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Intensive activity in the course of the past few years has brought very
close to completion the following problem.

ProBLEM. Let G be a finite group with F*(G) simple. Let T be a subgroup
of G and L a subnormal subgroup of Cy(T) with L/O(L) isomorphic to a known
quasisimple group. Identify G.

The main contribution to the solution of this problem is the Unbalanced
Group Theorem, whose proof now arpears to be nearing completion.

Theorem 1.1 (Unbalanced group theorem). Let G be a finite group with
F*(G) simple. Let t be an involution of G. Then either G is known or 0(C(2))=1.

We shall call a group G balanced il 0(C(¢)) S0(G) for all involutions # of
G. A crucial corollary to the unbalanced group theorem is the B(G) theorem.
Before stating this result, we must review some definitions. A perfect subnormal
subgroup L of H is said to be a 2-component if L/0(L) is quasisimple. We
say that L is a component if O(L)SZ(L). The 2-layer of H, denoted Ly(H) is
the product of all 2-components of H. Similarly, the layer of H, denoted L(H),
is the product of all components of H.

Theorem 1.2 (B(G) theorem). Let G be a finite group with 0(G)=1. Let
t be an involution of L. Then every 2-component of C(t) is a component of Cy(t).

The next major contribution to our problem is the Component theorem of
Aschbacher and Foote. For G a finite group, let .L(G) be the set of all com-
ponents of C¢(¢) for ¢ ranging over the involutions of G. We define a relation
< on L(G) as follows:

K<L if there exists a pair (s,2) of commuting involutions with X a com-
ponent of C¢(s), L a component of Cg(¢) and K CLL".

We extend < to a transitive relation € on (G). We say that K is
maximal in £(G) if K<L implies K=L. Finally we say that K is standard in
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G if [K,K*]=#1 for all g€ G and | C4(K) N Co(K)?| is odd for all g& G— N4(K).

Theorem 1.3 (Component theorem of Aschbacher and Foote). Let G be
a finite group with F*(G) simple. Suppose that K is maximal in L(G). Then
either K is standard in G or K has 2 rank 1 and F*(G) is isomorphic to PSL(4,q),
PSU4,q), PSp(4,q) or Gy(q) for odd q.

Remarks. This result is essentially contained in [3, Theorem 1] and [11,
Theorem 1]. However certain discrepancies in the definition of maximal com-
ponent and the hypotheses merit clarification.

In [3], Aschbacher defined a relation € on .L(G) as the transitive extension
of the relation <* given by:

L<*K if there exists an involution ¢ with
LJE(C(t)), K= [K,tf] and LCK .

Clearly if LLK in Aschbacher’s sense, then LKL K in our sense. Moreover,
if LKL K in Aschbacher’s sense, then |K|>|L| or K=L. Hence Aschbacher’s
relation is a partial ordering on _£(G) and it makes sense to speak of .L*(G) as
the maximal elements of .£(G) under this partial order.

Now if K is maximal in our sense and K<L in Aschbacher’s sense,
then K=L and so K&.L*(G). Thus .L*(G) contains all of our maximal com-
ponents.

Now Aschbacher’s Theorem 1 is stated for those K&.[(G) such that if
Le L(G) and K is a homomorphic image of L, then L&.L*(G). This hypo-
thesis is very awkward to check. Fortunately, however, inspection of Aschba-
cher’s proof reveals that only the following hypothesis is really used:

Ke [(G) and if K« Le L(G),
then Le L*(G) .

where < is used in our sense. Now if K is maximal in our sense and if
K< Le L(G), then L is maximal in our sense whence, in particular, L& L*(G).

Thus Aschbacher’s Theorem 1 is valid for all K € _£(G) which are maximal
in our sense. If K&.[(G) has dihedral Sylow 2-subgroups and K<L with
my(L)=1, then K is not maximal in our sense. Thus conclusion (3) of Asch-
bacher’s theorem does not apply. Moreover, our hypothesis that F*(G) is
simple rules out conclusion (4). Thus either K is standard in G or my(K)=1
and conclusion (2) holds. In the latter case, Foote’s Theorem 1 in [11] implies
that F*(G) is isomorphic to PSL(4,q), PSU(4,q), PSp(4,q) or G,(q) for ¢ odd
and K is isomorphic to SL(2,q), as asserted.

Corollary 1.4. Let G be a finite group with F*(G) simple. Let T, be a
2-subgroup of G and K a component of Ci(T,). Then there exists a chain
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K = Lo, Ll: L2) °tty Ln—b Ln = F*(G)

satisfying

(1) If Li=L,, then i=j.
(2) L; is a component of Cy(T;) for some 2-subgroup T; of G.
3) For i>1, T,=8;.,.€8yl, (Ce(L;-y)) and L;_, is a compoment of
Ce(Ns,_(T5)). '
(4) LiS<LibCory,
(5) For each i, 1<i<n, one of the following hold:
(a) L;=<L;-*€eT> and L; ,Cg(L,)[Cc(L;) is standard in some sub-
group of Ny(L,)|Ce(L;) containing L,C(L;)|Ce(L;).
(b) L= (L;-1)*Ce@>; L, 1=SL(2,q) for some odd q; L;|Z(L;) is iso-
morphic to PSL(4,q), PSU(4,q), PSp(4,q) or Gy(q).
(©) Lik{(Li)HCo@D>; Lyl Z(L)==Li 1| Z(L;s).

Our proof of Corollary 1.4 requires two preliminary results.

