Hiramine, Y. Osaka J. Math. 16 (1979), 797-816

ON SOME DOUBLY TRANSITIVE PERMUTATION GROUPS IN WHICH SOCLE(G_α) IS NONSOLVABLE

YUTAKA HIRAMINE

(Received July 3, 1978)

1. Introduction

Let G be a doubly transitive permutation group on a finite set Ω and $\alpha \in \Omega$. In [8], O'Nan has proved that socle $(G_{\alpha}) = A \times N$, where A is an abelian group and N is 1 or a nonabelian simple group. Here socle (G_{α}) is the product of all minimal normal subgroups of G_{α} .

In the previous paper [4], we have studied doubly transitive permutation groups in which N is isomorphic to PSL(2,q), Sz(q) or PSU(3,q) with q even. In this paper we shall prove the following:

Theorem. Let G be a doubly transitive permutation group on a finite set Ω with $|\Omega|$ even and let $\alpha \in \Omega$. If G_{α} has a normal simple subgroup N^{α} isomorphic to PSL(2,q), where q is odd, then one of the following holds.

(i) G^{Ω} has a regular normal subgroup.

- (ii) $G^{\Omega} \simeq A_6$ or S_6 , $N^{\circ} \simeq PSL(2,5)$ and $|\Omega| = 6$.
- (iii) $G^{\Omega} \simeq M_{11}$, $N^{\sigma} \simeq PSL(2, 11)$ and $|\Omega| = 12$.

In the case that G^{α} has a regular normal subgroup, by a result of Hering [3] we have $(|\Omega|, q) = (16, 9)$, (16, 5) or (8, 7).

We introduce some notations:

F(X): the set of fixed points of a nonempty subset X of G

 $X(\Delta)$: the global stabilizer of a subset $\Delta(\subseteq \Omega)$ in X

- X_{Δ} : the pointwise stabilizer of Δ in X
- X^{Δ} : the restriction of X on Δ
- $m \mid n$: an integer *m* divides an integer *n*
- X^{H} : the set of *H*-conjugates of *X*
- $|X|_{p}$: maximal power of p dividing the order of X

I(X): the set of involutions in X

 D_m : dihedral group of order m

In this paper all sets and groups are finite.

2. Preliminairies

Lemma 2.1. Let G be a transitive permutation group on Ω , $\alpha \in \Omega$ and N^{\bullet} a normal subgroup of G_{\bullet} such that $F(N^{\bullet}) = \{\alpha\}$. Let the subgroup $X \leq N^{\bullet}$ be conjugate in G_{\bullet} to every group Y which lies in N^{\bullet} and which is conjugate to X in G. Then $N_{G}(X)$ is transitive on $\Delta = \{\gamma \in \Omega | X \leq N^{\gamma}\}$.

Proof. Let $\beta \in \Delta$ and let $g \in G$ such that $\beta^{g} = \alpha$. Then, as $X \leq N^{\beta}$, $X^{g} \leq N^{\beta^{g}} = N^{\sigma}$. By assumption, $(X^{g})^{h} = X$ for some $h \in G_{\sigma}$. Hence $gh \in N_{G}(X)$ and $\alpha^{(gh)^{-1}} = \alpha^{g^{-1}} = \beta$. Obviously $N_{G}(X)$ stabilizes Δ . Thus Lemma 2.1 holds.

Lemma 2.2. Let G be a doubly transitive permutation group on Ω of even degree and $N^{\mathfrak{o}}$ a nonabelian simple normal subgroup of $G_{\mathfrak{o}}$ with $\alpha \in \Omega$. If $C_{\mathfrak{c}}(N^{\mathfrak{o}}) \neq 1$, then $N^{\mathfrak{o}}_{\beta} = N^{\mathfrak{o}} \cap N^{\beta}$ for $\alpha \neq \beta \in \Omega$ and $C_{\mathfrak{c}}(N^{\mathfrak{o}})$ is semiregular on $\Omega - \{\alpha\}$.

Proof. See Lemma 2.1 of [4].

Lemma 2.3. Let G be a transitive permutation group on Ω , H a stabilizer of a point of Ω and M a nonempty subset of G. Then

 $|F(M)| = |N_{G}(M)| \times |M^{G} \cap H|/|H|$.

Here $M^{c} \cap H = \{g^{-1}Mg \mid g^{-1}Mg \subseteq H, g \in G\}.$

Proof. See Lemma 2.2 of [4].

Lemma 2.4. Let G be a doubly transitive permutation group on Ω and N^{\bullet} a normal subgroup of G_{\bullet} with $\alpha \in \Omega$. Assume that a subgroup X of N^{\bullet} satisfies $X^{G_{\bullet}} = X^{N^{\bullet}}$. Then the following hold.

(i) $|F(X) \cap \beta^{N^{\alpha}}| = |F(X) \cap \gamma^{N^{\alpha}}|$ for $\beta, \gamma \in \Omega - \{\alpha\}$.

(ii) $|F(X)| = 1 + |F(X) \cap \beta^N| \times r$, where r is the number of N^{*}-orbits on $\Omega - \{\alpha\}$.

Proof. Let $\Gamma = \{\Delta_1, \Delta_2, \dots, \Delta_r\}$ be the set of N^{σ} -obrits on $\Omega - \{\alpha\}$. Since G_{σ} is transitive on $\Omega - \{\alpha\}$ and $G_{\sigma} \geq N^{\sigma}$, we have $|\Delta_i| = |\Delta_j|$ for $1 \leq i, j \leq r$. By assumption, $G_{\sigma} = N_{G_{\sigma}}(X)N^{\sigma}$ and so $N_{G_{\sigma}}(X)$ is transitive on Γ . Hence for each i with $1 \leq i \leq r$ there exists $g \in N_{G_{\sigma}}(X)$ such that $(\Delta_1)^g = \Delta_i$. Therefore $|F(X) \cap \Delta_i| = |F(X^g) \cap (\Delta_1)^g| = |F(X) \cap \Delta_1|$. Thus (i) holds and (ii) follows immediately from (i)

Lemma 2.5 (Huppert [5]). Let G be a doubly transitive permutation group on Ω . Suppose that $0_2(G) \neq 1$ and G_{σ} is solvable. Then for any involution z in G_{σ} , $|F(z)|^2 = |\Omega|$.

We list now some properties of PSL(2,q) with q odd which will be required

in the proof of our theorem.

Lemma 2.6 ([2], [6], [10]). Set N=PSL(2,q) and G=Aut(N), where $q=p^n$ and p is an odd prime. Let z be an involution in N. Then the following hold. (i) |N|=(q-1)q(q+1)/2, $I(N)=z^N$ and $C_N(z)\simeq D_{q-\varepsilon}$, where $q\equiv\varepsilon\in\{\pm 1\}$ (mod 4).

(ii) If $q \neq 3$, N is a nonabelian simple group and a Sylow r-subgroup of N is cyclic when $r \neq 2$, p.

(iii) If X and Y are cyclic groups of N and $|X| = |Y| \neq 2$, p, then X is conjugate to Y in $\langle X, Y \rangle$ and $N_N(X) \simeq D_{q\pm e}$.

(iv) If $X \leq N$ and $X \simeq Z_2 \times Z_2$, $N_N(X)$ is isomorphic to A_4 or S_4 .

(v) If $|N|_2 \ge 8$, N has two conjugate classes of four-groups in N.

(vi) There exist a field automorphism f of N of order n and a diagonal automorphism d of N of order 2 and if we identify N with its inner automorphism group, $\langle d \rangle N \simeq PGL(2,q), \langle f \rangle \langle d \rangle N = G$ and $G/N \simeq Z_2 \times Z_n$.

(vii) $C_N(d) \simeq D_{q+\epsilon}$ and $C_{\langle d \rangle N}(z) \simeq D_{2(q-\epsilon)}$.

(viii) Suppose n=mk for positive integers m, k. Then $C_N(f^m) \simeq PSL(2, p^m)$ if k is odd and $C_N(f^m) \simeq PGL(2, p^m)$ if k is even.

(ix) Assume n is even and let u be a field automorphism of order 2. Then $I(G)=I(N) \cup d^N \cup u^{\langle d \rangle N}$. If n is odd, $I(G)=I(N) \cup d^N$.

(x) If H is a subgroup of N of odd index, then one of the following holds:

(1) H is a subgroup of $C_N(z)$ of odd index for some involution $z \in N$.

(2) $H \simeq PGL(2, p^m)$, where n = 2mk and k is odd.

(3) $H \simeq PSL(2, p^m)$, where n = mk and k is odd.

(4) $H \simeq A_4$ and $q \equiv 3, 5 \pmod{8}$.

(5) $H \simeq S_4$ and $q \equiv 7, 9 \pmod{16}$.

(6) $H \simeq A_5$, $q \equiv 3$, 5 (mod 8) and 5 | (q-1)q/q+1).

Lemma 2.7. Let G, N, d and f be as defined in Lemma 2.6 and H an $\langle f, d \rangle$ -invariant subgroup of N isomorphic to D_{q-e} . Let W be a cyclic subgroup of $\langle d \rangle H$ of index 2 (cf. (vii) of Lemma 2.6) and set $Y=0_2(W \cap H)$. Then $C_{G}(Y)=W \cdot C_{\langle f \rangle}(Y)$.

Proof. By (viii) of Lemma 2.6, we can take an involution t satisfying $\langle d \rangle H = \langle t \rangle W$ and [f, t] = 1. Since $N_G(Y) = \langle f, d \rangle N_N(Y) = \langle f, d \rangle H$, $C_G(Y) = C_{\langle f \rangle \land \langle t \rangle}(Y) = W \cdot C_{\langle f \rangle \land \langle t \rangle}(Y)$. Suppose $ht \in C(Y)$ for some $h \in \langle f \rangle$. Since t inverts Y, h also inverts Y and so h^2 centralizes Y. Hence some nontrivial 2-element $g \in \langle h \rangle$ inverts Y, so that $C_H(g)$ contains no element of order 4, contrary to (viii) of Lemma 2.6.

Throughout the rest of the paper, G^{α} will always denote a doubly transitive permutation group satisfying the hypothesis of our theorem and we assume G^{α} has no regular normal subgroup.

Notation. $C^{\sigma} = C_{c}(N^{\sigma})$, which is semi-regular on $\Omega - \{\alpha\}$ by Lemma 2.2. Let *r* be the number of N^{σ} -orbits on $\Omega - \{\alpha\}$.

Since $G_{\alpha} \ge N^{\alpha}$, $|\beta^{N^{\alpha}}| = |\gamma^{N^{\alpha}}|$ for $\beta, \gamma \in \Omega - \{\alpha\}$ and so $|\Omega| = 1 + r \times |\beta^{N^{\alpha}}|$. Hence r is odd and N_{β}^{α} is a subgroup of N^{α} of odd index. Therefore N_{β}^{α} is isomorphic to one of the groups listed in (x) of Lemma 2.6. Accordingly the proof of our theorem will be divided in six cases.

Lemma 2.8. Let Z be a cyclic subgroup of N_{β}^{α} with $|Z| \neq 1, p$. Then (i) If |Z|=2, $|F(Z)|=1+(q-\varepsilon)|I(N_{\beta}^{\alpha})|r/|N_{\beta}^{\alpha}|$. (ii) If $|Z|\neq 2$, $|F(Z)|=1+|N_{N^{\alpha}}(Z)|r/|N_{N_{\beta}^{\alpha}}(Z)|$.

Proof. It follows from Lemma 2.3, 2.4 and 2.6 (i), (iii).

Lemma 2.9. If $N_{\beta}^{\sigma} \neq D_{q-\varepsilon}$ and Z is a cyclic subgroup of N_{β}^{σ} with $|Z| \neq 1, p$ and $N_{c}(Z)^{F(Z)}$ is doubly transitive. Then $C^{\sigma} = 1$ and one of the following holds. (i) $N_{c}(Z)^{F(Z)} \leq A \Gamma L(1, q_{1})$ for some q_{1} .

(ii) $C_G(Z)^{F(Z)} \ge PSL(2, p_1), r=1 \text{ and } |F(Z)|-1=|N_{N^{\alpha}}(Z): N_{N^{\alpha}_{\beta}}(Z)|=p_1,$ where $p_1 (\ge 5)$ is a prime.

(iii) $N_G(Z)^{F(Z)} = R(3)$, the smallest Ree group, |F(Z)| = 28.

Proof. Set $N_G(Z) = L$ and $F(Z) = \Delta$. By Lemma 2.6(iii), $L \cap N^{\omega} \simeq D_{q \pm \varepsilon}$ and $L \cap N^{\omega} = \langle t \rangle Y \supseteq Y \ge Z$, where 0(t) = 2, $Y \simeq Z_{(q \pm \varepsilon)/2}$.

If $(L \cap N^{\mathfrak{o}})^{\Delta} = 1$, then $L \cap N^{\mathfrak{o}} = N_{\beta}^{\mathfrak{o}}$ because $L \cap N^{\mathfrak{o}}$ is a maximal subgroup of $N^{\mathfrak{o}}$. Since $|N^{\mathfrak{o}}: N_{\beta}^{\mathfrak{o}}|$ is odd, $L \cap N^{\mathfrak{o}} = N_{\beta}^{\mathfrak{o}} = D_{q-\mathfrak{o}}$, contrary to the assumption. Hence $(L \cap N^{\mathfrak{o}})^{\Delta} \neq 1$ and as $L_{\mathfrak{o}} \geq L_{\mathfrak{o}} \cap N^{\mathfrak{o}}$ and $L_{\mathfrak{o}} \geq Y$, $(L_{\mathfrak{o}})^{\Delta}$ has a nontrivial cyclic normal subgroup. By Theorem 3 of [1], one of the following occurs:

- (a) L^{Δ} has a regular normal subgroup
- (b) $L^{\Delta} \supseteq PSL(2, p_1), |\Delta| = p_1 + 1$, where $p_1(\geq 5)$ is a prime
- (c) $L^{\Delta} \supseteq PSL(3, p_1), p_1 \ge 3, |\Delta| = (p_1)^3 + 1$
- (d) $L^{\Delta} = R(3), |\Delta| = 28.$

Suppose $C^{\sigma} \neq 1$. Then there exists a subgroup D of C^{σ} of prime order such that $(L_{\sigma})^{\Delta} \supset D^{\Delta}$. Since $[L_{\sigma}, D] \leq D \cdot L_{\Delta} \cap C^{\sigma} = D(L_{\Delta} \cap C^{\sigma}) = D$, D is a normal subgroup of L_{σ} . By (i) and (iii) of Lemma 2.6, $G_{\sigma} = L_{\sigma} \cdot N^{\sigma}$ and so D is a normal subgroup of G_{σ} . By Theorem 3 of [1], G^{Ω} has a regular normal subgroup, contrary to the hypothesis. Thus $C^{\sigma} = 1$.

