ON MULTIPLY TRANSITIVE PERMUTATION GROUPS

Mitsuo YOSHIZAWA

(Received January 9, 1978)

1. Introduction

In this paper we shall give some improvements of the following four results:
Result 1 (E. Bannai [5] Theorem 1). Let p be an odd prime. Let G be a permutation group on a set $\Omega=\{1,2, \cdots, n\}$ which satisfies the following condition: For any p^{2} elements $\alpha_{1}, \cdots, \alpha_{p^{2}}$ of Ω, a Sylow p-subgroup P of the stabilizer in G of the p^{2} points $\alpha_{1}, \cdots, \alpha_{p 2}$ is nontrivial and fixes $p^{2}+r$ points of Ω, and moreover P is semiregular on the set $\Omega-I(P)$ of the remaining $|\Omega|-p^{2}-r$ points, where r is independent of the choice of $\alpha_{1}, \cdots, \alpha_{p^{2}}$ and $0 \leqslant r \leqslant p-1$. Then $n=p^{2}+p+r$, and one of the following three cases holds: (1) There exists an orbit Ω_{1} of G such that $\left|\Omega-\Omega_{1}\right| \leqslant r$ and $G^{\alpha_{1}} \geqslant A^{\alpha_{1}}$. Moreover, $\left(G_{\Omega-\Omega_{1}}\right)^{\Omega_{1}} \geqslant A^{\Omega_{1}}$. (2) $r=p-1$, and G has just two orbits Ω and Ω_{2} (with $\left|\Omega_{1}\right| \geqslant\left|\Omega_{2}\right| \geqslant p$) such that $G^{\Omega_{1}} \geqslant A^{\Omega_{1}}$. Moreover $\left(G_{\Omega_{2}}\right)^{\Omega_{1}} \geqslant A^{\Omega_{1}}$ and $G^{\Omega_{2}}$ is primitive and contains an element of a p-cycle (therefore $G^{\Omega_{2}} \geqslant A^{\Omega_{2}}$ if $\left|\Omega_{2}\right| \geqslant p+3$). (3) $r=p-1$, and G is imprimitive on Ω with just two blocks Ω_{1} and Ω_{2}. Moreover, $\left(G_{\Omega_{1}}\right)^{\Omega_{2}} \geqslant A^{\Omega_{2}}$ and $\left(G_{\Omega_{2}}\right)^{\Omega_{1}} \geqslant A^{\Omega_{1}}$.

Result 2 (E. Bannai [4] Theorem 1). Let p be an odd prime. Let G be a $2 p$-transitive permutation group such that either (i) each element in G of order p fixes at most $2 p+(p-1)$ points, or (ii) a Sylow p-subgroup of $G_{1,2, \cdots, 2 p}$ is cyclic. Then G is one of $S_{n}(2 p \leqslant n \leqslant 4 p-1)$ and $A_{n}(2 p+2 \leqslant n \leqslant 4 p-1)$.

Result 3 (D. Livingstone and A. Wanger [10] Lemma 10). If G is a k-transitive group on a set Ω of n points, with $n>k \geqslant 4$, then there exists a subset Π of $k+1$ points such that $G_{(\mathbb{I})}^{\mathrm{I}} \geqslant A^{\mathrm{II}}$.

Result 4 (H. Wielandt [13] Satz B). If G is a nontrivial t-transitive group on Ω of n points, and if t is sufficiently large, then $\log (n-t)>\frac{1}{2} t$.

In $\S 2$ and $\S 3$, we shall prove the following two theorems which improve Result 1 and Result 2.

Theorem A. Let p be an odd prime. Let G be a permutation group on a
set $\Omega=\{1,2, \cdots, n\}$ which satisfies the following condition. For any $2 p$ points $\alpha_{1}, \cdots, \alpha_{2 p}$ of Ω, a Sylow p-subgroup P of the stabilizer in G of the $2 p$ points $\alpha_{1}, \cdots, \alpha_{2 p}$ is nontrivial and fixes exactly $2 p+r$ points of Ω, and moreover P is semiregular on the set $\Omega-I(P)$ of the remaining $n-2 p-r$ points, where r is independent of the choice of $\alpha_{1}, \cdots, \alpha_{2 p}$ and $0 \leqslant r \leqslant p-2$. Then $n=3 p+r$, and there exists an orbit Γ of G such that $|\Gamma| \geqslant 3 p$ and $G^{\Gamma} \geqslant A^{\Gamma}$.

Theorem B. Let p be an odd prime $\geqslant 11$. Let G be a permutation group on a set $\Omega=\{1,2, \cdots, n\}$ which satisfies the following condition. For any $2 p$ points $\alpha_{1}, \cdots, \alpha_{2 p}$ of Ω, a Sylow p-subgroup P of the stabilizer in G of the $2 p$ points $\alpha_{1}, \cdots, \alpha_{2 p}$ is nontrivial and fixes exactly $3 p-1$ points of Ω, and moreover P is semiregular on the set $\Omega-I(P)$ of the remaining $n-3 p+1$ points. Then $n=4 p-1$, and one of the following two cases holds: (1) There exists an orbit Γ of G such that $|\Gamma| \geqslant 3 p$ and $G^{\Gamma} \geqslant A^{\Gamma}$. (2) G has just two orbits Γ_{1} and Γ_{2} with $\left|\Gamma_{1}\right| \geqslant p,\left|\Gamma_{2}\right| \geqslant p$ and $\left|\Gamma_{1}\right|+\left|\Gamma_{2}\right|=4 p-1$, and $G^{\Gamma_{i}}$ is $\left(\left|\Gamma_{i}\right|-p+1\right)$-transitive on $\Gamma_{i}(i=1,2)$. Moreover, $G^{\Gamma_{i}} \geqslant A^{\Gamma_{i}}$ if $\left|\Gamma_{i}\right| \geqslant p+3$.

Remark. We note that T. Oyama proved:
Result 5 (T. Oyama [12] Theorem 1). Let G be a permutation group on $\Omega=\{1,2, \cdots, n\}$. Assume that a Sylow 2-subgroup P of the stabilizer of any four points in G satisfies the following condition: P is a nonidentity semiregular group and P fixes exactly r points. Then (I) $r=4$, then $|\Omega|=6,8$ or 12 , and $G=S_{6}, A_{8}$ or M_{12} respectively. (II) If $r=5$, then $|\Omega|=7,9$ or 13 . In particular, if $|\Omega|=9$, then $G \leqslant A_{9}$, and if $|\Omega|=13$, then $G=S_{1} \times M_{12}$. (III) If $r=7$ and $N_{G}(P)^{I(P)} \leqslant A_{7}$, then $G=M_{23}$.

Theorem A and Theorem B might look to be too technical. However they are useful in applications. In §4, we shall prove the following two consequences of them which improve Result 3 and Result 4 respectively.

Theorem C. Let p be an odd prime. Let G be a nontrivial $2 p$-transitive group on $\Omega=\{1,2, \cdots, n\}$. Then there exists a subset Γ of Ω such that $|\Gamma| \geqslant 3 p-1$ and $G_{(\Gamma)}^{\Gamma} \geqslant A^{\Gamma}$.

Theorem D. Let G be a nontrivial t-transitive group on $\Omega=\{1,2, \cdots, n\}$. If t is sufficiently large, then $\log (n-t)>\frac{3}{4} t$.

We give the outline of $\S 2$. Let G be a group satisfying the assumption of Theorem A. Then, G has the only one orbit whose length is not less than p. So, we may assume that G is transitive on Ω. Moreover, we find that if $p \geqslant 5$, then G is $(p+3)$-transitive on Ω, and that if $p=3$, then G is 5 -transitive on Ω. Suppose that $G \not \geq A^{\circ}$. Similarly to Bannai [4, §1], we get a contradiction by using the idea of Miyamoto and Nago which uses the formula of

Frobenius ingeniously (cf. [11, Lemma 1.1]).
Next we give the outline of $\S 3$. Let G be a counter-example to Theorem B with the least degree. So, we may assume that G is transitive on Ω. Moreover, we find that G is $\left(p+\frac{p+1}{2}+2\right)$-transitive on Ω. Again by the similar argument to that of $[4, \S 1]$, we get a contradiction.

Notation. Our notation will be more or less standard. Let Ω be a set and Δ be a subset of Ω. If G is a permutation group on Ω, then G_{Δ} denotes the pointwise stabilizer of Δ in G, and $G_{(\Delta)}$ denotes the global stabilizer of Δ in G. When $\Delta=\left\{\alpha_{1}, \cdots, \alpha_{k}\right\}$, we also denote G_{Δ} by $G_{\alpha_{1}, \cdots, \alpha_{k}}$. The totality of points left fixed by a set X of permutations is denoted by $I(X)$, and if a subset Γ of Ω is fixed as a whole by X, then the restriction of X on Γ is denoted by X^{Γ}. For a permutation x, let $\alpha_{i}(x)$ denote the number of i-cycles of x and $\alpha(x)=\alpha_{1}(x) . \quad S^{Q}$ and A^{Q} denote the symmetric and alternating groups on Ω. If $|\Omega|$, the cardinality of Ω, is n, we denote them S_{n} and A_{n} instead of S^{Ω} and A^{α}.

Acknowledgement. The author would like to thank Professor E. Bannai for suggesting him the present research and giving him many advices.

2. Proof of Theorem A

Let G be a permutation group satisfying the assumption of Theorem A.
Step 1. G has an orbit Γ such that $|\Gamma| \geqslant 3 p$ and $|\Omega-\Gamma|<p$.
Proof. Since a Sylow p-subgroup of the stabilizer in G of $2 p$ points is nontrivial and fixes exactly $2 p+r$ points, we have $|\Omega| \geqslant 3 p+r$ and that G has an orbit Γ whose length is at least $p . \quad$ Set $|\Gamma| \equiv k(\bmod p)$ with $0 \leqslant k \leqslant p-1$.

Suppose that $|\Gamma|=p+k$. We take $k+1$ points $\alpha_{1}, \cdots, \alpha_{k+1}$ from Γ and $2 p-k-1$ points $\alpha_{k+2}, \cdots, \alpha_{2 p}$ from $\Omega-\Gamma$. A Sylow p-subgroup of $G_{\omega_{1}, \cdots, \alpha_{2 p}}$ fixes at least $3 p-1$ points, which contradicts the assumption of Theorem A. Hence we have $|\Gamma| \geqslant 2 p+k$.

Suppose that $|\Omega-\Gamma| \geqslant p$. We take $p+k+1$ points $\alpha_{1}, \cdots, \alpha_{p+k+1}$ from Γ and $p-k-1$ points $\alpha_{p+k+2}, \cdots, \alpha_{2 p}$ from $\Omega-\Gamma$. A Sylow p-subgroup of $G_{\alpha_{1}, \cdots, \alpha_{2 p}}$ fixes at least $3 p-1$ points, which contradicts the assumption of Theorem A. Hence we have $|\Omega-\Gamma|<p$. So, we have $|\Gamma| \geqslant 3 p$.

By Step 1, from now on we may assume that G is transitive on Ω.
Step 2. Let $1 \leqslant t \leqslant p+2$. If G is t-transitive on Ω, then G is t-primitive on Ω.

Proof. Suppose, by way of contradiction, that G is t-transitive on Ω, and that $G_{1, \cdots, t-1}$ is imprimitive on $\Omega-\{1, \cdots, t-1\}$. Let $\Gamma_{1}, \cdots, \Gamma_{s}$ be a system
of imprimitivity of $G_{1, \cdots, t-1}$. Let $\left|\Gamma_{1}\right| \equiv k(\bmod p)$, where $0 \leqslant k \leqslant p-1$. We divide the consideration into the following two cases: (I) $2 p-(t-1)>k$. (II) $2 p-(t-1) \leqslant k$.

Suppose that Case (I) holds. First assume that $\left|\Gamma_{1}\right| \geqslant 2 p$. We take $k+1$ points $\alpha_{t}, \cdots, \alpha_{t+k}$ from Γ_{1} and $2 p-t-k$ points $\alpha_{t+k+1}, \cdots, \alpha_{2 p}$ from Γ_{2}. A Sylow p-subgroup of $G_{1, \cdots, t-1, \alpha_{t}, \cdots, \alpha_{2 p}}$ fixes at least $3 p-1$ points, which is a contradiction. Next assume that $p \leqslant\left|\Gamma_{1}\right|<2 p$. We take $k+1$ points $\alpha_{t}, \cdots, \alpha_{t+k}$ from Γ_{1}. Moreover, we are able to take $2 p-t-k$ points $\alpha_{t+k+1}, \cdots, \alpha_{2 p}$ from $\Omega-\left(\Gamma_{1} \cup\{1, \cdots, t-1\}\right)$. A Sylow p-subgroup of $G_{1, \cdots, t-1, \alpha t, \cdots, \alpha_{2} p}$ fixes at least $3 p-1$ points, which is a contradiction. Hence we may assume that $\left|\Gamma_{1}\right|<p$. Let γ_{i} be a point of $\Gamma_{i}(i=1, \cdots, s)$. Assume $s \leqslant 2 p-t+1$. Then a Sylow $p-$ subgroup of $G_{1, \cdots, t-1, \gamma_{1}, \cdots, \gamma_{s}}$ is trivial, a contradiction. Hence $s>2 p-t+1$. Since a Sylow p-subgroup of $G_{1, \cdots, t-1, \gamma_{1}, \cdots, \gamma_{2 p+t-1}}$ fixes at most $3 p-2$ points, we have $(k-1) \leqslant(2 p-t+1) \leqslant p-2$. But, since $t \leqslant p+2$ and $k \geqslant 2$, we have a contradiction.

Suppose that Case (II) holds. In this case, we have $t=p+2$ and $k=p-1$. We take a point α from Γ_{1} and $p-2$ points $\beta_{1}, \cdots, \beta_{p-2}$ from Γ_{2}. A Sylow p-subgroup of $G_{1, \cdots, p+1, \alpha, \beta_{1}, \cdots, \beta_{p-2}}$ fixes at least $3 p-1$ points, which is a contradiction.

