beta} \cap N^{\gamma}$. By the doubly transitivity of G, we have $N_{\beta}^{\alpha}=N^{\alpha} \cap N^{\beta}$, contrary to the assumption. Therefore we obtain $r=1$.

Let z be as defined in (3.7) and put $k=(q-\varepsilon) /\left|N_{\beta}^{\alpha}\right|$. By Lemma 2.8(i) we have $|F(z)|=1+(q-\varepsilon)\left(\left|N_{\beta}^{\alpha}\right| / 2+1\right) /\left|N_{\beta}^{\alpha}\right|=(q-\varepsilon) / 2+k+1$. Similarly $|F(Y)|$ $=k+1$. As $N_{\beta}^{\alpha} \neq N^{\alpha} \cap N^{\beta}$, there is an involution t in N_{β}^{a} which is not contained in N^{β}. By Lemma 2.6 (i), $t^{y}=z$ for some $y \in N^{\omega}$. Set $\gamma=\beta^{y}$. Then $\gamma \in F(z)$ and $z \notin N^{\gamma}$. By Lemma 2.6 (vii), (viii) and (ix), $C_{N^{\gamma}}(z) \simeq D_{q+\varepsilon}$ or $P G L(2, \sqrt{q})$. Assume $C_{N^{\gamma}}{ }^{\gamma}(z) \simeq D_{q+\varepsilon}$ and let R be a cyclic subgroup of $C_{N_{N}} \gamma(z)$ of index 2 . We note that R is semi-regular on $\Omega-\{\alpha\}$. Set $X=C_{G}(z)$. Since $2 \leq k+1 \leq(q-\varepsilon) /$ $|q-\varepsilon|_{2}+1$, we have $(q+\varepsilon) / 2 X k+1$ and so $\left|\alpha^{X}\right|>k+1$. By (i) of (3.5) and (3.7), $N_{G}(Y) \leq C_{G}(z)=X$ and $\alpha^{X} \supseteq F(Y)$. It follows from Lemma 2.1 that $\alpha^{X}=\{\mu \mid$ $\left.z \in N^{\mu}\right\} \nexists \gamma$. Hence $|F(z)|>\left|\alpha^{X}\right| \geq|F(Y)|+(q+\varepsilon) / 2=k+1+(q-\varepsilon) / 2+\varepsilon=$ $|F(z)|+\varepsilon$. Therefore $\varepsilon=-1$ and $\gamma^{X}=\{\gamma\}$, so that $\gamma \in F(Y)$, a contradiction. Thus $C_{N^{\gamma}}(z) \simeq P G L(2, \sqrt{q}), \varepsilon=1, N_{\beta}^{\alpha} / N^{\alpha} \cap N^{\beta} \simeq Z_{2}$ and $\left|\left\langle z^{G} \cap G_{a}\right\rangle: N^{\alpha}\right|=2$.

Set $\Delta_{1}=\alpha^{X}$ and $\Delta_{2}=F(z)-\Delta_{1}$. Let $\delta \in \Delta_{2}$ and g an element of G satisfying $\delta^{g}=\gamma$. Then $z \in N_{\delta}^{\alpha} N^{\delta}-N^{\delta}$ and so $z^{g} \in N_{\gamma}^{\nu} N^{\gamma}-N^{\gamma}$, where $\nu=\alpha^{g}$. Since $\mid\left\langle z^{G} \cap\right.$ $\left.G_{\gamma}\right\rangle: N^{\gamma} \mid=2$ and $z \in G_{\gamma}-N^{\gamma}$, it follows from Lemma 2.6 (ix) that $\left(z^{g}\right)^{h}=z$ for some $h \in G_{\gamma}$. Hence $g h \in X$ and $\delta^{g h}=\gamma$. Thus $\Delta_{2}=\gamma^{x}$. Let $\delta \in \Delta_{2}$. Then $z \in N_{\delta}^{\alpha}$ and $z \notin Z\left(N_{\delta}^{\alpha}\right)$ by (3.7) and so $X \cap N_{\delta}^{\alpha} \simeq Z_{2} \times Z_{2}$, which implies $\left|\delta^{\left(C_{N}\right)^{\alpha(z)}}\right|=(q-1) / 4$. Hence $\left(\left|\Delta_{1}\right|,\left|\Delta_{2}\right|\right)=((q-1) / 4+k+1,(q-1) / 4)$ or $(k+1,(q-1) / 2)$. Let P be a subgroup of $C_{N}{ }^{\gamma}(z)$ of order \sqrt{q}. Then $F(P)=\{\gamma\}$ and P is semi-regular on $\Omega-\{\gamma\}$. If $\left|\Delta_{2}\right|=(q-1) / 4$, then $\sqrt{ } \bar{q} \mid(q-1) / 4-1=(q-5) / 4$ and $\sqrt{q}|(q-1)|$ $4+k+1$. From this, $q=5^{2}, k=3,\left|\Delta_{1}\right|=10$ and $\left|\Delta_{2}\right|=6$. Since $\left(C_{N^{\gamma}}(z)\right)^{\Delta_{2}} \simeq S_{5}$, $X^{\Delta_{2}} \simeq S_{6}$ and so $|X|_{3} \geq 3^{2}$. As X acts on Δ_{1} and $\left|\Delta_{1}\right| \equiv 1(\bmod 3),\left|G_{a}\right|_{3} \geq\left|X_{a}\right|_{3}$ $\geq 3^{3}$, contrary to $N^{\alpha} \simeq P S L(2,25)$. If $\left|\Delta_{2}\right|=(q-1) / 2, \sqrt{q} \mid(q-1) / 2-1=(q-3) / 2$, so $q=3^{2}, k=1, N_{\beta}^{\alpha} \simeq D_{8}$ and $\Delta_{1}=\{\alpha, \beta\}$. Hence $C_{N} \gamma(z)$ fixes α and β, so that $P G L(2,3) \simeq C_{N^{\gamma}}^{\gamma}(z) \leq N_{\alpha}^{\gamma} \simeq N_{\beta}^{\alpha} \simeq D_{8}$, a contradiction.

(3.9) Suppose $|Y| \geq 3$. Then $r=1$.

Proof. By (3.6), $r+1=2^{c}$ for some integer $c \geq 0$. On the other hand $3 r+1=2^{b}$ by (3.8) and (ii) of (3.4). Hence $2 r=2^{c}\left(2^{b-c}-1\right)$ and so $c=1$ as r is odd. Thus $r=1$.
(3.10) Put $k=(q-\varepsilon) /\left|N_{\beta}^{\alpha}\right| . \quad$ If $N_{\beta}^{\alpha}=N^{\alpha} \cap N^{\beta}$ and $r=1$, then

$$
q-\varepsilon+2 k+2 \mid 2((2 k+2-\varepsilon)(k+1-\varepsilon) k+1)(2 k+2-\varepsilon)(k+1-\varepsilon) .
$$

Proof. Set $S=\left\{(\gamma, u) \mid \gamma \in F(u), u \in z^{G}\right\}$, where z is an involution in N_{β}^{α}. We now count the number of elements of S in two ways. Since $N_{\beta}^{\alpha}=N^{\alpha} \cap N^{\beta}$, $F(z)=\left\{\gamma \mid z \in N^{\gamma}\right\}$ and hence $C_{G}(z)$ is transitive on $F(z)$ by Lemma 2.1. Therefore $|S|=|\Omega|\left|z^{G_{\alpha}}\right|=\left|z^{G}\right||F(z)|$. Since $r=1,|\Omega|=1+\left|N^{\omega}: N_{\beta}^{\alpha}\right|=k q(q+\varepsilon) / 2+1$ and by Lemma $2.8|F(z)|=(q-\varepsilon) / 2+k+1$. Since $G_{a} \unrhd N^{\infty}, z^{G_{a}}$ is contained in N^{a} and so $\left|G_{a}: C_{G_{\infty}}(z)\right|=\left|N^{a}: C_{N^{a}}(z)\right|=q(q+\varepsilon) / 2$. Hence $(q-\varepsilon) / 2+k+1 \mid$ $\left(k q(q+\varepsilon / 2+1) q(q+\varepsilon) / 2\right.$. On the other hand $|F(z)|_{2}=\left|C_{G}(z)\right|_{2} /\left|C_{G_{w}}(z)\right|_{2} \leq|G|_{2} \mid$ $\left|C_{G_{\infty}}(z)_{12}=|G|_{2}\right|\left|G_{\infty}\right|_{2}=|\Omega|_{2}$ because $\left|G_{\infty}: C_{G_{o}}(z)\right|=q(q+\varepsilon) / 2 \equiv 1(\bmod 2)$. Hence $|q-\varepsilon+2 k+2|_{2} \leq|k q(q+\varepsilon)+2|_{2}$. Since $k q(q+\varepsilon)+2=(k q+2 k(\varepsilon-k-1))$ $(q-\varepsilon+2 k+2)+2((2 k+2-\varepsilon)(k+1-\varepsilon) k+1)$ and $q(q+\varepsilon)=(q+2 \varepsilon-2 k-2)(q-$ $\varepsilon+2 k+2)+2(2 k+2-\varepsilon)(k+1-\varepsilon)$, we have (3.10).
(3.11) Suppose $|Y| \geq 3$. Then one of the following holds.
(i) $N_{\beta}^{\alpha}=N^{a} \cap N^{\beta} \simeq D_{q-\varepsilon}$.
(ii) $N_{\beta}^{a}=N^{a} \cap N^{\beta} \neq D_{q-\varepsilon}$ and $N_{G}(Y)^{F(Y)}$ has a regular normal subgroup.

Proof. Suppose false. Then, by (3.5), (3.8) and Lemma 2.9, $N_{G}(Y)^{F(Y)}=$ $R(3)$ or there exists a prime $p_{1} \geq 5$ such that $C_{G}(Y)^{F(Y)} \unrhd P S L\left(2, p_{1}\right)$ and $V / Y \simeq$ $Z_{p_{1}}$, where $V=C_{N^{\alpha}}(Y)$. By (i) of (3.1) and (3.9), $F\left(N_{\beta}^{\alpha}\right)=\{\alpha, \beta\}$. On the other hand, $\left(N_{\beta}^{\alpha}\right)^{F(Y)} \simeq N_{\beta}^{\alpha} / Y \simeq Z_{2}$. Hence $N_{G}(Y)^{F(Y)} \neq R(3)$ and $C_{G}(Y)^{F(Y)} \unrhd$
$\operatorname{PSL}\left(2, p_{1}\right)$.
By (i) of (3.4) and Lemma 2.7, we have $C_{G_{\infty}}(Y)=V\left\langle f_{1}\right\rangle$, where f_{1} is a field automorphism of N^{a}. Let t be the order of $f_{1}, n=t m$ and let $p^{m} \equiv \varepsilon_{1} \in$ $\{ \pm 1\}(\bmod 4)$. Clearly $C_{G_{\alpha}}(Y)^{F(Y)} \unrhd V^{F(Y)} \simeq Z_{p_{1}}$ and $\left|C_{G_{\omega \beta}}(Y)^{F(Y)}\right| \mid t$, so that $\left(p_{1}-1\right) / 2 \mid t$.