If (a) occurs, L^{Δ} is solvable because $L_{a}/L \cap N^{a} \simeq L_{a}N^{a}/N^{a} \le \operatorname{Out}(N^{a})$ and $L \cap N^{a} \simeq D_{q\pm i}$. Hence by [5], (i) holds in this case.

If (b) occurs, we have $Y^{\Delta} \neq 1$, for otherwise $(L \cap N^{\sigma})^{\Delta} = 1$ and so $N_{\beta}^{\sigma} = L \cap N^{\sigma} \simeq D_{q-e}$, a contradiction. Hence $1 \neq C_{G}(Z)^{\Delta} \trianglelefteq L^{\Delta}$ and so $C_{G}(Z)^{\Delta} \trianglerighteq PSL(2, p_{1})$ and $Y^{\Delta} \simeq Z_{p_{1}}$. Therefore $|\Delta \cap \beta^{N^{\sigma}}| = p_{1}$ and r=1 by Lemma 2.4 (ii). Since $|\beta^{Y}| = p_{1}$, we have $|\beta^{L \cap N^{\sigma}}| = p_{1}$, so that $|L \cap N^{\sigma}: L \cap N_{\beta}^{\sigma}| = p_{1}$. Thus (ii) holds in this case.

The case (c) does not cocur, for otherwise, by the structure of $PSU(3, p_1)$,

a Sylow p_1 -subgroup of $(L^{\Delta}_{\sigma})'$ is not cyclic, while $(L_{\sigma})' \leq L \cap N^{\sigma} \simeq D_{q \pm \varepsilon}$, a contradiction.

3. Case (I)

In this section we assume that $N^{\alpha}_{\beta} \leq D_{q-\epsilon}$, where $\beta \neq \alpha$, $q = p^{n}$.

(3.1) (i) If $N_{\beta}^{\alpha} \neq Z_2 \times Z_2$, $N_{N^{\alpha}}(N_{\beta}^{\alpha}) = N_{\beta}^{\alpha}$ and $|F(N_{\beta}^{\alpha})| = r+1$. (ii) If $N_{\beta}^{\alpha} = Z_2 \times Z_2$, $N_{N^{\alpha}}(N_{\beta}^{\alpha}) = A_4$ and $|F(N_{\beta}^{\alpha})| = 3r+1$.

Proof. Put $X = N_{N^{\alpha}}(N_{\beta}^{\alpha})$. Let S be a Sylow 2-subgroup of N_{β}^{α} and Y a cyclic subgroup of N_{β}^{α} of index 2.

If $N_{\beta}^{\alpha} \neq Z_2 \times Z_2$, then |Y| > 2 and so Y is characteristic in N_{β}^{α} . Hence $X \leq N_{N^{\alpha}}(Y) = D_{q-e}$. From this $[N_X(S), S \cap Y] \leq S \cap Y$ and $0^2(N_X(S))$ stabilizes a normal series $S \geq S \cap Y \geq 1$, so that $0^2(N_X(S)) \leq C_{N^{\alpha}}(S)$ by Theorem 5.3.2 of [2]. By Lemma 2.6(i), $C_{N^{\alpha}}(S) \leq S$ and hence $N_X(S) = S$. On the other hand by a Frattini argument, $X = N_X(S)N_{\beta}^{\alpha}$ and so $X = N_{\beta}^{\alpha}$. By Lemma 2.6(i), $(N_{\beta}^{\alpha})^{c_{\alpha}} = (N_{\beta}^{\alpha})^{N^{\alpha}}$ and so by Lemmas 2.3 and 2.4 (ii), $|F(N_{\beta}^{\alpha})| = 1 + |F(N_{\beta}^{\alpha}) \cap \beta^{N^{\alpha}}| \times r = 1 + |N_{\beta}^{\alpha}|r/|N_{\beta}^{\alpha}| = r + 1$. Thus (i) holds.

If $N^{\alpha}_{\beta} \simeq Z_2 \times Z_2$, $N_{N^{\alpha}}(N^{\alpha}_{\beta}) \simeq A_4$ by Lemma 2.6 (iv). Similarly as in the case $N^{\alpha}_{\beta} \neq Z_2 \times Z_2$, we have $|F(N^{\alpha}_{\beta})| = 3r+1$.

 $(3.2) \quad N^{\alpha}_{\beta}/N^{\alpha} \cap N^{\beta} \leq Z_2 \times Z_2.$

Proof. By Lemma 2.2, it suffices to consider the case $C^{\mathfrak{s}}=1$. Suppose $C^{\mathfrak{s}}=1$. Then $N_{\mathfrak{g}}^{\mathfrak{s}}/N^{\mathfrak{s}} \cap N^{\mathfrak{s}} \simeq N_{\mathfrak{g}}^{\mathfrak{s}}N^{\mathfrak{s}}/N^{\mathfrak{s}} \leq \operatorname{Out}(N^{\mathfrak{s}}) \simeq Z_2 \times Z_n$ by Lemma 2.6 (vi) and hence $(N_{\mathfrak{g}}^{\mathfrak{s}})' \leq N^{\mathfrak{s}} \cap N^{\mathfrak{s}}$. Since $N_{\mathfrak{g}}^{\mathfrak{s}}$ is dihedral, $N_{\mathfrak{g}}^{\mathfrak{s}}/(N_{\mathfrak{g}}^{\mathfrak{s}})' \simeq Z_2 \times Z_2$, so that $N_{\mathfrak{g}}^{\mathfrak{s}}/N^{\mathfrak{s}} \cap N^{\mathfrak{s}} \leq Z_2 \times Z_2$.

(3.3) Suppose $N_{\beta}^{\alpha} = N^{\alpha} \cap N^{\beta}$ and let U be a subgroup of N_{β}^{α} isomorphic to $Z_2 \times Z_2$. Then |F(U)| = 3r+1 and $N_G(U)^{F(U)}$ is doubly transitive.

Proof. Sex $X=N_G(N^{\alpha}_{\beta})$, $\Delta=F(N^{\alpha}_{\beta})$ and let $\{\Delta_1, \Delta_2, \dots, \Delta_r\}$ be the set of N^{α} -orbits on $\Omega - \{\alpha\}$. If $g^{-1}N^{\alpha}_{\beta}g \leq G_{\alpha\beta}$, then $g^{-1}N^{\alpha}_{\beta}g \leq N^{\gamma}_{\alpha} \cap N^{\gamma}_{\beta} = N^{\alpha}_{\gamma} \cap N^{\beta}_{\gamma} \leq N^{\alpha}_{\beta}$, where $\gamma = \alpha^{\sigma}$. By a Witt's theorem, X^{Δ} is doubly transitive.

If U is a Sylow 2-subgroup of N_{β}^{α} , by a Witt's theorem, $N_{G}(U)^{F(U)}$ is doubly transitive. Moreover $N_{N^{\alpha}}(U) \simeq A_{4}$ and so by Lemmas 2.3 and 2.4 (ii), $|F(U)| = 1 + |A_{4}| \times |N_{\beta}^{\alpha}: N_{N_{\alpha}^{\alpha}}(U)| \times r/|N_{\beta}^{\alpha}| = 3r+1.$

If $|N_{\beta}^{\alpha}|_{2}>4$, by Lemma 2.6 (iv) and (v), $N_{N^{\alpha}}(U)\simeq S_{4}$ and N_{β}^{α} has two conjugate classes of four-groups, say $\pi = \{K_{1}, K_{2}\}$. Set $X_{\pi} = M$. Then $M \supseteq N_{\beta}^{\alpha}$ and $X/M \leq Z_{2}$. Clearly $F(U) \cap \Delta_{i} \neq \phi$ for each *i* and so $|F(U) \cap \Delta_{i}| = 3$ by Lemma 2.3. Hence |F(U)| = 3r+1. Since $N_{N^{\beta}}(U) \simeq S_{4}$, we may assume r>1. Hence by (3.1) (i) $|\Delta| = r+1 \geq 4$, so that M^{Δ} is doubly transitive. Since $M = N_{\beta}^{\alpha}N_{M}(U)$, $N_{M}(U)^{\Delta}$ is also doubly transitive and so $N_{M_{\alpha}}(U)$ is transitive on Δ -

 $\{\alpha\}$. As $|\Delta \cap \Delta_i| = 1$, $\Delta \cap \Delta_i \subseteq F(U)$ and $N_{N^{o}}(U)$ is transitive on $F(U) \cap \Delta_i$ for each i, $N_G(U)^{F(U)}$ is doubly transitive.

(3.4) (i) $C^{\infty} = 1$.

(ii) Let U be a subgroup of N_{β}^{α} isomorphic to $Z_2 \times Z_2$. If $N_{\beta}^{\alpha} = N^{\alpha} \cap N^{\beta}$, then $N_G(U)^{F(U)}$ has a regular normal 2-subgroup. In particular $|F(U)| = 3r + 1 = 2^b$ for positive integer b.

Proof. Since $N_{G_{\alpha}}(U)^{F(U)} \ge N_{N^{\alpha}}(U)^{F(U)} \simeq S_3$ or Z_3 , by (3.3) and Theorem 3 of [1], $N_G(U)^{F(U)}$ has a regular normal subgroup, $N_G(U)^{F(U)} \ge PSU(3,3)$ or $N_G(U)^{F(U)} = R(3)$.

Suppose $C^{\alpha} \neq 1$. Let D be a minimal characteristic subgroup of C^{α} . Clearly $G_{\alpha} \triangleright D$. If $N_{G}(U)^{F(U)} \neq R(3)$, D is cyclic. By Theorem 3 of [1], G^{α} has a regular normal subgroup, contrary to the hypothesis. Hence $N_{G}(U)^{F(U)} = R(3)$. Therefore $(N_{G_{\alpha}}(U)^{F(U)})'$ contains an element of order 9. Since $N_{G_{\alpha}}(U)/C^{\alpha}N_{N^{\alpha}}(U) \simeq N_{G_{\alpha}}(U)C^{\alpha}N^{\alpha} \leq \operatorname{Out}(N^{\alpha})$, by (vi) of Lemma 2.6 we have $(N_{G_{\alpha}}(U))' \leq C^{\alpha} \times N_{N^{\alpha}}(U)$. From this, C^{α} contains an element of order 9 and so $C^{\alpha} \simeq Z_{9}$ or $M_{3}(3)$. In both cases, C^{α} contains a caracteristic subgroup of order 3. Since $G_{\alpha} \triangleright D$, by Theorem 3 of [1] G^{α} has a regular normal subgroup, a contradiction. Thus $C^{\alpha} = 1$.

Let R be a Sylow 3-subgroup of $N_{G_{a}}(U)$. Since $N_{G_{a}}(U)/N_{N^{a}}(U) \simeq N_{G_{a}}(U)N^{a}/N^{a} \leq \operatorname{Out}(N^{a}) \simeq Z_{2} \times Z_{n}, R/R \cap N_{N^{a}}(U)$ is cyclic. Clearly $R \cap N_{N^{a}}(U) \simeq Z_{3}$. Therefore $N_{G}(U)^{F(U)} \succeq PSU(3,3), R(3)$. Thus (3.4) holds.

Since N^{α}_{β} is dihedral, we set $N^{\alpha}_{\beta} = \langle t \rangle W$ and $Y = W \cap N^{\alpha} \cap N^{\beta}$, where W is a cyclic subgroup of N^{α}_{β} of index 2 and t is an involution in N^{α}_{β} which inverts W.

(3.5) (i) If $|Y| \ge 3$, $N_{\mathcal{G}}(Y)^{F(Y)}$ is doubly transitive. (ii) If |Y| < 3, $N_{\beta}^{\alpha} \simeq Z_2 \times Z_2$ or $N_{\beta}^{\alpha} \simeq D_8$ and $N^{\alpha} \cap N^{\beta} \le Z_2 \times Z_2$.

Proof. Suppose $|Y| \ge 3$. If $Y^g \le G_{\alpha\beta}$, $Y^g \le N^\gamma \cap G_{\alpha\beta} \le N^\gamma_{\alpha}$, where $\gamma = \alpha^g$. If $\gamma = \alpha$, obviously $Y^g \le N^{\alpha}$. If $\gamma \neq \alpha$, $N^\gamma_{\alpha} \simeq N^{\alpha}_{\beta}$. Therefore, as $|Y| \ge 3$, N^γ_{α} has a unique cyclic subgroup of order |Y|. Hence $Y^g \le N^\gamma \cap N^{\alpha} \le N^{\alpha}$, so that $Y^g \le N^{\alpha}$. Similarly $Y^g \le N^\beta$. Thus $Y^g \le N^{\alpha} \cap N^\beta$ and so $Y^g = Y$. By a Witt's theorem, $N_G(Y)$ is doubly transitive on F(Y).

Suppose |Y| < 3. Since $|N^{\alpha} \cap N^{\beta}$: $Y| \le 2$, we have $N^{\alpha} \cap N^{\beta} \le Z_2 \times Z_2$. On the other hand, as N^{α}_{β} is dihedral, $(N^{\alpha}_{\beta})'$ is cyclic. Hence (ii) follows immediately from (3.2).

(3.6) Set $\Delta = F(N_{\beta}^{\alpha})$, $L = G(\Delta)$, $K = G_{\Delta}$ and suppose $N_{\beta}^{\alpha} \neq Z_2 \times Z_2$. Then $L_{\alpha} \geq N_{\beta}^{\alpha}$, $(L_{\alpha})' \leq N_{\beta}^{\alpha}$, $K' \leq N^{\alpha} \cap N^{\beta}$ and $(L_{\alpha})^{\Delta} \simeq Z_r$. If $r \neq 1$, L^{Δ} is a doubly transitive Frobenius group of degree r+1.