Step 3. G is $(p+3)$-transitive on Ω when $p \geqslant 5$, and G is 5 -transitive on Ω when $p=3$.

Proof. In order to prove Step 3, we show that if G is t-transitive on Ω then G is $(t+1)$-transitive on Ω, where $1 \leqslant t \leqslant p+2$ when $p \geqslant 5$ and $1 \leqslant t \leqslant 4$ when $p=3$. Suppose, by way of contradiction, that G is t-transitive on Ω, but G is not $(t+1)$-transitive on Ω. By Step $2, G$ is t-primitive on Ω. Let $\Delta_{1}, \cdots, \Delta_{s}$ be the orbits of $G_{1, \cdots, t}$ on $\Omega-\{1, \cdots, t\}$, where $s \geqslant 2$. By Theorem 18.4 in [14], $\left|\Delta_{i}\right| \geqslant p$ for every $\Delta_{i}(i=1, \cdots, s)$. Let $\left|\Delta_{i}\right| \equiv u_{i}(\bmod p)$, where $0 \leqslant u_{i} \leqslant p-1(i=1, \cdots, s)$. By the assumption of t, we have that $p-2 \leqslant 2 p-t \leqslant$ $2 p-1$ when $p \geqslant 5$, and $2 \leqslant 2 p-t \leqslant 5$ when $p=3$. We divide the consideration into the following two cases: (I) $2 p-t \geqslant p$. (II) $2 p-t<p$.

Suppose that Case (I) holds. First assume that $2 p-t-u_{1}-1 \leqslant p$. We take $u_{1}+1$ points $\alpha_{1}, \cdots, \alpha_{u_{1}+1}$ from Δ_{1} and $2 p-t-u_{1}-1$ points $\beta_{1}, \cdots, \beta_{2 p-t-u_{1}-1}$ from Δ_{2}. A Sylow p-subgroup of $G_{1, \cdots, t, \omega_{1}, \cdots, \alpha_{u_{1}+1} \beta_{1}, \cdots, \beta_{2 p-t-u_{1}-1}}$ fixes at least $3 p-1$ points, which is a contradiction. Next assume that $2 p-t-u_{1}-1>p$ and $\left|\Delta_{1}\right| \geqslant 2 p$. we take $u_{1}+p+1$ points $\alpha_{1}, \cdots, \alpha_{u_{1}+p+1}$ from Δ_{1} and $p-t-u_{1}-1$ points $\beta_{1}, \cdots, \beta_{p-t-u_{1}-1}$ from Δ_{2}. A Sylow p-subgroup of $G_{1, \cdots, t, \alpha_{1}, \cdots, \alpha_{u_{1}+p+1}, \beta_{1}, \cdots, \beta_{p-t-u_{1}-1}}$ fixes at least least $3 p-1$ points, which is a contradiction. Hence we may assume that $2 p-t-u_{1}-1>p$ and $\left|\Delta_{1}\right|<2 p$. We take $u_{1}+1$ points $\alpha_{1}, \cdots, \alpha_{u_{1}+1}$ from Δ_{1}. Moreover we are able to take $2 p-t-u_{1}-1$ points $\beta_{1}, \cdots, \beta_{2 p-t-u_{1}-1}$ from $\Omega-\left(\{1, \cdots, t\} \cup \Delta_{1}\right)$. A Sylow p-subgroup of $G_{1, \cdots, \alpha_{1}, \cdots, \alpha_{\mu_{1}+1}, \beta_{1}, \cdots, \beta_{2 p-t-u_{1}-1}}$ fixes
at least $3 p-1$ points, which is a contradiction.
Suppose that Case (II) holds. In this case, we have that $2 p-t=p-2$ or $p-1$ when $p \geqslant 5$, and $2 p-t=2$ when $p=3$. Assume that there is an orbit Δ_{i} of $G_{1, \cdots, t}$ with $u_{i}<2 p-t$. We take $u_{i}+1$ points $\alpha_{1}, \cdots, \alpha_{u_{i}+1}$ from Δ_{i} and $2 p-t-u_{i}-1$ points $\beta_{1}, \cdots, \beta_{2 p-t-u_{i}-1}$ from $\Omega-\left(\{1, \cdots, t\} \cup \Delta_{i}\right)$. A Sylow $p-$ subgroup of $G_{1, \cdots, t, \alpha_{1}, \cdots, \alpha_{u_{i}+1}, \beta_{1}, \cdots, \beta_{2 p-t-u_{i}-1}}$ fixes at least $3 p-1$ points, which is a contradiction. Hence $u_{i} \geqslant 2 p-t$ for every $\Delta_{i}(i=1, \cdots, s)$. Assume that $s \geqslant 3$ or $p=3$. We take a point α_{1} from Δ_{1} and a point α_{2} from Δ_{2}. If $p=3$, then a Sylow p-subgroup of $G_{1,2,3,4, \omega_{1}, \alpha_{2}}$ fixes at least 8 points, which is a contradiction. If $p \geqslant 5$, we take $2 p-t-2$ points $\beta_{1}, \cdots, \beta_{2 p-t-2}$ from Δ_{3}. Then a Sylow p-subgroup of $G_{1, \cdots t, \alpha_{1}, \alpha_{2}, \beta_{1} \cdots, \cdots, \beta_{2 p-t-2}}$ fixes at least $3 p-1$ points, which is a contradiction. Thus we have $p \geqslant 5$ and $s=2$. So, $\Omega=\{1, \cdots, t\} \cup \Delta_{1} \cup \Delta_{2}$. Hence $2 p+r=$ $t+\mu_{1}+\mu_{2}$. Let Q be a Sylow p-subgroup of $G_{1, \cdots, t}$. Then, $N_{G}(Q)^{I(Q)}$ is t transitive and has an element of order p. Since $3 p-2 \geqslant|I(Q)|=t+u_{1}+u_{2} \geqslant$ $t+2(2 p-t)=2 p+(2 p-t)$, we have $|I(Q)|=3 p-2$, and $N_{G}(Q)^{I(Q)} \geqslant A^{I(Q)}$ by [14, Theorem 13.10]. So, $N_{G}(Q)_{1}^{I}, \cdots, t$ has an element of order p. Hence Q is not a Sylow p-subgroup of $G_{1, \cdots, t}$, a contradiction.

Step 4. $G \geqslant A^{\circ}$, or $\alpha_{p}(x) \geqslant 4$ for any element x of order p of G.
Proof. Let us assume that $\min \left\{\alpha_{p}(X) \mid x\right.$ is an element of order p of $\left.G\right\}=$ $m \leqslant 3$. Hence $|\Omega| \geqslant 2 p+m p$. Since G is 5 -transitive, we have $G \geqslant A^{\alpha}$ by [14, Theorem 13.10].

From now on we assume that $G \not \not A^{2}$, and prove that this case does not occur.

Step 5. Let a be an element of order p of G with $\alpha(a)=2 p+r$. Then there exists an orbit Δ of $C_{G}(a)^{I(a)}$ such that $C_{G}(a)^{\Delta} \geqslant A^{\Delta}$ and $|\Delta| \geqslant 2 p$.

Proof. We may assume that

$$
a=(1)(2) \cdots(2 p+r)(2 p+r+1, \cdots, 3 p+r) \cdots
$$

Set $T=C_{G}(a)_{2 p+r+1}^{I(\cdots)}, \cdots, 3 p+r . \quad$ For any p points $\alpha_{1}, \cdots, \alpha_{p}$ of $I(a), a$ normalizes $G_{\omega_{1}, \cdots, \alpha_{p}, 2 p+r+1, \cdots, 3 p+r}$. Hence a centralizes an element of order p of $G_{a_{1}, \cdots, \alpha_{p}, 2 p+r+1, \cdots, 3 p+r}$. So, $T_{\alpha_{1}, \cdots, \alpha_{p}}$ has an element of order p for any p elements $\alpha_{1}, \cdots, \alpha_{p}$ of $I(a)$. Thus T has an orbit Γ with $|\Gamma| \geqslant p$. Let $|\Gamma|=p+k$. Suppose that $0 \leqslant k \leqslant p-1$. We take $k+1$ points $\delta_{1}, \cdots, \delta_{k+1}$ from Γ and $p-k-1$ points $\delta_{k+2}, \cdots, \delta_{p}$ from $I(a)-\Gamma$. Then $T_{\delta_{1}, \cdots, \delta_{p}}$ has no element of order p, which is a contradiction. Therefore T has an orbit Γ whose length is at least $2 p$. Since it is easily seen that T^{Γ} is primitive, we have $T^{\Gamma} \geqslant A^{\Gamma}$ by [14, Theorem 13.9]. Let Δ be an orbic of maximal length of $C_{G}(a)^{I(a)}$, then $C_{G}(a)^{\Delta} \geqslant A^{\Delta}$ and $|\Delta| \geqslant 2 p$.

Step 6. For any $2 p$ points $\alpha_{1}, \cdots, \alpha_{2 p}$ of Ω, the order of a Sylow p-subgroup of $G_{\omega_{1}, \cdots, \alpha_{2 p}}$ is p.

Proof. Suppose, by way of contradiction, that for some $2 p$ points $\alpha_{1}, \cdots, \alpha_{2 p}$, the order of a Sylow p-subgroup P of $G_{a_{1}, \cdots, \alpha_{2} p}$ is more than p. We may assume that $\left\{\alpha_{1}, \cdots, \alpha_{2 p}\right\}=\{1, \cdots, 2 p\}$ and $I(P)=\{1, \cdots, 2 p, \cdots, 2 p+r\}$. For any $2 p$ points $\gamma_{1}, \cdots, \gamma_{2 p}$ of $I(P)$, the order of a Sylow p-subgroup of $G_{\gamma_{1}, \cdots, \gamma_{2 p}}$ is $|P|$. Let a be an element of order p of $Z(P)$. We may assume that

$$
a=(1)(2) \cdots(2 p+r)(2 p+r+1, \cdots, 3 p+r) \cdots
$$

Since a normalizes $G_{1, \cdots, p, 2 p+r+1, \cdots, 3 p+r}, G_{1, \cdots, p, 2 p+r+1, \cdots, 3 p+r}$ has an element b of order p commuting with a. We may assume that

$$
b=(1) \cdots(p)(p+1, \cdots, 2 p)(2 p+1) \cdots(2 p+r)(2 p+r+1) \cdots(3 p+r) \cdots
$$

Then we may assume that $P^{b}=P$. Since $C_{P}(b)$ is semiregular on $I(b)-(\{1, \cdots$, $p\} \cup\{2 p+1, \cdots, 2 p+r\})=\{2 p+r+1, \cdots, 3 p+r\}$, we have $\left|C_{P}(b)\right|=p$, and b does not centralize P. On the other hand, since $\langle P, b\rangle=P \cdot\langle b\rangle$, we have $\langle a\rangle \times$ $\langle b\rangle \supseteq C_{\langle P, b\rangle}(b) \supseteq Z(\langle P, b\rangle)$. Hence $|Z(\langle P, b\rangle)|=|\langle a\rangle|=p$, since $[P, b] \neq 1$.

Now, since $I(a)=I(P)$, we have $C_{G}(a) \subseteq G_{(I(P))}=N_{G}\left(G_{I(P)}\right)$. By the FrattiniSylow argument, $N_{G}\left(G_{I(P)}\right)=N_{G}(P) \cdot G_{I(P)}$. So, $C_{G}(a) \subseteq N_{G}(P) G_{I(P)}$. Hence $C_{G}(a)^{I(a)}=C_{G}(a)^{I(P)} \subseteq N_{G}(P)^{I(P)}$. Thus by Step 5, $N_{G}(P)^{I(P)}$ has an orbit Δ of maximal length such that $N_{G}(P)^{\Delta} \geqslant A^{\Delta}$ and $|\Delta| \geqslant 2 p$. We may assume that $\Delta=\{1,2, \cdots,|\Delta|\}$. Set $\Gamma=\{2,3, \cdots, 2 p\}$, then $N_{G}(P)_{(\Gamma)}^{\Gamma} \geqslant A^{\Gamma}$. Since $\mid I(P)-$ $\Gamma\left|\leqslant p-1,\left|N_{G}(P)_{\Gamma}\right|_{p}\right.$ ($=$ the order of a Sylow p-subgroup of $\left.N_{G}(P)_{\Gamma}\right)=|P|$. Moreover since $\left|N_{G}(P)_{(\Gamma)}^{\Gamma}\right|_{p}=p$, we have $N_{G}\left|(P)_{(\Gamma)}\right|_{p}=p \cdot|P|$. Thus $\langle P, b\rangle$ is a Sylow p-subgroup of $N_{G}(P)_{(\Gamma)}$.

Suppose that $C_{G}(P)_{(\Gamma)}^{\Gamma}=1$. Since $N_{G}(P)_{(\mathrm{r})} / C_{G}(P)_{(\mathrm{\Gamma})} \leqslant \operatorname{Aut}(P), A_{2 p-1}$ is involved in $\operatorname{Aut}(P)$. But, we can easily seen that $A_{2 p-1}$ is not involved in $\operatorname{Aut}(P)$ (cf. [2. §2, (3)]), which is a contradiction. Therefore we have $C_{G}(P)_{(\Gamma)}^{\Gamma} \geqslant A^{\Gamma}$. Since the center of a Sylow p-subgroup of $N_{G}(P)_{(\Gamma)}$ is of order p, this is a contradiction.

> (q.e.d.)

Step 7. $|\Omega|-(2 p+r) \equiv p\left(\bmod p^{2}\right)$.
(The proof of this step is the same as that of [4, §2], but we repeat it for the completeness.)