First we assume that t is even and set $t=2 t_{1}$. Then $Y \leq C_{N^{a}}\left(f_{1}\right) \simeq P G L(2$, p^{m}) by Lemma 2.6 (viii). As $|V / Y|=p_{1}$ and p_{1} is a prime, Y is a cyclic subgroup of $C_{N^{\alpha}}\left(f_{1}\right)$ of order $p^{m}-\varepsilon_{1}$ and $\left(p^{n}-1\right) / 2\left(p^{m}-\varepsilon_{1} 1\right)=p_{1}$. Put $s=\sum_{i=0}^{t_{1}-1}\left(p^{2 m}\right)^{i}$. Then $\left(p^{m}+\varepsilon_{1}\right) s / 2=p_{1}$, so that we have either (i) $t_{1}=1$ and $p_{1}=\left(p^{m}+\varepsilon_{1}\right) / 2$ or (ii) $t_{1} \geq 2$, $p^{m}=3$ and $p_{1}=s$. In the case (i), $2 \leq\left(p_{1}-1\right) / 2=\left(p^{m}+\varepsilon_{1}-2\right) / 4 \mid 2 t_{1}=2$. Hence $\left(p_{1}, q\right)=\left(5,3^{4}\right)$ or $\left(4,11^{2}\right)$. Let z be as in (3.7). As mentioned in the proof of (3.10), $|F(z)|=(q-1) / 2+k+1,|\Omega|=k q(q+1) / 2+1$ and $C_{G}(z)$ is transitive on $F(z)$. If $q=3^{4}$, then $|F(z)|=46$ and $|\Omega|=2 \cdot 19^{2} \cdot 23$. Hence $\left|C_{G}(z)\right|=|F(z)|$ $\left|C_{G_{\infty}}(z)\right|=|F(z)|\left|C_{G_{a}}(z) N^{a} / N^{a}\right|\left|C_{N^{a}}(z)\right|=46 \cdot 2^{i} \cdot 80=2^{5+i} \cdot 5 \cdot 23$ with $0 \leq i \leq 3$. Let P be a Sylow 23 -subgroup of $C_{G}(z)$ and Q a Sylow 5 -subgroup of $C_{G}(z)$. It follows from a Sylow's theorem that P is a normal subgroup of $C_{G}(z)$ and so $[P, Q]=1$. Theorefore $|F(Q)| \geq 23$, contrary to $5 X\left|N_{\beta}^{\alpha}\right|$. If $q=11^{2}$, then $|F(z)|=66$ and $|\Omega|=2 \cdot 3 \cdot 6151$. Let P be a Sylow 11-subgroup of $C_{G}(z)$. Since $11 \chi|\Omega|, P$ is a subgroup of N^{γ} for some $\gamma \in \Omega$ and $F(P)=\{\gamma\}$. Hence $\gamma \in F(z)$, so that $z \in N^{\gamma}$, contrary to $C_{N^{\gamma}} \gamma(z) \simeq D_{120}$. In the case (ii), we have $\left(p_{1}-1\right) / 2=$ $\left(\sum_{i=1}^{t_{1}-1} 9^{i}\right) / 2 \mid t=2 t_{1}$. From this, $9^{t_{1}-1} \leq 4 t_{1}$, hence $t_{1}=1$, a contradiction.

Assume t is odd. Then $Y \leq C_{N^{\alpha}}\left(f_{1}\right) \simeq P S L\left(2, p^{m}\right)$ by Lemma 2.6 (viii). As $|V / Y|=p_{1}$ and p_{1} is a prime, $Y \simeq Z_{\left(p^{m}-\varepsilon_{1}\right) / 2}$ and $(q-\varepsilon) /\left(p^{m}-\varepsilon_{1}\right)=p_{1}$. Hence $\sum_{i=0}^{t-1}\left(p^{m}\right)^{i}\left(\varepsilon_{1}\right)^{t-1-i}=p_{1}$ and $\left(p_{1}-1\right) / 2=\left(\left(\sum_{i=1}^{t-1}\left(p^{m}\right)^{i}\left(\varepsilon_{1}\right)^{t-1-i}\right)-1\right) / 2 \mid t$. In parituclar $2 t \geq$ $\left(p^{m}\right)^{t-1}-\left(p^{m}\right)^{t-2}=\left(p^{m}-1\right)\left(p^{m}\right)^{t-2} \geq 2\left(p^{m}\right)^{t-2}$. From this $t=3, m=1, p_{1}=7$ and $q=3^{3}$, so that $N_{\beta}^{\alpha} \simeq Z_{2} \times Z_{2}$, a contradiction.
(3.12) (i) of (3.11) does not occur.

Proof. Let G^{Q} be a minimal counterexample to (3.12) and M a minimal normal subgroup of G. By the hypothesis, G has no regular normal subgroup and hence $M_{\infty} \neq 1$. As M_{a} is a normal subgroup of G_{a}, by (i) of (3.4), M_{∞} contains N^{∞}. By (3.9), $r=1$, hence M is doubly transitive on Ω. Therefore $G=M$ and G is a nonabelian simple group.

Since $N_{\beta}^{\alpha} \simeq D_{q-\varepsilon}, k=1$ and so $q-\varepsilon+4 \mid 2((4-\varepsilon)(2-\varepsilon)+1)(4-\varepsilon)(2-\varepsilon)$ by (3.10). Hence we have $q=7,9,11,19,27$ or 43.

Let x by an element of N_{β}^{α}. If $|x|>2$, by Lemma 2.8, $|F(x)|=1+\left|N_{\beta}^{\alpha}\right| \times$ $1 /\left|N_{\beta}^{\alpha}\right|=2$ and if $|x|=2$, similarly we have $|F(x)|=(q-\varepsilon) / 2+2$. Assume $q \neq 9$ and let d be an involution in $G_{a}-N^{\infty}$ such that $\langle d\rangle N^{a}$ is isomorphic to $P G L$
$(2, q)$. We may assume $d \in G_{\alpha \beta}$. Since $\langle d\rangle N^{\alpha}$ is transitive on $\Omega-\{\alpha\}$, by Lemmas 2.3 and 2.6 (vii), (ix), $|F(d)|=2(q-1)(q+1 / 2) / 2(q+1)+1=(q+1) / 2$, while $|F(x)|=(q+1) / 2+2$ for $x \in I\left(N^{\alpha}\right)$. Hence d is an odd permutation, contrary to the simplicity of G. Thus $G_{a}=N^{a}$ if $q \neq 9,27$ and $\left|G_{a} / N^{a}\right|=1,3$ if $q=27$.

If $q=9,|\Omega|=1+\left|N^{a}: N_{\beta}^{\alpha}\right|=1+9 \cdot 10 / 2=2 \cdot 23$ and $\left|G_{a}\right|=2^{i}|P S L(2,9)|$ $=2^{3+i} \cdot 3^{2} \cdot 5$ with $0 \leq i \leq 2$. Let P be a Sylow 23-subgroup of G. Since $\operatorname{Aut}\left(Z_{23}\right)$ $\simeq Z_{2} \times Z_{11}, 3 X\left|N_{G}(P)\right|$, for otherwise P centralizes a nontrivial 3-element x and so $F(P) \supseteq F(x)$ because $|F(x)|=1$, contrary to $|F(P)|=0$. Similarly $5 \nmid\left|N_{G}(P)\right|$. Hence $\left|G: N_{G}(P)\right|=2^{a} \cdot 3^{b} \cdot 5$ for some a with $0 \leq a \leq 6$. By a Sylow's theorem, $2^{a} \cdot 3^{2} \cdot 5 \equiv-2^{a} \equiv 1(\bmod 23)$, a contradiction.

If $q=27,|\Omega|=1+27 \cdot 26 / 2=2^{5} \cdot 11$ and $\left|G_{\infty}\right|=2^{2} \cdot 3^{3+i} \cdot 7 \cdot 13$ with $0 \leq i \leq 1$. Let P a Sylow 11-subgroup of G. Since $P \simeq Z_{11}$ and $\operatorname{Aut}\left(Z_{11}\right) \simeq Z_{2} \times Z_{5}, 3^{1+i}, 7$, $13 X\left|N_{G}(P)\right|$ by the similar argument as above. Hence $\left|G: N_{G}(P)\right|=2^{a} \cdot 3^{b} \cdot 7 \cdot 13$ with $0 \leq a \leq 7$ and $3 \leq b \leq 3+i$. By a Sylow's theorem, $2^{a} \cdot 3^{b} \cdot 7 \cdot 13=2^{a} \cdot 3^{b-3} \cdot 3^{3}$. $7 \cdot 13 \equiv 2^{a} \cdot 3^{b-3} \cdot 4 \equiv 1(\bmod 11)$. Hence $a=0, b=4$. Therefore $N_{G}(P)$ contains a Sylow 2-subgroup S of G. Let T be a Sylow 2-subgroup of N_{β}^{α} and g an element such that $T^{g} \leq S$. Then $T^{g} \cap C_{G}(P) \neq 1$ as $N_{s}(P) / C_{S}(P) \leq Z_{2}$. Let u be an involution in $T^{g} \cap C_{G}(P)$. Then $|F(u)|=(27+1) / 2+2=16$, while $11||F(u)|$ because $[P, u]=1$ and $|F(P)|=0$, a contradiction.

If $q=7,11,19$ or 43 , then $G_{\alpha}=N^{\alpha}$ and $\varepsilon=-1$. Set $\Gamma=\{\{\gamma, \delta\} \mid \gamma, \delta \in \Omega$, $\gamma \neq \delta\}$. We consider the action of G on Γ. Since $G^{\text {a }}$ is doubly transitive, G^{Γ} is transitive and $G_{\Gamma}=1$. Let z be an involution of $Z\left(N_{\beta}^{\alpha}\right)$. There exists an involution t such that $t \in z^{G}$ and $\alpha^{t}=\beta$. Since $G_{\alpha \beta}=N_{\beta}^{\alpha}$ and $F\left(N_{\beta}^{\alpha}\right)=\{\alpha, \beta\}$ we have $G_{(\alpha, \beta)}=\langle t\rangle N_{\beta}^{\alpha}$. By Lemma 2.3, $\quad\left|F\left(z^{\Gamma}\right)\right|=\left|C_{G}(z)\right| \times\left|\langle t\rangle N_{\beta}^{\alpha} \cap z^{G}\right| / 2\left|N_{\beta}^{\alpha}\right|=$ $|F(z)| \times\left|C_{G_{\alpha}}(z)\right| \times\left|\langle t\rangle N_{\beta}^{\alpha} \cap z^{G}\right| / 2\left|N_{\beta}^{\alpha}\right|=|F(z)| \times\left|\langle t\rangle N_{\beta}^{a} \cap z^{G}\right| / 2$. As $\left|F\left(z^{\mathrm{T}}\right)\right|$ $=|F(z)|(|F(z)|-1) / 2+(|\Omega|-|F(z)|) / 2,\left|\langle t\rangle N_{\beta}^{\alpha} \cap z^{G}\right|=|F(z)|+|\Omega| / F(z) \mid-$ 2. In particular $|F(z)|||\Omega|$. Since $| F(z) \mid=(q+1) / 2+2=(q+5) / 2$ and $|\Omega|=$ $1+q(q-1) / 2=\left(q^{2}-q+2\right) / 2$, we have $q=11$ and $\left|\langle t\rangle N_{\beta}^{a} \cap z^{G}\right|=13$. Moreover $|\Omega|=56,\left|G_{a}\right|=|P S L(2,11)|=2^{2} \cdot 3 \cdot 5 \cdot 11$ and $|G|=2^{5} \cdot 3 \cdot 5 \cdot 7 \cdot 11$.

