STANDARD COMPONENTS OF TYPE M_{12} AND 3

Larry FINKELSTEIN ${ }^{1)}$ and Ronald M. SOLOMON ${ }^{2}$)

(Received June 6, 1977)
(Revised March 29, 1979)

Intensive activity in the course of the past few years has brought very close to completion the following problem.

Problem. Let G be a finite group with $F^{*}(G)$ simple. Let T be a subgroup of G and L a subnormal subgroup of $C_{G}(T)$ with $L / O(L)$ isomorphic to a known quasisimple group. Identify G.

The main contribution to the solution of this problem is the Unbalanced Group Theorem, whose proof now appears to be nearing completion.

Theorem 1.1 (Unbalanced group theorem). Let G be a finite group with $F^{*}(G)$ simple. Let t be an involution of G. Then either G is known or $0\left(C_{G}(t)\right)=1$.

We shall call a group G balanced if $0\left(C_{G}(t)\right) \subseteq 0(G)$ for all involutions t of G. A crucial corollary to the unbalanced group theorem is the $B(G)$ theorem. Before stating this result, we must review some definitions. A perfect subnormal subgroup L of H is said to be a 2-component if $L / 0(L)$ is quasisimple. We say that L is a component if $0(L) \subseteq Z(L)$. The 2-layer of H, denoted $L_{2^{\prime}}(H)$ is the product of all 2-components of H. Similarly, the layer of H, denoted $L(H)$, is the product of all components of H.

Theorem $1.2(B(G)$ theorem). Let G be a finite group with $0(G)=1$. Let t be an involution of L. Then every 2-component of $C_{G}(t)$ is a component of $C_{G}(t)$.

The next major contribution to our problem is the Component theorem of Aschbacher and Foote. For G a finite group, let $\mathcal{L}(G)$ be the set of all components of $C_{G}(t)$ for t ranging over the involutions of G. We define a relation $<$ on $\mathcal{L}(G)$ as follows:
$K<L$ if there exists a pair (s, t) of commuting involutions with K a component of $C_{G}(s), L$ a component of $C_{G}(t)$ and $K \subseteq L L^{s}$.

We extend $<$ to a transitive relation \ll on $\mathcal{L}(G)$. We say that K is maximal in $\mathcal{L}(G)$ if $K \ll L$ implies $K \cong L$. Finally we say that K is standard in

[^0]G if $\left[K, K^{g}\right] \neq 1$ for all $g \in G$ and $\left|C_{G}(K) \cap C_{G}(K)^{g}\right|$ is odd for all $g \in G-N_{G}(K)$.
Theorem 1.3 (Component theorem of Aschbacher and Foote). Let G be a finite group with $F^{*}(G)$ simple. Suppose that K is maximal in $\mathcal{L}(G)$. Then either K is standard in G or K has 2 rank 1 and $F^{*}(G)$ is isomorphic to $\operatorname{PSL}(4, q)$, $\operatorname{PSU}(4, q), \operatorname{PSp}(4, q)$ or $G_{2}(q)$ for odd q.

Remarks. This result is essentially contained in [3, Theorem 1] and [11, Theorem 1]. However certain discrepancies in the definition of maximal component and the hypotheses merit clarification.

In [3], Aschbacher defined a relation \ll on $\mathcal{L}(G)$ as the transitive extension of the relation $<^{*}$ given by:

$$
\begin{aligned}
& L<^{*} K \text { if there exists an involution } t \text { with } \\
& L \unlhd E(C(t)), K=[K, t] \text { and } L \subseteq K .
\end{aligned}
$$

Clearly if $L \ll K$ in Aschbacher's sense, then $L \ll K$ in our sense. Moreover, if $L \ll K$ in Aschbacher's sense, then $|K|>|L|$ or $K=L$. Hence Aschbacher's relation is a partial ordering on $\mathcal{L}(G)$ and it makes sense to speak of $\mathcal{L}^{*}(G)$ as the maximal elements of $\mathcal{L}(G)$ under this partial order.

Now if K is maximal in our sense and $K \ll L$ in Aschbacher's sense, then $K=L$ and so $K \in \mathcal{L}^{*}(G)$. Thus $\mathcal{L}^{*}(G)$ contains all of our maximal components.

Now Aschbacher's Theorem 1 is stated for those $K \in \mathcal{L}(G)$ such that if $L \in \mathcal{L}(G)$ and K is a homomorphic image of L, then $L \in \mathcal{L}^{*}(G)$. This hypothesis is very awkward to check. Fortunately, however, inspection of Aschbacher's proof reveals that only the following hypothesis is really used:

$$
\begin{aligned}
& K \in \mathcal{L}(G) \text { and if } K \ll L \in \mathcal{L}(G) \\
& \text { then } L \in \mathcal{L}^{*}(G)
\end{aligned}
$$

where \ll is used in our sense. Now if K is maximal in our sense and if $K \ll L \in \mathcal{L}(G)$, then L is maximal in our sense whence, in particular, $L \in \mathcal{L}^{*}(G)$.

Thus Aschbacher's Theorem 1 is valid for all $K \in \mathcal{L}(G)$ which are maximal in our sense. If $K \in \mathcal{L}(G)$ has dihedral Sylow 2-subgroups and $K<L$ with $m_{2}(L)=1$, then K is not maximal in our sense. Thus conclusion (3) of Aschbacher's theorem does not apply. Moreover, our hypothesis that $F^{*}(G)$ is simple rules out conclusion (4). Thus either K is standard in G or $m_{2}(K)=1$ and conclusion (2) holds. In the latter case, Foote's Theorem 1 in [11] implies that $F^{*}(G)$ is isomorphic to $\operatorname{PSL}(4, q), \operatorname{PSU}(4, q), \operatorname{PSp}(4, q)$ or $G_{2}(q)$ for q odd and K is isomorphic to $S L(2, q)$, as asserted.

Corollary 1.4. Let G be a finite group with $F^{*}(G)$ simple. Let T_{0} be a 2-subgroup of G and K a component of $C_{G}\left(T_{0}\right)$. Then there exists a chain

$$
K=L_{0}, L_{1}, L_{2}, \cdots, L_{n-1}, L_{n}=F^{*}(G)
$$

satisfying
(1) If $L_{i}=L_{j}$, then $i=j$.
(2) L_{i} is a component of $C_{G}\left(T_{i}\right)$ for some 2-subgroup T_{i} of G.
(3) For $i \geq 1, \quad T_{i} \subseteq S_{i-1} \in S y l_{2}\left(C_{G}\left(L_{i-1}\right)\right)$ and L_{i-1} is a component of $C_{G}\left(N_{S_{i-1}}\left(T_{i}\right)\right)$.
(4) $L_{i} \subseteq\left\langle L_{i-1}{ }^{L\left(C_{G}\left(T_{i}\right)\right)}\right\rangle$.
(5) For each $i, 1 \leq i \leq n$, one of the following hold:
(a) $L_{i}=\left\langle L_{i-1}{ }^{L\left(C_{G}\left(T_{i}\right)\right)}\right\rangle$ and $L_{i-1} C_{G}\left(L_{i}\right) / C_{G}\left(L_{i}\right)$ is standard in some subgroup of $N_{G}\left(L_{i}\right) / C_{G}\left(L_{i}\right)$ containing $L_{i} C_{G}\left(L_{i}\right) / C_{G}\left(L_{i}\right)$.
(b) $L_{i}=\left\langle\left(L_{i-1}\right)^{L\left(G_{G}\left(T_{i}\right)\right)}\right\rangle ; L_{i-1} \cong S L(2, q)$ for some odd $q ; L_{i} \mid Z\left(L_{i}\right)$ is isomorphic to $\operatorname{PSL}(4, q), \operatorname{PSU}(4, q), \operatorname{PSp}(4, q)$ or $G_{2}(q)$.
(c) $\quad L_{i} \neq\left\langle\left(L_{i-1}\right)^{L\left(C_{G}\left(T_{i}\right)\right)}\right\rangle ; L_{i} \mid Z\left(L_{i}\right) \cong L_{i-1} / Z\left(L_{i-1}\right)$.