Lemma 1.5. Let G be a finite group and S a 2-subgroup of G.
(1) If T is a subgroup of S, then Ly(Cy(S))<=Ly(Cy(T)).
() If 0(G)=1, then L/(Co(S))=L(Co(S)).

Proof. (i) It is sufficient to consider the case where [S:T]=2. Let C
=Cy(T)S and C=C|T. Itis easy to see, using the 3-subgroup lemma, that
Ly(C(S))T/T=Ly(Cz(S)). Similarly, Ly(Cs(T))T/T=Ly(C). Then by the
L-balance theorem of Gorenstein and Walter ([15], Proposition 4.2), we have
Ly(Cs(S))T|T S Ly(C). Butthen Ly(C¢(S)) S Ly(Cy(T))T whereupon it follows
that Ly(Cy(S)) S Ly(Cy(T))-

(i) The proof is by induction on |S|. If |S|=2, then the result
follows from Theorem 1.2. Assume now that T is a proper subgroup of S with
[S:T]=2. By (i) and our inductive assumption, we have Ly(Cy(S)) S Ly (C(T))
=IL(Cy(T)). Le: L=L(C4(T)), C=LS and C=C|T O(L). Then as in (i),
Ly(C4(S))=Ly(C%(S)). But |S|=2 and 0(C)=1, hence by induction,
Ly(Ce(S)=L(C%(S)). Therefore [Ly(Cg(S)), 0(Ly(Cs(S))ISTO(L) and we
have that O(Ly(Cg(S)))SZ(Ly(Cs(S))) by the 3-subgroup lemma. Thus
Ly(Cg(S))=L(C4(S)) as required.

Lemma 1.6. Let G be a finite group with F*(G) simple such that Corollary
1.4 holds for all proper sections T' of G with F*(T') simple. Let V, W be 2-sub-
groups with {1>=W V. Suppose that L is a component of Cs(V), M is a
component of Co(W) and M={L*Ce"D %= L. Then there is a chain L=L, L,, -+,
L,=M satisfying (1)-(5) of Corollary 1.4 with L,cM for 1<i<n.

Proof. Let H=VM and H=H|Cy(M). Then M=F*(H) and the con-
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clusion of Corollary 1.4 holds in H. Since V & Cy(M) by assumption, we have
that V=+<1> and L is a component of Cz(¥V). _

Therefore, there exists a chain L=L,,L,,+--,[,=M and 2-subgroups T,
S;,0<i<n with V=T, such that (1)-(5) of Corollary 1.4 hold. Let L, be the
largest perfect normal subgroup of the preimage in H of L;. Let T; and S, be
Sylow 2 subgroups respectively of the preimage in H of T; and S,. As
Cy(M)|Z(M) is a 2-group, Cy(M) has a normal Sylow 2-subgroup containing
W. Thus WS T, S8, y;, L; is quasisimple and L, S M. Applying the 3-sub-
group lemma, we then have that the chain L=L,L,,-:-,L,=M together with
the 2-subgroups T}, S;, 0<i<n satisfies (1)-(5) of Corollary 1.4in H. We must
show that the chain satisfies (1)~(5) of Corollary 1.4 in G.

First observe that M<I<IC(W) and Cy(T;)SCe(W) implies that Cy(T)
<<Cy(T;). But L; is a component of C,(T;), hence L; is a component of
Co(T;) as well. The same reasoning yields that L, ; is a component of
Ce(Ns,_(T})). Hence, if S;=S¥Syl(Cy(L;)), then L, , is a component of
Ce(Ngy_(T;)). This shows that (1)-(4) of Corollary 1.4 hold. Consider the
link L, ,, L; for 1<i<m. If L;#<L,\*€a®» then L;/Z(L;)=L;\|Z(L;-,)
and (5c) holds. Therefore, we may assume that L,=(L;_;*©az7T so that
L;=<L;_,*©e®%, If (5b) holds for L;,, L; in H, then (5b) holds for L;_,, L;
in G as well. Finally, if (5a) holds for L, ,, L; in H, set Y=Ny(L;)C¢(L;) and
Y=Y/C4L;). Since Cyx(L;)SCy(L;_,), it follows from the 3-subgroup lemma
that C¢(L;_,)=Cy(L;_;). Hence we may use the corresponding result in H to
easily verify that L;_, is a standard component of some subgroup of ¥ containing
L;. Thus (5a) holds and the proof is completed in all cases.

RemArk. Once Corollary 1.4 is proved the conclusion of Lemma 1.6 will
hold for all finite groups G with F*(G) simple.

Proof of Corollary 1.4. Assume that G is a minimal counterexample
and let L, be a counterexample subject to |L,/Z(L,)| maximal and then
| Co(Ly) |, maximal. By our choice of L, we have that the following hold:

(i) If Ly, Ly, +++, L, is a chain satisfying (1)-(5), then L;/Z(L,)==L,/Z(Ly,),
1<i<m.

(if) Let V, W be 2-subgroups of G with {1>= W<V, L, a component of
Ce(V), M a component of Co(W) and M={L,"€e"”>,  Then M=L,.

In order to prove (i), observe that if L, is a counterexample, then so is each
L;, 0<:<m. Hence by choice of L,, (5c) is satisfied and L;/Z(L;)==Ly/Z(L,),
1<i<m. If the hypotheses of (ii) hold, then by Lemma 1.6, there exists a chain
Ly, L,, -+, L,,=M satisfying (1)-(5). The result now follows from ().

Let Sy&Syly(Ce(Ly)) and let s&€1(S;). Then Ly L(C4(s)) by Lemma 1.5.
This leads to the following dichotomy.

(A) If s€I(S,), then each component M of {L, e satisfies M|Z(M)
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= Lo/ Z(Ly).