We now argue that $\langle t\rangle N_{\beta}^{\alpha} \simeq D_{24}$. Let R be the Sylow 3-subgroup of N_{β}^{α}. If t centralizes R, R acts on $F(t)$ and so $F(R) \subseteq F(t)$ as $|F(t)|=8$ and $|F(R)|$ $=2$. Hence $\alpha^{t}=\alpha$, contrary to the choice of t. Therefore t inverts R and $\langle t\rangle N_{\beta}^{\alpha}$ is isomorphic to $Z_{2} \times D_{12}$ or D_{24}. Suppose $\langle t\rangle N_{\beta}^{\alpha} \simeq Z_{2} \times D_{12}$. Then $\langle t\rangle N_{\beta}^{\alpha}$ contains fifteen involutions and so we can take $u \in I\left(\langle t\rangle N_{\beta}^{\alpha}\right)$ satisfying $|F(u)|=0$ and $\langle t\rangle N_{\beta}^{\alpha}=\langle u\rangle \times N_{\beta}^{\alpha}$. As $\quad|F(u)|=0,\left|F\left(u^{\Gamma}\right)\right|=|\Omega| / 2=28$. By Lemma 2.3, $28=\left|C_{G}(u)\right| \times\left|\langle u\rangle N_{\beta}^{\alpha} \cap u^{G}\right| / 24$ and hence $\left|C_{G}(u)\right|=2^{4} \cdot 3 \cdot 7$ or $2^{5} \cdot 3 \cdot 7$. Since $\langle u\rangle N_{\beta}^{\alpha}=N_{G}(R)$, we have $\left|C_{G}(u): C_{G}(u) \cap N_{G}(R)\right|=2 \cdot 7$ or $2^{2} \cdot 7$. By a Sylow's theorem, $\left|C_{G}(u): C_{G}(u) \cap N_{G}(R)\right|=2^{2} \cdot 7$, so that $\left|C_{G}(u)\right|=2^{5} \cdot 3 \cdot 7$. Let Q be a Sylow 7 -subgroup of $C_{G}(u)$. Then $\left|C_{G}(u) \cap N_{G}(Q)\right|=2^{5} \cdot 3 \cdot 7$ or $2^{2} \cdot 3 \cdot 7$ by a Sylow's theorem. Hence $2^{2} \cdot 3 \cdot 7| | N_{G}(Q) \mid$. Since $\operatorname{Aut}\left(Z_{7}\right) \simeq Z_{2} \times Z_{3}$,
$5 X\left|N_{G}(Q)\right|$ and $11 X\left|N_{G}(Q)\right|$ by the similar argument as in the case $q=9$. Therefore $\left|G: N_{G}(Q)\right|=2^{a} \cdot 5 \cdot 11$ for some a with $0 \leq a \leq 3$. Hence $\left|G: N_{G}(Q)\right|$ $\equiv 1(\bmod 7)$, a contradiction. Thus $\langle t\rangle N_{\beta}^{\alpha} \simeq D_{24}$.

Let U be a Sylow 2-subgroup of N_{β}^{α} and set $L=N_{G}(U)$. It follows from (3.3) and Lemma 2.6 (iv) that $L \cap N^{a} \simeq A_{4}, L^{F(U)} \simeq A_{4}$ and $|L|=2^{4} \cdot 3$. Let $T,\langle x\rangle$ be Sylow 2- and 3-subgroup of L, respectively. Obviously $L \unrhd T$ and $C_{T}(x)=1$. On the other hand $T \unrhd L \cap\langle t\rangle N_{\beta}^{\alpha} \simeq D_{8}$ and so $T^{\prime} \simeq Z_{2} \times Z_{2}$ because $C_{T}(x)=1$. By Theorem 5.4.5 of [2], T is dihedral or semi-dihedral. Hence $N_{G}(T) / C_{G}(T)$ $(\leq \operatorname{Aut}(T))$ is a 2-group, so that $C_{T}(x)=T$, a contradiction.
(ii) of (3.11) does not occur.

Proof. Let G^{α} be a doubly transitive permutation group satisfying (ii) of (3.11). Let x be an involution in N_{β}^{α} with $x \notin Y$. Then $F\left(x^{F(Y)}\right)=F(\langle x\rangle Y)=$ $F\left(N_{\beta}^{\alpha}\right)=\{\alpha, \beta\}$ by (i) of (3.1) and (3.9). Since $|F(Y)|=1+(q-\varepsilon) /\left|N_{\beta}^{\alpha}\right|=1+$ $k \geq 4, x^{F(Y)}$ is an involution. By Lemma $2.5,1+k=2^{2}$ and so $k=3$. By (3.11), $q-\varepsilon+8 \mid 2((8-\varepsilon)(4-\varepsilon) \times 3+1)(8-\varepsilon)(4-\varepsilon)$. Hence $q+7 \mid 2^{7} \cdot 3 \cdot 7$ if $\varepsilon=1$ and $q+9 \mid 2^{4} \cdot 3^{2} \cdot 5 \cdot 17$ if $\varepsilon=-1$. Since $k=3 \mid q-\varepsilon, 3 \nmid q-\varepsilon+8$. From this $q+7 \mid 2^{7} \cdot 7$ if $\varepsilon=1$ and $q+9 \mid 2^{4} \cdot 5 \cdot 17$ if $\varepsilon=-1$. Therefore $q=5^{2}, 7^{2}, 11^{2}, 59$ or 71 .

Let p_{1} be an odd prime such that $p_{1}| | \Omega \mid$ and $p_{1} X\left|G_{a}\right|$ and let P be a Sylow p_{1}-subgroup of G. Clearly P is semi-regular on Ω and so any element in $C_{G_{\alpha}}(P)$ has at least p_{1} fixed points. If x is an element of N_{β}^{α} and its order is at least three, $|F(x)|=|F(Y)|=4$ by Lemma 2.8. Since $\left|N_{\beta}^{\alpha}\right|=(q-\varepsilon) / 3$, we have $|\Omega|=1+$ $\left|N^{\alpha}: N_{\beta}^{\alpha}\right|=1+3 q(q+\varepsilon) / 2$.

If $q=5^{2}$, then $|\Omega|=2^{4} \cdot 61$ and $\left|G_{\infty}\right|=2^{4+i} \cdot 3 \cdot 5^{2} \cdot 13(0 \leq i \leq 2)$. Let P be a Sylow 61 -subgroup of G. Then $P \simeq Z_{61}$. As mentioned above, $5,13 X\left|C_{G}(P)\right|$ and so $5^{2}, 13 X\left|N_{G}(P)\right|$. Hence $\left|G: N_{G}(P)\right|=2^{a} \cdot 3^{b} \cdot 5^{c+1} \cdot 13$, where $0 \leq a \leq 10$ and $0 \leq b, c \leq 1$. But we can easily verify $\left|G: N_{G}(P)\right| \equiv 1(\bmod 61)$, contrary to a Sylow's theorem.

If $q=7^{2}$, then $|\Omega|=2^{2} \cdot 919$ and $\left|G_{o \omega}\right|=2^{4+i} \cdot 3 \cdot 5^{2} \cdot 7^{2}(0 \leq i \leq 2)$. Let P be a Sylow 919 -subgroup of G. By the similar argument as above, we obtain $5,7 X$ $\left|N_{G}(P)\right|$ and so $\left|G: N_{G}(P)\right|=2^{a} \cdot 3^{b} \cdot 5^{2} \cdot 7^{2} \equiv 2^{a} \cdot 306$ or $-2^{a}(\bmod 919)$, where $0 \leq a \leq 8$ and $0 \leq b \leq 1$. Hence $\left|G: N_{G}(P)\right| \equiv 1$, a contradiction.

If $q=11^{2}$, then $|\Omega|=2^{7} \cdot 173\left|G_{a}\right|=2^{3+i} \cdot 3 \cdot 5 \cdot 11^{2} \cdot 61(0 \leq i \leq 2)$. Let P be a Sylow 173 -subgroup of G. Similarly we have $3,5,11,61 X\left|N_{G}(P)\right|$ and so $\mid G$: $N_{G}(P) \mid=2^{a} \cdot 3 \cdot 5 \cdot 11^{2} \cdot 61 \equiv-5 \cdot 2^{a}(\bmod 173)$, where $0 \leq a \leq 12$. Hence $\left|G: N_{G}(P)\right|$ \# 1 , a contradiction.

If $q=59$, then $|\Omega|=2 \cdot 17 \cdot 151$ and $\left|G_{a}\right|=2^{2+i} \cdot 3 \cdot 5 \cdot 29 \cdot 59(0 \leq i \leq 1)$. Let P be a Sylow 17 -subgroup of G. Similarly we have $3,5,29,59 X\left|N_{G}(P)\right|$ and so $\left|G: N_{G}(P)\right|=2^{a} \cdot 3 \cdot 5 \cdot 29 \cdot 59 \cdot 151^{b} \equiv 10 \cdot 2^{a}$ or $12 \cdot 2^{a}(\bmod 17)$, where $0 \leq a \leq 4$ and $0 \leq b \leq 1$. From this, we have a contradiction.

If $q=71$, then $|\Omega|=2^{5} \cdot 233$ and $\left|G_{a}\right|=2^{3+i} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 71(0 \leq i \leq 1)$. Let P be
a Sylow 233-subgroup of G. Since $3,5,7,71 X\left|N_{G}(P)\right|,\left|G: N_{G}(P)\right|=2^{a} \cdot 3^{2} \cdot 5 \cdot$ $7 \cdot 71 \equiv-3 \cdot 2^{a}(\bmod 233)$, where $0 \leq a \leq 9$. Similarly we get a contradiction.

We now consider the case $|Y|<3$. By (ii) of (3.5), $N_{\beta}^{\alpha} \simeq Z_{2} \times Z_{2}$ or $N_{\beta}^{\alpha} \simeq D_{8}$ and $N^{\infty} \cap N^{\beta} \leq Z_{2} \times Z_{2}$.
(3.14) The case that $N_{\beta}^{\alpha} \simeq Z_{2} \times Z_{2}$ does not occur.