Our proof of Corollary 1.4 requires two preliminary results.
Lemma 1.5. Let G be a finite group and S a 2-subgroup of G.
(i) If T is a subgroup of S, then $L_{2^{\prime}}\left(C_{G}(S)\right) \subseteq L_{2^{\prime}}\left(C_{G}(T)\right)$.
(ii) If $0(G)=1$, then $L_{2^{\prime}}\left(C_{G}(S)\right)=L\left(C_{G}(S)\right)$.

Proof. (i) It is sufficient to consider the case where $[S: T]=2$. Let C $=C_{G}(T) S$ and $\bar{C}=C / T$. It is easy to see, using the 3-subgroup lemma, that $L_{2^{\prime}}\left(C_{G}(S)\right) T / T=L_{2^{\prime}}\left(C_{\bar{c}}(\bar{S})\right)$. Similarly, $L_{2^{\prime}}\left(C_{G}(T)\right) T / T=L_{2^{\prime}}(\bar{C})$. Then by the L-balance theorem of Gorenstein and Walter ([15], Proposition 4.2), we have $L_{2^{\prime}}\left(C_{G}(S)\right) T / T \subseteq L_{2^{\prime}}(\bar{C})$. But then $L_{2^{\prime}}\left(C_{G}(S)\right) \subseteq L_{2^{\prime}}\left(C_{G}(T)\right) T$ whereupon it follows that $L_{2^{\prime}}\left(C_{G}(S)\right) \subseteq L_{2^{\prime}}\left(C_{G}(T)\right)$.
(ii) The proof is by induction on $|S|$. If $|S|=2$, then the result follows from Theorem 1.2. Assume now that T is a proper subgroup of S with $[S: T]=2$. By (i) and our inductive assumption, we have $L_{2^{\prime}}\left(C_{G}(S)\right) \subseteq L_{2^{\prime}}\left(C_{G}(T)\right)$ $=L\left(C_{G}(T)\right)$. Le $\hat{\epsilon} L=L\left(C_{G}(T)\right), C=L S$ and $\bar{C}=C / T 0(L)$. Then as in (i), $\overline{L_{2^{\prime}}\left(C_{G}(S)\right)}=L_{2^{\prime}}\left(C_{\bar{c}}(\bar{S})\right)$. But $|\bar{S}|=2$ and $0(\bar{C})=1$, hence by induction, $L_{2^{\prime}}\left(C_{\bar{c}}(\bar{S})\right)=L\left(C_{\bar{c}}(\bar{S})\right)$. Therefore $\left[L_{2^{\prime}}\left(C_{G}(S)\right), 0\left(L_{2^{\prime}}\left(C_{G}(S)\right)\right)\right] \subseteq T 0(L)$ and we have that $0\left(L_{2^{\prime}}\left(C_{G}(S)\right)\right) \subseteq Z\left(L_{2^{\prime}}\left(C_{G}(S)\right)\right)$ by the 3-subgroup lemma. Thus $L_{2^{\prime}}\left(C_{G}(S)\right)=L\left(C_{G}(S)\right)$ as required.

Lemma 1.6. Let G be a finite group with $F^{*}(G)$ simple such that Corollary 1.4 holds for all proper sections Γ of G with $F^{*}(\Gamma)$ simple. Let V, W be 2-subgroups with $\langle 1\rangle \neq W \unlhd V$. Suppose that L is a component of $C_{G}(V), M$ is a component of $C_{G}(W)$ and $M=\left\langle L^{L\left(C_{G}(W)\right)}\right\rangle \neq L . \quad$ Then there is a chain $L=L_{0}, L_{1}, \cdots$, $L_{n}=M$ satisfying (1)-(5) of Corollary 1.4 with $L_{i} \subseteq M$ for $1 \leq i \leq n$.

Proof. Let $H=V M$ and $\bar{H}=H / C_{H}(M)$. Then $\bar{M}=F^{*}(\bar{H})$ and the con-
clusion of Corollary 1.4 holds in \bar{H}. Since $V \leftrightarrows C_{H}(M)$ by assumption, we have that $\bar{V} \neq\langle 1\rangle$ and \bar{L} is a component of $C_{\bar{H}}(\bar{V})$.

Therefore, there exists a chain $\bar{L}=\bar{L}_{0}, \bar{L}_{1}, \cdots, \bar{L}_{n}=\bar{M}$ and 2-subgroups \bar{T}_{i}, $\bar{S}_{i}, 0 \leq i \leq n$ with $\bar{V}=\bar{T}_{0}$ such that (1)-(5) of Corollary 1.4 hold. Let L_{i} be the largest perfect normal subgroup of the preimage in H of L_{i}. Let T_{i} and S_{i} be Sylow 2 subgroups respectively of the preimage in H of \bar{T}_{i} and \bar{S}_{i}. As $C_{H}(M) / Z(M)$ is a 2-group, $C_{H}(M)$ has a normal Sylow 2-subgroup containing W. Thus $W \subseteq T_{i} \subseteq S_{i-1 i}, L_{i}$ is quasisimple and $L_{i} \subseteq M$. Applying the 3-subgroup lemma, we then have that the chain $L=L_{0}, L_{1}, \cdots, L_{n}=M$ together with the 2-subgroups $T_{i}, S_{i}, 0 \leq i \leq n$ satisfies (1)-(5) of Corollary 1.4 in H. We must show that the chain satisfies (1)-(5) of Corollary 1.4 in G.

First observe that $M \unlhd \unlhd C_{G}(W)$ and $C_{G}\left(T_{i}\right) \subseteq C_{G}(W)$ implies that $C_{M}\left(T_{i}\right)$ $\unlhd \unlhd C_{G}\left(T_{i}\right)$. But L_{i} is a component of $C_{M}\left(T_{i}\right)$, hence L_{i} is a component of $C_{G}\left(T_{i}\right)$ as well. The same reasoning yields that L_{i-1} is a component of $C_{G}\left(N_{S_{i-1}}\left(T_{i}\right)\right)$. Hence, if $S_{i} \subseteq S_{i}^{*} \in \operatorname{Syl}_{2}\left(C_{G}\left(L_{i}\right)\right)$, then L_{i-1} is a component of $C_{G}\left(N_{S_{i-1}^{*}}\left(T_{i}\right)\right)$. This shows that (1)-(4) of Corollary 1.4 hold. Consider the link L_{i-1}, L_{i} for $1 \leq i \leq n$. If $L_{i} \neq\left\langle L_{i-1}{ }^{L\left(C_{H}\left(T_{i}\right)\right)}\right\rangle$, then $L_{i} \mid Z\left(L_{i}\right) \cong L_{i-1} / Z\left(L_{i-1}\right)$ and (5c) holds. Therefore, we may assume that $L_{i}=\left\langle L_{i-1}{ }^{L\left(C_{H}\left(T_{i}\right)\right)}\right\rangle$ so that $L_{i}=\left\langle L_{i-1}{ }^{L\left(C_{G}\left(T_{i}\right)\right)}\right\rangle$. If (5b) holds for L_{i-1}, L_{i} in H, then (5b) holds for L_{i-1}, L_{i} in G as well. Finally, if (5a) holds for L_{i-1}, L_{i} in H, set $Y=N_{H}\left(L_{i}\right) C_{G}\left(L_{i}\right)$ and $\bar{Y}=Y / C_{G}\left(L_{i}\right)$. Since $C_{G}\left(L_{i}\right) \subseteq C_{G}\left(L_{i-1}\right)$, it follows from the 3-subgroup lemma that $C_{\bar{Y}}\left(\bar{L}_{i-1}\right)=\overline{C_{Y}\left(L_{i-1}\right)}$. Hence we may use the corresponding result in H to easily verify that \bar{L}_{i-1} is a standard component of some subgroup of \bar{Y} containing \bar{L}_{i}. Thus (5a) holds and the proof is completed in all cases.