(B) For some s€I(S,), there exists a component M of (L, €N such
that M|Z(M)>L/Z(L,).

Suppose first that (A) holds and let s€ I(Z(S,)). By assumption, {L,*Cen>
=M,My--M, where M;/Z(M,)=<L,/Z(L,), 1<i<r. We claim that up to rein-
dexing, Ly=M,, hence Ly=_L(G). If this is not the case, then we must have
r>2. Since S, centralizes L,, So/Cs (M M,-+-M,) acts regularly on {M,, M,,---,
M.,}. An easy induction argument gives |2}, |,<<4""}, r>2. Also |M,/Z(M,)|,
>4. Thus |Co(M,)|,=4"""| Cs(MM;-+-M,)| and we have

ICG(MI)I2> erlzlcso(Mle'“MrN = ISoI .

But the chain L, M, satisfies (1)-(5), hence M, is a counterexample with
| MJZ(M,)| = | Lo/ Z(Lo)| and |Cg(M,)|,>|Ce(Ly)|, against the choice of L.
This proves the claim.

Since L,e.L(G), it follows from Theorem 1.3 and choice of L,, that L,
is not a maximal element of L(G). As S,&Syly(C¢(L,)), we may then find
te1(S,) and a component M of Cg(t) such that M={L ¢ > L, But this
contradicts (i) with respect to <t>, <t, s> and the components M of Cg(t) and L,
of Cy(<2, ).

Finally, suppose (B) holds. Thus for some s€I(S,), L,SL(Cs®) and
Ly )’ has a component N with N/Z(N)2zL,/Z(L,). Let W, be a subgroup
of S, containing s and of maximal order subject to L,3=<{Ly €e®)%,  Let
w N (W)— W, with wieW,. By choice of W,, L, is a component of
CsKWy,wy)). Applying (ii), <L %" is not a component of C¢(W;), hence
L ECeW Ny =M M*1 where M, is a component of Cg(W,), M,=%=M,"+ and
M,|Z(M,)=L,|Z(L,). By Lemma 1.5, L(Cs(W,)) S L(C¢(s)), hence {LgHCet)
CMECENZ (M 1) Cet)y, Without loss, we may assume that N S M, €D,
Now L,, M, is a chain satisfying (1)-(5), hence M, is a counterexample as well.
Repeating the analysis and using (i) and (ii), we may construct a chain of 2-
groups W, 2 W,2--- W, 2<s> with m>2 satisfying.

(2) M; is a component of C¢(W))

(b) M;_,is a component of Co(Ny,;_ (W)))

(c) <M;_CeWPy—=MM"i for some w;E Ny, (W;) with wic W, and

M;+M;".

(d) NCM e,

(e) M,|Z(M;)=Ly|Z(Lo), 1<j<m.

Evidently we may continue until M, is a component of L(Cs(s)). But N is
a component of (L, et with NJZ(N)2xL,/Z(L,) and this is incompatible with
Nng and Mm/Z(Mm)gLO/Z(L)O

This final contradiction completes the proof of Corollary 1.4.
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Corollary 1.7. Let K be a set of isomorphism classes of finite quasisimple
groups. Let the isomorphism classes be denoted by [K] with representative K.
Suppose that if L is a quasisimple group satisfying one of the following conditions
then [L]€ K.

(1) L/Z(L)=K|Z(K) for some [K]€ K.

(2) There is a standard component K in a subgroup of Aut(L) containing
Inn(L) with [K]e XK.

(3) L/Z(L) is isomorphic to PSL(4,q), PSU(4,q), PSp(4,q) or G,(q) and
[SL(2,9)]le K for some odd prime power q.

Let G be a finite group with F*(G) simple, let T be a 2-subgroup of G and L
a component of Co(T) with [L]E K. Then [F*(G)]l€ K.

Proof. Let L=L,,L,,L,,--,L,=F*(G)be a chain of quasisimple subgroups
of G as given in Corollary 1.4. If [L; ;]€ X, then [L;]JeX as well. Thus as
[L)e X, [L,]e XK.

We shall call a family K which satisfies conditions (1)-(3) of Corollary 1.7
embedding-closed. We denote by Chev (5) the set of Chevalley groups over a
finite field of characteristic 5. We now state our main theorem.

Theorem 1.8. Let A be the set of all isomorphism classes [A] such that
either A|Z(A)E Chev(5) or A|Z(A) is isomorphic to a member of

{42,411, n>2; PSL(2,4"), n=2", m>0; PSU(3,4"), n=2", m>0; PSL(3,4"),
n=2", m>0; M, ], H], LyS, O’NS, He, Suz, -3} .

Then A is embedding closed.

The work in this paper represents a brief coda to a vast symphony of theorems
culminating in Theorem 1.8. We summarize the major antecedents below.

Theorem 1.9 (Aschbacher [1], [2], Gorenstein-Harada [14], Harris [20],
Harris-Solomon [21], Solomon [26], [27], Walter [29]). Let G be a finite group
with F¥*(G) simple having a standard compoment A with A|Z(A)< Chev (5) or
A|Z(A)=Azy 11y, n=>2, or A=<LyS. Then F*(G) is isomorphic to some group in
the following set.