Proof. Set $\Delta=F\left(N_{\beta}^{\alpha}\right)$. Then $|\Delta|=3 r+1$ and $\Delta=F\left(N_{\beta}^{\alpha} N_{\alpha}^{\beta}\right)$ by (ii) of (3.1) and Corollary B1 of [7]. Since $\left|N^{a}\right|_{2}=4$, we have $q=p^{n} \equiv 3,5(\bmod 8)$ and so n is odd. Hence $\left|G_{\alpha} / N^{\alpha}\right|_{2} \leq 2$ and $N_{\beta}^{\alpha} / N^{\alpha} \cap N^{\beta} \simeq N_{\beta}^{\alpha} N^{\beta} / N^{\beta} \simeq 1$ or Z_{2} by (3.2). Suppose $N_{\beta}^{\alpha} / N^{a} \cap N^{\beta} \simeq Z_{2}$. Then $N_{\beta}^{\alpha} N_{\alpha}^{\beta}$ is a Sylow 2-subgroup of G_{a}, hence $N_{G}\left(N_{\beta}^{\alpha} N_{\alpha}^{\beta}\right)^{\Delta}$ is doubly transitive by a Witt's theorem. Since $N_{\beta}^{\alpha} N_{\alpha}^{\beta} \simeq D_{8}$ and $|\Delta|$ is even, $C_{G}\left(N_{\beta}^{\alpha} N_{a}^{\beta}\right)^{\Delta}$ is also doubly transitive. Let g be an element of $C_{G}\left(N_{\beta}^{\alpha} N_{a}^{\beta}\right)$ such that $\alpha^{g}=\beta$ and $\beta^{g}=\alpha$. Then $N_{\beta}^{\alpha}=g^{-g} N_{\beta}^{\alpha} g=N_{\omega}^{\beta}$ and hence $N_{\beta}^{\alpha}=N^{\alpha} \cap N^{\beta}$, a contradiction. Thus $N_{\beta}^{\alpha}=N^{\alpha} \cap N^{\beta} \simeq Z_{2} \times Z_{2}$.

Let z be an involution in N_{β}^{α} and $t \in z^{G}$ an involution such that $\alpha^{t}=\beta$. Set $\Gamma=\{\{\gamma, \delta\} \mid \gamma, \delta \in \Omega, \gamma \neq \delta\}$. We consider the action of the element z on Γ. By the similar argument as in the proof of (3.12), $|F(z)|(|F(z)|-1) / 2+(|\Omega|-$ $|F(z)|) / 2=\left|F\left(z^{\mathrm{T}}\right)\right|=\left|C_{G}(z)\right|\left|z^{G} \cap\langle t\rangle G_{\alpha \beta}\right| /\left|\langle t\rangle G_{\alpha \beta}\right|$. Since $N_{\beta}^{\alpha}=N^{\alpha} \cap N^{\beta}$, by Lemma 2.6 (i), $z^{G} \cap G_{a}=z^{G_{\alpha}}$ and so $\left|C_{G}(z)\right|=|F(z)| \times\left|C_{G_{a}}(z)\right|$. Hence $\left|G_{a \beta}\right|$ $(|F(z)|(|F(z)|-1)+|\Omega|-|F(z)|)=|F(z)|\left|C_{G_{a}}(z)\right|\left|z^{G} \cap\langle t\rangle G_{a \beta}\right|$, so that $\left|G_{\alpha \beta}\right||\Omega| \equiv 0(\bmod |F(z)|)$. Since $\left|G_{\alpha \beta} / N_{\beta}^{\alpha}\right|=\left|G_{\alpha \beta} N^{\alpha} / N^{\beta}\right| \mid 2 n$, we have $\left|G_{\alpha \beta}\right|$ $\mid 8 n$. Clearly $|\Omega|=1+q(q-\varepsilon)(q+\varepsilon) r / 8$ and by Lemma 2.8 (i), $|F(z)|=1+3$ $(q-\varepsilon) r / 4$. Hence $1+3(q-\varepsilon) r / 4 \mid 8 n(1+q(q-\varepsilon)(q+\varepsilon) r / 8)$. Put $n=r s$. Then $3 q r-3 \varepsilon r+4 \mid\left(4 r s(8+q(q-\varepsilon)(q+\varepsilon) r) 3^{3} r=864 r^{2} s+4 s(3 p q)(3 p q-3 \varepsilon r)(3 q r+3 \varepsilon r)\right.$. Hence $3 q r-3 \varepsilon r+4 \mid 864 r^{2} s+4 s(3 \varepsilon r-4)(3 \varepsilon r-4-3 \varepsilon r)(3 \varepsilon r-4+3 \varepsilon r)=8634 r^{2} s-$ $32 s(3 \varepsilon r-4)(3 \varepsilon r-2)$. (*)

We argue that $r=1$. Suppose false. Then $32 s(3 \varepsilon r-4)(3 \varepsilon r-2)>0$ and so $3 r(q-\varepsilon)<864 r^{2}$ s. Therefore $288 n+\varepsilon>q=p^{n} \geq 3^{n}$ and so $288 n>3^{n}$. Hence $(n, r, p, \varepsilon)=(5,5,3,-1),(3,3,3,-1)$ or $(3,3,5,1)$, while none of these satisfy (*). Thus $r=1$.

Hence $3 q-3 \varepsilon+4 \mid 64(5+9 \varepsilon) n$ and $|F(z)|=1+3(q-\varepsilon) / 4,|\Omega|=1+q(q-\varepsilon)$ $(q+\varepsilon) / 8$. If $\varepsilon=-1$, then $3 \cdot 3^{n}<3 q+7 \mid 256 n$. Hence $n=1$ or $(n, p)=(5,3),(3,3)$. Since $3 \cdot 3^{5}+7 \nmid 256 \cdot 5$ and $3 \cdot 3^{3}+7 \mid 256 \cdot 3, n=1$ and $3 q+7 \mid 256$. From this, $q=$ 19 or 83 . If $\varepsilon=1$, then $3 \cdot 5^{n}<3 q+1 \mid 896 n$ and so $n=1$ or $(n, p)=(3,5)$. Since $3 \cdot 5^{3}+1 \times 896 \cdot 3$, we have $n=1$ and $3 q+1 \mid 896$. From this, $q=5,37$ or 149 . As $\operatorname{PSL}(2,5) \simeq P S L(2,4), q \neq 5$ by [4]. Thus $q=19,37,83$ or 149.

Set $m=\left|z^{G} \cap\langle t\rangle G_{\alpha \beta}\right|$. As we mentioned above, $\left|G_{\alpha \beta}\right|(|G(z)|(|F(z)|-1)$ $+|\Omega|-|F(z)|)=|F(z)|\left|C_{G_{\alpha}}(z)\right| m$. Since $\left|G_{a} / N^{a}\right|=1$ or $2,\left|C_{G_{\alpha}}(z)\right| /\left|G_{\alpha \beta}\right|$ $=(q-\varepsilon) / 4$. Therefore $m=\left(2 q^{2}+(2 \varepsilon+9) q-9 \varepsilon\right) /(3 q-3 \varepsilon+4)$. It follows that $(q, m)=(19,27 / 2),(37,28),(83,449 / 8)$ or $(149,411 / 4)$. Since m is an integer, we have $(q, m)=(37,28)$. But $m \leq\left|\langle t\rangle G_{\alpha \beta}\right| \leq 16$, a contradiction. Thus (3.14)
holds.
(3.15) The case that $N_{\beta}^{\alpha} \simeq D_{8}$ and $N^{\alpha} \cap N^{\beta} \leq Z_{2} \times Z_{2}$ does not occur.

Proof. Let Δ, L and K be as defined in (3.6). By (3.6), there exists an element x in L_{a} such that its order is odd and $\left\langle x^{\Delta}\right\rangle$ is regular on $\Delta-\{\alpha\}$. Since $\left(L_{\alpha}\right)^{\prime} \leq N_{\beta}^{\alpha}$ by (3.6) and $N_{\beta}^{\alpha} \simeq D_{8}, x$ stabilizes a normal series $N_{\alpha}^{\beta} N_{\beta}^{\alpha} \unrhd N_{\beta}^{\alpha} \unrhd 1$. Hence x centralizes $N_{\alpha}^{\beta} N_{\beta}^{\alpha}$ by Theorem 5.3.2 of [2] and so $x^{-1} N_{\alpha}^{\beta} x=N_{\alpha}^{\beta}$. Put $\gamma=\beta^{y}$. If $r \neq 1$, then $\beta \neq \gamma$, so that $N_{\alpha}^{\gamma}=N_{\alpha}^{\beta}$. From this, $N_{\beta}^{\gamma}=N_{\gamma}^{\beta}$. By the doubly transitivity of $G, N_{\beta}^{\alpha}=N_{\alpha}^{\beta}$, hence $N_{\beta}^{\alpha}=N^{\alpha} \cap N^{\beta}$, a contradiction. Therefore $r=1$ and $\Delta=\{\alpha, \beta\}$.

Set $\langle z\rangle=Z\left(N_{\beta}^{\alpha}\right), \Delta_{1}=\alpha^{C_{G}(z)}$ and let $\left\{\Delta_{1}, \Delta_{2} \cdots \Delta_{k}\right\}$ be the set of $C_{G}(z)$-orbits on $F(z)$. Since $L \unrhd N^{a} \cap N^{\beta}$ and by (3.2), $N^{a} \cap N^{\beta} \neq 1, z$ is contained in $N^{a} \cap N^{\beta}$. Hence, by Lemma 2.1, $\beta \in \Delta_{1}$ and k is at least two. By Lemma 2.8, $|F(z)|=$ $1+(q-\varepsilon) 5 /\left|N_{\beta}^{\alpha}\right|=1+5(q-\varepsilon) / 8$. Clearly $\left|C_{N^{\alpha}}(z): N_{\beta}^{\alpha}\right|=(q-\varepsilon) / 8$ and so $\left|\Delta_{1}\right| \geq$ $1+(q-\varepsilon) / 8$. If $\gamma \in F(z)-\Delta_{1}$, then $C_{N_{\gamma}^{\alpha}}(z) \simeq Z_{2} \times Z_{2}$, for otherwise $\langle z\rangle=Z\left(N_{\gamma}^{\alpha}\right) \leq$ $N^{\alpha} \cap N^{\gamma}$ and by Lemma $2.1 \gamma \in \Delta_{1}$, a contradiction. Hence one of the following holds.
(i) $k=3$ and $\left|\Delta_{1}\right|=1+(q-\varepsilon) / 8,\left|\Delta_{2}\right|=\left|\Delta_{3}\right|=(q-\varepsilon) / 4$.
(ii) $k=2$ and $\left|\Delta_{1}\right|=1+(q-\varepsilon) / 8,\left|\Delta_{2}\right|=(q-\varepsilon) / 2$.
(iii) $k=2$ and $\left|\Delta_{1}\right|=1+3(q-\varepsilon) / 8,\left|\Delta_{2}\right|=(q-\varepsilon) / 4$.

Let $\gamma \in F(z)-\Delta_{1}$. Then, $z \in G_{\gamma}-N^{\gamma}$ and so $C_{N^{\gamma}}(z) \simeq D_{q+\varepsilon}$ or $P G L(2, \sqrt{q})$ by Lemma 2.6 (vii), (viii), (ix). If $C_{N} \gamma(z) \simeq D_{q+\varepsilon}$, then $(q+\varepsilon) / 2| | \Delta_{1} \mid$ and so $q=7$ and (iii) occurs. But $(q+\varepsilon) / 2=3| | \Delta_{2} \mid-1-1=1$, a contradiction. If $C_{N^{\gamma}}(z) \simeq$ $P G L(2, \sqrt{q})$, then (i) does not occur because $\sqrt{q} \nmid q-\varepsilon$. Hence $\sqrt{q}\left|\left|\Delta_{1}\right|\right.$ and $\sqrt{q}\left|\left|\Delta_{2}\right|-1\right.$. From this, $q=25$ and (iii) occurs. In this case, we have $\left|\Delta_{1}\right|=10$, so that an element of $C_{N^{\gamma}}^{\gamma}(z)$ of order 3 is contained in N_{δ}^{γ} for some $\delta \in \Delta_{1}$, contrary to $N_{\delta}^{\gamma} \simeq N_{\beta}^{\alpha} \simeq D_{8}$.