Proof. By Corollary B1 of [7] and (i) of (3.1), L^{Δ} is doubly transitive and

$$\begin{split} |\Delta| = r + 1. & \text{Since } N^{\mathfrak{o}} \cap L \supseteq N^{\mathfrak{o}} \cap K = N^{\mathfrak{o}}_{\beta}, \text{ by (i) of (3.1), we have } N^{\mathfrak{o}} \cap L = N^{\mathfrak{o}}_{\beta}. \\ \text{Hence } L_{\mathfrak{o}} \supseteq N^{\mathfrak{o}}_{\beta}. & \text{By (i) of (3.4), } L_{\mathfrak{o}}/N^{\mathfrak{o}}_{\beta} \simeq L_{\mathfrak{o}}N^{\mathfrak{o}}/N^{\mathfrak{o}} \leq \text{Out}(N^{\mathfrak{o}}) \simeq Z_2 \times Z_n \text{ and so} \\ (L_{\mathfrak{o}})' \leq N^{\mathfrak{o}}_{\beta} \text{ and } (L_{\mathfrak{o}})^{\Delta} \simeq Z_r. \text{ If } r \neq 1, \text{ then } (L_{\mathfrak{o}})^{\Delta} \neq 1. \text{ On the other hand } (L_{\mathfrak{o}\beta})^{\Delta} = 1 \\ \text{as } (L_{\mathfrak{o}})^{\Delta} \text{ is abelian. Hence } L^{\Delta} \text{ is a Frobenius group.} \end{split}$$

(3.7) Suppose $|Y| \ge 3$. Then there exists an involution z in $N^{\alpha}_{\beta} \cap Y$ such that $Z(N^{\alpha}_{\beta}) = \langle z \rangle$.

Proof. Since $N_{\beta}^{a} \neq Z_{2} \times Z_{2}$, $|N_{\beta}^{a}|_{2} \geq 2^{2}$ and N_{β}^{a} is dihedral, we have $\langle I(W) \rangle = Z(N_{\beta}^{a}) \simeq Z_{2}$ and $N_{\beta}^{a}/(N_{\beta}^{a})' \simeq Z_{2} \times Z_{2}$. Let $Z(N_{\beta}^{a}) = \langle z \rangle$ and suppose that z is not contained in Y. By (3.2), $(N_{\beta}^{a})' \leq N^{a} \cap N^{\beta} \cap W = Y$ and so $|(N_{\beta}^{a})'|$ is odd. Hence $|N_{\beta}^{a}|_{2} = 4$ and $q \equiv p^{n} = 3$ or 5 (mod 8), so that n is odd. By (3.2) and (i) of (3.4), $N_{\beta}^{a}/N^{a} \cap N^{\beta} \simeq N_{\beta}^{a}N^{\beta}/N^{\beta} \simeq 1$ or Z_{2} . If $N_{\beta}^{a} = N^{a} \cap N^{\beta}$, then W = Y and so $z \in Y$, contrary to the assumption. Therefore we have $N_{\beta}^{a}/N^{a} \cap N^{\beta} \simeq Z_{2}$ and $N_{\beta}^{a} = \langle z \rangle \times (N^{a} \cap N^{\beta})$. Since n is odd and $z \in N_{\beta}^{a}N^{\beta} - N^{\beta}$, by Lemma 2.6 (vi), (vii) and (ix), $N_{\beta}^{a}N^{\beta} \simeq PGL(2,q)$ and $C_{N^{\beta}}(z) \simeq D_{q+e}$. But $N^{a} \cap N^{\beta} \simeq Z_{2}$ and $N_{\beta}^{a} \simeq Z_{2} \times Z_{2}$, a contradiction.

(3.8) Suppose $|Y| \ge 3$. Then $N_{\beta}^{\alpha} = N^{\alpha} \cap N^{\beta}$.

Proof. Suppose $N_{\beta}^{\alpha} = N^{\alpha} \cap N^{\beta}$ and let Δ , L, K be as defined in (3.6) and $x \in L_{\alpha}$ such that its order is odd and $\langle x \rangle$ is transitive on $\Delta - \{\alpha\}$. As $|Y| \geq 3$, W is characteristic in N_{β}^{α} and hence by (3.6), x stabilizes a normal series $L_{\alpha} \geq N_{\beta}^{\alpha} \geq W \geq (N_{\beta}^{\alpha})'$. By Theorem 5.3.2 of [2], $[x, 0_2(L_{\alpha}/(N_{\beta}^{\alpha})')]=1$. Since $L_{\alpha}/(N_{\beta}^{\alpha})'$ has a normal Sylow 2-subgroup and $(N_{\beta}^{\alpha})' \leq K'$, we have $[x, 0_2(L_{\alpha}/K')]=1$, so that $[x, N_{\alpha}^{\beta}] \leq K' \leq N^{\alpha} \cap N^{\beta}$ by (3.6). If $r \neq 1$, then $\beta^{x} \neq \beta$ and $\beta^{x} \in \Delta$, hence $N_{\alpha}^{\beta} = x^{-1}N_{\alpha}^{\beta}x = N_{\gamma}^{\alpha}$, where $\gamma = \beta^{x}$. Since $\gamma \in \Delta$ and $\Delta = F(N_{\alpha}^{\beta}), N_{\alpha}^{\beta} \leq N^{\beta} \cap G_{\gamma} = N_{\gamma}^{\beta}$ and so $N_{\alpha}^{\beta} = N_{\gamma}^{\beta}$. Similarly $N_{\alpha}^{\gamma} = N_{\beta}^{\gamma}$. Hence $N_{\beta}^{\beta} = N^{\alpha} \cap N^{\beta}$, contrary to the assumption. Therefore we obtain r=1.

Let z be as defined in (3.7) and put $k=(q-\varepsilon)/|N_{\beta}^{\omega}|$. By Lemma 2.8(i) we have $|F(z)|=1+(q-\varepsilon)(|N_{\beta}^{\omega}|/2+1)/|N_{\beta}^{\omega}|=(q-\varepsilon)/2+k+1$. Similarly |F(Y)|=k+1. As $N_{\beta}^{\omega} \pm N^{\omega} \cap N^{\beta}$, there is an involution t in N_{β}^{ω} which is not contained in N^{β} . By Lemma 2.6 (i), $t^{y}=z$ for some $y \in N^{\omega}$. Set $\gamma = \beta^{y}$. Then $\gamma \in F(z)$ and $z \notin N^{\gamma}$. By Lemma 2.6 (vii), (viii) and (ix), $C_{N^{\gamma}}(z) \simeq D_{q+\varepsilon}$ or $PGL(2, \sqrt{q})$. Assume $C_{N^{\gamma}}(z) \simeq D_{q+\varepsilon}$ and let R be a cyclic subgroup of $C_{N^{\gamma}}(z)$ of index 2. We note that R is semi-regular on $\Omega - \{\alpha\}$. Set $X = C_{G}(z)$. Since $2 \le k+1 \le (q-\varepsilon)/|q-\varepsilon|_{2}+1$, we have $(q+\varepsilon)/2 \not\upharpoonright k+1$ and so $|\alpha^{x}| > k+1$. By (i) of (3.5) and (3.7), $N_{G}(Y) \le C_{G}(z) = X$ and $\alpha^{x} \supseteq F(Y)$. It follows from Lemma 2.1 that $\alpha^{x} = \{\mu | z \in N^{\mu}\} \equiv \gamma$. Hence $|F(z)| > |\alpha^{x}| \ge |F(Y)| + (q+\varepsilon)/2 = k+1 + (q-\varepsilon)/2 + \varepsilon =$ $|F(z)| + \varepsilon$. Therefore $\varepsilon = -1$ and $\gamma^{x} = \{\gamma\}$, so that $\gamma \in F(Y)$, a contradiction. Thus $C_{N^{\gamma}}(z) \simeq PGL(2, \sqrt{q}), \varepsilon = 1, N_{\beta}^{\omega}/N^{\omega} \cap N^{\beta} \simeq Z_{2}$ and $|\langle z^{\varepsilon} \cap G_{\omega} \rangle : N^{\omega}| = 2$.

Set $\Delta_1 = \alpha^x$ and $\Delta_2 = F(z) - \Delta_1$. Let $\delta \in \Delta_2$ and g an element of G satisfying $\delta^g = \gamma$. Then $z \in N^a_{\delta} N^{\delta} - N^{\delta}$ and so $z^{\varepsilon} \in N^{\gamma}_{\gamma} N^{\gamma} - N^{\gamma}$, where $\nu = \alpha^{\varepsilon}$. Since $|\langle z^{\varepsilon} \cap G_{\gamma} \rangle$: $N^{\gamma}| = 2$ and $z \in G_{\gamma} - N^{\gamma}$, it follows from Lemma 2.6 (ix) that $(z^{\varepsilon})^{h} = z$ for some $h \in G_{\gamma}$. Hence $gh \in X$ and $\delta^{\varepsilon h} = \gamma$. Thus $\Delta_2 = \gamma^x$. Let $\delta \in \Delta_2$. Then $z \in N^a_{\delta}$ and $z \notin Z(N^a_{\delta})$ by (3.7) and so $X \cap N^a_{\delta} \simeq Z_2 \times Z_2$, which implies $|\delta^{(C} \pi^{a(z))}| = (q-1)/4$. Hence $(|\Delta_1|, |\Delta_2|) = ((q-1)/4 + k + 1, (q-1)/4)$ or (k+1, (q-1)/2). Let P be a subgroup of $C_N^{\gamma}(z)$ of order \sqrt{q} . Then $F(P) = \{\gamma\}$ and P is semi-regular on $\Omega - \{\gamma\}$. If $|\Delta_2| = (q-1)/4$, then $\sqrt{q} |(q-1)/4 - 1 = (q-5)/4$ and $\sqrt{q} |(q-1)/4 + k + 1$. From this, $q = 5^2$, k = 3, $|\Delta_1| = 10$ and $|\Delta_2| = 6$. Since $(C_N^{\gamma}(z))^{\Delta_2} \simeq S_5$, $X^{\Delta_2} \simeq S_6$ and so $|X|_3 \ge 3^2$. As X acts on Δ_1 and $|\Delta_1| \equiv 1 \pmod{3}$, $|G_{\alpha}|_3 \ge |X_{\alpha}|_3 \ge 3^3$, contrary to $N^a \simeq PSL(2, 25)$. If $|\Delta_2| = (q-1)/2, \sqrt{q} |(q-1)/2 - 1 = (q-3)/2$, so $q = 3^2$, k = 1, $N^a_{\beta} \simeq D_8$ and $\Delta_1 = \{\alpha, \beta\}$. Hence $C_N^{\gamma}(z)$ fixes α and β , so that $PGL(2,3) \simeq C_N^{\gamma}(z) \le N^{\gamma}_{\alpha} \simeq N^a_{\beta} \simeq D_8$, a contradiction.

(3.9) Suppose $|Y| \ge 3$. Then r=1.

Proof. By (3.6), $r+1=2^c$ for some integer $c \ge 0$. On the other hand $3r+1=2^b$ by (3.8) and (ii) of (3.4). Hence $2r=2^c(2^{b-c}-1)$ and so c=1 as r is odd. Thus r=1.

(3.10) Put $k=(q-\varepsilon)/|N_{\beta}^{\alpha}|$. If $N_{\beta}^{\alpha}=N^{\alpha}\cap N^{\beta}$ and r=1, then $q-\varepsilon+2k+2|2((2k+2-\varepsilon)(k+1-\varepsilon)k+1)(2k+2-\varepsilon)(k+1-\varepsilon).$

Proof. Set $S = \{(\gamma, u) | \gamma \in F(u), u \in z^{c}\}$, where z is an involution in N_{β}^{a} . We now count the number of elements of S in two ways. Since $N_{\beta}^{a} = N^{a} \cap N^{\beta}$, $F(z) = \{\gamma | z \in N^{\gamma}\}$ and hence $C_{G}(z)$ is transitive on F(z) by Lemma 2.1. Therefore $|S| = |\Omega| | z^{G_{a}}| = |z^{G}| |F(z)|$. Since r=1, $|\Omega| = 1 + |N^{a}| \cdot N_{\beta}^{a}| = kq(q+\varepsilon)/2 + 1$ and by Lemma 2.8 $|F(z)| = (q-\varepsilon)/2 + k + 1$. Since $G_{a} \supseteq N^{a}$, $z^{G_{a}}$ is contained in N^{a} and so $|G_{a}: C_{G_{a}}(z)| = |N^{a}: C_{N^{a}}(z)| = q(q+\varepsilon)/2$. Hence $(q-\varepsilon)/2 + k + 1|$ $(kq(q+\varepsilon/2+1)q(q+\varepsilon)/2$. On the other hand $|F(z)|_{2} = |C_{G}(z)|_{2}/|C_{G_{a}}(z)|_{2} \leq |G|_{2}/|C_{G_{a}}(z)|_{2} = |G|_{2}/|G_{a}|_{2} = |\Omega|_{2}$ because $|G_{a}: C_{G_{a}}(z)| = q(q+\varepsilon)/2 \equiv 1 \pmod{2}$. Hence $|q-\varepsilon+2k+2|_{2} \leq |kq(q+\varepsilon)+2|_{2}$. Since $kq(q+\varepsilon)+2 = (kq+2k(\varepsilon-k-1))$ $(q-\varepsilon+2k+2)+2((2k+2-\varepsilon))(k+1-\varepsilon)k+1)$ and $q(q+\varepsilon) = (q+2\varepsilon-2k-2)(q-\varepsilon+2k+2)+2(2k+2-\varepsilon))(k+1-\varepsilon)$, we have (3.10).

- (3.11) Suppose $|Y| \ge 3$. Then one of the following holds.
- (i) $N^{\alpha}_{\beta} = N^{\alpha} \cap N^{\beta} \simeq D_{g-\varepsilon}$.
- (ii) $N^{\alpha}_{\beta} = N^{\alpha} \cap N^{\beta} \not\simeq D_{q-\epsilon}$ and $N_{G}(Y)^{F(Y)}$ has a regular normal subgroup.