Proof. We may assume that there exist two elements a and b of order p which commute to each other such that

$$
a=(1) \cdots(2 p)(2 p+1) \cdots(2 p+r)(2 p+r+1, \cdots, 3 p+r)(3 p+r+1, \cdots, 4 p+r) \cdots,
$$

and

$$
\begin{aligned}
b=(1, \cdots, p)(p+1, \cdots, 2 p)(2 p+1) & \cdots(2 p+r)(2 p+r+1) \cdots \\
& \cdots(3 p+r)(3 p+r+1) \cdots(4 p+r) \cdots
\end{aligned}
$$

Since $\langle a, b\rangle$ normalizes $G_{p+1, \cdots, 2 p, 2 p+r+1, \cdots, 3 p+r}, G_{G}(\langle a, b\rangle\rangle_{p+1, \cdots, \cdots 2 p, 2 p+r+1, \cdots, 3 p+r}$ has an element c of order p. The element c must be of the form

$$
c=(1, \cdots, p)^{a}(p+1) \cdots(2 p) \cdots(2 p+r) \cdots(3 p+r)(3 p+r+1, \cdots, 4 p+r)^{\beta} \cdots,
$$

where $1 \leqslant \alpha, \beta \leqslant p-1$. Suppose, by way of contradiction, that $|\Omega|-(2 p+r) \equiv p$ $\left(\bmod p^{2}\right) .\langle a, c\rangle$ has at least $p+2$ orbits of length p. Hence there is an integer $\gamma(1 \leqslant \gamma \leqslant p-1)$ such that $\left|I\left(a c^{\gamma}\right)\right| \geqslant 3 p$, which is a contradiction.

From now on, let a be an element of order p of G such that

$$
a=(1) \cdots(2 p)(2 p+1) \cdots(2 p+r)(2 p+r+1, \cdots, 3 p+r)(3 p+r+1, \cdots, 4 p+r) \cdots .
$$

By Step $5, C_{G}(a)^{I(a)}$ has an orbit Δ such that $C_{G}(a)^{\Delta} \geqslant A^{\Delta}$ and $|\Delta| \geqslant 2 p$. Hereafter we may assume that $\Delta=\{1,2, \cdots,|\Delta|\}$.

Step 8. Set $C_{G}(a)_{0}=C_{G}(a)$. If $p \geqslant 5$, then there is an integer $i(0 \leqslant i \leqslant 2)$ such that $C_{G}(a)_{0, \cdots, i}$ and $C_{G}(a)_{0, \cdots, \cdots, i+1}$ have exactly m orbits on $\Omega-I(a)$, where m is at most three, and moreover m is at most two when $|\Omega|-(2 p+r) \equiv 0\left(\bmod p^{2}\right)$. If $p=3$, then there is an integer $i(0 \leqslant i \leqslant 1)$ such that $C_{G}()_{i}$ and $C_{G}()_{i, i+1}$ have exactly m orbits on $\Omega-I(a)$, where m is at most two, and moreover m is one when $|\Omega|-(2 p+r) \equiv 0\left(\bmod p^{2}\right)$.

Proof. Suppose that $p \geqslant 5$. In order to prove Step 8 for $p \geqslant 5$, it is sufficient to show that $C_{G}(a)_{1,2,3}$ has at most three orbits on $\Omega-I(a)$, and that $C_{G}(a)_{1,2,3}$ has at most two orbits on $\Omega-I(a)$ when $|\Omega|-(2 p+r) \equiv 0\left(\bmod p^{2}\right)$.

Set $H=G_{1,2,3}$. Then H is p-transitive on $\Omega-\{1,2,3\}$ by Step 3. By the remark following Lemma 1.1 in [11], we get the following expression:

$$
\frac{|H|}{p}=\sum_{x_{\in B}} \alpha_{p}(x) \geqslant \sum_{k} \frac{|H|}{\left|C_{H}\left(u_{k}\right)\right|} \frac{1}{p} \sum_{y}^{\prime} \alpha^{*}(y),
$$

where u_{k} ranges all representatives of conjugacy classes (in H) of elements of order p, and y ranges all p^{\prime}-elements in $C_{H}\left(u_{k}\right)$ and $\alpha^{*}(y)=\alpha\left(y^{\alpha-I\left({ }^{*} k\right)}\right)$. Hence,

$$
\frac{|H|}{p} \geqslant \frac{|H|}{\left|C_{H}(a)\right|} \frac{1}{p} \sum_{y}^{\prime} \alpha^{*}(y) .
$$

Assume that $|\Omega|-(2 p+r) \equiv 0\left(\bmod p^{2}\right)$. Since a normalizes $G_{1, \ldots, \cdots, 2 p+r+1, \cdots, 3 p+r}$, $G_{1, \cdots, p, 2 p+r+1, \cdots, p^{2}+r}$ has an element b of order p with $a b=b a$. If $|I(X)|=2 p+r$ for any nontrivial element x of $\langle a, b\rangle$, then $\langle a, b\rangle$ has just $p-1$ orbits of length p on $\Omega-\{1, \cdots, 3 p+r\}$. So $|\Omega|-(2 p+r) \equiv 0\left(\bmod p^{2}\right)$, a contradiction. Hence $H(\supseteq\langle a, b\rangle)$ contains an element of order p which fixes less than $2 p+r$ points, and so, the equality in the above expression does not hold. Now, assume that $x \in C_{H}(a)$ and $p||x|$. Set $| x \mid=p \cdot s$. Since $\left|I\left(x^{s}\right)\right| \leqslant 2 p+r$, we have $\alpha^{*}\left(x^{s}\right) \leqslant$ $p \cdot \alpha_{p}\left(\left(x^{s}\right)^{I(\alpha)}\right)$. So, $\alpha^{*}(x) \leqslant p \cdot \alpha_{p}\left(x^{I(\alpha)}\right)+2 p \cdot \alpha_{2 p}\left(x^{I(a)}\right)$. Hence, we have that
$\sum_{y}^{\prime} \alpha^{*}(y) \geqslant \sum_{y \in O_{H}(a)}(y)-p \cdot \sum_{y \in C_{H^{(}(a)}} \alpha_{p}\left(y^{I(a)}\right)-2 p \cdot \sum_{y \in V_{H^{(\alpha)}}} \alpha_{2 \phi}\left(y^{I(a)}\right)$. Since $C_{H}(a)^{\Delta-[1,2,3]}$ $\geqslant A^{\Delta-(1,2,3)}$ and $|\Delta| \geqslant 2 p$, we get $p \cdot \sum_{y \in C_{H^{(a)}}} \alpha_{p}\left(y^{I(\alpha)}\right)=p \cdot \sum_{y \in O_{Y^{(\alpha)}}} \alpha_{p}\left(y^{\Delta-(1,2,3)}\right)=\left|C_{H}(a)\right|$ by the formula of Frobenius. Similarly, if $2 p \cdot \sum_{y \in C_{H}(a)} \alpha_{2 p}\left(y^{I(\alpha)}\right) \neq 0$, then $2 p \cdot \sum_{v \in O_{H}(a)} \alpha_{2 p}\left(y^{I(a)}\right)=\left|C_{H}(a)\right|$. On the other hand,,$\sum_{y \in O_{H}(a)} \alpha^{*}(y)=f \cdot\left|C_{H}(a)\right|$, where f is the number of orbits of $C_{H}(a)$ on $\Omega-I(a)$. Hence we get

$$
\frac{|H|}{p} \geqslant \frac{|H|}{p}(f-2) \text {, and hence } f \leqslant 3 \text {. }
$$

In the above expression, if $|\Omega|-(2 p+r) \equiv 0\left(\bmod p^{2}\right)$, the equality does not hold.

Suppose that $p=3$. Then $r=0$ or 1 . If $r=0$, then G is 6 -transitive on Ω by [10 , Lemma 6]. So, we have $G \geqslant A^{\text {a }}$ by [4, Theorem 1]. But this contradicts our assumption. Hence $r=1$. Since $\langle a\rangle \in \operatorname{Syl}_{3}\left(G_{1,2,3,4,5}\right)$, we have $N_{G}(\langle a\rangle)^{I(a)} \geqslant A_{7}$ by Step 3. Hence $C_{G}(a)^{I(a)} \geqslant A_{7}$. Set $H=G_{1,2}$. Then H is 3-transitive on $\Omega-\{1,2\}$, and $C_{H}(a)^{I(a)-\{1,2]} \geqslant A_{5}$. By the similar argument as in the case $p \geqslant 5$, we have that $C_{H}(a)$ has at most two orbits on $\Omega-I(a)$, and that $C_{H}(a)$ is transitive on $\Omega-I(a)$ when $|\Omega|-7 \equiv 0(\bmod 9)$. Therefore, the consequences of Step 8 hold.

Step 9. $C_{G}(a)_{1,2, \cdots,|\Delta|}$ has at most $2 m$ orbits on $\Omega-I(a)$. Moreover $C_{G}(a)_{1, \cdots, p,\{p+1, p+2\}, p+3, \cdots,|\Delta|}\left(=C_{G_{((p+1, p+2))}}(a)_{1, \cdots, p, p+3, \cdots,|\Delta|)}\right)$ has exactly m orbits on $\Omega-I(a)$.

Proof. By Step 8, $C_{G}(a)_{0, \cdots, i}$ has exactly m orbits on $\Omega-I(a)$. Let $\Gamma_{1}, \cdots, \Gamma_{m}$ be the orbits. We take an arbitrarily fixed orbit Γ_{j}. Let $\Sigma_{1}, \cdots, \Sigma_{k}$ be the orbits of $C_{G}(a)_{1, \ldots,|\Delta|}$ on Γ_{j}. Since $C_{G}(a)_{0, \cdots, i} \triangleright C_{G}(a)_{1, \cdots,|\Delta|}$ and Γ_{j} is an orbit of $C_{G}(a)_{0, \cdots, i}, C_{G}(a)_{0, \ldots, i, \cdots, z}^{\Delta-11, \cdots}$ acts on the set $\left\{\Sigma_{1}, \cdots, \Sigma_{k}\right\}$ transitively. Let $Y=$ $C_{G_{0, \cdots,}}(a)_{\left(\Sigma_{1}\right)}$. Then $\left|C_{G}(a)_{0, \ldots, i}^{\Delta-(1, \cdots, i)}: \quad Y^{\Delta-\{1, \cdots, i\}}\right|=k$. Similarly, we have $\left|C_{G}(a)_{0, \ldots, i, i+1}^{\Delta-(1, \ldots, i)}: Y_{i+1}^{\Delta-(1, \ldots, z\}}\right|=k$. Hence, $\left|C_{G}(a)_{0, \ldots, i}^{\Delta-(1, \ldots, z)}: C_{G}(a)_{0, \ldots, i, i+1}^{\Delta-(1, \ldots, i}\right|=$ $\left|Y^{\Delta-(1, \cdots, i)}: Y_{\imath+1}^{\Delta-(1, \cdots, i)}\right|=|\Delta|-i$. Therefore Y is transitive on $\Delta-\{1, \cdots, i\}$. Let $\left(\beta_{1}, \cdots, \beta_{p}\right)$ be a p-cycle of a such that $\left\{\beta_{1}, \cdots, \beta_{p}\right\} \subseteq \Sigma_{1}$. For any $p-i$ elements $\alpha_{1}, \cdots, \alpha_{p-1}$ of $\Delta-\{1, \cdots, i\}, G_{0, \cdots, i, \alpha_{1}, \cdots, \alpha_{p-i}, \beta_{1}, \cdots, \beta_{p}}$ has an element b of order p commuting with a. Then $b \in Y$ and b^{Δ} is a p-cycle, and so, $Y_{\alpha_{1}, \ldots, \alpha_{p-i}}^{\Delta-(1, \ldots, i)}$ has the p-cycle. Since $\alpha_{1}, \cdots, \alpha_{p-i-1}, \alpha_{p-i}$ are any $p-i$ elements of $\Delta-\{1, \cdots, i\}$, we have $Y^{\Delta-(1, \cdots, i)} \geqslant A^{\Delta-(1, \cdots, i)}$ (cf. [14, Theorem 8.4, Theorem 13.9]). Therefore $k \leqslant 2$. If $k=2$, then $Y^{\Delta-(1, \cdots, i\}}=A^{\Delta-\{1, \cdots, i)}$ and $C_{G}(a)_{0, \ldots, i}^{\Delta-(1, \cdots, i\}}=S^{\Delta-\{1, \cdots, i)}$. Therefore Γ_{j} is an orbit of $C_{G}(a)_{1, \cdots, p,\{p+1, p+2\}, p+3, \cdots,|\Delta|}$ on $\Omega-I(a)$, even if $k=2$. (q.e.d.)