4. Case (II)

In this section we assume that $N_{\beta}^{\alpha} \simeq P G L\left(2, p^{m}\right)$, where $n=2 m k$ and k is odd. Since n is even, $q=p^{n} \equiv 1(\bmod 4)$. We set $p^{m} \equiv \varepsilon \in\{ \pm 1\}(\bmod 4)$. In section 7 we shall consider the case that $N_{\beta}^{\alpha} \simeq S_{4}$. Therefore we assume $(p, m) \neq(3,1)$ in this section.
(4.1) The following hold.
(i) $N_{\beta}^{\alpha} / N^{\alpha} \cap N^{\beta} \simeq 1$ or Z_{2} and $N^{\alpha} \cap N^{\beta} \geq\left(N_{\beta}^{\alpha}\right)^{\prime} \simeq P S L\left(2, p^{m}\right)$.
(ii) If $(p, m) \neq(5,1)$, there exists a cyclic subgroup Y of $\left(N_{\beta}^{\alpha}\right)^{\prime}$ such that $N_{N^{\alpha}}(Y) \simeq D_{q-\varepsilon}$ and $N_{G}(Y)^{F(Y)}$ is doubly transitive.

Proof. As $N_{\beta}^{\alpha} \unrhd N^{a} \cap N^{\beta}$, either $N_{\beta}^{\alpha} / N^{\alpha} \cap N^{\beta} \leq Z_{2}$ or $N^{\alpha} \cap N^{\beta}=1$. If $N^{\alpha} \cap$ $N^{\beta}=1$, by Lemma 2.2 and $2.6(\mathrm{vi}), N_{\beta}^{\alpha} \simeq N_{\beta}^{\alpha} / N^{\alpha} \cap N^{\beta} \simeq N_{\beta}^{\alpha} N^{\beta} / N^{\beta} \simeq Z_{2} \times Z_{n}$, a
contradiction. Therefore $N_{\beta}^{\alpha} / N^{\alpha} \cap N^{\beta} \simeq 1$ or Z_{2} and $N^{\alpha} \cap N^{\beta} \geq\left(N_{\beta}^{\alpha}\right)^{\prime} \simeq P S L\left(2, p^{m}\right)$.
Now we assume that $(p, m) \neq(5,1)$ and let z be an involution in $\left(N_{\beta}^{\alpha}\right)^{\prime}$. Then $C_{N_{\beta}^{\alpha}}(z) \simeq D_{2\left(p^{m}-\varepsilon\right)}$ by Lemma 2.6 (vii). Suppose $C_{N_{\beta}^{\alpha}}^{\alpha}(z)$ is not a 2 -subgroup and put $Y=0\left(C_{N_{\beta}^{\alpha}}(z)\right)$. Then, if $Y^{g} \leq G_{\alpha \beta}$ for some $g \in G$, we have $Y^{g} \leq N_{\alpha}^{\gamma}$ and $Y^{g} \leq N_{\beta}^{\delta}$, where $\gamma=\alpha^{g}$ and $\delta=\beta^{g}$. By (i) $Y^{g} \leq N^{a} \cap N^{\beta}$ and so $Y^{g}=Y^{h}$ for some $h \in N^{a} \cap N^{\beta}$. Thus $N_{G}(Y)^{F(Y)}$ is doubly transitive. Assume that $C_{N_{\beta}^{\alpha}}(z)$ is a 2-subgroup and set $C_{N_{\beta}^{\alpha}}(z)=\left\langle u, v \mid u^{v}=u^{-1}, v^{2}=1\right\rangle$. We may assume that $v \in$ $\left(N_{\beta}^{\alpha}\right)^{\prime}$ and $\left\langle u^{2}, v\right\rangle$ is a Sylow 2-subgroup of $\left(N_{\beta}^{\alpha}\right)^{\prime}$. Since $p^{m} \neq 3,5$, the order of u^{2} is at least four. On the other hand there is no element of order $\left|u^{2}\right|$ in $\langle u, v\rangle-\left\langle u^{2}, v\right\rangle$. Hence any element of order $\left|u^{2}\right|$ which is contained in N_{β}^{α} is necessarily an element of $N^{\alpha} \cap N^{\beta}$. By the similar argument as above, $N_{G}(Y)^{F(Y)}$ is doubly transitive.
(4.2) Let notations be as in (4.1). Suppose $(p, m) \neq(3,1),(5,1)$ and set $\Delta=F(Y)$ and $X=N_{G}(Y)$. Then $|\Delta|=r s\left(p^{m}+\varepsilon\right) / 2+1$, where $s=\sum_{i=0}^{k-1} p^{2 m i}, C_{G}\left(N^{\alpha}\right)$ $=1$ and one of the following holds.
(i) $X^{\Delta} \leq A \Gamma L\left(1,2^{c}\right)$ for some integer c.
(ii) $X^{\Delta} \simeq P S L\left(2, p_{1}\right)$ or $P G L\left(2, p_{1}\right), r=1, k=1$ and $2 p_{1}=p^{m}+\varepsilon$.

Proof. By Lemma 2.8 (ii), $|\Delta|=1+\left|N^{a} \cap X\right| r| | N_{\beta}^{\alpha} \cap X \mid=1+\left(p^{2 m k}-1\right)$ $r / 2\left(p^{m}-\varepsilon\right)=r s\left(p^{m}+\varepsilon\right) / 2+1 . \quad$ By (4.1) and Lemma 2.9, we have (i), (ii) or $X^{\Delta}=$ $R(3)$.

Assume that $X^{\Delta}=R(3)$. Then $r s\left(p^{m}+\varepsilon\right) / 2+1=28$, hence $k=1$ and $r\left(p^{m}+\varepsilon\right) / 2=27$. Since r is odd and $r \mid 2 m=n$, we have $r=m=1$ and $q=53^{2}$. But a Sylow 3-subgroup of X_{a} is cyclic becuase $N^{a} \cap X \simeq D_{q-\varepsilon}$ and $X_{a} / X \cap N^{\alpha}$ $\simeq X_{\infty} N^{a} / N^{a} \leq Z_{2} \times Z_{2}$, a contradiction. Thus (i) or (ii) holds.
(4.3) (i) of (4.2) does not occur.

Proof. Let notations be as in (4.2). Suppose $X^{\Delta} \leq A \Gamma L\left(1,2^{c}\right)$ and put $W=C_{N_{\beta}^{\alpha}}(Y)$. Then $Y \leq W \simeq Z_{p^{m_{-\varepsilon}}}$. Since $C_{N^{\alpha}}(Y)$ is cyclic, W is a characteristic subgroup of $C_{N^{\alpha}}(Y)$ and so W is a normal subgroup of X_{α}. Hence $W \leq X_{\Delta}$ and $\left(X \cap N_{\beta}^{\alpha}\right)^{\Delta} \simeq 1$ or Z_{2}. By Lemmas 2.4 and $2.6, F\left(X \cap N_{\beta}^{\alpha}\right)=1+\left|X \cap N_{\beta}^{\alpha}\right|$ $\left|N_{\beta}^{\alpha}: X \cap N_{\beta}^{\alpha}\right| \times r| | N_{\beta}^{\alpha} \mid=1+r$. Since $1+r<|\Delta|,\left(X \cap N_{\beta}^{\alpha}\right)^{\Delta} \simeq Z_{2}$ and hence $(1+r)^{2}=r s\left(p^{m}+\varepsilon\right) / 2+1$ by Lemma 2.5. From this, $r=s\left(p^{m}+\varepsilon\right) / 2-2 \mid m k$ and so $p^{2 m(k-1)}+m k \leq 2$. Hence $m=k=r=1$ and $q=7^{2}$.

Let R be a Sylow 3 -subgroup of N_{β}^{α}. Since $N_{\beta}^{\alpha} \simeq P G L(2,7)$, we have $R \simeq Z_{3}$. By Lemmas 2.4 and $2.6,|F(R)|=1+\left(7^{2}-1\right)\left|N_{\beta}^{\alpha}: N_{N_{\beta}^{\alpha}}^{\alpha}(R)\right| /\left|N_{\beta}^{\alpha}\right|=4$. Hence $N_{G}(R)^{F(R)} \simeq A_{4}$ or S_{4}. But is a Sylow 3-subgroup of $N_{G_{\omega}}(R)$ because $N^{\alpha} \simeq$ $\operatorname{PSL}\left(2,7^{2}\right)$, contrary to $N_{G_{\alpha}}(R)^{F(R)} \simeq A_{3}$ or S_{3}.

(4.4) (ii) of (4.2) does not occur.

Proof. Let notations be as in (4.2). Suppose $X^{\Delta} \unrhd P S L\left(2, p_{1}\right)$. By the similar argument as in (4.3), $C_{N_{\beta}^{\alpha}}(Y) \leq X_{\Delta}$ and so $C_{N^{\alpha}}(Y)^{\Delta} \simeq Z_{p_{1}}$, and $N_{N^{\alpha}}(Y)^{\Delta} \simeq$ $D_{2 p_{1}}$. Hence $\left|\left(X_{\omega}\right)^{\Delta}\right| \mid 2 p_{1} \cdot 2 n$. Since $X^{\Delta} \unrhd P S L\left(2, p_{1}\right), p_{1}\left(p_{1}-1\right) / 2| |\left(X_{\omega}\right)^{\Delta} \mid$, hence $p_{1}-1 \mid 8 n$. As $k=1$ and $2 p_{1}=p^{m}+\varepsilon$, we have $p^{m}+\varepsilon-2 \mid 32 m$. From this, $\left(p, m, p_{1}\right)$ $=(11,1,5),(3,2,5)$ or $(3,3,13)$.

Let R be a cyclic subgroup of N_{β}^{α} such that $R \simeq Z_{\left(p^{m}+\varepsilon\right) / 2} . \quad$ By Lemma 2.6, $N_{G}(R)^{F(R)}$ is doubly transitive and by Lemma 2.8 (ii), $|F(R)|=1+\left|N_{N^{\alpha}}(R)\right|$ $\left|\left|N_{N_{\beta}^{\alpha}}^{\alpha}(R)\right|=1+\left(p^{2 m}-1\right) / 2\left(p^{m}+\varepsilon\right)=\left(p^{m}-\varepsilon\right) / 2+1\right.$.

If $\left(p, m, p_{1}\right)=(11,1,5),|F(R)|=7$ and so by [9] $\left|N_{G}(R)^{F(R)}\right|=42$ and $N_{G_{\alpha}}(R)^{F(R)} \simeq Z_{6}$. Since $\left|N_{N^{\alpha}}(R): N_{N_{\beta}^{\alpha}}(R)\right|=6, N_{N^{\alpha}}(R)^{F(R)}=N_{G_{\alpha}}(R)^{F(R)}$. Hence $N_{N^{\alpha}}(R) / K \simeq Z_{6}$, where $K=\left(N_{N^{\alpha}}(R)\right)_{F(R)}$. But $N_{N^{\alpha}}(R) /\left(N_{N^{\alpha}}(R)\right)^{\prime} \simeq Z_{2} \times Z_{2}$, a contradiction.