Remark. Once Corollary 1.4 is proved the conclusion of Lemma 1.6 will hold for all finite groups G with $F^{*}(G)$ simple.

Proof of Corollary 1.4. Assume that G is a minimal counterexample and let L_{0} be a counterexample subject to $\left|L_{0} / Z\left(L_{0}\right)\right|$ maximal and then $\left|C_{G}\left(L_{0}\right)\right|_{2}$ maximal. By our choice of L_{0}, we have that the following hold:
(i) If $L_{0}, L_{1}, \cdots, L_{m}$ is a chain satisfying (1)-(5), then $L_{i} \mid Z\left(L_{i}\right) \cong L_{0} / Z\left(L_{0}\right)$, $1 \leq i \leq m$.
(ii) Let V, W be 2-subgroups of G with $\langle 1\rangle \neq W \unlhd V, L_{0}$ a component of $C_{G}(V), M$ a component of $C_{G}(W)$ and $M=\left\langle L_{0}{ }^{L\left(C_{G}(W)\right)}\right\rangle$. Then $M=L_{0}$.

In order to prove (i), observe that if L_{0} is a counterexample, then so is each $L_{i}, 0 \leq i \leq m$. Hence by choice of $L_{0},(5 \mathrm{c})$ is satisfied and $L_{i} / Z\left(L_{i}\right) \cong L_{0} / Z\left(L_{0}\right)$, $1 \leq i \leq m$. If the hypotheses of (ii) hold, then by Lemma 1.6, there exists a chain $L_{0}, L_{1}, \cdots, L_{m}=M$ satisfying (1)-(5). The result now follows from (i).

Let $S_{0} \in \operatorname{Syl}_{2}\left(C_{G}\left(L_{0}\right)\right)$ and let $s \in I\left(S_{0}\right)$. Then $L_{0} \subseteq L\left(C_{G}(s)\right)$ by Lemma 1.5. This leads to the following dichotomy.
(A) If $s \in I\left(S_{0}\right)$, then each component M of $\left\langle L_{0}{ }^{L\left(C_{G}(s)\right)}\right\rangle$ satisfies $M / Z(M)$
$\cong L_{0} / Z\left(L_{0}\right)$.
(B) For some $s \in I\left(S_{0}\right)$, there exists a component M of $\left\langle L_{0}{ }^{L\left(G_{G}(s)\right)}\right\rangle$ such that $M / Z(M) \neq L_{0} / Z\left(L_{0}\right)$.

Suppose first that (A) holds and let $s \in I\left(Z\left(S_{0}\right)\right)$. By assumption, $\left\langle L_{0}{ }^{L}\left(C_{G}(s)\right)\right\rangle$ $=M_{1} M_{2} \cdots M_{r}$ where $M_{i} / Z\left(M_{i}\right) \cong L_{0} / Z\left(L_{0}\right), 1 \leq i \leq r$. We claim that up to reindexing, $L_{0}=M_{1}$, hence $L_{0} \in \mathcal{L}(G)$. If this is not the case, then we must have $r \geq 2$. Since S_{0} centralizes $L_{0}, S_{0} / C_{S_{0}}\left(M_{1} M_{2} \cdots M_{r}\right)$ acts regularly on $\left\{M_{1}, M_{2}, \cdots\right.$, $\left.M_{r}\right\}$. An easy induction argument gives $\left|\sum_{r}\right|_{2}<4^{r-1}, r \geq 2$. Also $\left.\left|M_{i}\right| Z\left(M_{i}\right)\right|_{2}$ ≥ 4. Thus $\left|C_{G}\left(M_{1}\right)\right|_{2} \geq 4^{r-1}\left|C_{S_{0}}\left(M_{1} M_{2} \cdots M_{r}\right)\right|$ and we have

$$
\left|C_{G}\left(M_{1}\right)\right|_{2}>\left|\sum_{r}\right|_{2}\left|C_{S_{0}}\left(M_{1} M_{2} \cdots M_{r}\right)\right| \geq\left|S_{0}\right| .
$$

But the chain L_{0}, M_{1} satisfies (1)-(5), hence M_{1} is a counterexample with $\left|M_{1}\right| Z\left(M_{1}\right)\left|=\left|L_{0}\right| Z\left(L_{0}\right)\right|$ and $\left|C_{G}\left(M_{1}\right)\right|_{2}>\left|C_{G}\left(L_{0}\right)\right|_{2}$ against the choice of L_{0}. This proves the claim.

Since $L_{0} \in \mathcal{L}(G)$, it follows from Theorem 1.3 and choice of L_{0}, that L_{0} is not a maximal element of $\mathcal{L}(G)$. As $S_{0} \in \operatorname{Syl}_{2}\left(C_{G}\left(L_{0}\right)\right)$, we may then find $t \in I\left(S_{0}\right)$ and a component M of $C_{G}(t)$ such that $\left.M=\left\langle L_{0}{ }^{L C_{G}(t)}\right\rangle\right\rangle \neq L_{0}$. But this contradicts (ii) with respect to $\langle t\rangle,\langle t, s\rangle$ and the components M of $C_{G}(t)$ and L_{0} of $C_{G}(\langle t, s\rangle)$.