Step 10. $|\Omega|-(2 p+r) \equiv 2 p\left(\bmod p^{2}\right)$ and $p \geqslant 5$.
Proof. Since a is an element of order p of the form

$$
\begin{aligned}
a=(1) \cdots(p)(p+1) \cdots(2 p)(2 p+1) \cdots & (2 p+r)(2 p+r+1, \cdots, 3 p+r) \\
& (3 p+r+1, \cdots, 4 p+r) \cdots,
\end{aligned}
$$

we may assume that $C_{G}(a)_{p+1, \cdots, 2 p, 2 p+r+1, \cdots, 3 p+r}$ has an element b of order p. By Step 7, we may assume that

$$
\begin{aligned}
& b=(1, \cdots, p)(p+1) \cdots(2 p)(2 p+1) \cdots(2 p+r)(2 p+r+1) \cdots \\
&(3 p+r)(3 p+r+1, \cdots, 4 p+r) \cdots
\end{aligned}
$$

Let $K=G_{1, \cdots, p \mid p+1, p+2]_{p+3}, \cdots,|\Delta|}$ and $L=\langle b\rangle \cdot K$. Then $\left|C_{L}(a): C_{K}(a)\right|=p$. By Step $9, C_{K}(a)$ and $C_{L}(a)$ have exactly m orbits on $\Omega-I(a)$. Since $m\left|C_{K}(a)\right|=$ $\sum_{y \in \sigma_{K^{(a)}}} \alpha^{*}(y)$ and $m\left|C_{L}(a)\right|=\sum_{y \in \sigma_{L^{(a)}}} \alpha^{*}(y)$, we have

$$
m \frac{p-1}{p}\left|C_{L}(a)\right|=\sum_{y \in \sigma_{L}(a)-c_{K}(a)} \alpha^{*}(y)
$$

Next we show that the elements of order p of $\langle a, b\rangle$ are not conjugate to each other in $C_{L}(a)$. Suppose $a^{i} b^{j}$ and $a^{i^{\prime}} b^{j^{\prime}}$ are conjugate to each other, where $0 \leqslant i, j, i^{\prime}, j^{\prime} \leqslant p-1$. If $j \neq j^{\prime}$, then $\left(a^{i} b^{j}\right)^{[1, \cdots, p)} \neq\left(a^{i^{\prime}} b^{j^{\prime}}\right)^{(1, \cdots, p)}$, which is a contradiction. Hence $j=j^{\prime}$. Assume $i \neq i^{\prime}$. There exists an element x in $C_{L}(a)$ such that $\left(a^{i} b^{j}\right)^{x}=a^{i^{\prime}} b^{j}$. Then $\left(b^{j}\right)^{x}=a^{i^{\prime}-i} b^{j}$. Since $\left(b^{j}\right)^{x^{p}}=a^{\left(i^{\prime}-i\right) p} b^{j}=b^{j}$, we have $p\left||x|\right.$. Hence there exists a p-element x_{0} in $C_{L}(a) \cap N_{L}(\langle a, b\rangle)$ such that $x_{0} \notin C_{L}(\langle a, b\rangle)$. Since $\langle a, b\rangle \in \operatorname{Syl}_{p}\left(C_{L}(a)\right)$, this is a contradiction. Thus $i=i^{\prime}$ and $j=j^{\prime}$.

Let s be the number of orbits of length p of $\langle a, b\rangle$ on $\Omega-I(a)$. For each fixed $j(1 \leqslant j \leqslant p-1)$, there are s elements i_{1}, \cdots, i_{s} of $\{0,1, \cdots, p-1\}$ such that $\left|I\left(a^{i_{k}} b^{j}\right)\right|=|I(a)|(k=1, \cdots, s)$. Let i be an arbitrarily fixed element of $\left\{i_{1}, \cdots, i_{s}\right\}$, and let $\left\{\gamma_{1}, \cdots, \gamma_{p}\right\}=I\left(a^{i} b^{j}\right) \cap(\Omega-I(a))$. Since $\langle a, b\rangle$ is a Sylow P-subgroup of $C_{L}(\langle a, b\rangle), C_{L}(\langle a, b\rangle)$ has the normal subgroup Y such that $C_{L}(\langle a, b\rangle)=$ $\langle a, b\rangle \times Y$, where $(|Y|, p)=1$, and $Y \subseteq C_{K}(a)$. Since Y acts on $I(\langle a, b\rangle)=$ $\{p+1, \cdots, 2 p, 2 p+1, \cdots, 2 p+r\}, Y$ acts on $\left\{\gamma_{1}, \cdots, \gamma_{p}\right\}$. Since $a^{\left(\gamma_{1} \cdots \gamma_{p}\right)}$ is a $p-$ cycle and $[Y, a]=1$, we have $Y^{\left(\gamma_{1} \cdots, \gamma_{p}\right)}=1$. Hence any element of $a^{i} b^{j} \cdot Y$ fixes at least p points of $\Omega-I(a)$. Moreover, it is clear that $a^{i} b^{j} \cdot Y \cap C_{K}(a)=\phi$. Therefore

$$
\sum_{\left.y \in G_{L}(\langle a, b\rangle\rangle\right)-c_{K}(a)} \alpha^{*}(y) \geqslant s(p-1) p\left|C_{L}(\langle a, b\rangle):\langle a, b\rangle\right|
$$

Let d be any element of $C_{L}(a)$ such that d is conjugate to b in $C_{L}(a)$ and $d \neq b$. Then $\langle a, b\rangle \cap\langle a, d\rangle=\langle a\rangle$. Hence $C_{L}(\langle a, b\rangle) \cap C_{L}(\langle a, d\rangle) \subseteq C_{K}(a)$.

Therefore, we have

$$
\begin{aligned}
\sum_{y \in \sigma_{L}(a)-c_{K(a)}^{(a)}} \alpha^{*}(y) & \geqslant s(p-1) p\left|C_{L}(a): C_{C_{L}(a)}(b)\right|\left|C_{L}(\langle a, b\rangle):\langle a, b\rangle\right| \\
& =\frac{s(p-1)}{p}\left|C_{L}(a)\right| .
\end{aligned}
$$

Hence, $\frac{m(p-1)}{p}\left|C_{L}(a)\right| \geqslant \frac{s(p-1)}{p}\left|C_{L}(a)\right|$. Then $m \geqslant s$. On the other hand, if $|\Omega|-(2 p+r) \equiv h p\left(\bmod p^{2}\right)$, where $2 \leqslant h \leqslant p$, then we have $s=h$. Therefore, we have that $|\Omega|-(2 p+r) \equiv 2 p\left(\bmod p^{2}\right)$ and $p \geqslant 5$, by Step 8.

Step 11. We complete the proof.

Proof. By Step 10, $\{2 p+r+1, \cdots, 3 p+r\}$ and $\{3 p+r+1, \cdots, 4 p+r\}$ are the orbits of length p of $\langle a, b\rangle$ on $\Omega-I(a)$, and $m=2$ and $p \geqslant 5$. By Step 4 we have $\alpha_{p}(a) \geqslant 4$, hence $|\Omega-I(a)| \geqslant p^{2}+2 p$. Let $\Gamma_{1}, \cdots, \Gamma_{l}$ be the orbits of $C_{G}(a)_{1,2, \cdots,|\Delta|}$ on $\Omega-I(a)$, where $2 \leqslant l \leqslant 4$ by Step 9 . Since $|b|=p, b$ acts on the set $\left\{\Gamma_{1}, \cdots, \Gamma_{l}\right\}$ trivially. If $l=2$, then Γ_{1} and Γ_{2} are the orbits of $C_{G}(a)_{1, \cdots, p(p+1, p+2)_{p+3}, \cdots,|\Delta|}$ on $\Omega-I(a)$ by Step 9 , and one of the following three cases holds: (i) $\left.\left.\left|\Gamma_{1}\right| \equiv 2 p\left(\bmod p^{2}\right)\right),\left|\Gamma_{2}\right| \equiv 0\left(\bmod p^{2}\right)\right)$. (ii) $\left|\Gamma_{1}\right| \equiv 0\left(\bmod p^{2}\right)$, $\left|\Gamma_{2}\right| \equiv 2 p\left(\bmod p^{2}\right) . \quad$ (iii) $\left|\Gamma_{1}\right| \equiv\left|\Gamma_{2}\right| \equiv p\left(\bmod p^{2}\right) . \quad$ If $l=3$, then we may assume that $\Gamma_{1} \cup \Gamma_{2}$ and Γ_{3} are the orbits of $C_{G}(a)_{1, \cdots, p,\{p+1, p+2\}_{p+3}, \cdots,|\Delta|}$ on $\Omega-I(a)$, and one of the following two cases holds: (i) $\left|\Gamma_{1}\right|=\left|\Gamma_{2}\right| \equiv 0\left(\bmod p^{2}\right),\left|\Gamma_{3}\right| \equiv$ $2 p\left(\bmod p^{2}\right)$. (ii) $\left|\Gamma_{1}\right|=\left|\Gamma_{2}\right| \equiv p\left(\bmod p^{2}\right),\left|\Gamma_{3}\right| \equiv 0\left(\bmod p^{2}\right)$. If $l=4$, then we may assume that $\Gamma_{1} \cup \Gamma_{2}$ and $\Gamma_{3} \cup \Gamma_{4}$ are the orbits of $C_{G}(a)_{1, \cdots, p}(p+1, p+2]_{p+3} \cdots, \cdots|\Delta|$ on $\Omega-I(a)$, and one of the following two cases holds: (i) $\left|\Gamma_{1}\right|=\left|\Gamma_{2}\right| \equiv 0\left(\bmod p^{2}\right)$, $\left|\Gamma_{3}\right|=\left|\Gamma_{4}\right| \equiv p\left(\bmod p^{2}\right) .($ ii $)\left|\Gamma_{1}\right|=\left|\Gamma_{2}\right| \equiv p\left(\bmod p^{2}\right),\left|\Gamma_{3}\right|=\left|\Gamma_{4}\right| \equiv 0\left(\bmod p^{2}\right)$. We have the following for any value of l : There is a $\Gamma_{j}(1 \leqslant j \leqslant 4)$ such that $\left|\Gamma_{j}\right| \equiv 0$ or $p\left(\bmod p^{2}\right)$ and $\left|\Gamma_{j}\right| \geq p^{2}$. Let $\left(\beta_{1}, \cdots, \beta_{p}\right)$ and $\left(\gamma_{1}, \cdots, \gamma_{p}\right)$ be two p-cycles of a such that $\left\{\beta_{1}, \cdots, \beta_{p}, \gamma_{1}, \cdots, \gamma_{p}\right\} \subseteq \Gamma_{j} . \quad C_{G}(a)_{\beta_{1}, \cdots, \beta_{p}, \gamma_{1}, \cdots, \gamma_{p}}$ has an element c of order p. Hereafter we examine the relation between a and c. We may assume that

$$
c=(1, \cdots, p)(p+1, \cdots, 2 p)(2 p+1) \cdots(2 p+r)\left(\beta_{1}\right) \cdots\left(\beta_{p}\right)\left(\gamma_{1}\right) \cdots\left(\gamma_{p}\right) \cdots
$$

Since $\left|\Gamma_{j}\right| \equiv 2 p\left(\bmod p^{2}\right),\langle a, c\rangle$ has at least $p+2$ orbits of length p on $\Omega-I(a)$. Let $K=G_{1,2, \cdots,|\Delta|}$, and $L=\langle c\rangle \cdot K$. By the same argument as in the proof of Step 10, we have that $l \cdot \frac{p-1}{p}\left|C_{L}(a)\right|=\sum_{y \in C_{L^{(a)}}=c_{K^{(}(a)}} \alpha^{*}(y)$, and that the elements of $\langle a, c\rangle-\{1\}$ are not conjugate to each other in $C_{L}(a)$. For each fixed $j(1 \leqslant$ $j \leqslant p-1$), there are at least $\frac{p+3}{2}$ elements $i_{1}, \cdots, i_{(p+3) / 2}$ of $\{0,1, \cdots, p-1\}$ such that $\left|I\left(a^{i} c^{j}\right)\right| \geqslant p+r\left(k=1, \cdots, \frac{p+3}{2}\right)$. Let i be an arbitrarily fixed element of $\left\{i_{1}, \cdots, i_{(p+3) / 2}\right\}$. Since $\langle a, c\rangle$ is a Sylow p-subgroup of $C_{L}(\langle a, c\rangle)$ there exists the normal subgroup M of $C_{L}(\langle a, c\rangle)$ such that $C_{L}(\langle a, c\rangle)=\langle a, c\rangle \times M$. First assume that $a^{i} c^{j}$ fixes exactly p points $\delta_{1}, \cdots, \delta_{p}$ in $\Omega-I(a)$. Then, by the same argument as in the proof of Step 10, any element of $a^{i} c^{j} \cdot M$ fixes $\left\{\delta_{1}, \cdots, \delta_{p}\right\}$ pointwise. Next assume that $a^{i} c^{j}$ fixes exactly $2 p$ points $\eta_{1}, \cdots, \eta_{2 p}$ in $\Omega-I(a)$
and a fixes $\left\{\beta_{1}, \cdots, \beta_{p}\right\}$ and $\left\{\gamma_{1}, \cdots, \gamma_{p}\right\}$ with $\left\{\beta_{1}, \cdots, \beta_{p}\right\} \cup\left\{\gamma_{1}, \cdots, \gamma_{p}\right\}=$ $\left\{\eta_{1}, \cdots, \eta_{2 p}\right\}$. If M fixes $\left\{\beta_{1}, \cdots, \beta_{p}\right\}$ and $\left\{\gamma_{1}, \cdots, \gamma_{p}\right\}$, then any element of $a^{i} c^{j} \cdot M$ fixes $\left\{\eta_{1}, \cdots, \eta_{2 p}\right\}$ pointwise. And if M transposes $\left\{\beta_{1}, \cdots, \beta_{p}\right\}$ and $\left\{\gamma_{1}, \cdots, \gamma_{p}\right\}$ then there exists the subgroup M_{0} of index two of M such that any element of $a^{i} c^{j} \cdot M_{0}$ fixes $\left\{\eta_{1}, \cdots, \eta_{2 p}\right\}$ pointwise. Therefore, by the same argument as in the proof of Step 10, we have that

$$
\begin{aligned}
& \sum_{y \in \sigma_{L}(a)-\sigma_{K^{(a)}}} \alpha^{*}(y) \geqslant \frac{p+3}{2} \cdot(p-1) \cdot p\left|C_{L}(a): C_{c_{L}(a)}(c)\right|\left|C_{L}(\langle a, c\rangle):\langle a, c\rangle\right| \\
&= \frac{(p+3)(p-1)}{2 p} \cdot\left|C_{L}(a)\right|
\end{aligned}
$$

Hence $l \geqslant \frac{p+3}{2}$. So, we have $p=5$ and $l=4$.
We may assume that $\left|\Gamma_{1}\right|=\left|\Gamma_{2}\right| \equiv 0\left(\bmod 5^{2}\right)$. Let $\left(\delta_{1}, \cdots, \delta_{5}\right)$ and $\left(\eta_{1}, \cdots, \eta_{5}\right)$ be two 5 -cycles of a such that $\left\{\delta_{1}, \cdots, \delta_{5}\right\} \subseteq \Gamma_{1}$ and $\left\{\eta_{1}, \cdots, \eta_{5}\right\} \subseteq \Gamma_{2}$. $C_{G}(a)_{\delta_{1}, \cdots, \delta_{5}, \eta_{1}, \cdots, \eta_{5}}$ has an element d of order 5. Since d acts on the set $\left\{\Gamma_{1}, \Gamma_{2}\right.$, $\left.\Gamma_{3}, \Gamma_{4}\right\}$ trivially, $\langle a, d\rangle$ has at least $2 \cdot 5+2$ orbits of length 5 on $\Omega-I(a)$. Hence, there exists an element x of order 5 of $\langle a, d\rangle$ such that $|I(x)| \geqslant 3 \cdot 5+r$, which is a contradiction.