Proof. Suppose false. Then, by (3.5), (3.8) and Lemma 2.9, $N_{c}(Y)^{F(Y)} = R(3)$ or there exists a prime $p_1 \geq 5$ such that $C_{c}(Y)^{F(Y)} \geq PSL(2, p_1)$ and $V/Y \simeq Z_{p_1}$, where $V = C_{N^{\alpha}}(Y)$. By (i) of (3.1) and (3.9), $F(N^{\alpha}_{\beta}) = \{\alpha, \beta\}$. On the other hand, $(N^{\alpha}_{\beta})^{F(Y)} \simeq N^{\alpha}_{\beta}/Y \simeq Z_2$. Hence $N_{c}(Y)^{F(Y)} \neq R(3)$ and $C_{c}(Y)^{F(Y)} \geq C_{c}(Y)^{F(Y)} \geq C_{c}(Y)^{F(Y)}$

 $PSL(2, p_1).$

By (i) of (3.4) and Lemma 2.7, we have $C_{G_{o}}(Y) = V \langle f_1 \rangle$, where f_1 is a field automorphism of N^{o} . Let t be the order of f_1 , n=tm and let $p^m \equiv \varepsilon_1 \in \{\pm 1\} \pmod{4}$. Clearly $C_{G_o}(Y)^{F(Y)} \geq V^{F(Y)} \simeq Z_{p_1}$ and $|C_{G_{obs}}(Y)^{F(Y)}| | t$, so that $(p_1-1)/2 | t$.

First we assume that t is even and set $t=2t_1$. Then $Y \leq C_N \alpha(f_1) \simeq PGL(2, f_1)$ p^{m}) by Lemma 2.6 (viii). As $|V/Y| = p_1$ and p_1 is a prime, Y is a cyclic subgroup of $C_{N^{m}}(f_1)$ of order $p^m - \varepsilon_1$ and $(p^n - 1)/2(p^m - \varepsilon_1 1) = p_1$. Put $s = \sum_{i=0}^{t_1-1} (p^{2m})^i$. Then $(p^m + \varepsilon_1)s/2 = p_1$, so that we have either (i) $t_1 = 1$ and $p_1 = (p^m + \varepsilon_1)/2$ or (ii) $t_1 \ge 2$, $p^{m}=3$ and $p_{1}=s$. In the case (i), $2 \le (p_{1}-1)/2 = (p^{m}+\varepsilon_{1}-2)/4 | 2t_{1}=2$. Hence $(p_1, q) = (5, 3^4)$ or $(4, 11^2)$. Let z be as in (3.7). As mentioned in the proof of (3.10), |F(z)| = (q-1)/2 + k + 1, $|\Omega| = kq(q+1)/2 + 1$ and $C_{c}(z)$ is transitive on F(z). If $q=3^4$, then |F(z)|=46 and $|\Omega|=2\cdot 19^2\cdot 23$. Hence $|C_G(z)|=|F(z)|$ $|C_{G_{\alpha}}(z)| = |F(z)| |C_{G_{\alpha}}(z)N^{\alpha}/N^{\alpha}| |C_{N^{\alpha}}(z)| = 46 \cdot 2^{i} \cdot 80 = 2^{5+i} \cdot 5 \cdot 23 \text{ with } 0 \le i \le 3.$ Let P be a Sylow 23-subgroup of $C_c(z)$ and Q a Sylow 5-subgroup of $C_c(z)$. It follows from a Sylow's theorem that P is a normal subgroup of $C_{G}(z)$ and so [P, Q] = 1. Theorefore $|F(Q)| \ge 23$, contrary to $5 \not\mid |N_{\theta}^{\alpha}|$. If $q = 11^2$, then |F(z)| = 66 and $|\Omega| = 2 \cdot 3 \cdot 6151$. Let P be a Sylow 11-subgroup of $C_{c}(z)$. Since 11 $\chi \mid \Omega \mid$, P is a subgroup of N^{γ} for some $\gamma \in \Omega$ and $F(P) = \{\gamma\}$. Hence $\gamma \in F(z)$, so that $z \in N^{\gamma}$, contrary to $C_{N^{\gamma}}(z) \simeq D_{120}$. In the case (ii), we have $(p_1-1)/2 =$ $(\sum_{i=1}^{t_1-1}9^i)/2|t=2t_1$. From this, $9^{t_1-1}\leq 4t_1$, hence $t_1=1$, a contradiction.

Assume t is odd. Then $Y \leq C_{N^{m}}(f_{1}) \simeq PSL(2, p^{m})$ by Lemma 2.6 (viii). As $|V/Y| = p_{1}$ and p_{1} is a prime, $Y \simeq Z_{(p^{m}-\varepsilon_{1})/2}$ and $(q-\varepsilon)/(p^{m}-\varepsilon_{1})=p_{1}$. Hence $\sum_{i=0}^{t-1} (p^{m})^{i}(\varepsilon_{1})^{t-1-i} = p_{1}$ and $(p_{1}-1)/2 = ((\sum_{i=1}^{t-1} (p^{m})^{i}(\varepsilon_{1})^{t-1-i})-1)/2 | t$. In parituclar $2t \geq (p^{m})^{t-1} - (p^{m})^{t-2} = (p^{m}-1) (p^{m})^{t-2} \geq 2(p^{m})^{t-2}$. From this $t=3, m=1, p_{1}=7$ and $q=3^{3}$, so that $N_{\beta}^{m} \simeq Z_{2} \times Z_{2}$, a contradiction.

(3.12) (i) of (3.11) does not occur.

Proof. Let G^{α} be a minimal counterexample to (3.12) and M a minimal normal subgroup of G. By the hypothesis, G has no regular normal subgroup and hence $M_{\alpha} \neq 1$. As M_{α} is a normal subgroup of G_{α} , by (i) of (3.4), M_{α} contains N^{α} . By (3.9), r=1, hence M is doubly transitive on Ω . Therefore G=M and G is a nonabelian simple group.

Since $N_{\beta}^{\sigma} \simeq D_{q-\epsilon}$, k=1 and so $q-\epsilon+4|2((4-\epsilon)(2-\epsilon)+1)(4-\epsilon)(2-\epsilon)$ by (3.10). Hence we have q=7, 9, 11, 19, 27 or 43.

Let x by an element of N_{β}^{α} . If |x| > 2, by Lemma 2.8, $|F(x)| = 1 + |N_{\beta}^{\alpha}| \times 1/|N_{\beta}^{\alpha}| = 2$ and if |x| = 2, similarly we have $|F(x)| = (q-\varepsilon)/2 + 2$. Assume $q \neq 9$ and let d be an involution in $G_{\alpha} - N^{\alpha}$ such that $\langle d \rangle N^{\alpha}$ is isomorphic to PGL

(2,q). We may assume $d \in G_{\alpha\beta}$. Since $\langle d \rangle N^{\alpha}$ is transitive on $\Omega - \{\alpha\}$, by Lemmas 2.3 and 2.6 (vii), (ix), |F(d)| = 2(q-1)(q+1/2)/2(q+1)+1 = (q+1)/2, while |F(x)| = (q+1)/2+2 for $x \in I(N^{\alpha})$. Hence d is an odd permutation, contrary to the simplicity of G. Thus $G_{\alpha} = N^{\alpha}$ if $q \neq 9,27$ and $|G_{\alpha}/N^{\alpha}| = 1$, 3 if q = 27.

If q=9, $|\Omega|=1+|N^{\alpha}$: $N_{\beta}^{\alpha}|=1+9\cdot10/2=2\cdot23$ and $|G_{\alpha}|=2^{i}|PSL(2,9)|=2^{3+i}\cdot3^{2}\cdot5$ with $0\leq i\leq 2$. Let P be a Sylow 23-subgroup of G. Since Aut $(Z_{23})\cong Z_{2}\times Z_{11}, 3 \not\mid N_{G}(P)|$, for otherwise P centralizes a nontrivial 3-element x and so $F(P)\supseteq F(x)$ because |F(x)|=1, contrary to |F(P)|=0. Similarly $5 \not\mid N_{G}(P)|$. Hence $|G: N_{G}(P)|=2^{a}\cdot3^{b}\cdot5$ for some a with $0\leq a\leq 6$. By a Sylow's theorem, $2^{a}\cdot3^{2}\cdot5\equiv -2^{a}\equiv 1 \pmod{23}$, a contradiction.

If q=27, $|\Omega|=1+27\cdot 26/2=2^5\cdot 11$ and $|G_a|=2^2\cdot 3^{3+i}\cdot 7\cdot 13$ with $0\le i\le 1$. Let P a Sylow 11-subgroup of G. Since $P\simeq Z_{11}$ and $\operatorname{Aut}(Z_{11})\simeq Z_2\times Z_5, 3^{1+i}, 7, 13 \not\upharpoonright |N_G(P)|$ by the similar argument as above. Hence $|G:N_G(P)|=2^a\cdot 3^b\cdot 7\cdot 13$ with $0\le a\le 7$ and $3\le b\le 3+i$. By a Sylow's theorem, $2^a\cdot 3^b\cdot 7\cdot 13=2^a\cdot 3^{b-3}\cdot 3^3\cdot 7\cdot 13\equiv 2^a\cdot 3^{b-3}\cdot 4\equiv 1 \pmod{11}$. Hence a=0, b=4. Therefore $N_G(P)$ contains a Sylow 2-subgroup S of G. Let T be a Sylow 2-subgroup of N_{β}^a and g an element such that $T^g \le S$. Then $|T^g \cap C_G(P) \neq 1$ as $N_S(P)/C_S(P) \le Z_2$. Let u be an involution in $T^g \cap C_G(P)$. Then |F(u)| = (27+1)/2 + 2 = 16, while 11||F(u)| because [P, u]=1 and |F(P)|=0, a contradiction.

If q=7, 11, 19 or 43, then $G_{\alpha}=N^{\alpha}$ and $\varepsilon=-1$. Set $\Gamma=\{\{\gamma, \delta\} \mid \gamma, \delta \in \Omega, \gamma \neq \delta\}$. We consider the action of G on Γ . Since G^{Ω} is doubly transitive, G^{Γ} is transitive and $G_{\Gamma}=1$. Let z be an involution of $Z(N^{\alpha}_{\beta})$. There exists an involution t such that $t\in z^{G}$ and $\alpha^{t}=\beta$. Since $G_{\alpha\beta}=N^{\alpha}_{\beta}$ and $F(N^{\alpha}_{\beta})=\{\alpha, \beta\}$ we have $G_{\{\alpha,\beta\}}=\langle t \rangle N^{\alpha}_{\beta}$. By Lemma 2.3, $|F(z^{\Gamma})|=|C_{G}(z)|\times|\langle t \rangle N^{\alpha}_{\beta}\cap z^{G}|/2|N^{\alpha}_{\beta}|=|F(z)|\times|C_{G_{\alpha}}(z)|\times|\langle t \rangle N^{\alpha}_{\beta}\cap z^{G}|/2|N^{\alpha}_{\beta}|=|F(z)|\times|\langle t \rangle N^{\alpha}_{\beta}\cap z^{G}|/2|N^{\alpha}_{\beta}|=|F(z)|(|F(z)|-1)/2+(|\Omega|-|F(z)|)/2, |\langle t \rangle N^{\alpha}_{\beta}\cap z^{G}|=|F(z)|+|\Omega|/F(z)|-2$. In particular $|F(z)| \mid |\Omega|$. Since |F(z)|=(q+1)/2+2=(q+5)/2 and $|\Omega|=1+q(q-1)/2=(q^{2}-q+2)/2$, we have q=11 and $|\langle t \rangle N^{\alpha}_{\beta}\cap z^{G}|=13$. Moreover $|\Omega|=56, |G_{\alpha}|=|PSL(2,11)|=2^{2}\cdot 3\cdot 5\cdot 11$ and $|G|=2^{5}\cdot 3\cdot 5\cdot 7\cdot 11$.

We now argue that $\langle t \rangle N_{\beta}^{\alpha} \simeq D_{24}$. Let R be the Sylow 3-subgroup of N_{β}^{α} . If t centralizes R, R acts on F(t) and so $F(R) \subseteq F(t)$ as |F(t)| = 8 and |F(R)| = 2. Hence $\alpha^{t} = \alpha$, contrary to the choice of t. Therefore t inverts R and $\langle t \rangle N_{\beta}^{\alpha}$ is isomorphic to $Z_{2} \times D_{12}$ or D_{24} . Suppose $\langle t \rangle N_{\beta}^{\alpha} \simeq Z_{2} \times D_{12}$. Then $\langle t \rangle N_{\beta}^{\alpha}$ contains fifteen involutions and so we can take $u \in I(\langle t \rangle N_{\beta}^{\alpha})$ satisfying |F(u)| = 0 and $\langle t \rangle N_{\beta}^{\alpha} = \langle u \rangle \times N_{\beta}^{\alpha}$. As |F(u)| = 0, $|F(u^{T})| = |\Omega|/2 = 28$. By Lemma 2.3, $28 = |C_{G}(u)| \times |\langle u \rangle N_{\beta}^{\alpha} \cap u^{G}|/24$ and hence $|C_{G}(u)| = 2^{4} \cdot 3 \cdot 7$ or $2^{5} \cdot 3 \cdot 7$. Since $\langle u \rangle N_{\beta}^{\alpha} = N_{G}(R)$, we have $|C_{G}(u) \cap N_{G}(R)| = 2 \cdot 7$ or $2^{2} \cdot 7$. By a Sylow's theorem, $|C_{G}(u): C_{G}(u) \cap N_{G}(R)| = 2^{2} \cdot 3 \cdot 7$ or $2^{2} \cdot 3 \cdot 7$ by a Sylow's theorem. Hence $2^{2} \cdot 3 \cdot 7 |N_{G}(Q)|$. Since $\operatorname{Aut}(Z_{7}) \simeq Z_{2} \times Z_{3}$.

 $5 \not\mid |N_{c}(Q)|$ and $11 \not\mid |N_{c}(Q)|$ by the similar argument as in the case q=9. Therefore $|G: N_{c}(Q)| = 2^{a} \cdot 5 \cdot 11$ for some a with $0 \le a \le 3$. Hence $|G: N_{c}(Q)| \equiv 1 \pmod{7}$, a contradiction. Thus $\langle t \rangle N_{\beta}^{a} \simeq D_{24}$.

Let U be a Sylow 2-subgroup of N_{β}^{α} and set $L=N_{G}(U)$. It follows from (3.3) and Lemma 2.6 (iv) that $L \cap N^{\alpha} \simeq A_{4}$, $L^{F(U)} \simeq A_{4}$ and $|L|=2^{4}\cdot 3$. Let $T, \langle x \rangle$ be Sylow 2- and 3-subgroup of L, respectively. Obviously $L \supseteq T$ and $C_{T}(x)=1$. On the other hand $T \supseteq L \cap \langle t \rangle N_{\beta}^{\alpha} \simeq D_{8}$ and so $T' \simeq Z_{2} \times Z_{2}$ because $C_{T}(x)=1$. By Theorem 5.4.5 of [2], T is dihedral or semi-dihedral. Hence $N_{G}(T)/C_{G}(T)$ ($\leq \operatorname{Aut}(T)$) is a 2-group, so that $C_{T}(x)=T$, a contradiction.