If $\left(p, m, p_{1}\right)=(3,2,5),|F(R)|=5$ and so by [9], $\left|N_{G}(R)^{F(R)}\right|=20$ and $N_{G_{a}}(R)^{F(R)} \simeq Z_{4}$. Since $\left|N_{N^{\alpha}}(R): N_{N_{\beta}^{\alpha}}(R)\right|=4, N_{N^{\alpha}}(R)^{\Delta} \simeq Z_{4}$, contrary to $N_{N^{\alpha}}(R)$ $/\left(N_{N \alpha}(R)\right)^{\prime} \simeq Z_{2} \times Z_{2}$.

If $\left(p, m, p_{1}\right)=(3,3,13),|F(R)|=15 . \quad$ By [9], $N_{G_{a}}(R)^{F(R)}$ is not solvable, a contradiction.
(4.5) $\quad p^{m} \neq 5$.

Proof. Assume that $p^{m}=5$. Then $n=2 k$ with k odd and $N_{\beta}^{\alpha} \simeq P G L(2,5)$ $\simeq S_{5}$. First we argue that $N_{\beta}^{\alpha}=N^{a} \cap N^{\beta}$. Suppose false. Then $C_{G}\left(N^{a}\right)=1$ by Lemma 2.2, and $N_{\beta}^{\alpha} / N^{\alpha} \cap N^{\beta} \simeq Z_{2}$ by (4.1). Since $N_{\alpha}^{\beta} N_{\beta}^{\alpha} / N_{\beta}^{\alpha} \simeq N_{\alpha}^{\beta} / N^{\alpha} \cap N^{\beta} \simeq$ Z_{2} and the outer automorphism group of S_{5} is trivial, we have $Z\left(N_{\beta}^{\alpha} N_{\alpha}^{\beta}\right) \simeq Z_{2}$. Let w_{1} be the involution of $Z\left(N_{\beta}^{\alpha} N_{\alpha}^{\beta}\right)$ and let $w \in I\left(N_{\alpha}^{\beta}\right)-I\left(N^{\alpha}\right)$. Since $C_{N^{\alpha}}\left(w_{1}\right)$ $\geq N_{\beta}^{\alpha}$, by Lemma 2.6 (viii) and (ix), w acts on N^{α} as a field automorphism of order 2 and $C_{N^{\alpha}}(w) \simeq P G L\left(2,5^{k}\right)$. By Lemma $2.8|F(w)|=1+r(q-\varepsilon)\left|I\left(N_{\beta}^{\alpha}\right)\right| /$ $\left|N_{\beta}^{\alpha}\right|=1+5 r\left(5^{2 k}-1\right) / 24$. Let P be a Sylow 5-subgroup of $C_{N^{\alpha}}(w)$. Then $|P|=5^{k}$ and $\left|\gamma^{P}\right|=5^{k-1}$ or 5^{k} for each $\gamma \in \Omega-\{\alpha\}$. Since P acts on $F(w)-\{\alpha\}$, we have $5^{k-1} \mid 5 r\left(5^{2 k}-1\right) / 24$, so that $k=1$ and $|F(w)|=6$ as $r \mid k$. Hence $C_{N^{\alpha}}(w)^{F(w)} \simeq S_{5}$ and so $C_{G}(w)^{F(w)} \simeq S_{6}$. But clearly $w \in N^{w} \cap N^{\beta}$ by Lemma 2.1, a contradiction. Thus $N_{\beta}^{\alpha}=N^{\infty} \cap N^{\beta}$.

Let V be a cyclic subgroup of N_{β}^{α} of order 4. Since $N_{\beta}^{\alpha}=N^{\beta} \cap N^{\beta} \simeq S_{5}$, $N_{G}(V)^{F(V)}$ is doubly transitive and by Lemma 2.8, $|F(V)|=1+\left|N_{N^{a}}(V)\right| r \mid$ $\left|N_{N_{\beta}^{\alpha}}(V)\right|=1+\left(5^{2 k}-1\right) r / 8=3 r s+1$, where $s=\sum_{i=0}^{k-1} 25^{i}$. By Lemma 2.9, $C_{G}\left(N^{\alpha}\right)=1$ and (a) $N_{G}(V)^{F(V)} \leq A \Gamma L\left(1,2^{c}\right)$ or (b) $N_{G}(V)^{F(V)}=R(3)$.

Put $P=N_{N_{\beta}^{\alpha}}^{\alpha}(V)$. Then $P \simeq D_{8},|F(P)|=1+\left|N_{N^{\alpha}}(P)\right|\left|N_{\beta}^{\alpha}: N_{N_{\beta}^{\alpha}}^{\alpha}(P)\right| r| | N_{\beta}^{\alpha} \mid$ $=r+1$ and $P^{F(V)} \simeq Z_{2}$. If (b) occurs, $k=1$ and $r=9$, hence $|F(P)|=10$, a contradiction. Therefore (a) holds.

By Lemma 2.5, $(r+1)^{2}=3 r s+1$ and so $r=3 s-2 \mid k$. Hence $k=r=1$ and $G_{a} / N^{a} \leq Z_{2} \times Z_{2}$. Let z be an involution in N_{β}^{α}. Then $|F(z)|=1+24 \cdot 25 / 120=6$
by Lemma 2.8 and $|\Omega|=1+\left|N^{\alpha}: N_{\beta}^{\alpha}\right|=66$ as $r=1$. By the similar argument as in the proof of (3.12), $|F(z)|(|F(z)|-1) / 2+(|\Omega|-|F(z)|) / 2=\left|C_{G}(z)\right| \mid z^{G} \cap$ $\langle t\rangle G_{\alpha \beta}\left|/\left|\langle t\rangle G_{a \beta}\right|\right.$, where t is an involution such that $\alpha^{t}=\beta$. Hence $| z^{G} \cap\langle t\rangle G_{\alpha \beta} \mid$ $=15\left|G_{\alpha \beta}\right| /\left|C_{G_{\alpha}}(z)\right|$. Set $H=\langle t\rangle G_{\alpha \beta}$ and let R be a Sylow 3-subgroup of N_{β}^{α}. By Lemma 2.8, $|F(R)|=1+24 \cdot 10 / 120=3$. Set $F(R)=\{\alpha, \beta, \gamma\}$. On the other hand, as $N_{\beta}^{\alpha} \simeq S_{5}$ and $\operatorname{Out}\left(S_{5}\right)=1$, we have $H=Z(H) \times N_{\beta}^{\alpha}$ and $|Z(H)|=2,4$ or $H=C_{H}\left(N_{\beta}^{\alpha}\right) \times N_{\beta}^{\alpha}$ and $C_{H}\left(N_{\beta}^{\alpha}\right) \simeq D_{8}$. In the latter case $G_{\alpha \beta}=Z\left(G_{\alpha \beta}\right) \times N_{\beta}^{\alpha}$ and $Z\left(G_{\alpha \beta}\right) \simeq Z_{2} \times Z_{2}$, contrary to Lemma 2.6 (ix). In the former case, we have $|Z(H)|=2$. For otherwise $Z(H) \leq G_{\gamma}$ and $Z(H) \cap z^{G} \neq \phi$ and so letting $u \in Z(H)$ $\cap z^{G}$, we have $|R|=3| | F(u) \mid-1=5$, a contradiction. Therefore $Z(H) \simeq Z_{2}$ and so $\left|z^{G} \cap H\right| \leq 25+25=50$, while $\left|z^{G} \cap H\right|=15\left|G_{\alpha \beta}\right| /\left|C_{G_{a}}(z)\right|=15 \cdot 120 / 24=75$, a contradiction.

5. Case (III)

In this section we assume that $N_{\beta}^{\alpha} \simeq P S L\left(2, p^{m}\right)$, where $n=m k$ and k is odd. Set $p^{m} \equiv \varepsilon \in\{ \pm 1\}(\bmod 4)$. Then $q \equiv \varepsilon(\bmod 4)$ as k is odd. In section 6 we shall consider the case that $N_{\beta}^{\alpha} \simeq A_{4}$, so we assume $(p, m) \neq(3,1)$ in this section. From this N_{β}^{α} is a nonabelian simple group and so $N_{\beta}^{\alpha}=N^{\alpha} \cap N^{\beta}$ or $N^{\alpha} \cap N^{\beta}=1$. If $N^{\alpha} \cap N^{\beta}=1$, then $C_{G}\left(N^{\alpha}\right)=1$ by Lemma 2.2 and $N_{\beta}^{\alpha} \simeq N_{\beta}^{\alpha} / N^{\alpha} \cap N^{\beta} \simeq N_{\beta}^{\alpha} N^{\beta} / N^{\beta}$ $\simeq Z_{2} \times Z_{n}$, a contradiction. Hence $N_{\beta}^{\alpha}=N^{\alpha} \cap N^{\beta}$.

Let z be an involution of N_{β}^{α}. Suppose $z^{g} \in G_{\alpha \beta}$ for some $g \in G$ and set $\gamma=$ $\alpha^{g}, \delta=\beta^{g}$. Then $z^{g} \in N_{\delta}^{\gamma} \cap G_{\alpha \beta} \leq N_{\alpha}^{\gamma} \cap N_{\beta}^{\delta} \leq N^{\alpha} \cap N^{\beta}$ and so $z^{g} \in z^{N_{\beta}^{\alpha}}$. Hence $C_{G}(z)^{F(z)}$ is doubly transitive and by Lemma $2.8(\mathrm{i}),|F(z)|=(q-\varepsilon) r /\left(p^{m}-\varepsilon\right)+1$. In particular $|F(z)|>3 r+1$ as $\left(p^{n}-\varepsilon\right) /\left(p^{m}-\varepsilon\right) \geq p^{2 m}+\varepsilon p^{m}+1>3$.

By Lemma 2.9, $C_{G}\left(N^{a}\right)=1$ and one of the following holds.
(a) $C_{G}(z)^{F(z)} \leq A \Gamma L\left(1,2^{c}\right)$.
(b) $C_{G}(z)^{F(z)} \unrhd P S L\left(2, p_{1}\right)\left(p_{1} \geq 5\right), r=1$ and $\left|C_{N^{\alpha}}(z): C_{N_{\beta}^{\alpha}}^{\alpha}(z)\right|=p_{1}$.
(c) $C_{G}(z)^{F(z)}=R(3)$.

Let Y be a cyclic subgroup of $C_{N_{\beta}^{\alpha}}(z) \simeq D_{p^{m}-\varepsilon}$ of index 2. Since $C_{G_{a}}(z) \unrhd Y$, $z \in Y$ and $C_{G}(z)^{F(z)}$ is doubly transitive, we have $F(Y)=F(z)$. By the similar argument as in (3.1), $N^{a} \cap N\left(C_{N_{\beta}^{\alpha}}(z)\right)=C_{N_{\beta}^{\alpha}}(z)$ or $N^{\alpha} \cap N\left(C_{N \beta}^{\alpha}(z)\right) \simeq A_{4}$. Hence by Lemmas 2.3 and $2.4 \mid F\left(C_{N_{\beta}^{\alpha}(z)}(z)\left|=1+\left|C_{N_{\beta}^{\alpha}(z)}\right|\right| N_{\beta}^{\alpha}: C_{N_{\beta}^{\alpha}}^{\alpha}(z)|r|\left|N_{\beta}^{\alpha}\right|\right.$ or $1+$ $\left|A_{4}\right|\left|N_{\beta}^{\alpha}: C_{N_{\beta}^{\alpha}}(z)\right| r\left|\left|N_{\beta}^{\alpha}\right|\right.$. Therefore $| F\left(C_{N \beta}^{\beta}(z)\right) \mid=r+1$ or $3 r+1$. From this $C_{N_{\beta}^{\alpha}}(z)^{F(z)} \simeq Z_{2}$.