Finally, suppose (B) holds. Thus for some $s \in I\left(S_{0}\right), L_{0} \subseteq L\left(C_{G^{(s)}}\right)$ and $\left\langle L_{0}{ }^{L\left(C_{G}(s)\right)}\right\rangle$ has a component N with $N / Z(N) \nsubseteq L_{0} / Z\left(L_{0}\right)$. Let W_{1} be a subgroup of S_{0} containing s and of maximal order subject to $L_{0} \neq\left\langle L_{0}^{L\left(C_{G}\left(W_{1}\right)\right)}\right\rangle$. Let $w_{1} \in N_{S_{0}}\left(W_{1}\right)-W_{1}$ with $w_{1}^{2} \in W_{1}$. By choice of W_{1}, L_{0} is a component of $C_{G}\left(\left\langle W_{1}, w_{1}\right\rangle\right)$. Applying (ii), $\left\langle L_{0}{ }^{L\left(C_{G}\left(W_{1}\right)\right)}\right\rangle$ is not a component of $C_{G}\left(W_{1}\right)$, hence $\left\langle L_{0}{ }^{L\left(C_{G}\left(W_{1}\right)\right)}\right\rangle=M_{1} M_{1}{ }^{w_{1}}$ where M_{1} is a component of $C_{G}\left(W_{1}\right), M_{1} \neq M_{1}{ }^{w_{1}}$ and $M_{1}\left|Z\left(M_{1}\right) \cong L_{0}\right| Z\left(L_{0}\right) . \quad$ By Lemma 1.5, $L\left(C_{G}\left(W_{1}\right)\right) \subseteq L\left(C_{G}(s)\right)$, hence $\left\langle L_{0}^{L\left(C_{G}(s)\right)}\right\rangle$ $\subseteq\left\langle M_{1}^{L\left(C_{G}(s)\right)}\right\rangle\left\langle\left(M_{1}^{w_{1}}\right)^{L\left(C_{G}(s)\right.}\right\rangle$. Without loss, we may assume that $N \subseteq\left\langle M_{1}^{L\left(C_{G}(s)\right)}\right\rangle$. Now L_{0}, M_{1} is a chain satisfying (1)-(5), hence M_{1} is a counterexample as well. Repeating the analysis and using (i) and (ii), we may construct a chain of 2groups $W_{1} \supseteq W_{2} \supseteq \cdots W_{m} \supseteq\langle s\rangle$ with $m \geq 2$ satisfying.
(a) M_{j} is a component of $C_{G}\left(W_{j}\right)$
(b) M_{j-1} is a component of $C_{G}\left(N_{W_{j-1}}\left(W_{j}\right)\right)$
(c) $\left\langle M_{j-1}^{L\left(C_{G}\left(W_{j}\right)\right)}\right\rangle=M_{i} M_{j}{ }^{w_{j}}$ for some $w_{j} \in N_{W_{j-1}}\left(W_{j}\right)$ with $w_{j}^{2} \in W_{j}$ and $M_{j} \neq M_{j}{ }^{w_{j}}$.
(d) $N \subseteq\left\langle M_{j}{ }^{L\left(G_{G}(s)\right)}\right\rangle$.
(e) $\quad M_{j} \mid Z\left(M_{j}\right) \cong L_{0} / Z\left(L_{0}\right), 1 \leq j \leq m$.

Evidently we may continue until M_{m} is a component of $L\left(C_{G}(s)\right)$. But N is a component of $\left\langle L_{0}{ }^{L\left(C_{G}(s)\right)}\right\rangle$ with $N / Z(N) \cong L_{0} / Z\left(L_{0}\right)$ and this is incompatible with $N \subseteq M_{m}$ and $M_{m} \mid Z\left(M_{m}\right) \cong L_{0} / Z(L)_{0}$.

This final contradiction completes the proof of Corollary 1.4.

Corollary 1.7. Let \mathcal{K} be a set of isomorphism classes of finite quasisimple groups. Let the isomorphism classes be denoted by $[K]$ with representative K. Suppose that if L is a quasisimple group satisfying one of the following conditions then $[L] \in \mathcal{K}$.
(1) $L / Z(L) \cong K / Z(K)$ for some $[K] \in \mathcal{K}$.
(2) There is a standard component K in a subgroup of $\operatorname{Aut}(L)$ containing $\operatorname{Inn}(L)$ with $[K] \in \mathcal{K}$.
(3) $L / Z(L)$ is isomorphic to $\operatorname{PSL}(4, q), \operatorname{PSU}(4, q), \operatorname{PSp}(4, q)$ or $G_{2}(q)$ and $[S L(2, q)] \in \mathcal{K}$ for some odd prime power q.

Let G be a finite group with $F^{*}(G)$ simple, let T be a 2-subgroup of G and L a component of $C_{G}(T)$ with $[L] \in \mathcal{K}$. Then $\left[F^{*}(G)\right] \in \mathcal{K}$.

Proof. Let $L=L_{0}, L_{1}, L_{2}, \cdots, L_{n}=F^{*}(G)$ be a chain of quasisimple subgroups of G as given in Corollary 1.4. If $\left[L_{i-1}\right] \in \mathcal{K}$, then $\left[L_{i}\right] \in \mathcal{K}$ as well. Thus as $\left[L_{0}\right] \in \mathcal{K},\left[L_{n}\right] \in \mathcal{K}$.

We shall call a family \mathcal{K} which satisfies conditions (1)-(3) of Corollary 1.7 embedding-closed. We denote by Chev (5) the set of Chevalley groups over a finite field of characteristic 5 . We now state our main theorem.

Theorem 1.8. Let \mathcal{A} be the set of all isomorphism classes $[A]$ such that either $A \mid Z(A) \in \operatorname{Chev}(5)$ or $A / Z(A)$ is isomorphic to a member of

$$
\begin{aligned}
& \left\{A_{2 n+1}, n \geq 2 ; \operatorname{PSL}\left(2,4^{n}\right), n=2^{m}, m \geq 0 ; \operatorname{PSU}\left(3,4^{n}\right), n=2^{m}, m \geq 0 ; \operatorname{PSL}\left(3,4^{n}\right),\right. \\
& \left.n=2^{m}, m \geq 0 ; M_{12}, J_{1}, H J, L y S, O^{\prime} N S, H e, S u z, \cdot 3\right\}
\end{aligned}
$$

Then \mathcal{A} is embedding closed.
The work in this paper represents a brief coda to a vast symphony of theorems culminating in Theorem 1.8. We summarize the major antecedents below.

Theorem 1.9 (Aschbacher [1], [2], Gorenstein-Harada [14], Harris [20], Harris-Solomon [21], Solomon [26], [27], Walter [29]). Let G be a finite group with $F^{*}(G)$ simple having a standard component A with $A \mid Z(A) \in C h e v(5)$ or $A / Z(A) \cong A_{2 n+1}, n \geq 2$, or $A \cong L y S$. Then $F^{*}(G)$ is isomorphic to some group in the following set.
$\left\{\operatorname{Chev}(5), A_{2 n+1}, \operatorname{PSL}(2,16) \operatorname{PSL}(3,4), \operatorname{PSU}(3,4), M_{12}, J_{1}, H J, L y S, H e\right\}$
Theorem 1.10 (Griess-Mason-Seitz [17], Nah [24], Seitz [25]). Let G be a finite group with $F^{*}(G)$ simple having a standard component A with $A / Z(A)$ $\cong P S L\left(2,4^{n}\right), n \geq 2$, or $A / Z(A) \cong P S U\left(3,4^{n}\right), n \geq 1$, or $A / Z(A) \cong P S L\left(3,4^{n}\right), n \geq 1$. Then $F^{*}(G)$ is isomorphic to some group in the following set:

$$
\left\{P S L\left(2,4^{n}\right), n \geq 4 ; \operatorname{PSU}\left(3,4^{n}\right), n \geq 2, \operatorname{PSL}\left(3,4^{n}\right), n \geq 2, O^{\prime} N S, H e S u z\right\}
$$

Theorem 1.11 (Finkelstein [8], [9]). Let G be a finite group with $F^{*}(G)$ simple having a standard component A isomorphic to $H J$ or J_{1}. Then $F^{*}(G)$ is isomorphic to O'NS or Suz.

Theorem 1.12 (Griess-Solomon [18], Solomon [28]). Let G be a finite group with $F^{*}(G)$ simple. Then G does not have a standard component isomorphic to $O^{\prime} N S, H e$ or Suz.