(3.13) (ii) of (3.11) does not occur.

Proof. Let G^{α} be a doubly transitive permutation group satisfying (ii) of (3.11). Let x be an involution in N_{β}^{α} with $x \notin Y$. Then $F(x^{F(Y)}) = F(\langle x \rangle Y) = F(N_{\beta}^{\alpha}) = \{\alpha, \beta\}$ by (i) of (3.1) and (3.9). Since $|F(Y)| = 1 + (q-\varepsilon)/|N_{\beta}^{\alpha}| = 1 + k \ge 4$, $x^{F(Y)}$ is an involution. By Lemma 2.5, $1+k=2^2$ and so k=3. By (3.11), $q-\varepsilon+8|2((8-\varepsilon) (4-\varepsilon)\times 3+1) (8-\varepsilon) (4-\varepsilon)$. Hence $q+7|2^7\cdot 3\cdot 7$ if $\varepsilon=1$ and $q+9|2^4\cdot 3^2\cdot 5\cdot 17$ if $\varepsilon=-1$. Since $k=3|q-\varepsilon, 3 \not/ q-\varepsilon+8$. From this $q+7|2^7\cdot 7$ if $\varepsilon=1$ and $q+9|2^4\cdot 5\cdot 17$ if $\varepsilon=-1$. Therefore $q=5^2$, 7^2 , 11^2 , 59 or 71.

Let p_1 be an odd prime such that $p_1 | |\Omega|$ and $p_1 \not/ |G_{\alpha}|$ and let P be a Sylow p_1 -subgroup of G. Clearly P is semi-regular on Ω and so any element in $C_{G_{\alpha}}(P)$ has at least p_1 fixed points. If x is an element of N_{β}^{α} and its order is at least three, |F(x)| = |F(Y)| = 4 by Lemma 2.8. Since $|N_{\beta}^{\alpha}| = (q-\varepsilon)/3$, we have $|\Omega| = 1 + |N^{\alpha}: N_{\beta}^{\alpha}| = 1 + 3q(q+\varepsilon)/2$.

If $q=5^2$, then $|\Omega|=2^4\cdot 61$ and $|G_a|=2^{4+i}\cdot 3\cdot 5^2\cdot 13$ $(0\leq i\leq 2)$. Let P be a Sylow 61-subgroup of G. Then $P\simeq Z_{61}$. As mentioned above, 5, $13 \not\mid |C_G(P)|$ and so 5^2 , $13 \not\mid |N_G(P)|$. Hence $|G: N_G(P)|=2^a\cdot 3^b\cdot 5^{c+1}\cdot 13$, where $0\leq a\leq 10$ and $0\leq b, c\leq 1$. But we can easily verify $|G: N_G(P)| \equiv 1 \pmod{61}$, contrary to a Sylow's theorem.

If $q=7^2$, then $|\Omega|=2^2\cdot 919$ and $|G_{\alpha}|=2^{4+i}\cdot 3\cdot 5^2\cdot 7^2$ $(0\leq i\leq 2)$. Let P be a Sylow 919-subgroup of G. By the similar argument as above, we obtain 5, $7 \not\mid |N_G(P)|$ and so $|G: N_G(P)|=2^a\cdot 3^b\cdot 5^2\cdot 7^2\equiv 2^a\cdot 306$ or $-2^a \pmod{919}$, where $0\leq a\leq 8$ and $0\leq b\leq 1$. Hence $|G: N_G(P)|\equiv 1$, a contradiction.

If $q=11^2$, then $|\Omega|=2^7 \cdot 173 |G_{\alpha}|=2^{3+i} \cdot 3 \cdot 5 \cdot 11^2 \cdot 61 \ (0 \le i \le 2)$. Let *P* be a Sylow 173-subgroup of *G*. Similarly we have 3, 5, 11, $61 \not| |N_G(P)|$ and so $|G: N_G(P)|=2^a \cdot 3 \cdot 5 \cdot 11^2 \cdot 61 \equiv -5 \cdot 2^a \ (\text{mod } 173)$, where $0 \le a \le 12$. Hence $|G:N_G(P)| \equiv 1$, a contradiction.

If q=59, then $|\Omega|=2\cdot17\cdot151$ and $|G_{a}|=2^{2+i}\cdot3\cdot5\cdot29\cdot59$ ($0\le i\le 1$). Let P be a Sylow 17-subgroup of G. Similarly we have $3,5,29,59 \not| |N_{G}(P)|$ and so $|G: N_{G}(P)|=2^{a}\cdot3\cdot5\cdot29\cdot59\cdot151^{b}\equiv10\cdot2^{a}$ or $12\cdot2^{a} \pmod{17}$, where $0\le a\le 4$ and $0\le b\le 1$. From this, we have a contradiction.

If q=71, then $|\Omega|=2^5 \cdot 233$ and $|G_{\sigma}|=2^{3+i} \cdot 3^2 \cdot 5 \cdot 7 \cdot 71$ ($0 \le i \le 1$). Let P be

a Sylow 233-subgroup of G. Since $3,5,7,71 \not\mid |N_G(P)|$, $|G: N_G(P)| = 2^a \cdot 3^2 \cdot 5 \cdot 7 \cdot 71 \equiv -3 \cdot 2^a \pmod{233}$, where $0 \le a \le 9$. Similarly we get a contradiction.

We now consider the case |Y| < 3. By (ii) of (3.5), $N_{\beta}^{\alpha} \simeq Z_2 \times Z_2$ or $N_{\beta}^{\alpha} \simeq D_8$ and $N^{\alpha} \cap N^{\beta} \leq Z_2 \times Z_2$.

(3.14) The case that $N_{\beta}^{a} \simeq Z_{2} \times Z_{2}$ does not occur.

Proof. Set $\Delta = F(N_{\beta}^{\alpha})$. Then $|\Delta| = 3r+1$ and $\Delta = F(N_{\beta}^{\alpha}N_{\alpha}^{\beta})$ by (ii) of (3.1) and Corollary B1 of [7]. Since $|N^{\alpha}|_2 = 4$, we have $q = p^n \equiv 3$, 5 (mod 8) and so nis odd. Hence $|G_{\alpha}/N^{\alpha}|_2 \leq 2$ and $N_{\beta}^{\alpha}/N^{\alpha} \cap N^{\beta} \simeq N_{\beta}^{\alpha}N^{\beta}/N^{\beta} \simeq 1$ or Z_2 by (3.2). Suppose $N_{\beta}^{\alpha}/N^{\alpha} \cap N^{\beta} \simeq Z_2$. Then $N_{\beta}^{\alpha}N_{\alpha}^{\beta}$ is a Sylow 2-subgroup of G_{α} , hence $N_{G}(N_{\beta}^{\alpha}N_{\alpha}^{\beta})^{\Delta}$ is doubly transitive by a Witt's theorem. Since $N_{\beta}^{\alpha}N_{\alpha}^{\beta} \simeq D_{8}$ and $|\Delta|$ is even, $C_{G}(N_{\beta}^{\alpha}N_{\alpha}^{\beta})^{\Delta}$ is also doubly transitive. Let g be an element of $C_{G}(N_{\beta}^{\alpha}N_{\alpha}^{\beta})$ such that $\alpha^{g} = \beta$ and $\beta^{g} = \alpha$. Then $N_{\beta}^{\alpha} = g^{-g}N_{\beta}^{\alpha}g = N_{\alpha}^{\beta}$ and hence $N_{\beta}^{\alpha} = N^{\alpha} \cap N^{\beta}$, a contradiction. Thus $N_{\beta}^{\alpha} = N^{\alpha} \cap N^{\beta} \simeq Z_{2} \times Z_{2}$.

Let z be an involution in N_{β}^{α} and $t \in z^{G}$ an involution such that $\alpha^{t} = \beta$. Set $\Gamma = \{\{\gamma, \delta\} \mid \gamma, \delta \in \Omega, \gamma \neq \delta\}$. We consider the action of the element z on Γ . By the similar argument as in the proof of (3.12), $|F(z)|(|F(z)|-1)/2+(|\Omega|-|F(z)|)/2=|F(z^{\Gamma})|=|C_{G}(z)||z^{G} \cap \langle t \rangle G_{\alpha\beta}||/\langle t \rangle G_{\alpha\beta}||$. Since $N_{\beta}^{\alpha}=N^{\alpha} \cap N^{\beta}$, by Lemma 2.6 (i), $z^{G} \cap G_{\alpha}=z^{G_{\alpha}}$ and so $|C_{G}(z)|=|F(z)| \times |C_{G_{\alpha}}(z)|$. Hence $|G_{\alpha\beta}|$ $(|F(z)|(|F(z)|-1)+|\Omega|-|F(z)|)=|F(z)||C_{G_{\alpha}}(z)||z^{G} \cap \langle t \rangle G_{\alpha\beta}|$, so that $|G_{\alpha\beta}||\Omega|\equiv 0 \pmod{|F(z)|}$. Since $|G_{\alpha\beta}N_{\beta}^{\alpha}|=|G_{\alpha\beta}N^{\alpha}/N^{\beta}||2n$, we have $|G_{\alpha\beta}||8n$. Clearly $|\Omega|=1+q(q-\varepsilon) (q+\varepsilon)r/8$ and by Lemma 2.8 (i), |F(z)|=1+3 $(q-\varepsilon)r/4$. Hence $1+3(q-\varepsilon)r/4|8n(1+q(q-\varepsilon) (q+\varepsilon)r/8)$. Put n=rs. Then $3qr-3\varepsilon r+4|(4rs(8+q(q-\varepsilon) (q+\varepsilon)r)3^{3}r=864 r^{2}s+4s(3pq)(3pq-3\varepsilon r)(3qr+3\varepsilon r)$. Hence $3qr-3\varepsilon r+4|864r^{2}s+4s(3\varepsilon r-4)(3\varepsilon r-4-3\varepsilon r)(3\varepsilon r-4+3\varepsilon r)=8634r^{2}s-32s(3\varepsilon r-4)(3\varepsilon r-2)$. (*)

We argue that r=1. Suppose false. Then $32s(3\varepsilon r-4)(3\varepsilon r-2)>0$ and so $3r(q-\varepsilon)<864r^2s$. Therefore $288n+\varepsilon>q=p^n\geq 3^n$ and so $288n>3^n$. Hence $(n, r, p, \varepsilon)=(5, 5, 3, -1), (3, 3, 3, -1)$ or (3, 3, 5, 1), while none of these satisfy (*). Thus r=1.

Hence $3q-3\varepsilon+4|64(5+9\varepsilon)n$ and $|F(z)|=1+3(q-\varepsilon)/4$, $|\Omega|=1+q(q-\varepsilon)$ $(q+\varepsilon)/8$. If $\varepsilon = -1$, then $3 \cdot 3^n < 3q+7|256n$. Hence n=1 or (n,p)=(5,3), (3,3). Since $3 \cdot 3^5+7 \not/ 256 \cdot 5$ and $3 \cdot 3^3+7|256 \cdot 3$, n=1 and 3q+7|256. From this, q=19 or 83. If $\varepsilon = 1$, then $3 \cdot 5^n < 3q+1|$ 896n and so n=1 or (n,p)=(3,5). Since $3 \cdot 5^3+1 \not/ 896 \cdot 3$, we have n=1 and 3q+1|896. From this, q=5, 37 or 149. As $PSL(2,5) \simeq PSL(2,4)$, q = 5 by [4]. Thus q=19, 37, 83 or 149.

Set $m = |z^{c} \cap \langle t \rangle G_{\alpha\beta}|$. As we mentioned above, $|G_{\alpha\beta}|(|G(z)|(|F(z)|-1) + |\Omega| - |F(z)|) = |F(z)| |C_{G_{\alpha}}(z)|m$. Since $|G_{\alpha}/N^{\alpha}| = 1$ or 2, $|C_{G_{\alpha}}(z)|/|G_{\alpha\beta}| = (q-\varepsilon)/4$. Therefore $m = (2q^{2}+(2\varepsilon+9)q-9\varepsilon)/(3q-3\varepsilon+4)$. It follows that (q,m) = (19, 27/2), (37, 28), (83, 449/8) or (149, 411/4). Since *m* is an integer, we have (q,m) = (37, 28). But $m \leq |\langle t \rangle G_{\alpha\beta}| \leq 16$, a contradiction. Thus (3.14)

holds.

(3.15) The case that $N^{\alpha}_{\beta} \simeq D_8$ and $N^{\alpha} \cap N^{\beta} \leq Z_2 \times Z_2$ does not occur.

Proof. Let Δ , L and K be as defined in (3.6). By (3.6), there exists an element x in L_{α} such that its order is odd and $\langle x^{\Delta} \rangle$ is regular on $\Delta - \{\alpha\}$. Since $(L_{\alpha})' \leq N_{\beta}^{\alpha}$ by (3.6) and $N_{\beta}^{\alpha} \simeq D_{8}$, x stabilizes a normal series $N_{\alpha}^{\beta}N_{\beta}^{\alpha} \geq N_{\beta}^{\alpha} \geq 1$. Hence x centralizes $N_{\alpha}^{\beta}N_{\beta}^{\alpha}$ by Theorem 5.3.2 of [2] and so $x^{-1}N_{\alpha}^{\beta}x = N_{\beta}^{\beta}$. Put $\gamma = \beta^{\gamma}$. If $r \neq 1$, then $\beta \neq \gamma$, so that $N_{\alpha}^{\gamma} = N_{\alpha}^{\beta}$. From this, $N_{\beta}^{\gamma} = N_{\gamma}^{\beta}$. By the doubly transitivity of G, $N_{\beta}^{\alpha} = N_{\alpha}^{\beta}$, hence $N_{\beta}^{\alpha} = N^{\alpha} \cap N^{\beta}$, a contradiction. Therefore r=1 and $\Delta = \{\alpha, \beta\}$.