In the case (a), $(r+1)^{2}=1+\left(p^{n}-\varepsilon\right) r /\left(p^{m}-\varepsilon\right)$ by Lemma 2.5 and hence $r=$ $\left(p^{n}-\varepsilon\right) /\left(p^{m}-\varepsilon\right)-2 \mid m k$. \quad Since $\left(p^{n}-\varepsilon\right) /\left(p^{m}-\varepsilon\right) \geq\left(\left(p^{m}\right)^{k}+1\right) /\left(p^{m}+1\right)=\sum_{i=0}^{k-1}\left(-p^{m}\right)^{i}$ and $k \geq 3$, we have $p^{m(k-1)}\left(p^{2 m}-p^{m}+1\right) \leq m k$, hence $\left(\left(p^{m}\right)^{k-3} / k\right)\left(m /\left(p^{2 m}-p^{m}+1\right)\right)<1$. Thus $k=3, m=1$ and $p=3$, cotrary to $(p, m) \neq(3,1)$.

In the case (b), $r=1, p_{1}=\left(p^{n}-\varepsilon\right) /\left(p^{m}-\varepsilon\right), p_{1}\left(p_{1}-1\right) / 2 \mid s$ and $s \mid 4 m k p_{1}$, where s is the order of $C_{G_{\omega}}(z)^{F(z)}$. Hence $p_{1}-1 \mid 8 m k$. Since $p_{1}-1=\left(p^{n}-\varepsilon\right) /\left(p^{m}-\varepsilon\right)-1$
$\geq\left(p^{n}+1\right) /\left(p^{m}+1\right)-1=\sum_{i=0}^{k-1}\left(-p^{m}\right)^{i} \geq p^{m(k-2)}\left(p^{m}-1\right)$, we have $p^{m(k-2)} / 2 k \leq 4 m /\left(p^{m}-\right.$
$1) \leq 1$ because $p^{m} \neq 3$. Hence $k=3$ and $p^{m}=5$, so that $p_{1}-1=30 \times 8 m k=24$, a contradiction.

In the case (c), $r+1=4$ and $1+\left(p^{n}-\varepsilon\right) r /\left(p^{m}-\varepsilon\right)=28$ and so $r=3$ and $\left(p^{n}-\varepsilon\right) /\left(p^{m}-\varepsilon\right)=9$. Hence $9 \geq\left(p^{m k}+1\right) /\left(p^{m}+1\right) \geq p^{2 m}-p^{m}+1$, so that $p^{m}=3$, a contradiction.

6. Case (IV)

In this section we assume that $N_{\beta}^{\alpha} \simeq A_{4}$ and $q=3,5(\bmod 8)$. If $N^{\alpha} \cap N^{\beta}=1$, by Lemma 2.2, $C_{G}\left(N^{\alpha}\right)=1$ and so $N_{\beta}^{\alpha} / N^{\alpha} \cap N^{\beta} \simeq N_{\beta}^{\alpha} N^{\beta} / N^{\beta} \leq Z_{2} \times Z_{n}$. Hence $N_{\beta}^{\alpha} / N^{\alpha} \cap N^{\beta} \simeq 1$ or Z_{3}, so that $z^{G} \cap G_{\alpha \beta}=z^{G} \cap N_{\beta}^{\alpha}=z^{N_{\beta}^{\alpha}}$ for an involution $z \in N_{\beta}^{\alpha}$. Therefore $C_{G}(z)^{F(z)}$ is doubly transitive. By Lemma 2.9, $C_{G}\left(N^{a}\right)=1$ and one of the following holds.
(a) $C_{G}(z)^{F(z)} \leq A \Gamma L\left(1,2^{c}\right)$ for some interger $c \geq 1$.
(b) $C_{G}(z)^{F(z)} \unrhd P S L\left(2, p_{1}\right)\left(p_{1} \geq 5\right), r=1$ and $\left|C_{N^{\alpha}}(z): C_{N \beta}^{\alpha}(z)\right|=p_{1}$.
(c) $C_{G}(z)^{F(z)}=R(3)$.

Let T be a Sylow 2-subgroup of N_{β}^{α}. Then $z \in T$ and by Lemmas 2.3 and 2.4, $|F(T)|=1+\left|N_{N^{\alpha}}(T)\right| r /\left|N_{\beta}^{\alpha}\right|=r+1$. By Lemma $2.8(\mathrm{i}),|F(z)|=(q-\varepsilon) r / 4+1$. Hence $T^{F(z)} \simeq Z_{2}$ if $q \neq 5$. If $q=5$, as $P S L(2,5) \simeq P S L(2,4)$, (ii) of our theorem holds by [4]. Therefore we may assume $q \neq 5$.

In the case (a), $(r+1)^{2}=1+(q-\varepsilon) r / 4$ by Lemma 2.5. Hence $r=(q-\varepsilon-8) / 4$ and $r \mid n$, so that $q=11$ or 13 and $r=1$. Let R be a Sylow 3-subgroup of $G_{\alpha \beta}$. Then $R \simeq Z_{3}$ and $R \leq N_{\beta}^{\alpha}$ because $G_{a \beta} / N_{\beta}^{\alpha} \simeq G_{\alpha \beta} N^{a} / N^{a} \simeq 1$ or Z_{2} and $N_{\beta}^{\alpha} \simeq A_{4}$. By Lemma 2.8 (ii), $|F(R)|=1+12 / 3=5$ and $N_{G}(R)^{F(R)}$ is doubly transitive. Since $N_{G_{x}}(R) \simeq D_{12}$ or D_{24} and $|F(R)|=5$, we have $\left|N_{G}(R)\right|_{5}=5$. Let S be a Sylow 5-subgroup of $N_{G}(R)$. Then $[S, R]=1$ as $N_{G}(R) / C_{G}(R) \leq Z_{2}$. Since $5 X\left|G_{\alpha \beta}\right|,|F(S)|=0$ or 1 . If $|F(S)|=1, F(S) \subseteq F(R)$ and so $5||F(R)|-1=4$, a contradiction. Therefore S is semi-regular on Ω. But $|\Omega|=1+\left|N^{\alpha}: N_{\beta}^{\alpha}\right|=$ 56 or 92 . This is a contradiction.

In the case (b), $p_{1}\left(p_{1}-1\right) / 2 \mid s$ and $s \mid 2 n(q-\varepsilon) / 2=4 n p_{1}$, where s is the order of $C_{G_{a}}(z)^{F(z)}$. Hence $p_{1}-1 \mid 8 n$. Since $p_{1}=(q-\varepsilon) / 4, p^{n}-\varepsilon-4 \mid 32 n$ and so we have $q=11,13,19,27$ or 37 . If $q \neq 27$, by Lemma $2.6, C_{G_{a}}(z) \simeq D_{q-\varepsilon}$ or $D_{2(q-\varepsilon)}$ and so $C_{G_{a \beta}}(z)^{F(z)} \simeq Z_{2}$. Hence $\left(p_{1}-1\right) / 2=2$. From this $q=19$. Let R be a Sylow 3subgroup of $G_{\alpha \beta}$. By the simmilar argument as in the case (a), $N_{G}(R)^{F(R)}$ is doubly transitive and $|F(R)|=1+18 / 3=7$. Hence $7||G|$. On the other hand $|G|=|\Omega|\left|G_{\infty}\right|=\left(1+\left|N^{\alpha}: N_{\beta}^{\alpha}\right|\right)\left|G_{\infty}\right|=(1+18 \cdot 19 \cdot 20 / 2 \cdot 12) \cdot 2^{i} \cdot 18 \cdot 19 \cdot 20 / 2=$ $2^{3+i} \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13 \cdot 19$ with $0 \leq i \leq 1$, a contradiction. If $q=27$, then $\left|C_{G}(z)\right|_{2}=$ $|F(z)|_{2} \times\left|C_{G_{\alpha}}(z)\right|_{2}=8 \times\left|G_{a}\right|_{2}$, while $|\Omega|=1+\left|N^{\alpha}: N_{\beta}^{\alpha}\right|=1+26 \cdot 27 \cdot 28 / 2 \cdot 12=$ $820=2^{2} \cdot 5 \cdot 41$ and so $|G|_{2}=4\left|G_{a}\right|_{2}$. Therefore $\left|C_{G}(z)\right| X|G|$, a contradiction.

In the case (c), $r+1=4$ and $1+(q-\varepsilon) r / 4=28$. Hence $r=3$ and $q=37$,
contrary to $r \mid n$.

7. Case (V)

In this section we assume that $N_{\beta}^{\alpha} \simeq S_{4}$ and $q \equiv 7,9(\bmod 16)$. We note that $4 X n$.

First we argue that $N_{\beta}^{\alpha}=N^{a} \cap N^{\beta}$. Suppose $N_{\beta}^{\alpha} \neq N^{\alpha} \cap N^{\beta}$. Then $C_{G}\left(N^{\alpha}\right)$ $=1$ by Lemma 2.2. Since $N_{\beta}^{\alpha} / N^{\alpha} \cap N^{\beta} \simeq N_{\beta}^{\alpha} N^{\beta} / N^{\omega} \leq Z_{2} \times Z_{n}$, we have $N^{a} \cap N^{\beta}$ $\simeq A_{4}$ and $N_{\beta}^{\alpha} / N^{\alpha} \cap N^{\beta} \simeq Z_{2}$, so that $N_{\alpha}^{\beta} N_{\beta}^{\alpha} / N_{\beta}^{\alpha} \simeq N_{\alpha}^{\beta} / N^{\alpha} \cap N^{\beta} \simeq Z_{2}$. Hence as $\operatorname{Out}\left(S_{4}\right)=1, Z\left(N_{\beta}^{\alpha} N_{a}^{\beta}\right) \simeq Z_{2}$. Set $\left\langle t_{1}\right\rangle=Z\left(N_{\beta}^{\alpha} N_{a}^{\beta}\right)$ and let $t \in I\left(N_{a}^{\beta}\right)-I\left(N^{\alpha}\right)$. Since $C_{N^{\alpha}}\left(t_{1}\right) \geq N_{\beta}^{\alpha} \simeq S_{4}$ and $\langle t\rangle N^{\alpha}=N_{\alpha}^{\beta} N^{\alpha}$, by Lemma 2.6 , we have $C_{N^{\alpha}}(t) \simeq P G L(2, \sqrt{q})$ and $|F(t)|=1+3(q-\varepsilon) r / 8$ by Lemma 2.8.