Theorem 1.13 (Yoshida [32]). Let G be a simple group having an involution t with $C_{G}(t) \cong Z_{2} \times M_{12}$. Then $G \cong .3$.

We now examine how Theorem 1.8 could fail. By hypothesis, if $[S L(2, q)]$ $\in \mathcal{A}$, then $q=5^{n}$. Also, \mathcal{A} is closed under central quotients and central extensions and \mathcal{A} contains $[K]$ whenever $K / Z(K)$ is isomorphic to $\operatorname{PSL}\left(4,5^{n}\right)$, $\operatorname{PSU}\left(4,5^{n}\right)$, or $\operatorname{PSp}\left(4,5^{n}\right)$ or $G_{2}\left(5^{n}\right)$. The final condition requires that $[L] \in \mathcal{A}$ whenever there exists K standard in $G \leq \operatorname{Aut}(L)$ with $[K] \in \mathcal{A}$. This holds by Theorems 1.9-1.12 unless possibly if $K / Z(K) \cong M_{12}, H J, \cdot 3$ or $S u z$. Thus Theorem 1.8 will be proved once the following result is established.

Theorem 1.14. Let G be a finite group with $F^{*}(G)$ simple having a standard component K with $K / Z(K)$ isomorphic to $M_{12}, H J, \cdot 3$ or Suz. Then $F^{*}(G)$ is isomorphic to Suz or $\cdot 3$.

The remainder of the paper is devoted to the proof of Theorem 1.14.

2 Properties of $M_{12}, H J, S u z$ and -3

In this section, we enumerate those properties of $M_{12}, H J, S u z$ and $\cdot 3$ which are necessary for the proof of Theorem 1.14. In most cases, these are easily deduced from information given in ([5], [6], [7], [9], [23], [30], [31]). In what follows, K will be a proper 2 -fold covering of $M_{12}, H J$ or $S u z$ with $Z(K)=\langle t\rangle, K^{*}$ a non-trivial extension of K by Z_{2} and $\bar{K}^{*}=K /\langle t\rangle$. Note that for $M_{12}, H J$ and $S u z$, the outer automorphism group and a Sylow 2 subgroup of the Schur multiplier have order 2.

Lemma 2.1. Let $\bar{K} \cong M_{12}$. Then
(i) \bar{K}^{*} has 3 classes of involutions with representatives \bar{z}, \bar{x} in \bar{K} and $\bar{p} \in \bar{K}^{*}$ $-\bar{K}$. Also $C_{\bar{K}}(\bar{z}) \cong E_{8} \cdot S_{4}, C_{\bar{K}}(\bar{x}) \cong Z_{2} \times S_{5}$ and $C_{\bar{K}}(\bar{P}) \cong Z_{2} \times A_{5}$.
(ii) K has 3 classes of involutions with representatives t, z and $z t$.
(iii) For some $T \in S y l_{2}\left(K^{*}\right),\langle z, t\rangle=Z(T)=Z(T \cap K)$. Furthermore, both Aut (T) and $\operatorname{Aut}(T \cap K)$ act trivially on $\langle z, t\rangle$.
(iv) All involution of $K^{*}-K$, if any exist, are conjugate. If p is such an involution, then $C_{K}(p) \cong Z_{2} \times A_{5}$.

Proof Everything except part (iii) is clear. We shall prove that $\operatorname{Aut}(T \cap K)$
and $\operatorname{Aut}(T)$ act trivially on $\langle z, t\rangle$. It follows from the character table of K that z is a fourth power in $T \cap K, z t$ is not a square in $T \cap K$ and t is a fourth power in T but not in $T \cap K$. This implies that $\operatorname{Aut}(T \cap K)$ acts trivially on $\langle z, t\rangle$ and that $\langle z t\rangle$ is invariant under $\operatorname{Aut}(T)$. It suffices to prove that z does not fuse to t in $\operatorname{Aut}(T)$. Now K has an element δ of order 4 such that $\left|C_{K}(\delta)\right|=2^{6}$, $\delta^{2}=z$ and $\delta \nsim \delta t$. Without loss, we may assume that $\delta \in T$ and $\left|C_{T}(\delta)\right|=2^{6}$. If $z^{a}=t$ for some $a \in \operatorname{Aut}(T)$, then $\lambda=\delta^{a}$ satisfies $\lambda^{2}=t, \lambda \nsim \lambda t=\lambda^{-1}$ and $\left|C_{T}(\lambda)\right|$ $=2^{6}$. This implies that $\left|C_{\bar{K}^{*}}(\bar{\lambda})\right|_{2}=2^{5}$ whereupon $\bar{\lambda} \sim \bar{x}$. But $x \sim x t=t^{-1}$ then gives a contradiction.

Lemma 2.2. Let $\bar{K} \cong H J . \quad$ Then

(i) K has 3 classes of involutions with representatives t, z and $z t$.
(ii) For some $T \in S y l_{2}\left(K^{*}\right),\langle z, t\rangle=Z(T)=Z(T \cap K)$. Furthermore, both Aut (T) and $A u t(T \cap K)$ act trivially on $\langle z, t\rangle$.
(iii) All involutions of $K^{*}-K$, if any exist are conjugate. If p is such an involution, then $C_{K}(p) \cong Z_{2} \times \operatorname{PSL}(3,2)$.

Proof Parts (i) and (iii) are easily deduced from the character table of K. In order to prove part (ii), we observe that z is a fourth power in $T \cap K, z t$ is not a square in $T \cap K$ and t is a fourth power in T but not in $T \cap K$. This shows that $\operatorname{Aut}(T \cap K)$ acts trivially on $\langle z, t\rangle$ and $\operatorname{Aut}(T)$ stabilizes $\langle z t\rangle$. Now K has an element δ of order 4 such that $\left|C_{K^{*}}(\delta)\right|_{2}=2^{7}, \delta^{2}=z$ and $\delta \nsim \delta t$. Assuming that $\delta \in T$ with $\left|C_{T}(\delta)\right|=2^{7}$, it follows that if $a \in \operatorname{Aut}(T)$ with $z^{a}=t$, then $\lambda=\delta^{a}$ satisfies $\lambda^{2}=t$ and $\left|C_{T}(\lambda)\right|=2^{7}$. But then $\bar{\lambda}$ is an involution of \bar{K}^{*} with $\left|C_{\bar{K}^{*}}(\bar{\lambda})\right|_{2}=2^{6}$ which is impossible.