> (q.e.d.)

3. Proof of Theorem B

In the proof of Theorem B, we shall use the following Lemma.
Lemma. There is no group satisfying the following condition: Let G be a 3-transitive group on Ω. Let α and β be two points of $\Omega . G_{a, \beta}$ is an imprimitive group on $\Omega-\{\alpha, \beta\}$ with two blocks Δ_{1}, Δ_{2} of length $\frac{|\Omega|}{2}-1$, and moreover, for any point γ of Δ_{1} and any point δ of $\Delta_{2}, G_{\alpha, \beta, \gamma, \delta}^{\Delta_{1}-(\gamma)}$ and $G_{\alpha_{,}, \beta, \gamma, \delta}^{\Delta_{2}-(\delta)}$ are 2-transitive groups.
(I think that this lemma is esentially known already in [7, §1, Proof of Theorem 1])

Proof of Lemma (cf. [7, §1, Proof of Theorem 1]). Let G be a group satisfying the above condition.

Set $|\Omega|=n$ and $\left|\Delta_{i}\right|=v+1(i=1,2)$. Then $G_{\alpha \beta \gamma}$ has just two orbits Σ_{1} and Σ_{2} on $\Omega-\{\alpha, \beta, \gamma\}$ such that $\left|\Sigma_{1}\right|=v+1$ and $\left|\Sigma_{2}\right|=v$.

For any subset Δ of Ω with $|\Delta|=4, G_{\Delta}$ has two orbits Π_{1} and Π_{2} on $\Omega-\Delta$ such that $\left|\Pi_{1}\right|=\left|\Pi_{2}\right|$ or $\left|\left|\Pi_{1}\right|-\left|\Pi_{2}\right|\right|=2$. In either case, G_{Δ} is a subgroup of $G_{\alpha_{1} \alpha_{2} \alpha_{3}}$ which satisfies the assumption of the Witt's Lemma [14, Theorem 9.4], where $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are three elements of Δ. Hence $G_{(\Delta)}^{\Delta}$ is a 3-transitive group. Thus, $G_{(\Delta)}^{\Delta}=S_{4}$. Therefore, G acts on $\Omega^{(2)}$, the set of unordered pairs of elements of Ω, as a transitive permutation group of rank 4, where the orbitals, $\Gamma_{0}, \Gamma_{1}, \Gamma_{2}$ and Γ_{3} of this permutation group are defined as follows: for $\{\alpha, \beta\} \in$

$$
\begin{aligned}
\Omega^{(2)}, \Gamma_{0}(\{\alpha, \beta\})= & \{\alpha, \beta\} \\
\Gamma_{1}(\{\alpha, \beta\})= & \left\{\left\{(\gamma, \delta\} \in \Omega^{(2)}| |\{\alpha, \beta\} \cap\{\gamma, \delta\} \mid=1\right\}\right. \\
\Gamma_{2}(\{\alpha, \beta\})= & \left\{\{\gamma, \delta\} \in \Omega^{(2)} \mid\{\alpha, \beta\} \cap\{\gamma, \delta\}=\phi\right. \\
& \left.\delta \text { is in the orbit of length } v \text { of } G_{\alpha \beta \gamma} \text { on } \Omega-\{\alpha, \beta, \gamma\}\right\} \\
\Gamma_{3}(\{\alpha, \beta\})= & \left\{\{\gamma, \delta\} \in \Omega^{(2)} \mid\{\alpha, \beta\} \cap\{\gamma, \delta\}=\phi .\right. \\
& \left.\delta \text { is in the orbit of length } v+1 \text { of } G_{\alpha \beta \gamma} \text { on } \Omega-\{\alpha, \beta, \gamma\}\right\} .
\end{aligned}
$$

The degrees corresponding to $\Gamma_{i}(i=0,1,2,3)$ are respectively

$$
1,2(n-2)=4(v+1), \quad \frac{(n-2) v}{2}=v(v+1), \quad \frac{(n-2)(v+1)}{2}=(v+1)^{2} .
$$

Moreover, these orbitals $\Gamma_{i}(i=0,1,2,3)$ are all self-paired.
Let us define the intersection matrices $M_{i}(i=0,1,2,3)$ for the permutation group G on $\Omega^{(2)}$ as follows:

$$
\begin{gathered}
M_{i}=\left(\mu_{j k}^{(t)}\right) \text { with } 0 \leqslant j \leqslant 3,0 \leqslant k \leqslant 3, \text { where } \\
\mu_{j k}^{(i)}=\left|\Gamma_{j}(x) \cap \Gamma_{i}(y)\right| \text { with } y \in \Gamma_{k}(x) \\
\text { (where } \left.x, y \in \Omega^{(2)}\right) .
\end{gathered}
$$

Now we can obtain the intersection matrix M_{2} (cf. [9, §4]). This is,

$$
M_{2}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & v & 2 v-2 & 2 v \\
v(v+1) & \frac{v(v-1)}{2} & -v+2 & v(v-1) \\
0 & \frac{v(v+1)}{2} & v^{2}-1 & 0
\end{array}\right)
$$

By direct calculations, we obtain the eigenvalues $\theta_{0}, \theta_{1}, \theta_{2}$ and θ_{3} of M_{2}.

$$
\begin{aligned}
& \theta_{0}=v(v+1), \quad \theta_{1}=-v, \quad \theta_{2}=\frac{-v^{2}+2+\sqrt{v^{4}+4 v+4}}{2} \text { and } \\
& \theta_{3}=\frac{-v^{2}+2-\sqrt{v^{4}+4 v+4}}{2}
\end{aligned}
$$

Since $\left(v^{2}\right)^{2}<v^{4}+4 v+4<\left(v^{2}+2\right)^{2}$, it is clear that θ_{2} and θ_{3} are irrational numbers.
Let us denote by $\pi^{(2)}$ the permutation character of G on $\Omega^{(2)}$. Then $\pi^{(2)}$ is multiplicity free and $\pi^{(2)}=1+X_{1}+X_{2}+X_{3}$, where $X_{1}=X^{(n-1,1)} \mid G$ and X_{2} and X_{3} are irreducible characters appearing in $X^{(n-2,2)} \mid G$ corresponding to θ_{2} and θ_{3} respectively. Since θ_{2} and θ_{3} are irrational, X_{2} and X_{3} are not rational characters (cf. [6, Lemma 1]), so X_{2} and X_{3} are algebraic conjugate
and especially of the same degree. Therefore $X_{2}(1)=X_{3}(1)=n(n-3) / 4$ and $X_{1}(1)=n-1$. By a theorem of Frame [14, Theorem 30.1 (A)], we obtain that the number

$$
q=\left\{\frac{n(n-1)}{2}\right\}^{2} \frac{2(n-2) \cdot v(n-2) / 2 \cdot(n-2)(v+1) / 2}{(n-1) \cdot n(n-3) / 4 \cdot n(n-3) / 4}
$$

must be an integer. But, since $n=2 v+4$, we have a contradiction. (q.e.d.)
Proof of Theorem B. Let G be a counter-example to the theorem with the least possible degree.

Step 1. The number of orbits of G on Ω is at most two.
Proof. By Theorem A and the assumption for G, G has no orbit on Ω whose length is less than p.

Suppose, by way of contradiction, that G has three orbits Δ_{1}, Δ_{2} and Δ_{3} with $\left|\Delta_{i}\right| \geqslant p(i=1,2,3)$. Set $\left|\Delta_{i}\right| \equiv k_{i}(\bmod p)$, where $0 \leqslant k_{i} \leqslant p-1(i=1,2$, 3). Assume that $2 p-\left(k_{1}+k_{2}+2\right) \geqslant p$. We take $k_{1}+p-1$ points $\alpha_{1}, \cdots, \alpha_{k_{1}+p-1}$ fiom $\Delta_{1}, k_{2}+1$ points $\beta_{1}, \cdots, \beta_{k_{2}+1}$ from Δ_{2} and $p-k_{1}-k_{2}$ points $\gamma_{1}, \cdots, \gamma_{p-k_{1}-k_{2}}$ from Δ_{3}. A Sylow p-subgroup of $G_{\alpha_{1}, \cdots, \alpha_{k_{1}+p-1}, \beta_{1}, \cdots, \beta_{k_{2}+1}, \tau_{1}, \cdots, \tau_{p-k_{1}-k_{2}}}$ fixes at least $3 p$ points, which contradicts the assumption of Theorem B. Hence $2 p-\left(k_{1}+k_{2}+2\right)<p$. We take $k_{1}+1$ points $\alpha_{1}, \cdots, \alpha_{k_{1}+1}$ from $\Delta_{1}, k_{2}+1$ points $\beta_{1}, \cdots, \beta_{k_{2}+1}$ from Δ_{2} and $2 p-k_{1}-k_{2}-2$ points $\gamma_{1}, \cdots, \gamma_{2 p-k_{1}-k_{2}-2}$ from Δ_{3}. A Sylow p-subgroup of $G_{\alpha_{1}, \cdots, \alpha_{k_{1}+1}, \beta_{1}, \cdots, \beta_{k_{2}+1} \cdot \gamma_{1}, \cdots, \gamma_{2 p-k_{1}-k_{2}-2}}$ fixes at least $3 p$ points, which is a contradiction.

Step 2. We may assume that G is transitive on $\Omega . \quad(|\Omega| \equiv p-1(\bmod p)$.
Proof. Suppose that G is not transitive on Ω. By Step 1, G has two orbits Δ_{1} and Δ_{2} such that $\Delta_{1} \cup \Delta_{2}=\Omega$ and $\left|\Delta_{i}\right| \geqslant p(i=1,2)$. Set $\left|\Delta_{i}\right|=$ $s_{i} p+k_{i}$, where $0 \leqslant k_{i} \leqslant p-1(i=1,2)$. In this case $k_{1}+k_{2}=p-1$. By the assumption of Theorem $B, s_{1} \geqslant 2$ or $s_{2} \geqslant 2$. We may assume that $s_{1} \geqslant 2$ and $s_{1} \geqslant s_{2}$. We divide the consideration into the following three cases: (I) $s_{1} \geqslant 3$. (II) $s_{1}=$ $s_{2}=2$. (III) $s_{1}=2, s_{2}=1$.

Suppose that Case (I) holds. By Theorem A and the assumption for G, $G^{\Delta_{1}} \geqslant A^{\Delta_{1}}$, and so, $s_{1}=3$. For $k_{2}+1$ points $\alpha_{1}, \cdots, \alpha_{k_{2}+1}$ of $\Delta_{2}, G_{\alpha_{1}, \cdots, \alpha_{k 2+1}}^{\Delta_{1}}$ is ($p+k_{1}$)-transitive by [10, Lemma 6]. Since $G_{\alpha_{1}, \cdots, \alpha_{k_{2}+1}}^{\Delta_{1}}$ has an element x of order p with $\alpha_{p}(x)=2$, we have $G_{\alpha_{1}}^{\Delta_{1}} \ldots, \alpha_{k_{2}+1} \geqslant A^{\Delta_{1}}$ by [14, Theorem 13.10]. This is a contradiction.

Suppose that Case (II) holds. We may assume that $k_{1} \geqslant k_{2}$. For $p+k_{2}+1$ points $\alpha_{1}, \cdots, \alpha_{p+k_{2}+1}$ of $\Delta_{2}, G_{\alpha_{1}, \cdots, \alpha_{p+k_{2}+1}}^{\Delta_{1}}$ has an element of order p, and moreover $G_{\alpha_{1}, \ldots, \alpha_{p+k_{2}+1}}^{\Delta_{1}}$ is k_{1}-transitive by [10, Lemma 6]. Since $k_{1} \geqslant 5$, $G_{\alpha_{1}, \cdots, \alpha_{p+k_{2}+1}}^{\Delta_{1}} \geqslant A^{\Delta_{1}}$ by [14, Theorem 13.10]. This is a contradiction.

Suppose that Case (III) holds. By [10, Lemma 6] and [14, Theorem 13.10], G is a group satisfying the consequence (2) of Theorem B. This is a contradiction.

Step 3. G is primitive on Ω. For any element x of order p of $G, \alpha_{p}(x) \geqslant 8$ holds.