Let P be a Sylow p-subgroup of $C_{N^{\alpha}}(t)$. Then $|P|=\sqrt{q}$. If $p \neq 3, P$ acts semi-regularly on $F(t)-\{\alpha\}$ and so $\sqrt{ } \bar{q} \mid 3(q-\varepsilon) r / 8$. Therefore $\sqrt{q} \mid r$ and so $5^{n} \leq n^{2}$ as $p \geq 5$ and $r \mid n$. But obviously $5^{n}>n^{2}$ for any positive integer n. This is a contradiction. If $p=3,\left|P: P_{\gamma}\right|=\sqrt{ } \bar{q} / 3$ or \sqrt{q} for each $\gamma \in \Omega-\{\alpha\}$. Hence $\sqrt{ } \bar{q} / 3 \mid 3(q-\varepsilon) r / 8$ and so $q \mid 81 r^{2}$. In particular, $3^{n}=q \mid 81 n^{2}$. From this, $n \leq 7$. Since $q=3^{n} \equiv 7$ or $9(\bmod 16)$, we have $q=3^{2}$ or 3^{6}. If $q=3^{2},|\Omega|=1+$ $\left|N^{\omega}: N_{\beta}^{\alpha}\right|=1+8 \cdot 9 \cdot 10 / 2 \cdot 24=16$, a contradiction by [9] If $q=3^{6},|F(t)|=1+$ $273 r$ and $|F(t)-\{\alpha\}| \geq\left|C_{N^{\alpha}}(t): C_{N_{\beta}^{\alpha}}(t)\right| \geq\left|P G L\left(2,3^{3}\right)\right| / 8=2457$ contrary to $r \mid 3$. Thus $N_{\beta}^{\alpha}=N^{a} \cap N^{\beta}$.

Let V be a cyclic subgroup of N_{β}^{α} of order 4 and let U be a Sylow 2- subgroup of N_{β}^{α} containing V. Then $U=N_{N_{\beta}^{\alpha}}^{\alpha}(V),|F(V)|=1+(q-\varepsilon) r / 8$ by Lemma 2.8 and $|F(U)|=1+8 \cdot 3 r / 24=r+1$ by Lemmas 2.3 and 2.4. If $q \neq 7,9$, then $|F(U)|<|F(V)|$ and hence $U^{F(V)} \simeq Z_{2}$. Suppose $q=7$ or 9 . Then $r=1$ as $r \mid n$. Hence $|\Omega|=1+\left|N^{\alpha}: N_{\beta}^{\alpha}\right|=8$ or 16. By [10], we have a contradiction. Therefore $U^{F(V)} \simeq Z_{2}$.

Suppose $V^{g} \leq G_{\alpha \beta}$ for some $g \in G$ and set $\gamma=\alpha^{g}$. Then $V^{g} \leq g^{-1} N^{\alpha} g \cap G_{\alpha \beta}$ $\leq N^{\gamma} \cap G_{\alpha \beta} \leq N_{\alpha}^{\gamma} \cap N_{\beta}^{\gamma} \leq N^{\alpha} \cap N^{\beta}=N_{\beta}^{\alpha} . \quad$ As $N_{\beta}^{\alpha} \simeq S_{4}, V^{g}=V^{h}$ for some $h \in N_{\beta}^{\alpha}$. Hence $N_{G}(V)^{F(V)}$ is doubly transitive. By Lemma 2.9. $C_{G}\left(N^{a}\right)=1$ and one of the following holds.
(a) $N_{G}(V)^{F(V)} \leq A \Gamma L\left(1,2^{c}\right)$.
(b) $N_{G}(V)^{F(V)} \unrhd P S L\left(2, p_{1}\right), p_{1}=(q-\varepsilon) / 8 \geq 5$.
(c) $N_{G}(V)^{F(V)}=R(3)$.

In the case $(a),(r+1)^{2}=1+(q-\varepsilon) r / 8$ by Lemma 2.5 and so $r=(q-\varepsilon-16) / 8$ and $r \mid n$. From this $q=23$ or 25 and $r=1$. Since $|\Omega|=1+\left|N^{\alpha}: N_{\beta}^{\alpha}\right|=2 \cdot 127$ or $2 \cdot 163$, we have $|G|_{2}=2\left|G_{a}\right|_{2}$ while $\left|N_{G}(V)\right|_{2}=|F(V)|_{2}\left|N_{G a}(V)\right|_{2}=4\left|G_{a}\right|_{2}$, contrary to $\left|N_{G}(V)\right|||G|$.

In the case (b), $p_{1}\left(p_{1}-1\right) / 2 \mid s$ and $s \mid 2 n(q-\varepsilon) / 4=4 n p_{1}$, where s is the order of $N_{G_{\infty}}(V)^{F(V)}$. Hence $p_{1}-1 \mid 8 n$. From this, $p^{n}-\varepsilon-8 \mid 64 n$ and so $q=23,41,71$ or 73. Since p_{1} is a prime and $p_{1}=(q-\varepsilon) / 8 \geq 5, q \neq 23,71,73$. Therefore $q=41$ and $|\Omega|=1+\left|N^{\alpha}: N_{\beta}^{\alpha}\right|=1+40 \cdot 41 \cdot 42 / 2 \cdot 24=2^{2} \cdot 359$, so that $|G|_{2}=4\left|G_{a}\right|_{2}$.

Since $N_{\beta}^{\alpha}=N^{\alpha} \cap N^{\beta}, C_{G}(z)^{F(z)}$ is transitive by Lemma 2.1. On the other hand $|F(z)|=1+40 \cdot 9 / 24=16$ by Lemma 2.8 (i) and so $\left|C_{G}(z)\right|_{2}=16\left|C_{G_{a}}(z)\right|_{2}=$ $16\left|G_{a}\right|_{2}$, contrary to $\left|C_{G}(z)\right|||G|$.

In the case (c), $r+1=4$ and $1+(q-\varepsilon) r / 8=28$. Hence $r=3$ and $q=71$ or 73, contrary to $r \mid n$.

8. Case (VI)

In this section we assume that $N_{\beta}^{\alpha} \simeq A_{5}$ and $q \equiv 3,5(\bmod 8) . \quad$ In particular, n is odd. If $N_{\beta}^{\alpha} \neq N^{a} \cap N^{\beta}$, then $N^{a} \cap N^{\beta}=1, C_{G}\left(N^{\alpha}\right)=1$ and so $N_{\beta}^{\alpha} \simeq N_{\beta}^{a} N^{\beta} / N^{\beta}$ $\leq \operatorname{Out}\left(N^{\beta}\right) \simeq Z_{2} \times Z_{n}$, a contradiction. Hence $N_{\beta}^{\alpha}=N^{a} \cap N^{\beta}$. Let z be an involution in N_{β}^{α} and T a Sylow 2-subgroup of N_{β}^{α} contraining z. Then, by Lemma $2.8|F(z)|=1+(q-\varepsilon) 15 r / 60=1+(q-\varepsilon) r / 4$ and by Lemmas 2.3 and $2.4|F(T)|$ $=1+12 \cdot 5 r / 60=1+r$. Since $N_{\beta}^{\alpha}=N^{\alpha} \cap N^{\beta}, z^{G} \cap G_{a \beta}=z^{G} \cap N_{\beta}^{\alpha}=z^{N_{\beta}^{\alpha}}$ and so $C_{G}(z)^{F(z)}$ is doubly transitive. By Lemma 2.9, $C_{G}\left(N^{a}\right)=1$ and one of the following holds.
(a) $C_{G}(z)^{F(z)} \leq A \Gamma L\left(1,2^{c}\right)$.
(b) $C_{G}(z)^{F(z)} \unrhd P S L\left(2, p_{1}\right), p_{1}=(q-\varepsilon) / 4 \geq 5$.
(c) $C_{G}(z)^{F(z)}=R(3)$.

In the case (a), by Lemma $2.5,(q-\varepsilon) / 4=1$ or $(r+1)^{2} /=1+(q-\varepsilon) r / 4$. Hence $q=5$ or $r=(q-\varepsilon-8) / 4 \mid n$. If $q=5$, then $N_{\beta}^{a}=N^{a}$, a contradiction. Therefore $p^{n}-\varepsilon-8 \mid 4 n$ and so $n=1$ and $q=11$ or 13 . If $q=13$, we have $5 \times\left|G_{a}\right|$, a contradiction. Hence $q=11$ and $|\Omega|=1+\left|N^{\alpha}: N_{\beta}^{\alpha}\right|=1+10 \cdot 11 \cdot 12 / 2 \cdot 60=12$. By [9], $G^{\Omega} \simeq M_{11},|\Omega|=12$ and so (iii) of our theorem holds.

In the case (b), we have $p_{1}\left(p_{1}-1\right) / 2 \mid s$ and $s \mid 2 n(q-\varepsilon) / 2=4 n p_{1}$, where s is the order of $C_{G_{x}}(z)^{F(z)}$. Hence $p_{1}-1 \mid 8 n$ and so $p^{n}-\varepsilon-4 \mid 32 n$. From this $q=19,27$ or 37. Since $5\left|\left|G_{a}\right|, q \neq 27,37\right.$. Hence $q=19$ and $| \Omega\left|=1+\left|N^{a}: N_{\beta}^{\alpha}\right|=1+\right.$ $18 \cdot 19 \cdot 20 / 2 \cdot 60=2 \cdot 29$. Since $G_{\alpha} \simeq P S L(2,19)$ or $P G L(2,19),|G|=|\Omega|\left|G_{\infty}\right|$ $=2 \cdot 29 \cdot 2^{i} \cdot 18 \cdot 19 \cdot 20 / 2=2^{3+i} \cdot 3^{2} \cdot 5 \cdot 19 \cdot 29$ with $0 \leq i \leq 1$. Let P be a Sylow 29subgroup of G. Then P is semi-regular on Ω and $3,5,19 X\left|N_{G}(P)\right|$ because $N_{G}(P) / C_{G}(P) \leq Z_{4} \times Z_{7}$. Hence $\left|G: N_{G}(P)\right|=2^{j} \cdot 3^{2} \cdot 5 \cdot 19$ with $0 \leq j \leq 4$, while $2^{j} \cdot 3^{2} \cdot 5 \cdot 19 \equiv 1(\bmod 29)$ for any j with $0 \leq j \leq 4$, contrary to a Sylow's theorem.

If $C_{G}(z)^{F(z)}=R(3), r+1=4$ and $1+(q-\varepsilon) r / 4=28$ and hence $r=3, q=37$, contrary to $r \mid n$.

Osaka Kyoiku University

References

[1] M. Aschbacher: St-set and permutation groups, J. Algebra 30 (1974), 400-416.
[2] D. Gorenstein: Finite groups, Harper and Row, New York, 1968.
[3] C. Hering: Transitive linear groups and linear groups which contain irreducible
subgroups of prime order, Geometriae Dedicata 2 (1974), 425-460.
[4] Y. Hiramine: On doubly transitive permutation groups, Osaka J. Math. 15 (1978), 613-631.
[5] B. Huppert: Zeifach transitive auflösbare Permutationsgruppen, Math. Z. 68 (1957), 126-150.
[6] B. Huppert: Endliche Gruppen I, Springer-Verlag, Berlin, 1968.
[7] M. O'Nan: A characterization of $L_{n}(q)$ as a permutation groups, Math. Z. 127 (1972), 301-314.
[8] M. O'Nan: Normal structure of the one-point stabilizer of a doubly transitive permutation group II, Trans. Amer. Math. Soc. 214 (1975), 43-74.
[9] C.C. Sims: Computional methods in the study of permutation groups, (in Computional Problem in Abstract Algebra), Pergamon Press, London, 1970, 169-183.
[10] R. Steinberg: Automorphism of finite linear groups, Canad. J. Math. 12 (1960), 606-615.