Lemma 2.3. Let $\bar{K} \cong S u z$. Then
(i) \bar{K} has 2 classes of involutions with representatives \bar{z} and $\bar{x} . \quad 0_{2}\left(C_{\bar{K}}(\bar{z})\right)$ $=0_{2}\left(C_{\bar{K}^{*}}(\bar{z})\right) \cong Q_{8^{*}} Q_{8^{*}} Q_{8}$ and $C_{\bar{K}}(\bar{z}) /\left(0_{2}\left(C_{\bar{K}}(\bar{z})\right) \cong \Omega_{\overline{6}}(2) . \quad C_{\bar{K}}(\bar{x})=(\bar{V} \times \bar{L})\langle\bar{\sigma}\rangle\right.$ with $\bar{V} \cong E_{4}, \bar{L} \cong P S L(3,4),\langle\bar{V}, \bar{\sigma}\rangle \cong D_{8}$ and $\bar{\sigma}$ induces the unitary polarity on \bar{L}.
(ii) $\bar{K}^{*}-\bar{K}$ has 2 classes of involutions with representatives \bar{p}_{1} and $\bar{p}_{2} . \quad C_{\bar{K}}\left(\bar{p}_{1}\right)$ $\cong A u t\left(M_{12}\right)$ and $C_{\bar{K}}\left(\bar{F}_{2}\right) \cong A u t(H J)$.
(iii) K has 3 classes of involutions with representatives t, z and $z t$.
(iv) $K^{*}-K$ has exactly one class of involutions. If p is a representative, then $C_{K}(p) \cong \hat{M}_{12}$ or $\widehat{H J}$.
(v) K^{*} has precisely 2 classes of elements of order 4 whose square is t. If δ is such an element, then either $\delta \in L$ and $\bar{\delta} \sim \bar{x}$ or $\delta \in K^{*}-K$ and $C_{K}(\delta) \cong \hat{M}_{12}$ or $\widehat{H J}$.
(vi) K^{*} has no element δ of order 4 with $\left|C_{K^{*}}(\delta)\right|=2^{10}$.

Proof. Parts (i)-(iii) are easily deduced from information given in ([30], [31]). Now K has an element γ of order 3 such that $C_{\bar{K}}(\bar{\gamma})=0\left(C_{\bar{K}}(\bar{\gamma})\right) \times \bar{B}$ with $0\left(C_{\bar{K}}(\bar{\gamma})\right) \cong E_{9}$ and $\bar{B} \cong A_{6}$. Now $C_{\bar{K}^{*}}(\bar{\gamma}) / 0\left(C_{\bar{K}}(\bar{\gamma})\right) \cong S_{6}$. Let \bar{B}^{*} be an S_{2}
subgroup of $C_{\bar{K}^{*}}(\bar{\gamma})$ and assume, as we may, that $\bar{B}^{*} \supseteq\left\langle\bar{p}_{1}, \bar{P}_{2}, \bar{x}\right\rangle \cong E_{8}$ (see parts (i), (ii)). Now x has order 4, hence $B \cong S L(2,9)$, and since $B^{*}=\left\langle B, p_{1}\right\rangle=\left\langle B, p_{2}\right\rangle$, we conclude that

$$
\text { (*) } p_{i} \sim p_{i} t \text { and }\left|p_{i}\right| \neq\left|p_{j}\right|, i \neq j .
$$

An immediate consequence of $\left({ }^{*}\right)$ is that $\left|C_{K}\left(p_{i}\right)\right|=\left|C_{\bar{K}}\left(\bar{p}_{i}\right)\right|, i=1,2$. Also the fact that $E\left(C_{\bar{K}}\left(\bar{p}_{i}\right)\right)$ contains conjugates of \bar{x} implies that $C_{K}\left(p_{1}\right) \cong \hat{M}_{12}$ and $C_{K}\left(p_{2}\right)$ $\cong \widehat{H J}$. This proves part (iv).

Let δ be an element of order 4 of K^{*} with $\left|C_{K^{*}}(\delta)\right|=2^{10}$. By (v), $\delta^{2}=z$ or $z t$. Let $C=C_{K^{*}}(z)$ and $\bar{C}=C /\langle z, t\rangle$ so that $C_{K^{*}}(\delta)=C_{C}(\delta)$ and $\bar{\delta}$ is an involution of \bar{C}. Now $\bar{C} \cong \operatorname{Aut}\left(Q_{8}{ }^{*} Q_{8}{ }^{*} Q_{8}\right)$ and an easy computation (see [3], section 10) shows that each involution of \bar{C} is centralized by some element of order 3. This, however, is incompatible with $\left|C_{C}(\delta)\right|=2^{10}$ and the result is proved.

Remark. It follows from Lemma 2.3 that every non-trivial extension of $\widehat{S u z}$ by Z_{2} splits.

Lemma 2.4. 3 has 2 classes of involutions with involutions of the two classes having centralizers isomorphic to $Z_{2} \times M_{12}$ and $\widehat{S p(6,2)}$ respectively. Also the Schur multiplier and outer automorphism group of $\cdot 3$ are trivial.

Proof. See [16].

3 Proof of Theorem 1.14

Let G be a minimal counterexample to Theorem 1.14. Thus G is a finite group with $F^{*}(G)$ simple, G has a standard component K with $K / Z(K)$ isomorphic to ${ }^{\circ} M_{12}, H J, S u z$ or $\cdot 3$ and G has minimal order subject to $F^{*}(G)$ not isomorphic to $S u z$ or $\cdot 3$.

Proposition 3.1. K is isomorphic to M_{12} or •3. Furthermore $\left|C_{G}(K)\right|_{2}=2$.
Proof. We shall first show that $\left|C_{G}(K)\right|_{2}=2$ and then prove in a sequence of lemmas that K is isomorphic to M_{12} or $\cdot 3$.

It follows from the combined results of Aschbacher and Seitz ([1], [4]) that $C_{G}(K)$ has cyclic Sylow 2-subgroups. Applying [10, Theorem 2] in conjunction with the properties of $M_{12}, H J, S u z$ and $\cdot 3$ enumerated in section 2 and the Unbalanced Group Theorem gives $C_{G}(K)=\left\langle t, 0\left(C_{G}(K)\right)\right\rangle$ where $\langle t\rangle$ has order 2 and is self centralizing in $C_{G}(K)$. In particular, $C_{G}(t) \mid\langle t\rangle$ $=\mathrm{Aut}_{c_{G^{(t)}}}(K)$. Also $G=\left\langle F^{*}(G), t\right\rangle$.

In light of Theorems 1.11 and 1.12, it suffices to eliminate the cases where K is isomorphic to $\hat{M}_{12}, \widehat{H J}$, or $\widehat{S u z}$. In the following lemmas, we employ the
notation set up in Lemmas 2.1-2.3.

Lemma 3.2. $K \nsupseteq \hat{M}_{12}$ or $\widehat{H J}$.

Proof. Assume not. Then $C_{G}(t)=K$ or K^{*} and t is not isolated in $C_{G}(t)$ by the Z^{*} theorem [12]. Suppose at first that $t^{G} \cap K \neq\{t\}$. Then by Lemma 2.1 (ii), t is conjugate to z or $z t$. Since $\langle z, t\rangle$ is the center of some Sylow 2 subgroup T of $C_{G}(t), t$ is conjugate to z or $z t$ in $N_{G}(T)$. But by Lemma 2.1 (iii) or Lemma 2.2 (ii), $N_{G}(T)$ acts trivially on $\langle z, t\rangle$. Thus $t^{G} \cap K=\{t\}$. This implies that $C_{G}(t)=K^{*}$ and $K^{*}-K$ contains a conjugate p of t. Let $V=\langle t, p\rangle$ so that $C_{G}(v)=\langle t, p\rangle \times L$ where $L \cong A_{5}$ if $K \cong \hat{M}_{12}$ by Lemma 2.1 (iii) and $L \cong P S L(3,2)$ if $K \cong \widehat{H J}$ by Lemma 2.2 (iii). An easy argument shows that t must fuse to p in $N(V)$. Also $p \sim p t$ in $C_{G}(t)$, hence $N(V)$ acts as S_{3} on V. In particular, there exists an element β of order 3 which acts regularly on V and centralizes L. Without loss, we may assume that $z \in L$ and $t^{\beta}=p$. But then $t \sim p \sim p z=t^{\beta} z=(t z)^{\beta}$, which gives $t \sim t z$, a contradiction.