Set $\langle z \rangle = Z(N_{\beta}^{\omega})$, $\Delta_1 = \alpha^{c_{\mathcal{G}}(z)}$ and let $\{\Delta_1, \Delta_2 \cdots \Delta_k\}$ be the set of $C_{\mathcal{G}}(z)$ -orbits on F(z). Since $L \supseteq N^{\omega} \cap N^{\beta}$ and by (3.2), $N^{\omega} \cap N^{\beta} = 1$, z is contained in $N^{\omega} \cap N^{\beta}$. Hence, by Lemma 2.1, $\beta \in \Delta_1$ and k is at least two. By Lemma 2.8, |F(z)| = $1+(q-\varepsilon)5/|N_{\beta}^{\omega}|=1+5(q-\varepsilon)/8$. Clearly $|C_{N^{\omega}}(z): N_{\beta}^{\omega}|=(q-\varepsilon)/8$ and so $|\Delta_1| \ge$ $1+(q-\varepsilon)/8$. If $\gamma \in F(z) - \Delta_1$, then $C_{N_{\gamma}^{\omega}}(z) \simeq Z_2 \times Z_2$, for otherwise $\langle z \rangle = Z(N_{\gamma}^{\omega}) \le$ $N^{\omega} \cap N^{\gamma}$ and by Lemma 2.1 $\gamma \in \Delta_1$, a contradiction. Hence one of the following holds.

- (i) $k=3 \text{ and } |\Delta_1|=1+(q-\epsilon)/8, |\Delta_2|=|\Delta_3|=(q-\epsilon)/4.$
- (ii) $k=2 \text{ and } |\Delta_1|=1+(q-\varepsilon)/8, |\Delta_2|=(q-\varepsilon)/2.$
- (iii) $k=2 \text{ and } |\Delta_1|=1+3(q-\varepsilon)/8, |\Delta_2|=(q-\varepsilon)/4.$

Let $\gamma \in F(z) - \Delta_1$. Then, $z \in G_\gamma - N^\gamma$ and so $C_N^{\gamma}(z) \simeq D_{q+\epsilon}$ or $PGL(2, \sqrt{q})$ by Lemma 2.6 (vii), (viii), (ix). If $C_N^{\gamma}(z) \simeq D_{q+\epsilon}$, then $(q+\epsilon)/2 | |\Delta_1|$ and so q=7and (iii) occurs. But $(q+\epsilon)/2=3 | |\Delta_2|-1-1=1$, a contradiction. If $C_N^{\gamma}(z) \simeq PGL(2, \sqrt{q})$, then (i) does not occur because $\sqrt{q} \not/ q - \epsilon$. Hence $\sqrt{q} | |\Delta_1|$ and $\sqrt{q} | |\Delta_2| - 1$. From this, q=25 and (iii) occurs. In this case, we have $|\Delta_1|=10$, so that an element of $C_N^{\gamma}(z)$ of order 3 is contained in N_{δ}^{γ} for some $\delta \in \Delta_1$, contrary to $N_{\delta}^{\gamma} \simeq N_{\beta}^{\alpha} \simeq D_{\delta}$.

4. Case (II)

In this section we assume that $N_{\beta}^{a} \simeq PGL(2, p^{m})$, where n=2mk and k is odd. Since n is even, $q=p^{n}\equiv 1 \pmod{4}$. We set $p^{m}\equiv \varepsilon \in \{\pm 1\} \pmod{4}$. In section 7 we shall consider the case that $N_{\beta}^{a} \simeq S_{4}$. Therefore we assume $(p,m) \neq (3,1)$ in this section.

(4.1) The following hold.

(i) $N^{\alpha}_{\beta}/N^{\alpha} \cap N^{\beta} \simeq 1 \text{ or } Z_2 \text{ and } N^{\alpha} \cap N^{\beta} \ge (N^{\alpha}_{\beta})' \simeq PSL(2, p^m).$

(ii) If $(p,m) \neq (5,1)$, there exists a cyclic subgroup Y of $(N_{\beta}^{\alpha})'$ such that $N_{N^{\alpha}}(Y) \simeq D_{g-2}$ and $N_{G}(Y)^{F(Y)}$ is doubly transitive.

Proof. As $N_{\beta}^{\alpha} \ge N^{\alpha} \cap N^{\beta}$, either $N_{\beta}^{\alpha}/N^{\alpha} \cap N^{\beta} \le Z_2$ or $N^{\alpha} \cap N^{\beta} = 1$. If $N^{\alpha} \cap N^{\beta} = 1$, by Lemma 2.2 and 2.6 (vi), $N_{\beta}^{\alpha} \simeq N_{\beta}^{\alpha}/N^{\alpha} \cap N^{\beta} \simeq N_{\beta}^{\alpha}N^{\beta}/N^{\beta} \simeq Z_2 \times Z_n$, a

contradiction. Therefore $N^{\alpha}_{\beta}/N^{\alpha} \cap N^{\beta} \simeq 1$ or Z_2 and $N^{\alpha} \cap N^{\beta} \ge (N^{\alpha}_{\beta})' \simeq PSL(2, p^m)$.

Now we assume that $(p, m) \neq (5, 1)$ and let z be an involution in $(N_{\beta}^{\alpha})'$. Then $C_{N_{\beta}^{\alpha}}(z) \simeq D_{2(p^{m}-\varepsilon)}$ by Lemma 2.6 (vii). Suppose $C_{N_{\beta}^{\alpha}}(z)$ is not a 2-subgroup and put $Y=0(C_{N_{\beta}^{\alpha}}(z))$. Then, if $Y^{g} \leq G_{\alpha\beta}$ for some $g \in G$, we have $Y^{g} \leq N_{\alpha}^{\gamma}$ and $Y^{g} \leq N_{\beta}^{\alpha}$, where $\gamma = \alpha^{g}$ and $\delta = \beta^{g}$. By (i) $Y^{g} \leq N^{\alpha} \cap N^{\beta}$ and so $Y^{g} = Y^{h}$ for some $h \in N^{\alpha} \cap N^{\beta}$. Thus $N_{G}(Y)^{F(Y)}$ is doubly transitive. Assume that $C_{N_{\beta}^{\alpha}}(z)$ is a 2-subgroup and set $C_{N_{\beta}^{\alpha}}(z) = \langle u, v | u^{v} = u^{-1}, v^{2} = 1 \rangle$. We may assume that $v \in (N_{\beta}^{\alpha})'$ and $\langle u^{2}, v \rangle$ is a Sylow 2-subgroup of $(N_{\beta}^{\alpha})'$. Since $p^{m} \neq 3,5$, the order of u^{2} is at least four. On the other hand there is no element of order $|u^{2}|$ in $\langle u, v \rangle - \langle u^{2}, v \rangle$. Hence any element of order $|u^{2}|$ which is contained in N_{β}^{α} is necessarily an element of $N^{\alpha} \cap N^{\beta}$. By the similar argument as above, $N_{G}(Y)^{F(Y)}$ is doubly transitive.

(4.2) Let notations be as in (4.1). Suppose $(p,m) \neq (3,1)$, (5,1) and set $\Delta = F(Y)$ and $X = N_G(Y)$. Then $|\Delta| = rs(p^m + \varepsilon)/2 + 1$, where $s = \sum_{i=0}^{k-1} p^{2mi}$, $C_G(N^{\alpha}) = 1$ and one of the following holds.

- (i) $X^{\Delta} \leq A \Gamma L(1,2^{c})$ for some integer c.
- (ii) $X^{\Delta} \simeq PSL(2, p_1)$ or $PGL(2, p_1)$, r=1, k=1 and $2p_1 = p^m + \varepsilon$.

Proof. By Lemma 2.8 (ii), $|\Delta| = 1 + |N^{\alpha} \cap X|r/|N_{\beta}^{\alpha} \cap X| = 1 + (p^{2mk} - 1)$ $r/2(p^{m} - \varepsilon) = rs(p^{m} + \varepsilon)/2 + 1$. By (4.1) and Lemma 2.9, we have (i), (ii) or $X^{\Delta} = R(3)$.

Assume that $X^{\Delta} = R(3)$. Then $rs(p^{m} + \varepsilon)/2 + 1 = 28$, hence k = 1 and $r(p^{m} + \varepsilon)/2 = 27$. Since r is odd and $r \mid 2m = n$, we have r = m = 1 and $q = 53^{2}$. But a Sylow 3-subgroup of X_{α} is cyclic because $N^{\alpha} \cap X \simeq D_{q-\varepsilon}$ and $X_{\alpha}/X \cap N^{\alpha} \simeq X_{\alpha}N^{\alpha}/N^{\alpha} \le Z_{2} \times Z_{2}$, a contradiction. Thus (i) or (ii) holds.

(4.3) (i) of (4.2) does not occur.

Proof. Let notations be as in (4.2). Suppose $X^{\Delta} \leq A \Gamma L(1, 2^{c})$ and put $W = C_{N_{\beta}^{\alpha}}(Y)$. Then $Y \leq W \simeq Z_{p^{m}-e}$. Since $C_{N^{\alpha}}(Y)$ is cyclic, W is a characteristic subgroup of $C_{N^{\alpha}}(Y)$ and so W is a normal subgroup of X_{α} . Hence $W \leq X_{\Delta}$ and $(X \cap N_{\beta}^{\alpha})^{\Delta} \simeq 1$ or Z_{2} . By Lemmas 2.4 and 2.6, $F(X \cap N_{\beta}^{\alpha}) = 1 + |X \cap N_{\beta}^{\alpha}| |N_{\beta}^{\alpha}: X \cap N_{\beta}^{\alpha}| \times r/|N_{\beta}^{\alpha}| = 1+r$. Since $1+r < |\Delta|$, $(X \cap N_{\beta}^{\alpha})^{\Delta} \simeq Z_{2}$ and hence $(1+r)^{2} = rs(p^{m}+\varepsilon)/2 + 1$ by Lemma 2.5. From this, $r = s(p^{m}+\varepsilon)/2 - 2|mk$ and so $p^{2m(k-1)} + mk \leq 2$. Hence m = k = r = 1 and $q = 7^{2}$.

Let R be a Sylow 3-subgroup of N_{β}^{α} . Since $N_{\beta}^{\alpha} \simeq PGL(2,7)$, we have $R \simeq Z_3$. By Lemmas 2.4 and 2.6, $|F(R)| = 1 + (7^2 - 1) |N_{\beta}^{\alpha}: N_{N_{\beta}}^{\alpha}(R)| / |N_{\beta}^{\alpha}| = 4$. Hence $N_{G}(R)^{F(R)} \simeq A_4$ or S_4 . But is a Sylow 3-subgroup of $N_{G\alpha}(R)$ because $N^{\alpha} \simeq PSL(2,7^2)$, contrary to $N_{G\alpha}(R)^{F(R)} \simeq A_3$ or S_3 .

(4.4) (ii) of (4.2) does not occur.

Proof. Let notations be as in (4.2). Suppose $X^{\Delta} \supseteq PSL(2, p_1)$. By the similar argument as in (4.3), $C_{N\beta}^{\alpha}(Y) \le X_{\Delta}$ and so $C_{N\alpha}(Y)^{\Delta} \simeq Z_{p_1}$, and $N_{N\alpha}(Y)^{\Delta} \simeq D_{2p_1}$. Hence $|(X_{\alpha})^{\Delta}| |2p_1 \cdot 2n$. Since $X^{\Delta} \supseteq PSL(2, p_1), p_1(p_1-1)/2| |(X_{\alpha})^{\Delta}|$, hence $p_1-1|8n$. As k=1 and $2p_1=p^m+\varepsilon$, we have $p^m+\varepsilon-2|$ 32m. From this, $(p,m,p_1)=(11,1,5), (3,2,5)$ or (3,3,13).

Let R be a cyclic subgroup of N_{β}^{α} such that $R \simeq Z_{(p^{m}+\epsilon)/2}$. By Lemma 2.6, $N_{G}(R)^{F(R)}$ is doubly transitive and by Lemma 2.8 (ii), $|F(R)| = 1 + |N_{N^{\alpha}}(R)| = 1 + |N_{N^{\alpha}}(R)| = 1 + (p^{2m}-1)/2(p^{m}+\epsilon) = (p^{m}-\epsilon)/2 + 1$.

If $(p,m,p_1)=(11,1,5)$, |F(R)|=7 and so by [9] $|N_G(R)^{F(R)}|=42$ and $N_{G,\sigma}(R)^{F(R)}\simeq Z_6$. Since $|N_{N^{\sigma}}(R): N_{N^{\sigma}}(R)|=6$, $N_{N^{\sigma}}(R)^{F(R)}=N_{G,\sigma}(R)^{F(R)}$. Hence $N_{N^{\sigma}}(R)/K\simeq Z_6$, where $K=(N_{N^{\sigma}}(R))_{F(R)}$. But $N_{N^{\sigma}}(R)/(N_{N^{\sigma}}(R))'\simeq Z_2\times Z_2$, a contradiction.

If $(p,m,p_1)=(3,2,5)$, |F(R)|=5 and so by [9], $|N_G(R)^{F(R)}|=20$ and $N_{G,\sigma}(R)^{F(R)}\simeq Z_4$. Since $|N_{N^{\sigma}}(R):N_{N^{\sigma}}(R)|=4$, $N_{N^{\sigma}}(R)^{\Delta}\simeq Z_4$, contrary to $N_{N^{\sigma}}(R)$ $/(N_{N_{\sigma}}(R))'\simeq Z_2 \times Z_2$.

If $(p, m, p_1) = (3, 3, 13)$, |F(R)| = 15. By [9], $N_{G_a}(R)^{F(R)}$ is not solvable, a contradiction.

(4.5) $p^m \neq 5$.