{Chev (5), Azy1, PSL(2,16) PSL(3,4), PSU(3,4), My, J1, H], LyS, He}

Theorem 1.10 (Griess-Mason-Seitz [17], Nah [24], Seitz [25]). Let G
be a finite group with F*(Q) simple having a standard component A with A|Z(A)
=PSL(2,4"),n>2, or A|Z(A)=PSU(3,4"),n>1, or A|Z(A)=PSL(3,4"),n>1.
Then F*(G) is isomorphic to some group in the following set:

{PSL(2,4"), n>4; PSU(3,4"), n>2, PSL(3,4"), n>2, O’NS, He Suz}
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Theorem 1.11 (Finkelstein [8], [9]). Let G be a finite group with F*(G)
simple having a standard component A isomorphic to HJ or J.. Then F*(G) is
isomorphic to O’N'S or Suz.

Theorem 1.12 (Griess-Solomon [18], Solomon [28]). Let G be a finite
group with F*(G) simple. Then G does not have a standard component isomorphic
to O’NS, He or Suz.

Theorem 1.13 (Yoshida [32]). Let G be a simple group having an involution
t with Cc(t)QZZXMu. Then Gg '3-

We now examine how Theorem 1.8 could fail. By hypothesis, if [SL(2,9)]
€A, then ¢=5". Also, A is closed under central quotients and central
extensions and A contains [K] whenever K/Z(K) is isomorphic to PSL(4,5%),
PSU(4,5"), or PSp(4,5") or Go(5"). The final condition requires that [L]e A
whenever there exists K standard in G<Aut(L) with [K]eA. This holds by
Theorems 1.9-1.12 unless possibly if K/Z(K)=My,, HJ, -3 or Suz. Thus
Theorem 1.8 will be proved once the following result is established.

Theorem 1.14. Let G be a finite group with F*(G) simple having a standard
component K with K|Z(K) isomorphic to M, HJ, +3 or Suz. Then F*(G) is
isomorphic to Suz or +3.

The remainder of the paper is devoted to the proof of Theorem 1.14.

2 Properties of My,, HJ, Suz and -3

In this section, we enumerate those properties of M,,, HJ, Suz and -3
which are necessary for the proof of Theorem 1.14. In most cases, these are
easily deduced from information given in ([5], [6], [7], [9], [23], [30], [31]).
In what follows, K will be a proper 2-fold covering of M,,, HJ or Suz with
Z(K)=<t>, K* a non-trivial extension of K by Z, and K*=K|<{t>. Note that
for M,,, H] and Suz, the outer automorphism group and a Sylow 2 subgroup of
the Schur multiplier have order 2.

Lemma 2.1. Let K==M,,. Then
(i) K* has 3 classes of involutions with representatives z, % in K and pe K*
—R. Also Cx(?)=E;-S,, Cx(®)=Z,X S5 and Cx(P)=Z,x As.
(i1) K has 3 classes of involutions with representatives t, 2 and zt.
(i) For some Te<Syl(K¥*), <z, t>=Z(T)=Z(TNK). Furthermore, both
Aut(T) and Aut(T N K) act trivially on {z, t>.
(iv) Al involution of K*—K, if any exist, are conjugate. If p is such an
tnvolution, then Cy(p)==Z,X As.

Proof Everything except part (iii) is clear. We shall prove that Aut(7' N K)



766 L. FINKELSTEIN AND R.M. SoLomoN

and Aut(T) act trivially on <z, £>. It follows from the character table of K that
%z is a fourth power in TN K, 2t isnotasquarein T'NK and ¢ is a fourth power
in T but not in TNK. This implies that Aut(T N K) acts trivially on <z,z> and
that {zt> is invariant under Aut(7). It suffices to prove that 2 does not fuse
to ¢ in Aut(7). Now K has an element & of order 4 such that |Cx(3)|=25
&=z and 3x8t. Without loss, we may assume that §& T and |Cy(8)|=2¢. If
z'=t for some ac Aut(T), then A=35" satisfies A*=t, AxAt=2A"! and |Cr(\)|
=25 This implies that | Cz«(X)|,=2° whereupon A~&. But x~wt=¢"' then
gives a contradiction.

Lemma 2.2. Let K=H]. Then
(1) K has 3 classes of involutions with representatives t, z and zt.
(it) For some T Syl(K*), {z,t)=Z(T)=Z(TNK). Furthermore, both
Aut(T) and Aut(T N K) act trivially on {z,t).
(iii) Al involutions of K*—K, if any exist are conjugate. If p is such an
involution, then Cy(p)==Z,xX PSL(3,2).

Proof Parts (i) and (iii) are easily deduced from the character table of K.
In order to prove part (ii), we observe that 2 is a fourth power in T'NK, 2t is
not a square in TNK and ¢ is a fourth power in T but notin TNK. This
shows that Aut(TNK) acts trivially on <z,#> and Aut(7T) stabilizes {zt>.
Now K has an element 8 of order 4 such that |Cx«(8)],=27, 8=z and 8¢3t.
Assuming that §& T with |C7(8)| =27, it follows that if ac Aut(T") with 2°=t¢,
then A=8" satisfies A?=t and |C(\)|=2". But then X is an involution of K*
with | Cz«(X)|,=25 which is impossible.