Proof. Suppose, by way of contradiction, that G is imprimitive on Ω. Let $\Delta_{1}, \cdots, \Delta_{s}$ be a system of imprimitivity of G. Set $\left|\Delta_{i}\right| \equiv k(\bmod p)$, where $0 \leqslant k \leqslant p-1$. First assume that $\left|\Delta_{i}\right| \leqslant p$. Then $s>2 p$ and we are able to take $2 p$ points $\delta_{1}, \cdots, \delta_{2 p}$ from Ω such that $\delta_{i} \in \Delta_{i}(i=1, \cdots, 2 p)$. A Sylow p-subgroup of $G_{\delta_{1}, \cdots, \delta_{2 p}}$ fixes at least $4 p$ points, which is a contradiction. Next assume that either $p<\left|\Delta_{i}\right|<2 p$, or $\left|\Delta_{i}\right| \geqslant 2 p$ and $s \geqslant 3$. We take $k+1$ points α_{1}, \cdots, α_{k+1} from Δ_{1} and $k+1$ points $\beta_{1}, \cdots, \beta_{k+1}$ from Δ_{2}. We are able to take $2 p-2 k-2$ points $\gamma_{1}, \cdots, \gamma_{2 p-2 k-2}$ from $\Omega-\left(\Delta_{1} \cup \Delta_{2}\right)$. A Sylow p-subgroup of $G_{\alpha_{1}, \cdots, \alpha_{k+1}, \beta_{1}, \cdots, \beta_{k+1}, \gamma_{1}, \cdots, \gamma_{2 p-2 k-2}}$ fixes at least $3 p$ points, which is a contradiction. Therefore, we have that $\left|\Delta_{i}\right| \geqslant 2 p$ and $s=2$. Then $\Omega=\Delta_{1} \cup \Delta_{2}$ and $k=\frac{p-1}{2}$. By Theorem $A,\left|\Delta_{i}\right|=3 p+\frac{p-1}{2}$ or $2 p+\frac{p-1}{2}$. By the similar argument to that of Case (II) of Step 2, we have a contradiction. Thus G is primitive on Ω. By [14, Theorem 13.10], for any element x of order p of G, we have $\alpha_{p}(x) \geqslant 8$. (q.e.d.)

Step 4. Let $2 \leqslant t \leqslant p+\frac{p-1}{2}+2$. If G is t-transitive on Ω, then G is t primitive on Ω.

Proof. Suppose, by way of contradiction, that G is t-transitive on Ω and $G_{1, \cdots, t-1}$ is imprimitive on $\Omega-\{1, \cdots, t-1\}$. Let $\Delta_{1}, \cdots, \Delta_{s}$ be a system of imprimitivity of $G_{1, \cdots, t-1}$ on $\Omega-\{1, \cdots, t-1\}$. Set $\left|\Delta_{i}\right| \equiv k(\bmod p)$ and $\left|\Delta_{i}\right|=$ $l p+k$, where $0 \leqslant k \leqslant p-1$. In this case, $(t-1)+s k \equiv p-1(\bmod p)$. We divide the consideration into the following two cases: (I) $2 p-t+1 \geqslant p$. (II) $2 p-$ $t+1<p$.

Suppose that Case (I) holds. First assume that $l=0$. Then $s>2 p-t+1$ and we are able to take $2 p-t+1$ points $\delta_{1}, \cdots, \delta_{2 p-t+1}$ of Ω such that $\delta_{i} \in \Delta_{i}$ ($i=1, \cdots, 2 p-t+1$). A Sylow p-subgroup of $G_{1, \cdots, t-1, \delta_{1}, \cdots, \delta_{2 p-t+1}}$ fixes at least $3 p$ points, which is a contradiction. Secondly assume that $l=1$. By Step 3, we get $s \geqslant 8$. Assume that $k \geqslant \frac{p-1}{2}$. We take a point α from Δ_{1}, a point β from Δ_{2}, a point γ from Δ_{3} and $2 p-t-2$ points $\delta_{1}, \cdots, \delta_{2 p-t-2}$ from $\Delta_{4} \cup \Delta_{5}$. A Sylow p-subgroup of $G_{1, \cdots, t-1, \omega, \beta, \gamma, \delta_{1}, \cdots, \delta_{2 p-t-2}}$ fixes at least $3 p$ points, which is a contradiction. Hence we have $k \leqslant \frac{p-3}{2}$ when $l=1$. We take $k+1$ points $\alpha_{1}, \cdots, \alpha_{k+1}$
from $\Delta_{1}, k+1$ points $\beta_{1}, \cdots, \beta_{k+1}$ from Δ_{2} and $2 p-t-2 k-1$ points $\gamma_{1}, \cdots, \gamma_{2 p-t-2 k-1}$ from $\Delta_{3} \cup \Delta_{4}$. A Sylow p-subgroup of $G_{1, \cdots, t-1, \alpha_{1}, \cdots, \alpha_{k+1}, \beta_{1}, \cdots, \beta_{k+1}, \gamma_{1}, \cdots, \gamma_{2 p-t-2 k-1}}$ fixes at least $3 p$ points, which is a contradiction. Thirdly assume that $l \geqslant 2$ and $2 p-t-k \neq k, k+p$. We take $k+1$ points $\alpha_{1}, \cdots, \alpha_{k+1}$ from Δ_{1} and $2 p-t-k$ points $\beta_{1}, \cdots, \beta_{2 p-t-k}$ from Δ_{2}. A Sylow p-subgroup of $G_{1, \cdots, t-1, \omega_{1}, \cdots, \omega_{k+1}, \beta_{1}, \cdots, \beta_{2 p-t-k}}$ fixes at least $3 p$ points, which is a contradiction. Fourthly assume that $l \geqslant 2$ and $2 p-t-k=k+p$. Assume that $s \geqslant 3$. We take $k+1$ points $\alpha_{1}, \cdots, \alpha_{k+1}$ from $\Delta_{1}, k+1$ points $\beta_{1}, \cdots, \beta_{k+1}$ from Δ_{2} and $p-1$ points $\gamma_{1}, \cdots, \gamma_{p-1}$ from Δ_{3}. A Sylow p-subgroup of $G_{1, \cdots, t-1, \alpha_{1}, \cdots, \alpha_{k+1}, \beta_{1}, \cdots, \beta_{k+1}, \gamma_{1}, \cdots, \gamma_{p-1}}$ fixes at least $3 p$ points, which is a contradiction. Hence we have $\Omega=\{1, \cdots, t-1\} \cup \Delta_{1} \cup \Delta_{2}$ when $l \geqslant 2$ and $2 p-t-k=k+p$. Since $k=\frac{p-t}{2}$ and $t \geqslant 2$, we get $t \geqslant 3$. Let γ be any point of Δ_{1}, and δ be any point of Δ_{2}. By [10, Lemma 6], it is easily seen that $G_{1, \cdots, t-1, \gamma, \delta}^{\Delta_{1}-(\gamma)}$ and $G_{1, \ldots, t-1, \gamma, \delta}^{\Delta_{2}-(8)}$ are $(k-1+p)$-transitive. By Lemma, we have a contradiction. Fifthly assume that $l \geqslant 2$ and $2 p-t-k=k$. In this case, $k=\frac{2 p-t}{2} \geqslant \frac{p-1}{2}$. Assume that $s \geqslant 3$. We take $k+1$ points $\alpha_{1}, \cdots, \alpha_{k+1}$ from $\Delta_{1}, k-1$ points $\beta_{1}, \cdots, \beta_{k-1}$ from Δ_{2} and a point γ from Δ_{3}. A Sylow p-subgroup of $G_{1, \cdots, t-1, \alpha_{1}, \cdots, \alpha_{k+1}, \beta_{1}, \cdots, \beta_{k-1}, \gamma}$ fixes at least $3 p$ points, which is a contradiction. Hence, we have $\Omega=\{1, \cdots, t-1\} \cup \Delta_{1} \cup \Delta_{2}$ when $l \geqslant 2$ and $2 p-t-k=k$. Let Q be a Sylow p-subgroup of $G_{1, \cdots, t}$. Then $N_{G}(Q)^{I(Q)}$ is a t-transitive group and $|I(Q)| \geqslant t-1+2 k=2 p-1$. Let x be an element of order p of Q with $|I(x)|=3 p-1$, and $\left(\gamma_{1}, \cdots, \gamma_{p}\right)$ be a p-cycle of x. Let $\left\{\delta_{1}, \cdots, \delta_{p}\right\}$ be a subset of Ω such that if $|I(Q)|=2 p-1$, then $\left\{\delta_{1}, \cdots, \delta_{p}\right\}=I(x)-I(Q)$, and if $|I(Q)|=$ $3 p-1$, then $x^{\left(\delta_{1}, \cdots, \delta_{p}\right)}$ is a p-cycle of x different from $\left(\gamma_{1}, \cdots, \gamma_{p}\right) . C_{G}(x)_{\gamma_{1}, \cdots, \gamma_{p}, \delta_{1}, \cdots, \delta_{p}}$ has an element y of order p. Since y fixes $I(Q)$, we may assume that $y \in N_{G}(Q)$. Then $y^{I(Q)}$ is an element of order p of $N_{G}(Q)^{I(Q)}$ which is 2-transitive on $I(Q)$ and we have $N_{G}(Q)^{I(Q)} \geqslant A^{I(Q)}$. Since $G_{1, \cdots, t-1}$ is imprimitive on $\Omega-\{1, \cdots, t-1\}$, this is a contradiction.

Suppose that Case (II) holds. In this case, $p+2 \leqslant t \leqslant p+\frac{p-1}{2}+2$. Let Q be a Sylow p-subgroup of $G_{1, \cdots, t}$. Then $N_{G}(Q)^{I(Q)}$ is t-transitive on $I(Q)$. Since $|\Omega| \equiv p-1(\bmod p)$, we have $|I(Q)| \equiv p-1(\bmod p)$, and so, $|I(Q)|=$ $2 p-1$ or $3 p-1$. Since $t \geqslant p+2, N_{G}(Q)^{\iota(Q)}$ has an element of order p, and so, we get $N_{G}(Q)^{I(Q)} \geqslant A^{I(Q)}$. We may assume that $\left\{\Delta_{1}, \cdots, \Delta_{u}\right\}$ is the subset of $\left\{\Delta_{1}, \cdots, \Delta_{s}\right\}$ such that $I(Q) \cap \Delta_{i} \neq \phi$ for $1 \leqslant i \leqslant u$ and $I(Q) \cap \Delta_{i}=\phi$ for $u<i \leqslant s$. Since $G_{1, \cdots, t-1}$ is imprimitive on $\Omega-\{1, \cdots, t-1\}$, we have that $k \leqslant 1$ or $u=1$. Assume that $k \geqslant 2$. Then $u=1$, and so, $(t-1)+k \equiv p-1(\bmod p)$. Hence $t-1+k=2 p-1$. Then $p-\frac{p-1}{2}-2 \leqslant k \leqslant p-2$. On the other hand, $(t-1)+s k$ $\equiv p-1(\bmod p) . \quad$ Then $(t+k)+(s-1) k \equiv 0(\bmod p)$, and so, $p \mid s-1$. Hence
$s \geqslant p+1$. Let α_{i} be a point of $\Delta_{i}(i=1, \cdots, s)$. A Sylow p-subgroup of $G_{1, \cdots, t-1, \alpha_{1}, \cdots, \alpha_{k+1}}$ fixes at least $2 p+(k+1)(k-1)$ points. But, $(k+1)(k-1) \geqslant$ $\left(p-\frac{p-1}{2}-1\right)\left(p-\frac{p-1}{2}-3\right) \geqslant p$, which is a contradiction. Therefore $k=0$ or 1. We take two points α_{1}, α_{2} from Δ_{1} and $2 p-t-1$ points $\beta_{1}, \cdots, \beta_{2 p-t-1}$ from Δ_{2}. A Sylow p-subgroup of $G_{1, \cdots, t-1, \alpha_{1}, \alpha_{2}, \beta_{1}, \cdots, \alpha_{2 p-t-1}}$ fixes at least $3 p$ points, which is a contradiction. (q.e.d.)

Step 5. G is $\left(p+\frac{p+1}{2}+2\right)$-transitive on Ω.
Proof. By Step 3 and Step 4, in order to prove Step 5 we show that if G is t-primitive on Ω then G is $(t+1)$-transitive on Ω, where $1 \leqslant t \leqslant p+\frac{p-1}{2}+2$. Suppose, by way of contradiction, that G is t-primitive on Ω, but G is not $(t+1)$-transitive on Ω. Let $\Delta_{1}, \cdots, \Delta_{s}$ be the orbits of $G_{1, \cdots, t}$ on $\Omega-\{1, \cdots, t\}$, where $s \geqslant 2$. We may assume that $\left|\Delta_{1}\right| \geqslant\left|\Delta_{2}\right| \geqslant \cdots \geqslant\left|\Delta_{s}\right| \geqslant p$ (cf. [14, Theorem 18.4]). Set $\left|\Delta_{i}\right| \equiv k_{i}(\bmod p)(i=1, \cdots, s)$, then $t+k_{1}+\cdots+k_{s} \equiv p-1(\bmod p)$. We divide the consideration into the following two cases: (I) $2 p-t \geqslant p+1$. (II) $2 p-t \leqslant p$.

Suppose that Case (I) holds. First assume that $\left|\Delta_{1}\right|=p$ or $p+1$. We take two points α_{1}, α_{2} from Δ_{1} and two points β_{1}, β_{2} from Δ_{2}. We are able to take $2 p-t-4$ points $\gamma_{1}, \cdots, \gamma_{2 p-t-4}$ from $\Delta_{3} \cup \cdots \cup \Delta_{s}$. A Sylow p-subgroup of $G_{1, \ldots, t-1, \alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}, \gamma_{1} \cdots, \gamma_{2 p-t-4}}$ fixes at least $3 p$ points, which is a contradiction. Therefore $\left|\Delta_{1}\right| \geqslant p+2$. Secondly assume that $2 p-t-k_{1} \geqslant p$ and $\left|\Delta_{1}\right| \geqslant 2 p+k_{1}$. We take $p-t-k_{1}$ points $\beta_{1}, \cdots, \beta_{p-t-k_{1}}$ from $\Delta_{2} \cup \cdots \cup \Delta_{s}$. By [10, Lemma 6], $G_{1, \cdots, t, \beta_{1}, \cdots, \beta_{p-t-k_{1}}}^{\Delta_{1}}$ is $\left(p+k_{1}\right)$-transitive, which contradicts Theorem 17.7 in [14]. If $k_{1}=0$ or 1 then our assumptions are satisfied. Therefore $k_{1} \geqslant 2$. Thirdly assume that either $2 p-t-k_{1} \geqslant p$ and $\left|\Delta_{1}\right|=p+k_{1}$, or $2 p-t-k_{1}<p$. We are able to take $2 p-t-k_{1}$ points $\beta_{1}, \cdots, \beta_{2 p-t-k_{1}}$ from $\Delta_{2} \cup \cdots \cup \Delta_{s}$. By [10, Lemma 6], $G_{1, \cdots, \ldots, \beta_{1}, \cdots, \beta_{2 p-t-k_{1}}}^{\Delta_{1}}$ is k_{1}-transitive, which contradicts Theorem 17.7 in [14].