Proof. Assume that $p^m = 5$. Then n = 2k with k odd and $N^{\alpha}_{\beta} \simeq PGL(2,5) \simeq S_5$. First we argue that $N^{\alpha}_{\beta} = N^{\alpha} \cap N^{\beta}$. Suppose false. Then $C_G(N^{\alpha}) = 1$ by Lemma 2.2, and $N^{\alpha}_{\beta}/N^{\alpha} \cap N^{\beta} \simeq Z_2$ by (4.1). Since $N^{\alpha}_{\alpha}N^{\alpha}_{\beta}/N^{\alpha}_{\beta} \simeq N^{\beta}_{\alpha}/N^{\alpha} \cap N^{\beta} \simeq Z_2$ and the outer automorphism group of S_5 is trivial, we have $Z(N^{\alpha}_{\beta}N^{\alpha}_{\alpha}) \simeq Z_2$. Let w_1 be the involution of $Z(N^{\alpha}_{\beta}N^{\alpha}_{\beta})$ and let $w \in I(N^{\beta}_{\alpha}) - I(N^{\alpha})$. Since $C_{N^{\alpha}}(w_1) \ge N^{\alpha}_{\beta}$, by Lemma 2.6 (viii) and (ix), w acts on N^{α} as a field automorphism of order 2 and $C_{N^{\alpha}}(w) \simeq PGL(2,5^k)$. By Lemma 2.8 $|F(w)| = 1 + r(q - \varepsilon) |I(N^{\alpha}_{\beta})| / |N^{\alpha}_{\beta}| = 1 + 5r(5^{2k} - 1)/24$. Let P be a Sylow 5-subgroup of $C_{N^{\alpha}}(w)$. Then $|P| = 5^k$ and $|\gamma^{P}| = 5^{k-1}$ or 5^k for each $\gamma \in \Omega - \{\alpha\}$. Since P acts on $F(w) - \{\alpha\}$, we have $5^{k-1}|5r(5^{2k}-1)/24$, so that k=1 and |F(w)| = 6 as r|k. Hence $C_{N^{\alpha}}(w)^{F(w)} \simeq S_5$ and so $C_G(w)^{F(w)} \simeq S_6$. But clearly $w \in N^{\alpha} \cap N^{\beta}$ by Lemma 2.1, a contradiction. Thus $N^{\alpha}_{\beta} = N^{\alpha} \cap N^{\beta}$.

Let V be a cyclic subgroup of N_{β}^{α} of order 4. Since $N_{\beta}^{\alpha} = N^{\beta} \cap N^{\beta} \simeq S_{5}$, $N_{G}(V)^{F(V)}$ is doubly transitive and by Lemma 2.8, $|F(V)| = 1 + |N_{N^{\alpha}}(V)|r/|$ $|N_{N^{\alpha}_{\beta}}(V)| = 1 + (5^{2k} - 1)r/8 = 3rs + 1$, where $s = \sum_{i=0}^{k-1} 25^{i}$. By Lemma 2.9, $C_{G}(N^{\alpha}) = 1$ and (a) $N_{G}(V)^{F(V)} \leq A\Gamma L(1, 2^{c})$ or (b) $N_{G}(V)^{F(V)} = R(3)$.

Put $P=N_{N_{\beta}^{\alpha}}(V)$. Then $P\simeq D_{8}$, $|F(P)|=1+|N_{N^{\alpha}}(P)||N_{\beta}^{\alpha}:N_{N_{\beta}^{\alpha}}(P)|r/|N_{\beta}^{\alpha}|$ =r+1 and $P^{F(V)}\simeq Z_{2}$. If (b) occurs, k=1 and r=9, hence |F(P)|=10, a contradiction. Therefore (a) holds.

By Lemma 2.5, $(r+1)^2 = 3rs+1$ and so r=3s-2|k. Hence k=r=1 and $G_{\alpha}/N^{\alpha} \le Z_2 \times Z_2$. Let z be an involution in N_{β}^{α} . Then $|F(z)| = 1+24\cdot 25/120=6$

by Lemma 2.8 and $|\Omega|=1+|N^{\alpha}: N^{\alpha}_{\beta}|=66$ as r=1. By the similar argument as in the proof of (3.12), $|F(z)|(|F(z)|-1)/2+(|\Omega|-|F(z)|)/2=|C_{G}(z)||z^{c}\cap \langle t\rangle G_{\alpha\beta}|/|\langle t\rangle G_{\alpha\beta}|$, where t is an involution such that $\alpha^{t}=\beta$. Hence $|z^{c}\cap\langle t\rangle G_{\alpha\beta}|$ $=15|G_{\alpha\beta}|/|C_{G_{\alpha}}(z)|$. Set $H=\langle t\rangle G_{\alpha\beta}$ and let R be a Sylow 3-subgroup of N^{α}_{β} . By Lemma 2.8, $|F(R)|=1+24\cdot10/120=3$. Set $F(R)=\{\alpha,\beta,\gamma\}$. On the other hand, as $N^{\alpha}_{\beta}\cong S_{5}$ and $\operatorname{Out}(S_{5})=1$, we have $H=Z(H)\times N^{\alpha}_{\beta}$ and |Z(H)|=2, 4 or $H=C_{H}(N^{\alpha}_{\beta})\times N^{\alpha}_{\beta}$ and $C_{H}(N^{\alpha}_{\beta})\cong D_{8}$. In the latter case $G_{\alpha\beta}=Z(G_{\alpha\beta})\times N^{\alpha}_{\beta}$ and $Z(G_{\alpha\beta})\cong Z_{2}\times Z_{2}$, contrary to Lemma 2.6 (ix). In the former case, we have |Z(H)|=2. For otherwise $Z(H)\leq G_{\gamma}$ and $Z(H)\cap z^{c}\pm\phi$ and so letting $u\in Z(H)$ $\cap z^{c}$, we have |R|=3||F(u)|-1=5, a contradiction. Therefore $Z(H)\cong Z_{2}$ and so $|z^{c}\cap H|\leq 25+25=50$, while $|z^{c}\cap H|=15|G_{\alpha\beta}|/|C_{G_{\alpha}}(z)|=15\cdot120/24=75$, a contradiction.

5. Case (III)

In this section we assume that $N^{a}_{\beta} \simeq PSL(2, p^{m})$, where n=mk and k is odd. Set $p^{m} \equiv \varepsilon \in \{\pm 1\} \pmod{4}$. Then $q \equiv \varepsilon \pmod{4}$ as k is odd. In section 6 we shall consider the case that $N^{a}_{\beta} \simeq A_{4}$, so we assume $(p,m) \neq (3,1)$ in this section. From this N^{a}_{β} is a nonabelian simple group and so $N^{a}_{\beta} = N^{a} \cap N^{\beta}$ or $N^{a} \cap N^{\beta} = 1$. If $N^{a} \cap N^{\beta} = 1$, then $C_{c}(N^{a}) = 1$ by Lemma 2.2 and $N^{a}_{\beta} \simeq N^{a}_{\beta}/N^{a} \cap N^{\beta} \simeq N^{a}_{\beta}N^{\beta}/N^{\beta}$ $\simeq Z_{2} \times Z_{n}$, a contradiction. Hence $N^{a}_{\beta} = N^{a} \cap N^{\beta}$.

Let z be an involution of N_{β}^{α} . Suppose $z^{g} \in G_{\alpha\beta}$ for some $g \in G$ and set $\gamma = \alpha^{g}$, $\delta = \beta^{g}$. Then $z^{g} \in N_{\delta}^{\gamma} \cap G_{\alpha\beta} \leq N_{\alpha}^{\gamma} \cap N_{\beta}^{\delta} \leq N^{\alpha} \cap N^{\beta}$ and so $z^{g} \in z^{N_{\beta}^{\alpha}}$. Hence $C_{G}(z)^{F(z)}$ is doubly transitive and by Lemma 2.8 (i), $|F(z)| = (q-\varepsilon)r/(p^{m}-\varepsilon)+1$. In particular |F(z)| > 3r+1 as $(p^{n}-\varepsilon)/(p^{m}-\varepsilon) \geq p^{2m}+\varepsilon p^{m}+1>3$.

By Lemma 2.9, $C_G(N^{\alpha}) = 1$ and one of the following holds.

- (a) $C_{\mathcal{G}}(z)^{F(z)} \leq A\Gamma L(1,2^{c}).$
- (b) $C_G(z)^{F(z)} \ge PSL(2, p_1) \ (p_1 \ge 5), \ r = 1 \text{ and } |C_N^{\alpha}(z): C_N^{\alpha}(z)| = p_1.$
- (c) $C_G(z)^{F(z)} = R(3)$.

Let Y be a cyclic subgroup of $C_{N_{\beta}^{\alpha}}(z) \simeq D_{p^{m}-\epsilon}$ of index 2. Since $C_{G_{\alpha}}(z) \ge Y$, $z \in Y$ and $C_{G}(z)^{F(z)}$ is doubly transitive, we have F(Y) = F(z). By the similar argument as in (3.1), $N^{\alpha} \cap N(C_{N_{\beta}^{\alpha}}(z)) = C_{N_{\beta}^{\alpha}}(z)$ or $N^{\alpha} \cap N(C_{N_{\beta}^{\alpha}}(z)) \simeq A_{4}$. Hence by Lemmas 2.3 and 2.4 $|F(C_{N_{\beta}^{\alpha}}(z))| = 1 + |C_{N_{\beta}^{\alpha}}(z)| |N_{\beta}^{\alpha}$: $C_{N_{\beta}^{\alpha}}(z)|r/|N_{\beta}^{\alpha}|$ or $1 + |A_{4}| |N_{\beta}^{\alpha}$: $C_{N_{\beta}^{\alpha}}(z)|r/|N_{\beta}^{\alpha}|$. Therefore $|F(C_{N_{\beta}^{\alpha}}(z))| = r+1$ or 3r+1. From this $C_{N_{\beta}^{\alpha}}(z)^{F(z)} \simeq Z_{2}$.

In the case (a), $(r+1)^2 = 1 + (p^n - \varepsilon)r/(p^m - \varepsilon)$ by Lemma 2.5 and hence $r = (p^n - \varepsilon)/(p^m - \varepsilon) - 2|mk$. Since $(p^n - \varepsilon)/(p^m - \varepsilon) \ge ((p^m)^k + 1)/(p^m + 1) = \sum_{i=0}^{k-1} (-p^m)^i$ and $k \ge 3$, we have $p^{m(k-1)}(p^{2m} - p^m + 1) \le mk$, hence $((p^m)^{k-3}/k)(m/(p^{2m} - p^m + 1)) < 1$. Thus k = 3, m = 1 and p = 3, cotrary to $(p, m) \neq (3, 1)$.

In the case (b), r=1, $p_1=(p^n-\varepsilon)/(p^m-\varepsilon)$, $p_1(p_1-1)/2|s$ and $s|4mkp_1$, where s is the order of $C_{Ga}(z)^{F(z)}$. Hence $p_1-1|8mk$. Since $p_1-1=(p^n-\varepsilon)/(p^m-\varepsilon)-1$

 $\geq (p^{n}+1)/(p^{m}+1)-1=\sum_{i=0}^{k-1}(-p^{m})^{i}\geq p^{m(k-2)}(p^{m}-1)$, we have $p^{m(k-2)}/2k\leq 4m/(p^{m}-1)\leq 1$ because $p^{m}\neq 3$. Hence k=3 and $p^{m}=5$, so that $p_{1}-1=30 \neq 8mk=24$, a contradiction.

In the case (c), r+1=4 and $1+(p^{n}-\varepsilon)r/(p^{m}-\varepsilon)=28$ and so r=3 and $(p^{n}-\varepsilon)/(p^{m}-\varepsilon)=9$. Hence $9 \ge (p^{mk}+1)/(p^{m}+1) \ge p^{2m}-p^{m}+1$, so that $p^{m}=3$, a contradiction.

6. Case (IV)

In this section we assume that $N^{\sigma}_{\beta} \simeq A_4$ and $q=3,5 \pmod{8}$. If $N^{\sigma} \cap N^{\beta}=1$, by Lemma 2.2, $C_G(N^{\sigma})=1$ and so $N^{\sigma}_{\beta}/N^{\sigma} \cap N^{\beta} \simeq N^{\sigma}_{\beta}N^{\beta}/N^{\beta} \le Z_2 \times Z_n$. Hence $N^{\sigma}_{\beta}/N^{\sigma} \cap N^{\beta} \simeq 1$ or Z_3 , so that $z^G \cap G_{\alpha\beta} = z^G \cap N^{\sigma}_{\beta} = z^{N^{\sigma}_{\beta}}$ for an involution $z \in N^{\sigma}_{\beta}$. Therefore $C_G(z)^{F(z)}$ is doubly transitive. By Lemma 2.9, $C_G(N^{\sigma})=1$ and one of the following holds.

- (a) $C_c(z)^{F(z)} \leq A\Gamma L(1,2^c)$ for some interger $c \geq 1$.
- (b) $C_{\mathcal{G}}(z)^{F(z)} \ge PSL(2, p_1) \ (p_1 \ge 5), \ r = 1 \text{ and } |C_{N^{a}}(z): C_{N^{a}}(z)| = p_1.$
- (c) $C_G(z)^{F(z)} = R(3)$.

Let T be a Sylow 2-subgroup of N_{β}^{*} . Then $z \in T$ and by Lemmas 2.3 and 2.4, $|F(T)| = 1 + |N_{N^{\alpha}}(T)|r/|N_{\beta}^{*}| = r+1$. By Lemma 2.8 (i), $|F(z)| = (q-\varepsilon)r/4+1$. Hence $T^{F(z)} \simeq Z_2$ if $q \neq 5$. If q = 5, as $PSL(2,5) \simeq PSL(2,4)$, (ii) of our theorem holds by [4]. Therefore we may assume $q \neq 5$.

In the case (a), $(r+1)^2 = 1 + (q-\varepsilon)r/4$ by Lemma 2.5. Hence $r = (q-\varepsilon-8)/4$ and r|n, so that q=11 or 13 and r=1. Let R be a Sylow 3-subgroup of $G_{\alpha\beta}$. Then $R \simeq Z_3$ and $R \le N_{\beta}^{\alpha}$ because $G_{\alpha\beta}/N_{\beta}^{\alpha} \simeq G_{\alpha\beta}N^{\alpha}/N^{\alpha} \simeq 1$ or Z_2 and $N_{\beta}^{\alpha} \simeq A_4$. By Lemma 2.8 (ii), |F(R)| = 1 + 12/3 = 5 and $N_G(R)^{F(R)}$ is doubly transitive. Since $N_{G_{\alpha\beta}}(R) \simeq D_{12}$ or D_{24} and |F(R)| = 5, we have $|N_G(R)|_5 = 5$. Let S be a Sylow 5-subgroup of $N_G(R)$. Then [S, R] = 1 as $N_G(R)/C_G(R) \le Z_2$. Since $5 \not |G_{\alpha\beta}|, |F(S)| = 0$ or 1. If $|F(S)| = 1, F(S) \subseteq F(R)$ and so 5||F(R)| - 1 = 4, a contradiction. Therefore S is semi-regular on Ω . But $|\Omega| = 1 + |N^{\alpha}: N_{\beta}^{\alpha}| = 56$ or 92. This is a contradiction.