Lemma 2.3. Let K=~Suz. Then
(i) K has 2 classes of involutions with representatives zZ and %. 0,Cx(Z))
=0,(Cz+(2)) = 0005 and Cx(2)/(0(Cz(2))=Q5(2). Cx(®)=(V x L)) with
V=E,, L=PSL(3,4), <V, 5>==D, and & induces the unitary polarity on L.
(i) K*—K has 2 classes of involutions with representatives p, and p,. Cx(P,)
= Aut(M,,) and Cx(P.)==Aut(H]).
(ii1) K has 3 classes of involutions with representatives t, z and zt.
(iv) K*-—K /\has exactly one class of involutions. If p is a representative, then
Cx(p)=M,, or HJ.
(v) K* has precisely 2 classes of elements of order 4 whose square is t. If
§ is such an element, then either SEL and 5~& or SEK*—K and Cy(8)=M,
or ).
(vi) K* has no element 8 of order 4 with |Cy«(8)|=2".
Proof. Parts (i)-(iii) are easily deduced from information given in ([30],

[31]). Now K has an element 7 of order 3 such that Cg(f)"):g(Cz('?))XE
with 0(Cz(7))=E, and B=4,;. Now Cg«(7)/0(Cz(7))=Ss. Let B* be an S,
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subgroup of Cz«(7) and assume, as we may, that B*2{p,,p, #>=E, (see parts
(1), (ii)). Now x has order 4, hence B=<SL(2,9), and since B*={B, p,>=<B,p,>,
we conclude that

(*) pi~pitand [p;| = [p;l, 1] .

An immediate consequence of (*) is that |Cx(p,)|=|Cx(P;)|, i=1,2. Also the
fact that E(Cx(F;)) contains conjugates of # implies that Cy(p;)==M,, and C x(P2)
%I-ﬁ . This proves part (iv).

Let & be an element of order 4 of K* with |Cx«(8)| =2 By (v), 8*==z or
zt. Let C=Cx«(2) and C=C[<{z,t> so that C(8)=C¢(8) and § is an involution
of C. Now C=<Aut(Qs* Qs* Os) and an easy computation (see [3], section 10)
shows that each involution of C is centralized by some element of order 3. This,
however, is incompatible with | C(8)| =2 and the result is proved.

ReMARK. It follows from Lemma 2.3 that every non-trivial extension of

A
Suz by Z, splits.

Lemma 2.4. -3 has 2 classes of involutions with involutions of the two classes

A
having centralizers isomorphic to Z; X M,, and Sp(6,2) respectively. Also the
Schur multiplier and outer automorphism group of -3 are trivial.

Proof. See [16].

3 Proof of Theorem 1.14

Let G be a minimal counterexample to Theorem 1.14. Thus G is a finite
group with F*(G) simple, G has a standard component K with K/Z(K) iso-
morphic to ‘M,,;, HJ, Suz or -3 and G has minimal order subject to F*(G) not
isomorphic to Suz or «3.

Proposition 3.1. K is isomorphic to M, or 3. Furthermore |Cy(K)|,=2.

Proof. We shall first show that | C(K)|,=2 and then prove in a sequence
of lemmas that K is isomorphic to M;, or -3.

It follows from the combined results of Aschbacher and Seitz ([1], [4])
that C4(K) has cyclic Sylow 2-subgroups. Applying [10, Theorem 2] in con-
junction with the properties of M,,, HJ, Suz and -3 enumerated in section 2
and the Unbalanced Group Theorem gives Cg(K)=<%,0(Cs(K))> where
{t> has order 2 and is self centralizing in C¢(K). In particular, Cg(2)/<t>
=Aut;(K). Also G=<F*G),t).

In light of Theorems 1.11 and 1.12, it suffices to eliminate the cases where

. NN N
K is isomorphic to M;,, H], or Suz. In the following lemmas, we employ the
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notation set up in Lemmas 2.1-2.3.

N A
Lemma 3.2. K=xM,, or HJ.

Proof. Assume not. Then C¢(f)=K or K* and ¢ is not isolated in C(%)
by the Z* theorem [12]. Suppose at first that #* N K= {f}. Then by Lemma
2.1 (ii), ¢ is conjugate to 2 or 2f. Since {z, > is the center of some Sylow 2
subgroup T of C(2), t is conjugate to z or 2¢ in Ng(7). But by Lemma 2.1 (iii)
or Lemma 2.2 (ii), N¢(7T) acts trivially on <z,#>. Thus ¢ NK={t}. This
implies that C¢(f)=K* and K*—K contains a conjugate p of . Let V=<{¢,p>
so that Cg(v)=<{¢,p> ><\ L where L=A; if K=M, by Lemma 2.1 (iii) and

L=PSL(3,2) if K=H]J by Lemma 2.2 (iii). An easy argument shows that
¢t must fuse to p in N(V). Also p~pt in Cy(2), hence N(V) acts as S; on V.
In particular, there exists an element 3 of order 3 which acts regularly on V' and
centralizes L. Without loss, we may assume that 2L and t*=p. But then
t~p~pz=1t* 2=(tz)?, which gives t~1¢z, a contradiction.

A
Lemma 3.3. K2:Suz.

Proof. Assume not. As in Lemma 3.2, we shall obtain a contradiction
to F*(G) simple by showing that # is isolated in C¢g(¢). Now Cg(t)=K or K*.
By a result of D. Wright [31], we may assume that C(t)=K*. If t°NK= {1},
then by Lemma 2.3 (iii), ° N {z,2} &=¢. By extremal conjugation, we may find
g€G with zf=t and Cy(2,)*<S for some 2, {2,228} and S&Sy,(K*) with
2 ES. Let €S with 8=t and | Cy(8)| =2"-32-5-7. Such a § exists by Lemma
3.3 (iv) and C4(8)/0,(C(8))=<PSL(3,4). Also we may assume that z,E E(C¢(5))
X <t>, whereupon |Cy({2;,8))|=2". Now C¢({2,8D)f =C¢(<t,8°D)=Cx+(8%).
Hence &* is an element of order 4 of K* with | Cx«(8%)|=2". This however, is
in direct contradiction with Lemma 2.3 (vi). Therefore #°NK* C {#} U(K*
—K). Let SESylL(K*), peS— {t} and g€ G with p*=t and Cs(p)*<S. Then
Cr(p)f=Ce(Kp, D) =Cs(<t,t*>)=Cx(t¥). By Lemma 2.3 (iv), we may assume
that #=p. This forces g to normalize L=E(C(<2,p>)). But L=M,, or h/V}
with Z(L) =<t> and hence #¥=t¢ against the choice of z.