Suppose that Case (II) holds. In this case, $p \leqslant t \leqslant p+\frac{p-1}{2}+2$. Lei Q be a Sylow p-subgroup of $G_{1, \cdots, t}$, then $N_{G}(Q)^{I(Q)}$ is t-transitive, and $|I(Q)|=2 p-1$ or $3 p-1$. Since $t \geqslant p$, we have $N_{G}(Q)^{I(Q)} \geqslant A^{I(Q)}$. Hence, there is a unique orbit Δ_{j} such that $k_{j} \neq 0$. Since $t+k_{j} \equiv p-1(\bmod p)$, we have that $k_{j}=$ $2 p-1-t \geqslant 3$. By [10, Lemma 6], $G_{1, \cdots, t}^{\Delta j}$ is k_{j}-transitive, and so, we have $j \neq 1$ by [14, Theorem 17.7]. Assume that $s \geqslant 3$. We take a point α from Δ_{1}, $2 p-t-2$ points $\beta_{1}, \cdots, \beta_{2 p-t-2}$ from Δ_{j} and a point γ from Δ_{i} where $1<i \leqslant s$
 which is a contradiction. Therefore $s=j=2$. If $p \geqslant 13$, then $k_{j}=2 p-1-t \geqslant 4$. This is a contradiction by [1]. Hence, we have $p=11$. Moreover, we have
$k_{j}=2 p-1-t=3$ by [1]. By [8, Theorem 5], we have that either (i) $\left|\Delta_{1}\right|+$ $\left|\Delta_{2}\right|+1=\frac{1}{2}\left(\left|\Delta_{2}\right|^{2}+\left|\Delta_{2}\right|+2\right)$, or (ii) $\left|\Delta_{1}\right|+\left|\Delta_{2}\right|+1=(\lambda+1)^{2}(\lambda+4)^{2},\left|\Delta_{2}\right|=$ $(\lambda+1)\left(\lambda^{2}+5 \lambda+5\right)$, for some positive interger λ. Case (i) does not hold, since $3+1 \neq \frac{1}{2}\left(3^{2}+3+2\right)(\bmod 11)$. Moreover Case (ii) does not hold, since for every $\lambda(\lambda=0,1, \cdots, 10)$, we have $3+1$ 丰 $(\lambda+1)^{2}(\lambda+4)^{2}(\bmod 11)$ or 3 丰 $(\lambda+1)$. $\left(\lambda^{2}+5 \lambda+5\right)(\bmod 11)$.
(q.e.d.)

Step 6. Let a be an element of order p of the form

$$
a=(1) \cdots(p) \cdots(2 p) \cdots(3 p-1)(3 p, \cdots, 4 p-1) \cdots
$$

Then one of the following holds for $C=C_{G}(a)_{3 p, \cdots, 4 p-1}^{I(a)}$.
(i) C has an orbit Δ such that $C^{\Delta} \geqslant A^{\Delta}$ and $|\Delta| \geqslant 2 p$.
(ii) There exist two orbits Δ_{1} and Δ_{2} of C such that $\left|\Delta_{i}\right| \geqslant p$ and $C^{\Delta_{i}}$ is ($\left.\left|\Delta_{i}\right|-p+1\right)$-transitive $(i=1,2)$, and $\Delta_{1} \cup \Delta_{2}=I(a)$. Moreover, if $\left|\Delta_{i}\right| \geqslant p+3$, then $C^{\Delta_{i}} \geqslant A^{\Delta_{i}}$.
(iii) C is an imprimitive group with two blocks Γ_{1} and Γ_{2} of length $p+\frac{p-1}{2}$ such that $C^{\Gamma_{i}} \geqslant A^{\Gamma_{i}}(i=1,2)$.

Proof. For any p points $\alpha_{1}, \cdots, \alpha_{p}$ of $I(a), C_{a_{1}, \cdots, \alpha_{p}}$ has an element of order p. Since C has an element of order p, it has an orbit whose length is at least p. Assume that C has two orbits Δ_{1} and Δ_{2} with $\left|\Delta_{i}\right| \geqslant p(i=1,2)$. Set $\left|\Delta_{i}\right|=p+k_{i}(i=1,2)$. If $\Delta_{1} \cup \Delta_{2} \neq I(a)$, then $k_{1}+k_{2}+2 \leqslant p$. We take $k_{1}+1$ points $\alpha_{1}, \cdots, \alpha_{k_{1}+1}$ from Δ_{1} and $k_{2}+1$ points $\beta_{1}, \cdots, \beta_{k_{2}+1}$ from Δ_{2}, so $C_{a_{1}, \cdots, \alpha_{k_{1}+1}, \beta_{1}, \cdots, \beta_{k_{2}+1}}$ has no element of order p, a contradiction. Hence $\Delta_{1} \cup \Delta_{2}$ $=I(a)$. By [10, Lemma 6], we have that C is a group satisfying (ii). Assume that C has a unique orbit Δ with $|\Delta| \geqslant p$. Then we have $|\Delta| \geqslant 2 p$. If C^{Δ} is pritmitive, by [14, Theorem 13.9] we have that C^{Δ} is a group satisfying (i) Assume that C^{Δ} is imprimitive. Let $\Gamma_{1}, \cdots, \Gamma_{s}$ be a system of imprimitivity of C^{Δ}. If $\left|\Gamma_{1}\right|<p$, then $\left|\Gamma_{1}\right|=2$. We take p points $\alpha_{1}, \cdots, \alpha_{p}$ with $\alpha_{i} \in \Gamma_{i}$ $(i=1, \cdots, p)$, so $C_{\alpha_{1}, \cdots, \alpha_{p}}$ has no element of order p, a contradiction. Hence $\left|\Gamma_{1}\right| \geqslant p$, and so we have $s=2$ and $\left|\Gamma_{1}\right|=\left|\Gamma_{2}\right|=p+\frac{p-1}{2}$. By [10, Lemma 6], we have that C is a group satisfying (iii).

Step 7. For any $2 p$ points $\alpha_{1}, \cdots, \alpha_{2 p}$ of Ω, the order of a Sylow p-subgroup of $G_{a_{1}, \cdots, \alpha_{2}}$ is p.

Proof. Suppose, by way of contradiction, that for some $2 p$ points $\alpha_{1}, \cdots, \alpha_{2 p}$, the order of a Sylow p-subgroup P of $G_{\alpha_{1}, \cdots, \alpha_{2 p}}$ is more than p. We may assume that $\left\{\alpha_{1}, \cdots, \alpha_{2 p}\right\}=\{1, \cdots, 2 p\}$ and $I(P)=\{1, \cdots, 2 p, \cdots, 3 p-1\}$. Let a be an element of order p of $Z(P)$. We may assume that

$$
a=(1) \cdots(3 p-1)(3 p, \cdots, 4 p-1) \cdots
$$

Since $C_{G_{1}}(a)^{I(a)-(1)}$ is a permutation group of degree $3 p--2$, one of the following two cases holds:
(I) $C_{G_{1}}(a)^{I(a)-(1)}$ has an orbit Δ such that $C_{G_{1}}(a)^{\Delta} \geqslant A^{\Delta}$ and $|\Delta| \geqslant 2 p-1$.
(II) $C_{G_{1}}(a)^{I(a)-(1)}$ has two orbits Δ_{1}, Δ_{2} such that $\left|\Delta_{i}\right| \geqslant p$ and $C_{G_{1}}(a)^{\Delta_{i}}$ is $\left(\left|\Delta_{i}\right|-p+1\right)$-transitive $(i=1,2)$, and $\Delta_{1} \cup \Delta_{2}=I(a)-\{1\}$. Moreover, if $\left|\Delta_{i}\right| \geqslant$ $p+3$, then $C_{G_{1}}(a)^{\Delta_{i}} \geqslant A^{\Delta_{i}}$.

Suppose that Case (I) holds. We may assume that $\Delta=\{2,3, \cdots,|\Delta|$, $|\Delta|+1\}$. Let $\Gamma=\{2,3, \cdots, 2 p\}$, then $\Gamma \subseteq \Delta$. Since $C_{G_{1}}(o)^{\Delta} \geqslant A^{\Delta}$, we have $G_{1(\Gamma)}^{\Gamma} \geqslant A^{\Gamma}$. On the other hand, by the Fratcini-Sylow argument, $G_{1(\Gamma)}=$ $N_{G_{1(\Gamma)}}\left(G_{1 \Gamma}\right)=N_{G_{1(\Gamma)}}(P) \cdot G_{1 \Gamma}$. Hence, $N_{G_{1}}(P)_{(\Gamma)}^{\Gamma}=G_{1(\Gamma)}^{\Gamma} \geqslant A^{\Gamma}$, so we have $\left|N_{G_{1}}(P)_{(\Gamma)}\right|_{p}\left(=\right.$ the order of a Sylow p-subgroup of $\left.N_{G_{1}}(P)_{(\Gamma)}\right)=|P| \cdot p$. $C_{G}(a)_{1,2 p+1, \cdots, 3 p-1,3 p, \cdots, 4 p-1}$ has an element b of order p. Since $|\Gamma|<2 p, b^{\Gamma}$ is a $p-$ cycle. Since b normalizes $G_{1, \cdots, 3 p-1}$, we may assume that $P^{b}=P$. Then $\langle b, P\rangle \in$ $\operatorname{Syl}_{p}\left(N_{G_{1}}(P)_{(\Gamma)}\right)$. Since $C_{P}(b)$ is semiregular on $(\Omega-I(P)) \cap I(b)=\{3 p, \cdots, 4 p-1\}$, we have $\left|C_{P}(b)\right|=p$. Hence, since $[P, b] \neq 1$ we have $|Z(\langle P, b\rangle)|=p$. Assume that $C_{G_{1}}(P)_{(\Gamma)}^{\Gamma}=1$. Since $N_{G_{1}}(P)_{(\Gamma)} / C_{G_{1}}(P)_{(\Gamma)} \leqslant \operatorname{Aut}(P), A_{2 p-1}$ is involved in $\operatorname{Aut}(P)$. But, we can easily seen that $A_{2 p-1}$ is not involved in $\operatorname{Aut}(P)$ (cf. [2, §2. (3)]), which is a contradiction. Hence $C_{G_{1}}(P)_{(\Gamma)}^{\Gamma} \geqslant A^{\Gamma}$. Since the center of a Sylow p-subgroup of $N_{G_{1}}(P)_{(\Gamma)}$ is of order p, this is a contradiction.

Suppose that Case (II) holds. Then, one of the following two cases holds:
(i) $N_{G_{1}}(P)^{I(P)-(1)} \geqslant A^{I(P)-(1)}$.
(i1) Δ_{1} and Δ_{2} are the orbits of $N_{G_{1}}(P)^{I(P)-(1)} . \quad N_{G_{1}}(P)^{\Delta_{i}}$ is $\left(\left|\Delta_{i}\right|-p+1\right)$ transitive ($i=1,2$), and if $\left|\Delta_{i}\right| \geqslant p+3$, then $N_{G_{1}}(P)^{\Delta_{i}} \geqslant A^{\Delta_{i}}$.

If Case (i) holds, then we have a contradiction by the similar argument to that of Case (I). Hence we assume that Case (ii) holds. We may assume that $\left|\Delta_{1}\right|>\left|\Delta_{2}\right|$ and $\Delta_{1}=\left\{2,3, \cdots,\left|\Delta_{1}\right|,\left|\Delta_{1}\right|+1\right\}$. Let $\Gamma=\{2,3, \cdots, 2 p\}$. Since $\left|\Gamma \cap \Delta_{2}\right| \leqslant \frac{p-1}{2}$, we have $\left(C_{G_{1}}(a)_{\Gamma \cap \Delta_{2}}\right)^{\Delta_{1}} \geqslant A^{\Delta_{1}}$ by [10, Lemma 6]. Then $N_{G_{1}}(P)_{(\Gamma)}^{\Delta_{1}} \geqslant A^{\Delta_{1}}$, and so, $\left|N_{G_{1}}(P)_{(\Gamma)}\right|_{p}=|P| \cdot p . \quad C_{G}(a)_{1,2 p+1, \cdots, 3 p-1,3 p, \cdots, 4 p-1}$ has an element b of order p. Then $b^{\Delta_{1}}$ is a p-cycle, and we may assume that $P^{b}=P$. So $\langle b, P\rangle \in \operatorname{Syl}_{p}\left(N_{G_{1}}(P)_{(\mathrm{r})}\right)$. By the same argument as in Case (I), we have $|Z(\langle b, P\rangle)|=p$. Assume that $C_{G_{1}}(P)_{(\Gamma)}^{\Delta_{1}}=1$. Then $C_{G_{1}}(a)_{\Delta_{1}} \geqslant C_{G_{1}}(a)_{(\Gamma)}$. Since $N_{G_{1}}(P)_{(\Gamma)} / C_{G_{1}}(P)_{(\Gamma)} \leqslant \operatorname{Aut}(P)$ and $N_{G_{1}}(P)_{(\Gamma)} / N_{G_{1}}(P)_{\Delta_{1}} \cong N_{G_{1}}(P)_{(\Gamma)}^{\Delta_{1}} \geqslant A^{\Delta_{1}}$, we have that $A_{(3 p-1) / 2}$ is involved in Aut (P). But, we can easily seen that $A_{(3 p-1) / 2}$ is not involved in Aut (P) (cf. [2, §2. (3)]), which is a contradiction. Hence $C_{G_{1}}(P)_{(\Gamma)}^{\Delta_{1}}$ $\geqslant A^{\Delta_{1}} \quad$ Since the center of a Sylow p-subgroup of $N_{G_{1}}(P)_{(\Gamma)}$ is of order p, this is a contradiction.
(q.e.d.)