Lemma 3.3. $K \nsupseteq S u z$.

Proof. Assume not. As in Lemma 3.2, we shall obtain a contradiction to $F^{*}(G)$ simple by showing that t is isolated in $C_{G}(t)$. Now $C_{G}(t)=K$ or K^{*}. By a result of D. Wright [31], we may assume that $C_{G}(t)=K^{*}$. If $t^{G} \cap K \neq\{t\}$, then by Lemma 2.3 (iii), $t^{G} \cap\{z, z t\} \neq \phi$. By extremal conjugation, we may find $g \in G$ with $z_{1}^{g}=t$ and $C_{S}\left(z_{1}\right)^{g} \subseteq S$ for some $z_{1} \in\{z, z t\}$ and $S \in S y l_{2}\left(K^{*}\right)$ with $z_{1} \in S$. Let $\delta \in S$ with $\delta^{2}=t$ and $\left|C_{G}(\delta)\right|=2^{10} \cdot 3^{2} \cdot 5 \cdot 7$. Such a δ exists by Lemma 3.3 (iv) and $C_{G}(\delta) / 0_{2}\left(C_{G}(\delta)\right) \cong P S L(3,4)$. Also we may assume that $z_{1} \in E\left(C_{G}(\delta)\right)$ $\times\langle t\rangle$, whereupon $\left|C_{G}\left(\left\langle z_{1}, \delta\right\rangle\right)\right|=2^{10}$. Now $C_{G}\left(\left\langle z_{1}, \delta\right\rangle\right)^{g}=C_{G}\left(\left\langle t, \delta^{g}\right\rangle\right)=C_{K^{*}}\left(\delta^{g}\right)$. Hence δ^{g} is an element of order 4 of K^{*} with $\left|C_{K^{*}}\left(\delta^{g}\right)\right|=2^{10}$. This however, is in direct contradiction with Lemma 2.3 (vi). Therefore $t^{G} \cap K^{*} \subseteq\{t\} \cup\left(K^{*}\right.$ $-K)$. Let $S \in S y l_{2}\left(K^{*}\right), p \in S-\{t\}$ and $g \in G$ with $p^{g}=t$ and $C_{s}(p)^{g} \subseteq S$. Then $C_{K^{*}}(p)^{g}=C_{G}(\langle p, t\rangle)^{g}=C_{G}\left(\left\langle t, t^{g}\right\rangle\right)=C_{K^{*}}\left(t^{g}\right)$. By Lemma 2.3 (iv), we may assume that $t^{g}=p$. This forces g to normalize $L=E\left(C_{G}(\langle t, p\rangle)\right)$. But $L \cong \hat{M}_{12}$ or $\widehat{H J}$ with $Z(L)=\langle t\rangle$ and hence $t^{g}=t$ against the choice of t.

With the completion of the proof of Proposition 3.1, we are therefore in the situation where K is isomorphic to M_{12} or $\cdot 3$ and $\left|C_{G}(K)\right|_{2}=2$. Let \mathcal{C} be the set of all chains C of quasisimple groups:

$$
C: L_{0}, L_{1}, \cdots, L_{n}=F^{*}(G)
$$

constructed in Corollary 1.4 where $\left[L_{0}\right] \in \mathcal{A}$. Since

$$
K=L_{0}, L_{1}=F^{*}(G)
$$

is such a chain and $[K] \in \mathcal{A}, \mathcal{C}$ is non-empty. We know a great deal about
the quasisimple subgroups L_{i} of the chain C. In particular by Theorems 1.91.12 and induction, $\left[L_{0}\right] \in \mathcal{A}$ implies that $\left[L_{i}\right] \in \mathcal{A}, 0 \leq i \leq n-1$. Moreover, since $\left[L_{n}\right] \notin \mathcal{A}$, we must then have L_{n-1} standard in G, hence $L_{n-1} \cong M_{12}$ or $\cdot 3$ and $\left|C_{G}\left(L_{n-1}\right)\right|_{2}=2$ by Proposition 3.1. We have proved that the following holds.

Lemma 3.4. Let $C: L_{0}, L_{1}, \cdots, L_{n}=F^{*}(G)$ be a chain of \mathcal{C}. Then L_{n-1} is standard in $G, L_{n-1} \cong M_{12}$ or $\cdot 3$ and $\left|C_{G}\left(L_{n-1}\right)\right|_{2}=2$.

Now choose $C \in \mathcal{C}$ so that C has maximal length $n+1$ and for this fixed chain let $\langle t\rangle \in \operatorname{Syl}_{2}\left(C_{G}\left(L_{n-1}\right)\right)$. Then $C_{G}(t) \mid\langle t\rangle=\operatorname{Aut}_{G}\left(L_{n-1}\right)$ by the Unbalanced group theorem.

Lemma 3.5. Let δ be an element of order 3 of L_{n-1} chosen so that $C_{L_{n-1}}(\delta)$ $\cong Z_{3} \times \operatorname{Aut}(P S L(2,8))$ if $L_{n-1} \cong \cdot 3$ and $C_{L_{n-1}}(\delta) \cong Z_{3} \times A_{4}$ if $L_{n-1} \cong M_{12}$. Such elements of order 3 exist by results in ([5], [7]). Let $\Delta=C_{G}(\delta)$ and $\bar{\Delta}=\Delta / 0(\Delta)$. Then the following holds:
(i) If $L_{n-1} \simeq \cdot 3$, then $L(\bar{\Delta})$ is isomorphic to $\operatorname{PSL}(2,8), \operatorname{PSL}(2,8) \times \operatorname{PSL}(2,8)$, $G_{2}(3), \operatorname{PSL}(2,64), \operatorname{PSU}(3,8)$, or $\operatorname{PSL}(3,8)$.
(ii) If $L_{n-1} \cong M_{12}$ and $\bar{\Delta}$ is non-solvable, then either $F^{*}(\bar{\Delta})$ is isomorphic to $A_{6}, A_{7}, \operatorname{PSL}(2,8), \operatorname{PSL}(3,3)$ or $\operatorname{PSU}(3,3)$, or else $\bar{\Delta}$ is an extension of E_{16} by a subgroup of $N_{A_{8}}(\langle(123)\rangle)$ containing S_{5}.

Proof. If $L_{n-1} \cong \cdot 3$, then $C_{\Delta}(t)=\langle t\rangle \times C_{L_{n-1}}(\delta)$. Thus $C_{\bar{\Delta}}(\bar{t}) \cong Z_{2} \times$ Aut $P S L(2,8)$. Then (i) holds by [17].

Now suppose that $L_{n-1} \cong M_{12}$. Then $C_{\Delta}(t)=\left(\langle t\rangle \times C_{L_{n-1}}(\delta)\right)\langle y\rangle$ where $y^{2} \in\langle t\rangle, C_{G}(t)=\left(\langle t\rangle \times L_{n-1}\right)\langle y\rangle$ and either $y=1$ or $C_{G}(t) \mid\langle t\rangle \cong \operatorname{Aut}\left(M_{12}\right)$ and $C_{\bar{\Delta}}(\bar{t}) \mid\langle\bar{t}\rangle \cong S_{4}$. Hence $C_{\bar{\Delta}}(\bar{t}) \mid\langle\bar{t}\rangle \cong A_{4}$ or S_{4}.