With the completion of the proof of Proposition 3.1, we are therefore in
the situation where K is isomorphic to M), or +3 and |C¢(K)|,=2. Let C be
the set of all chains C of quasisimple groups:

C: Ly, Ly, -+, L, = F*G)
constructed in Corollary 1.4 where [Lj]eA. Since
K= LO) Ll = F*(G)

is such a chain and [K]€ 4, C is non-empty. We know a great deal about
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the quasisimple subgroups L; of the chain C. In particular by Theorems 1.9—
1.12 and induction, [L&A implies that [L,]eA, 0<i<n—1. Moreover,
since [L,]& A, we must then have L,_, standard in G, hence L,_,=M,, or -3

and |C¢(L,-,)|,=2 by Proposition 3.1. We have proved that the following
holds.

Lemma3.4. LetC: L)L, ,L,=F*G) be a chain of C. Then L,_, is
standard in G, L, ,=M,, or +3 and |C4(L,_;)|,=2.

Now choose C'&C( so that C has maximal length n+41 and for this fixed
chain let {t>&Syl,(C4(L,-,)). Then Cg(#)/<t>=Auts(L,-;) by the Unbalanced
group theorem.

Lemma 3.5. Let & be an element of order 3 of L,_, chosen so that C,,_(3)
=ZyX Aut(PSL(2,8)) if L,,==-3 and C,,_(8)=Z;x A, if L,., =My, Such
elements of order 3 exist by results in ([5], [7]). Let A=Cy(8) and A=A[0(A).
Then the following holds:

(1) If L,_,==+3, then L(A) is isomorphic to PSL(2,8), PSL(2,8)x PSL(2,8),
G,(3), PSL(2,64), PSU(3,8), or PSL(3,8).

(i) If L,.,==M,, and A is non-solvable, then either F*(A) is isomorphic to
Ae, A, PSL(2,8), PSL(3,3) or PSU(3,3), or else A is an extension of E; by a
subgroup of N ,(<(123)>) containing Ss.

Proof. If L, ;=<-3, then Cy(t)=<&>XC,,_(8). Thus Cz(¥)=Z,XAut
PSL(2,8). Then (i) holds by [17].

_ Now suppose that L, ;=M. Then C,(t)=((K>XCy,_(8))<y> where
e, Cot)=(Kt)x L,_;)<{y> and either y=1 or C¢(?)Kt>=<Aut(M,;) and
Cz(5)KE>=S,. Hence C5(%)[<t>==A, or S,.

Let C=C5(%), @=0,(C) and E=[Q,7] for some 7=C of order 3. Suppose
that H<IX with |H| even. Then QNH=#<1>. Suppose that @ NH=<E).
Then {F)=Cx(¥) and 0(H)=<1)> implies H=<Z> and A=C, contrary to the
non-solvability of A. Thus ECH whenever H<JA with |H| even. In
particular, Z(A)=<1), whence A,=0%A) is fusion-simple. Moreover A does
not contain disjoint normal subgroups of even order. Finally, as @ is self-
centralizing in A, A has sectional 2-rank at most 4 by [19, Theorem 2]. Thus
by [14, Corollary C] and the above, one of the following holds:

(a) L=L(A) is a simple group of sectional 2-rank at most 4 and A is
isomorphic to a subgroup of Aut(L(A)).

(b) A is 2-constrained, 0,(A])==<E; or E,; and Af[0,(A7)=A5, A, A7, Z3X 45
or Ly(2) _ _

Suppose that T=0,(A)=<1>. Then ECT and <7, ) satisfies condition
(*) of [22]. 'Then by Theorem A of [22], <T, £)=TKZ> with T, isomorphic
to one of the following groups:
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(i1) ZymX Zym for some m>1.

(iii) a Sylow 2-subgroup of PSL(3,4).

(iv) a Sylow 2-subgroup of PSU(3,4).

Moreover 7 acts fixed-point freely on 7). Thus T;S0,A{). Hence Ty=~Ey;
and A{|T,=As, As, Ay or Zyx As. As T acts freely on T, Cxr(8)=Zs or Z,X S;.
Hence &/T,=S; or N ,,(<(123)), as claimed.

Thus we may assume (a) holds whence by [14, Main Theorem], L is iso-
morphic to one of the following groups:

I. PSL(n,q),2<n<5; PSU(n,q), 3<n<5; Gxq), °Dy(q), PSp(4,9) or Re(q)
for some odd gq.

II. PSL(2,8), PSL(2,16), PSL(3,4), PSU(3,4) or Sz(8).
1. A, Ay, Ay Ay or Ay
IV. My, My, My, My, ], H], J5, M° or LyS.

By inspection of the information tabulated in [4, Table 1], L is not of type
IV. Trivially if L is of type III, then L=4,. Suppose L is of type I1. If €L,
then ¥ is 2-central and L=L,®8). If f&L, then Cz(¥) is non-solvable or
isomorphic to Uj(2), a contradiction.