By the same argument as in Step 7 in the proof of Theorem A, we have
Step 8. $|\Omega|-(3 p-1) \equiv p\left(\bmod p^{2}\right)$.

From now on, let a be an element of order p of the form

$$
a=(1) \cdots(2 p)(2 p+1) \cdots(3 p-1)(3 p, \cdots, 4 p-1)(4 p, \cdots, 5 p-1) \cdots
$$

We divide the consideration into the following two cases:
(α) $\quad C_{G}(a)^{I(a)}$ has an orbit Δ such that $|\Delta| \geqslant 2 p$ and $C_{G}(a)^{\Delta} \geqslant A^{\Delta}$;
(β) otherwise.
When Case (α) holds, we may assume that $\Delta=\{1, \cdots,|\Delta|\}$. When Case (β) holds, we may assume that $\Delta_{1}=\{1, \cdots, w\}$ and $\Delta_{2}=\{w+1, \cdots, 3 p-1\}$ are the orbits or the blocks of $C_{G}(a)^{I(a)}$, and that $\left|\Delta_{1}\right| \geqslant\left|\Delta_{2}\right| \geqslant p$.

By the same argument as in Step 8, Step 9, Step 10 and Step 11 in the proof of Theorem A, we have

Step 9. Case (α) does not hold.
Hereafter we assume that Case (β) holds.
Step 10. Set $C_{G}(a)_{w+1, w+2, \cdots, 2 p, 0}=C_{G}(a)_{w+1, w+2, \cdots, 2 p}$. There is an integer $i(0 \leqslant i \leqslant 1)$ such that $C_{G}(a)_{w+1, w+2, \cdots, 2 p, i}$ and $C_{G}(a)_{w+1, w+2, \cdots, 2 p, i, i+1}$ have exactly m orbits on $\Omega-I(a)$, where m is at most two, and moreover $m=1$ when $|\Omega|-(3 p-1)$三 $0\left(\bmod p^{2}\right)$.

Proof. In order to prove Step 10, it is sufficient to show that $C_{G}(a)_{w+1, \cdots, 2 p, 1,2}$ has at most two orbits on $\Omega-I(a)$, and is transitive on $\Omega-I(a)$ when $|\Omega|-(3 p-1) \equiv 0\left(\bmod p^{2}\right)$.

Set $H=G_{w+1, \cdots, 2 p, 1,2}$. Then H is p-transitive on $\Omega-\{w+1, \cdots, 2 p, 1,2\}$ by Step 5. By the remark following Lemma 1.1 in [11], we get the following expression:

$$
\frac{|H|}{p} \geqslant \frac{|H|}{\left|C_{H}(a)\right|} \frac{1}{p} \sum_{y}^{\prime} \alpha^{*}(y),
$$

where y ranges all p^{\prime}-elements in $C_{H}(a)$ and $\alpha^{*}(y)=\alpha\left(y^{\Omega-I(a)}\right)$. Here the equality does not hold when $|\Omega|-(3 p-1) \equiv 0\left(\bmod p^{2}\right)$ (cf. Step 8 in the proof of Theorem A). Now, $\sum_{y}^{\prime} \alpha^{*}(y) \geqslant \sum_{y \in O_{\left.H^{(}\right)}} \alpha^{*}(y)-p \cdot \sum_{y \in O_{H}\left({ }^{a}\right)} \alpha_{p}\left(y^{I(a)}\right)$. Since $\left|\Delta_{1}-\{1,2\}\right| \geqslant p+\frac{p-1}{2}-2 \geqslant p+3$, we have $C_{H}(a)^{\Delta_{1}-\{1,2)} \geqslant A^{\Delta_{1}-(1,2)}$ by Step 6. Hence, $p \cdot \sum_{y \in O_{H}(a)} \alpha_{p}\left(y^{I(a)}\right)=p \cdot \sum_{y \in C_{H}(a)} \alpha_{p}\left(y^{\Delta_{1}-(1,2]}\right)=\left|C_{H}(a)\right|$ by the formula of Frobenius. On the other hand, $\sum_{y \in C_{H^{(a)}}} \alpha^{*}(y)=f \cdot\left|C_{H}(a)\right|$, where f is the number of orbits of $C_{H}(a)$ on $\Omega-I(a)$. Hence we get

$$
\frac{|H|}{p} \geqslant \frac{|H|}{p}(f-1), \quad \text { and hence } f \leqslant 2
$$

In the above expression, if $|\Omega|-(3 p-1) \equiv 0\left(\bmod p^{2}\right)$, the equality does not hold.

Step 11. $C_{G}(a)_{1,2, \cdots, 2 p}$ has at most $2 m$ orbits on $\Omega-I(a)$. Moreover, $C_{G}(a)_{1, \cdots, p,(p+1, p+2)_{p+3, \cdots, 2 p}}\left(=C_{G_{((p+1, p+2)}}(a)_{1, \cdots, p, p+3, \cdots, 2 p}\right)$ has exactly m orbits on $\Omega-I(a)$.

Proof. By Step 10, $C_{G}(a)_{w+1, \cdots, 2 p, i}$ has exactly m orbits on $\Omega-I(a)$. Let $\Gamma_{1}, \cdots, \Gamma_{m}$ be the orbits. We take an arbitrarily fixed orbit Γ_{j} of $C_{G}(a)_{w+1, \cdots, 2 p, i}$ on $\Omega-I(a)$. Let $\Sigma_{1}, \cdots, \Sigma_{k}$ be the orbits of $C_{G}(a)_{1,2, \cdots, 2 p}$ on Γ_{i}. Since $C_{G}(a)_{w+1, \cdots, 2 p, i} \triangleright C_{G}(a)_{1,2, \cdots, 2 p}$ and Γ_{j} is an orbit of $C_{G}(a)_{w+1, \cdots, 2 p, i}, C_{G}(a)_{w+1}^{\Delta_{1}-1, \cdots, 2 p, i}$ acts on the set $\left\{\Sigma_{1}, \cdots, \Sigma_{k}\right\}$ transitively. Let $Y=C_{G_{\left(\Sigma_{1}\right)}}(a)_{w+1, \cdots, 2 p, i}$, then $\left|C_{G}(a)^{\Delta_{1}-(i)}{ }_{w+1, \cdots, 2 p, i}: Y^{\Delta_{1}-(i)}\right|=k$. Similarly we have that $\left|C_{G}(a)_{\substack{\Delta_{1}-(i) \\ w+1, \cdots, 2 p, i, i+1}}: Y_{i+1}^{\Delta_{1}-(i)}\right|$ $=k$. Hence, $\left|C_{G}(a)_{w+1}^{\Delta_{1}-(i)}, \ldots, 2 p, i \leq C_{G}(a)_{w+1, \cdots, 2 p, i, i+1}^{\Delta_{1}-\{1]}\right|=\left|Y^{\Delta_{1}-(i)}: \dot{Y}_{i+1}^{\Delta_{1}-(i)}\right|=\left|\Delta_{1}\right|-i$. Therefore Y is transitive on $\Delta_{1}-\{i\}$. Let $\left(\beta_{1}, \cdots, \beta_{p}\right)$ be a p-cycle of a such that $\left\{\beta_{1}, \cdots, \beta_{p}\right\} \subseteq \Sigma_{1}$. For any $w-p-i$ elements $\alpha_{1}, \cdots, \alpha_{w-p-i}$ of $\Delta_{1}-\{i\}$, $C_{G}(a)_{i, \alpha_{1}, \cdots, \alpha_{w-p-i}, w+1, \cdots, 2 p, \beta_{1}, \cdots, \beta_{p}}$ has an element b of order p. Then $b \in Y$ and $b^{\Delta_{1}}$ is a p-cycle, and so, $Y_{\alpha_{1}, \cdots, \alpha_{w-p-i}}^{D_{1}}$ has the p-cycle. Since $\alpha_{1}, \cdots, \alpha_{w-p-i-1}, \alpha_{w-p-i}$ are any $w-p-i$ points of $\Delta_{1}-\{i\}$, we have $Y^{\Delta_{1}-(i)} \geqslant A^{\Delta_{1}-(i)}$ (cf. [14, Theorem 13.9]). Therefore $k \leqslant 2$. If $k=2$, then $Y^{\Delta_{1}-(i)}=A^{\Delta_{1}-(i)}$ and $C_{G}(a)_{w^{\prime}+1, \cdots, 2 p, i}^{\Delta_{1}-(1)}=$ $S^{\Delta_{1}-(i)}$. Therefore Γ_{j} is an orbit of $C_{G}(a)_{1, \cdots, p(p+1, p+2)_{p+3, \cdots, 2 p}}$ on $\Omega-I(a)$, even if $k=2$.

Step 12. We complete the proof.
Proof. Since a is an element of order p of the form

$$
a=(1) \cdots(p)(p+1) \cdots(3 p-1)(3 p, \cdots, 4 p-1)(4 p, \cdots, 5 p-1) \cdots,
$$

$C_{G}(a)_{p+1, \cdots, 2 p, 3 p, \cdots, 4 p-1}$ has an element b of order p. By Step 8 , we may assume that

$$
b=(1, \cdots, p)(p+1) \cdots(3 p-1)(3 p) \cdots(4 p-1)(4 p, \cdots, 5 p-1) \cdots
$$

Let $K=G_{1, \cdots, p(p+1, p+2)_{p+3, \cdots, 2 p}}$ and $L=\langle b\rangle \cdot K$. By the same argument as Step 10 in the proof of Theorem A, we have a contradiction.

4. Proofs of Theorem \mathbf{C} and Theorem D

Proof of Theorem C. Let G be a nontrivial $2 p$-transitive group on $\Omega=$ $\{1, \cdots, n\}$. Let P be a Sylow p-subgroup of $G_{1, \cdots, 2 p}$, then $P \neq 1$ and P is not semiregular on $\Omega-I(P)$ by [3] and [4]. Moreover, $N_{G}(P)^{I(P)}$ is $S_{m}(2 p \leqslant m \leqslant$ $3 p-1)$ or $A_{m}(2 p+2 \leqslant m \leqslant 3 p-1)$. Hence, if $n(\equiv|I(P)|) \equiv p-1(\bmod p)$, then Theorem C holds. Suppose that $n \equiv p-1(\bmod p)$. Let Q be a subgroup of P such that the order of Q is maximal among all subgroups of P fixing more than $|I(P)|$ points. Set $N=N_{G}(Q)^{I(Q)}$, then N has an orbit Γ such that $N^{\Gamma} \geqslant A^{\Gamma}$ and $|\Gamma| \geqslant 3 p$, by Theorem A.

Proof of Theorem D. Let G be a nontrivial t-transitive group on $\Omega=$
$\{1, \cdots, n\}$. Suppose that t is sufficiently large. By Satz B in $[13], \log (n-t)>\frac{t}{2}$. By the proof of $[13$, Satz $B]$, we can see that $\log (n-t)>\left(\frac{1}{2}+\varepsilon_{0}\right) t$ for some $\varepsilon_{0}>0$. Moreover, we can see that, in the proof of [13, Satz B], it was only used that for any k-transitive group H on Σ, there exists a subset Π of Σ such that $|\Pi|=k$ and $H_{(\mathbb{I})}^{\mathrm{I}} \geqslant A^{\mathrm{II}}$.

Let $p_{1}=2, p_{2}=3, \cdots$, and p_{i} be the i-th prime number. Then $\lim _{i \rightarrow \infty} \underset{p_{i}}{p_{i+1}} \rightarrow 1$. (This result is well known in the theory of numbers.)

Since t is sufficiently large, by the above remark and Theorem C, there exists a positive number ε which is sufficiently close to 0 , and exists a subset Δ of Ω such that $|\Delta| \geqslant\left(\frac{3}{2}-\varepsilon\right) t$ and $G_{(\Delta)}^{\Delta} \geqslant A^{\Delta}$. Therefore we have $\log (n-t)>\frac{3}{4} t$.

Gakushuin University

References

[1] E. Bannai: On rank 3 groups with a multiply transitive constituent, J. Math. Soc. Japan 24 (1972), 252-254.
[2] E. Bannai: On multiply transitive permutation groups I, Osaka J. Math. 11 (1974), 401-411.
[3] E. Bannai: On multiply transitive permutation groups II, Osaka J. Math. 11 (1974), 413-416.
[4] E. Bannai: On multiply transitive permutation groups IV, Osaka J. Math. 13 (1976), 123-129.
[5] E. Bannai: A note on multiply transitive permutation groups II, J. Algebra 36 (1975), 294-301.
[6] E. Bannai: Normal subgroups of 6-transitive permutation groups, J. Algebra 42 (1976), 46-59.
[7] E. Bannai: On some triply transitive permutation groups, Geometriae Dedicata 6 (1977), 1-11.
[8] P.J. Cameron: Biplanes, Math. Z. 131 (1973), 85-101.
[9] D.G. Higman: Intersection matrices for finite permutation groups, J. Algebra 6 (1967), 22-42.
[10] D. Livingstone and A. Wagner: Transitivity of finite permutation groups on unordered set, Math. Z. 90 (1965), 393-403.
[11] I. Mivamoto: Multiply transitive permutation groups and odd primes, Osaka J. Math. 11 (1974), 9-13.
[12] T. Oyama: On multiply transitive groups X, Osaka J. Math. 8 (1971), 99-130.
[13] H. Wielandt: Abschätzungen für den Grad einer Permutationsgruppe von vorgeschriebenem Transitivitätsgrad, Schr. Math. Sem. Inst. angew. Math. Univ. Berlin 2 (1934), 151-174.
[14] H. Wielandt: Finite permutation groups, Academic Press, New York and London, 1964.