In the case (b), $p_1(p_1-1)/2 | s$ and $s |2n(q-\varepsilon)/2=4np_1$, where s is the order of $C_{G_{\alpha}}(z)^{F(z)}$. Hence $p_1-1|8n$. Since $p_1=(q-\varepsilon)/4$, $p^n-\varepsilon-4|32n$ and so we have q=11,13,19,27 or 37. If $q \neq 27$, by Lemma 2.6, $C_{G_{\alpha}}(z) \simeq D_{q-\varepsilon}$ or $D_{2(q-\varepsilon)}$ and so $C_{G_{\alpha\beta}}(z)^{F(z)} \simeq Z_2$. Hence $(p_1-1)/2=2$. From this q=19. Let R be a Sylow 3subgroup of $G_{\alpha\beta}$. By the simular argument as in the case (a), $N_G(R)^{F(R)}$ is doubly transitive and |F(R)|=1+18/3=7. Hence 7||G|. On the other hand $|G|=|\Omega||G_{\alpha}|=(1+|N^{\alpha}:N_{\beta}^{\alpha}|)|G_{\alpha}|=(1+18\cdot19\cdot20/2\cdot12)\cdot2^{i}\cdot18\cdot19\cdot20/2=$ $2^{3+i}\cdot3^{2}\cdot5\cdot11\cdot13\cdot19$ with $0\leq i\leq 1$, a contradiction. If q=27, then $|C_G(z)|_2=$ $|F(z)|_2 \times |C_{G_{\alpha}}(z)|_2=8 \times |G_{\alpha}|_2$, while $|\Omega|=1+|N^{\alpha}:N_{\beta}^{\alpha}|=1+26\cdot27\cdot28/2\cdot12=$ $820=2^{2}\cdot5\cdot41$ and so $|G|_2=4|G_{\alpha}|_2$. Therefore $|C_G(z)| \neq |G|$, a contradiction.

In the case (c), r+1=4 and $1+(q-\varepsilon)r/4=28$. Hence r=3 and q=37,

contrary to $r \mid n$.

7. Case (V)

In this section we assume that $N_{\beta}^{\alpha} \simeq S_4$ and $q \equiv 7,9 \pmod{16}$. We note that $4 \not\mid n$.

First we argue that $N_{\beta}^{a} = N^{a} \cap N^{\beta}$. Suppose $N_{\beta}^{a} \pm N^{a} \cap N^{\beta}$. Then $C_{c}(N^{a})$ =1 by Lemma 2.2. Since $N_{\beta}^{a}/N^{a} \cap N^{\beta} \simeq N_{\beta}^{a}N^{\beta}/N^{a} \leq Z_{2} \times Z_{n}$, we have $N^{a} \cap N^{\beta} \simeq A_{4}$ and $N_{\beta}^{a}/N^{a} \cap N^{\beta} \simeq Z_{2}$, so that $N_{\alpha}^{a}N_{\beta}^{a}/N_{\beta}^{a} \simeq N_{\alpha}^{a}/N^{a} \cap N^{\beta} \simeq Z_{2}$. Hence as $\operatorname{Out}(S_{4})=1$, $Z(N_{\beta}^{a}N_{\alpha}^{b})\simeq Z_{2}$. Set $\langle t_{1}\rangle = Z(N_{\beta}^{a}N_{\alpha}^{b})$ and let $t \in I(N_{\alpha}^{b})-I(N^{a})$. Since $C_{N^{a}}(t_{1})\geq N_{\beta}^{a}\simeq S_{4}$ and $\langle t\rangle N^{a} = N_{\alpha}^{\beta}N^{a}$, by Lemma 2.6, we have $C_{N^{a}}(t)\simeq PGL(2,\sqrt{q})$ and $|F(t)|=1+3(q-\varepsilon)r/8$ by Lemma 2.8.

Let P be a Sylow p-subgroup of $C_{N^{ab}}(t)$. Then $|P| = \sqrt{q}$. If $p \neq 3$, P acts semi-regularly on $F(t) - \{\alpha\}$ and so $\sqrt{q} \mid 3(q-\varepsilon)r/8$. Therefore $\sqrt{q} \mid r$ and so $5^n \leq n^2$ as $p \geq 5$ and $r \mid n$. But obviously $5^n > n^2$ for any positive integer n. This is a contradiction. If p=3, $|P: P_{\gamma}| = \sqrt{q}/3$ or \sqrt{q} for each $\gamma \in \Omega - \{\alpha\}$. Hence $\sqrt{q}/3 \mid 3(q-\varepsilon)r/8$ and so $q \mid 81r^2$. In particular, $3^n = q \mid 81n^2$. From this, $n \leq 7$. Since $q=3^n \equiv 7$ or 9 (mod 16), we have $q=3^2$ or 3^6 . If $q=3^2$, $|\Omega|=1+$ $|N^{a}: N^{a}_{\beta}|=1+8\cdot9\cdot10/2\cdot24=16$, a contradiction by [9] If $q=3^6$, |F(t)|=1+273r and $|F(t)-\{\alpha\}| \geq |C_{N^{ab}}(t): C_{N^{ab}_{\beta}}(t)| \geq |PGL(2,3^3)|/8=2457$ contrary to $r \mid 3$. Thus $N^{a}_{\beta} = N^{a} \cap N^{\beta}$.

Let V be a cyclic subgroup of N^{α}_{β} of order 4 and let U be a Sylow 2- subgroup of N^{α}_{β} containing V. Then $U=N_{N^{\alpha}_{\beta}}(V)$, $|F(V)|=1+(q-\varepsilon)r/8$ by Lemma 2.8 and $|F(U)|=1+8\cdot 3r/24=r+1$ by Lemmas 2.3 and 2.4. If $q \neq 7,9$, then |F(U)| < |F(V)| and hence $U^{F(V)} \simeq Z_2$. Suppose q=7 or 9. Then r=1 as r|n. Hence $|\Omega|=1+|N^{\alpha}:N^{\alpha}_{\beta}|=8$ or 16. By [10], we have a contradiction. Therefore $U^{F(V)} \simeq Z_2$.

Suppose $V^{g} \leq G_{\alpha\beta}$ for some $g \in G$ and set $\gamma = \alpha^{g}$. Then $V^{g} \leq g^{-1}N^{\alpha}g \cap G_{\alpha\beta}$ $\leq N^{\gamma} \cap G_{\alpha\beta} \leq N^{\alpha}_{\alpha} \cap N^{\gamma}_{\beta} \leq N^{\alpha} \cap N^{\beta} = N^{\alpha}_{\beta}$. As $N^{\alpha}_{\beta} \simeq S_{4}$, $V^{g} = V^{h}$ for some $h \in N^{\alpha}_{\beta}$. Hence $N_{G}(V)^{F(V)}$ is doubly transitive. By Lemma 2.9. $C_{G}(N^{\alpha}) = 1$ and one of the following holds.

- (a) $N_{\mathcal{G}}(V)^{F(V)} \leq A \Gamma L(1, 2^{c}).$
- (b) $N_G(V)^{F(V)} \ge PSL(2, p_1), p_1 = (q \varepsilon)/8 \ge 5.$
- (c) $N_G(V)^{F(V)} = R(3)$.

In the case (a), $(r+1)^2 = 1 + (q-\varepsilon)r/8$ by Lemma 2.5 and so $r = (q-\varepsilon-16)/8$ and r|n. From this q=23 or 25 and r=1. Since $|\Omega| = 1 + |N^{\alpha}: N^{\alpha}_{\beta}| = 2 \cdot 127$ or 2.163, we have $|G|_2 = 2|G_{\alpha}|_2$ while $|N_G(V)|_2 = |F(V)|_2|N_{G_{\alpha}}(V)|_2 = 4|G_{\alpha}|_2$, contrary to $|N_G(V)| ||G|$.

In the case (b), $p_1(p_1-1)/2 | s$ and $s |2n(q-\varepsilon)/4 = 4np_1$, where s is the order of $N_{G_{\alpha}}(V)^{F(V)}$. Hence $p_1-1 | 8n$. From this, $p^n - \varepsilon - 8 | 64n$ and so q=23, 41, 71 or 73. Since p_1 is a prime and $p_1 = (q-\varepsilon)/8 \ge 5$, q = 23, 71, 73. Therefore q=41and $|\Omega| = 1 + |N^{\alpha}| \cdot N^{\alpha}_{\beta}| = 1 + 40 \cdot 41 \cdot 42/2 \cdot 24 = 2^2 \cdot 359$, so that $|G|_2 = 4 |G_{\alpha}|_2$.

Since $N_{\beta}^{\alpha} = N^{\alpha} \cap N^{\beta}$, $C_{G}(z)^{F(z)}$ is transitive by Lemma 2.1. On the other hand $|F(z)| = 1 + 40 \cdot 9/24 = 16$ by Lemma 2.8 (i) and so $|C_{G}(z)|_{2} = 16|C_{G_{\alpha}}(z)|_{2} = 16|G_{\alpha}|_{2}$, contrary to $|C_{G}(z)| ||G|$.

In the case (c), r+1=4 and $1+(q-\varepsilon)r/8=28$. Hence r=3 and q=71 or 73, contrary to r|n.

8. Case (VI)

In this section we assume that $N_{\beta}^{\omega} \simeq A_5$ and $q \equiv 3,5 \pmod{8}$. In particular, n is odd. If $N_{\beta}^{\omega} \neq N^{\omega} \cap N^{\beta}$, then $N^{\omega} \cap N^{\beta} = 1$, $C_{G}(N^{\omega}) = 1$ and so $N_{\beta}^{\omega} \simeq N_{\beta}^{\omega} N^{\beta}/N^{\beta}$ $\leq \operatorname{Out}(N^{\beta}) \simeq Z_{2} \times Z_{n}$, a contradiction. Hence $N_{\beta}^{\omega} = N^{\omega} \cap N^{\beta}$. Let z be an involution in N_{β}^{ω} and T a Sylow 2-subgroup of N_{β}^{ω} contraining z. Then, by Lemma 2.8 $|F(z)| = 1 + (q - \varepsilon) 15r/60 = 1 + (q - \varepsilon)r/4$ and by Lemmas 2.3 and 2.4 $|F(T)| = 1 + 12 \cdot 5r/60 = 1 + r$. Since $N_{\beta}^{\omega} = N^{\omega} \cap N^{\beta}$, $z^{c} \cap G_{\omega\beta} = z^{c} \cap N_{\beta}^{\omega} = z^{N_{\beta}^{\omega}}$ and so $C_{G}(z)^{F(z)}$ is doubly transitive. By Lemma 2.9, $C_{G}(N^{\omega}) = 1$ and one of the following holds.

- (a) $C_G(z)^{F(z)} \leq A\Gamma L(1,2^c).$
- (b) $C_G(z)^{F(z)} \ge PSL(2, p_1), p_1 = (q \varepsilon)/4 \ge 5.$
- (c) $C_G(z)^{F(z)} = R(3)$.

In the case (a), by Lemma 2.5, $(q-\varepsilon)/4=1$ or $(r+1)^2/=1+(q-\varepsilon)r/4$. Hence q=5 or $r=(q-\varepsilon-8)/4|n$. If q=5, then $N^{\alpha}_{\beta}=N^{\alpha}$, a contradiction. Therefore $p^n-\varepsilon-8|4n$ and so n=1 and q=11 or 13. If q=13, we have $5 \not\times |G_{\alpha}|$, a contradiction. Hence q=11 and $|\Omega|=1+|N^{\alpha}:N^{\alpha}_{\beta}|=1+10\cdot11\cdot12/2\cdot60=12$. By [9], $G^{\alpha} \simeq M_{11}$, $|\Omega|=12$ and so (iii) of our theorem holds.

In the case (b), we have $p_1(p_1-1)/2 | s$ and $s |2n(q-\varepsilon)/2 = 4np_1$, where s is the order of $C_{G_{\alpha}}(z)^{F(z)}$. Hence $p_1-1|8n$ and so $p^n - \varepsilon - 4|32n$. From this q=19, 27 or 37. Since $5||G_{\alpha}|, q \neq 27, 37$. Hence q=19 and $|\Omega|=1+|N^{\alpha}:N_{\beta}^{\alpha}|=1+18\cdot19\cdot20/2\cdot60=2\cdot29$. Since $G_{\alpha} \simeq PSL(2,19)$ or PGL(2,19), $|G|=|\Omega||G_{\alpha}|=2\cdot29\cdot2^i\cdot18\cdot19\cdot20/2=2^{3+i}\cdot3^2\cdot5\cdot19\cdot29$ with $0 \le i \le 1$. Let P be a Sylow 29-subgroup of G. Then P is semi-regular on Ω and 3, 5, 19 $\not\mid |N_G(P)|$ because $N_G(P)/C_G(P) \le Z_4 \times Z_7$. Hence $|G: N_G(P)| = 2^j \cdot 3^2 \cdot 5 \cdot 19$ with $0 \le j \le 4$, while $2^j \cdot 3^2 \cdot 5 \cdot 19 \equiv 1 \pmod{29}$ for any j with $0 \le j \le 4$, contrary to a Sylow's theorem.

If $C_G(z)^{F(z)} = R(3)$, r+1=4 and $1+(q-\varepsilon)r/4=28$ and hence r=3, q=37, contrary to r|n.

Osaka Kyoiku University

References

- [1] M. Aschbacher: *F-set and permutation groups*, J. Algebra 30 (1974), 400-416.
- [2] D. Gorenstein: Finite groups, Harper and Row, New York, 1968.
- [3] C. Hering: Transitive linear groups and linear groups which contain irreducible

subgroups of prime order, Geometriae Dedicata 2 (1974), 425-460.

- [4] Y. Hiramine: On doubly transitive permutation groups, Osaka J. Math. 15 (1978), 613-631.
- [5] B. Huppert: Zeifach transitive auflösbare Permutationsgruppen, Math. Z. 68 (1957), 126-150.
- [6] B. Huppert: Endliche Gruppen I, Springer-Verlag, Berlin, 1968.
- [7] M. O'Nan: A characterization of $L_n(q)$ as a permutation groups, Math. Z. 127 (1972), 301-314.
- [8] M. O'Nan: Normal structure of the one-point stabilizer of a doubly transitive permutation group II, Trans. Amer. Math. Soc. 214 (1975), 43-74.
- [9] C.C. Sims: Computional methods in the study of permutation groups, (in Computional Problem in Abstract Algebra), Pergamon Press, London, 1970, 169-183.
- [10] R. Steinberg: Automorphism of finite linear groups, Canad. J. Math. 12 (1960), 606-615.