Finally suppose that L is of type I. Let # be a 2-central involution of L
centralized by #. If L=PSL(5,q) or PSU(5,q), then  normalizes H<ICz(%)
with H==SL(4,q) or SU(4,q). This is impossible by [13, (2.7) and (2.8)]. More-
over by [13, (2.5), (2.7) and (2.8)], LXPSp(4,q), PSL(4,q) or PSU(4,9). By
definition, if L is of Ree type, then Cz(¥)=Z,x PSL(2,q). Hence L=Re(3)
=Aut (PSL(2,8)). Thus L=PSL(2,q), PSL(3,q), PSU(3,9), 2Dy(q) or Gyg).
If L=PSL(2,q), then ¥ is of field-type and ¢=9. If LXPSL(2,q) then # nor-
malizes a subgroup H of Cz(#) with H=SL(2,3). If L=2D,(3), then  normalizes
H,=~SL(2,3%, which is impossible. If L==G,(3), then N,z ;,(H)=Cr(%). Hence
feL. Butthen f€#Z, a contradiction. Thus L=PSL(3,3) or PSU(3,3), as
claimed.

Lemma 3.6. The following conditions hold:
(i) n>2
() Ly,=Asif L,.,=M,,
(i) L,,=M¢f L, ,==-3
Let {x>=C} _ (L,-;)=Z, Then
(iv) Eidther {L,_;*€e"D>=L, , or {L, "¢N)=L, , and is a standard
component of G.

Proof. Suppose #>2. Then by Lemmas 2.1 and 2.4, L,_, is a standard
component of L, , with L, ,~A; if L, =M, and L, ,=M,,if L,_,=-3. Also
<ap>=C,, (L,-5)=Z, In any event, C;(<t,x)>) has a component isomorphic to
As or My, which is not standard in G and thus by Corollary 1.4, is a link in some
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chain of C of length at least 3. Thus #>2 and (i)-(iii) hold.

In order to prove (iv), assume that L,_,4IL(Cs(x)). Then by L-balance,
L, e N>=K K, where K, is a component of Cy(x) and either K,=K,' or
else K+ K and K/Z(K,)=L, ,. If K=K/, then applying Lemma 1.6 with
respect to <¢,x>, {x> and the components L,_, of C;(<{¢,x>) and K, of Cg(x),
there exists a chain connecting L,_, and K, such that each link satisfies (1)-(5)
of Corollary 1.4. By maximal choice of # and the fact the Ly=F=<{L 6 >=K,,
C': Ly,Ly,-++,L, 5, K, L, is a chain in C. Therefore, K, is a standard component
of G and K,=L,_; by Lemma 3.4.

It remains for us to eliminate the case where K +K,' and K,/Z(K,)
=L, ,. As[K]EU, it follows from Corollary 1.4 that there is a chain C*(
given by C*: K, K,,-++,K,=F*(G). Since K, commutes with Ky, K, is not
a standard component of G, hence m>2. Consider the chain

LO: Ll) '":Ln—ZJ KO: Kl, R Km = F*(G)

As m>2, m4-n—1>n. Hence by choice of n, K;=L; for some 2, j, 0<i<m,
0<j<n—2. We shall rule out this possibility and thus prove Lemma 3.6.

Suppose first that L, =<3, L,_,=M,,. As Cy({t,L,_5>)=<¢t,x), Cc(L,-,)
has Sylow 2-subgroups of maximal class. In particular, L,_, is the only com-
ponent of Ng(L,_,) isomorphic to M;;. Thus any predecessor of L, , in a
chain must be isomorphic to 4s. In particular, L;=A4; for 0<i<n—2. As
|K;|>|M,| for all j, we must have K;=L,_, for some j>1. But then K,
is a predecessor of L,_, with K;_;=<M,,, a contradiction.

Suppose next that L, =My, L, ,~A;. Clearly, if K,=L; for some
7, j, then we may assume that L, , has a predecessor L, ,=~A4;. If S,_; and
T, are as in (3) of Corollary 1.4, then L, ,=%<L,_j5CeTn-2 whereas L,_,
is a component of C4(Ns, (T,-5)). This implies that L,_,X L;_,S L(C¢(T,-2))
for some s& Ng,_(T',-5)—T,-. Now let Y=C¢(L,_,) and Y=Y/0(Y). AsL;_,
is a component of Cy(T,_,) and T, ,xLi_,CY, L(Y)%+<{1> by Lemma 1.5.
Furthermore, Cy(t)=<¢t,x,y> where Cg(t)=({t> X L,_;)<y>, y*&<t> and either
y=1 or C¢(t)/<{t>=<Aut(M,,). Using the notation of Lemma 3.5, we may assume
that §€ L,_,. Therefore Y CA and we conclude from Lemma 3.5 that F*(Y) is
isomorphic to 45, Ag, A;, PSL(2,8), PSL(3,3) or PSU(3,3). But L;_; is a com-
ponent of Cy(T,_,), hence A=0(A)Y with ¥Y=S,. This, however, is incom-
patible with Cy(2)=<¢,%,y)>.

For convenience, set K=L,_,, J=L,_,. By Lemma 3.6 (iv), if L={J*©&)%
then either L=J or L=K and L is a standard component of G.

Lemma 3.7. KM,

Proof. Suppose by way of a contradiction that K=M,,. There are two
cases to consider, namely L=] or L=K.
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Assume first that L=K. Then Cg(t)=<>XK. In fact, if Cq(t)/<tD
=Aut(My,), then x€Cs(<¢,%>)" whereas x&e L=C¢(x)" by Lemma 3.4. Also
xoot, since otherwise G=+3 by Theorem 1.13 against the choice of G. Now
let <&>&Syly(J) and A=C¢(8). Then Cu(x)=Cs(t)=<t>XL{E>XH where
H=4,. We can choose <x,x,>=0,(H) and set T=<¢,x,x,>. Clearly t&Z*(A)
and t*N TS x,%,>. It then follows using the action of H on T, that NA(T)
has orbits #{x,x,> and <x,x,>* on T* This yields |Ca(x) NNa(T)|,=2° con-
tradicting | Ca(x)|,=2%

We are therefore, in the situation where L=]. For yeI(G), let J*(y) be
the product of all components of C4(y) isomorphic to 4s; if none, set J*(y)=1.
Suppose J*(x)==J. Then as Cy(<{t,x>)/] is a 2-group of rank at most 3, we
have J*(x)=JxJ, and ¢ acts as an inner automorphism on J;. Since C¢(</J,2)
2C;,(t)x<{x>=E,, Cqt)=<t>xK(v) with v an involution chosen so that
[9,J]]=1 and K<v)>=xAut(My,). Also C(<t,x>)=<t>X ({x,v)> X J)<{x;> where
xy~x in K and [x,,9]=x. Now {¢,x,9>C{x,J,> and x, normalizes J,. Hence,
[%),9]=x then gives x&<x,xy,[J,>’ contradicting <{x,,,J,>/], is abelian. We
have thus shown that J*(x)=]. In particular J<ICg(x). Therefore if yeI(G)
and J(y) is the product of all normal subgroups of C¢(y) isomorphic to A,
otherwise J(y)=1, then J(x)=].

Let z€1(]) so that Cg(z)=2(Qs* Qy)S; (split) with an S, subgroup acting
faithfully on two central factors. Suppose that J,<1Cq(2), J,=<As. Since
C;,(#)<C4(<¢,2D), t acts as an inner automorphism on J,. Now C, (t)=E, and
C,,(t) contains an involution central in some Sylow 2-subgroup of C¢(<t,2>)
implies that C, (f)N<¢,2>=41. At any rate, a Sylow 3-subgroup of Cg(z)
centralizes C; (), hence C; (#)=<t,2)>, a contradiction. So J(z)=1.

Let W= {x,20 | z,€1(])} and if We W, set J(W)={J(w)|lwesW. It
follows from J(x)=], J(2)=1 and the subgroup structure of K that K=J(W)
for each We9W. Thus N (W)SNg(J(W))=NgK) for each Weg). As
J<C(x), Ce(x) permutes the elements of 9§. Therefore Cg(x) S Ng(K) and by
the Unbalanced Group Theorem, Cg(x) S Cy(2).

Now 6N C¢(t)= {t} by the Z*-Theorem. So t°NCg(x)=* {t} by Lemma
2.1. Let wet®NCy(x) with w=zt. Then |C¢(x)|,<|C¢(w)|, implies that x
induces a non-2-central involution on L(C¢(w)). By Lemma2.1, J=L(Cs(Kw, x>)),
hence weCy(<t,J>). Since w=t, w~wz in Ny(K). But then t~wz and re-
peating the argument with wz in place of w, we have JSCg(wz). This gives
JECo(Kw,wz>) = Cy(2) and provides us with the final contradiction.

Lemma 3.8. K2:-3.

Proof. Suppose not. Again, there are two cases to consider, namely
L=] or L=K. The elimination of both cases is similar to but less complicated
that in the proof of Lemma 3.7.
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Let 8 be an element of order 3 of J with C;(8)=Z;X A4,. Then Ci(8)=Z,
X Aut(PSL(2,8)) with I(Cx(8))Sx¥. Let A=Cy(8) and A=A/0(A). Since
Ci(F)=Ca(t)=Z,x Aut(PSL(2,8)), we have from Lemma 3.5 that L(A) is
isomorphic to PSL(2,8), PSL(2,8)x PSL(2,8), G,(3), PSL(2,64), PSU(3,8)
or PSL(3,8). Since *x=L(Cx(?))<=L(A), Cz(%) is solvable. An immediate
consequence is that LK. Otherwise, C,(x) contains a subgroup isomorphic
to PSL(2,8).

Therefore, we have L=]. For yeI(G), let J(y) be the product of all
normal subgroups of C(y) isomorphic to M, otherwise J(y)=1. Since d&J
and C,(x) is solvable, it follows from the structure of A that J is the unique
component of Cg(x) isomorphic to M;,. Thus J(x)=]. Let 9 be the set
of all four subgroups W of <x, /> with |C¢, j(W)|,=[<x,]>|,. If W=<x,w>

with we J, then wx~w and Cyg(w)=Sp(6,2). Since Cx(w) centralizes J(w), x
centralizes J(w) and so [ J(w), /]=1. But then [§, J(w)]=1 and the structure of
A gives J(w)=1. As Cg(x) is maximal in K, K= J(w)|we W*) for all W W
and since Cg(x) permutes the members of 9, we conclude that Cg(x) S Ng(K).
Again, by the Unbalanced Group Theorem, this yields Cg(x) € C(2).

Now t& Z(G), hence by the Z*-Theorem and inspection, there exists ¢, ¢
N Cy(x) with t,3=t. Let K;=Cg4(t;)’. Then x acts as a non-2-central involution
on K, yields J=L(Cg/(x)). Therefore t,&Cs({x,/>)=<t,x). We have shown
that {t,2x} =t°N Cy(x). Butif w is a 2-central involution of K centralizing x,
then x~xw in K. So, t~tx~txw whereupon {t,txw) centralizes /. In particular
xw centralizes ], a contradiction.

Lemma 3.6 completes the proof of Theorem 1.12.

WAYNE STATE UNIVERSITY
OH10 STATE UNIVERSITY
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