Let $\bar{C}=C_{\bar{\Delta}}(\bar{t}), \bar{Q}=0_{2}(\bar{C})$ and $\bar{E}=[\bar{Q}, \bar{r}]$ for some $\bar{r} \in \bar{C}$ of order 3. Suppose that $\bar{H} \unlhd \bar{\Delta}$ with $|\bar{H}|$ even. Then $\bar{Q} \cap \bar{H} \neq\langle 1\rangle$. Suppose that $\bar{Q} \cap \bar{H}=\langle\bar{t}\rangle$. Then $\langle\bar{t}\rangle=C_{\bar{H}}(\bar{t})$ and $0(\bar{H})=\langle 1\rangle$ implies $\bar{H}=\langle\bar{t}\rangle$ and $\bar{\Delta}=\bar{C}$, contrary to the non-solvability of $\bar{\Delta}$. Thus $\bar{E} \subseteq \bar{H}$ whenever $\bar{H} \unlhd \bar{\Delta}$ with $|\bar{H}|$ even. In particular, $Z(\bar{\Delta})=\langle 1\rangle$, whence $\bar{\Delta}_{1}=0^{2}(\bar{\Delta})$ is fusion-simple. Moreover $\bar{\Delta}$ does not contain disjoint normal subgroups of even order. Finally, as \bar{Q} is selfcentralizing in $\bar{\Delta}, \bar{\Delta}$ has sectional 2-rank at most 4 by [19, Theorem 2]. Thus by [14, Corollary C] and the above, one of the following holds:
(a) $\bar{L}=L(\bar{\Delta})$ is a simple group of sectional 2 -rank at most 4 and $\bar{\Delta}$ is isomorphic to a subgroup of $\operatorname{Aut}(L(\bar{\Delta}))$.
(b) $\bar{\Delta}$ is 2-constrained, $0_{2}\left(\bar{\Delta}_{1}^{\prime}\right) \cong E_{8}$ or E_{16} and $\bar{\Delta}_{1}^{\prime} / 0_{2}\left(\bar{\Delta}_{1}^{\prime}\right) \cong A_{5}, A_{6}, A_{7}, Z_{3} \times A_{5}$ or $L_{3}(2)$

Suppose that $\bar{T}=0_{2}(\bar{\Delta}) \neq\langle 1\rangle$. Then $\bar{E} \subseteq \bar{T}$ and $\langle\bar{T}, \bar{t}\rangle$ satisfies condition $\left(^{*}\right)$ of [22]. Then by Theorem A of [22], $\langle\bar{T}, \bar{t}\rangle=\bar{T}_{1}\langle\bar{t}\rangle$ with \bar{T}_{1} isomorphic to one of the following groups:
(i) E_{16}
(ii) $Z_{2^{m}} \times Z_{2^{m}}$ for some $m \geq 1$.
(iii) a Sylow 2-subgroup of $\operatorname{PSL}(3,4)$.
(iv) a Sylow 2-subgroup of $\operatorname{PSU}(3,4)$.

Moreover \bar{r} acts fixed-point freely on \bar{T}_{1}. Thus $\bar{T}_{1} \subseteq 0_{2}\left(\bar{\Delta}_{1}^{\prime}\right)$. Hence $\bar{T}_{1} \cong E_{16}$ and $\bar{\Delta}_{1}^{\prime} / \bar{T}_{1} \cong A_{5}, A_{6}, A_{7}$ or $Z_{3} \times A_{5}$. As \bar{t} acts freely on $\bar{T}_{1}, C_{\bar{\Delta} / \overline{T_{1}}}(\bar{t}) \cong Z_{6}$ or $Z_{2} \times S_{3}$. Hence $\bar{\Delta} / \bar{T}_{1} \cong S_{5}$ or $N_{A_{8}}(\langle(123)\rangle)$, as claimed.

Thus we may assume (a) holds whence by [14, Main Theorem], \bar{L} is isomorphic to one of the following groups:
I. $\operatorname{PSL}(n, q), 2 \leq n \leq 5 ; \operatorname{PSU}(n, q), 3 \leq n \leq 5 ; G_{2}(q),{ }^{2} D_{4}(q), P S p(4, q)$ or $\operatorname{Re}(q)$ for some odd q.
II. $P S L(2,8), \operatorname{PSL}(2,16), \operatorname{PSL}(3,4), \operatorname{PSU}(3,4)$ or $\operatorname{Sz}(8)$.
III. $A_{7}, A_{8}, A_{9}, A_{10}$ or A_{11}.
IV. $M_{11}, M_{12}, M_{22}, M_{23}, J_{1}, H J, J_{3}, M^{c}$ or $L y S$.

By inspection of the information tabulated in [4, Table 1], L is not of type IV. Trivially if \bar{L} is of type III, then $\bar{L} \cong A_{7}$. Suppose \bar{L} is of type II. If $\bar{t} \in \bar{L}$, then \bar{t} is 2-central and $\bar{L} \cong L_{2}(8)$. If $\bar{t} \notin \bar{L}$, then $C_{\bar{L}}(\bar{t})$ is non-solvable or isomorphic to $U_{3}(2)$, a contradiction.

Finally suppose that \bar{L} is of type I. Let \bar{u} be a 2 -central involution of \bar{L} centralized by \bar{t}. If $\bar{L} \cong P S L(5, q)$ or $P S U(5, q)$, then \bar{t} normalizes $\bar{H} \unlhd C_{\bar{L}}(\bar{u})$ with $\bar{H} \cong S L(4, q)$ or $S U(4, q)$. This is impossible by [13, (2.7) and (2.8)]. Moreover by [13, (2.5), (2.7) and (2.8)], $\bar{L} \neq P S p(4, q), \operatorname{PSL}(4, q)$ or $\operatorname{PSU}(4, q)$. By definition, if \bar{L} is of Ree type, then $C_{\bar{L}}(\bar{t}) \cong Z_{2} \times P S L(2, q)$. Hence $\bar{L}=\operatorname{Re}(3)$ $\cong \operatorname{Aut}(P S L(2,8))$. Thus $\bar{L} \cong P S L(2, q), P S L(3, q), \operatorname{PSU}(3, q),{ }^{2} D_{4}(q)$ or $G_{2}(q)$. If $\bar{L} \cong P S L(2, q)$, then \bar{t} is of field-type and $q=9$. If $\bar{L} \cong P S L(2, q)$ then \bar{t} normalizes a subgroup \bar{H} of $C_{\bar{L}}(\bar{u})$ with $\bar{H} \cong S L(2,3)$. If $\bar{L} \cong^{2} D_{4}(3)$, then \bar{t} normalizes $\bar{H}_{1} \cong S L\left(2,3^{3}\right)$, which is impossible. If $\bar{L} \cong G_{2}(3)$, then $N_{\langle\bar{L}, \bar{t}\rangle}(\bar{H})=C_{\bar{L}}(\bar{u})$. Hence $\bar{t} \in \bar{L}$. But then $\bar{t} \in \bar{u}^{\bar{L}}$, a contradiction. Thus $\bar{L} \cong \operatorname{PSL}(3,3)$ or $\operatorname{PSU}(3,3)$, as claimed.

Lemma 3.6. The following conditions hold:
(i) $n \geq 2$
(ii) $L_{n-2} \cong A_{5}$ if $L_{n-1} \cong M_{12}$
(iii) $L_{n-2} \cong M_{12}$ if $L_{n-1} \cong \cdot 3$

Let $\langle x\rangle=C_{L_{n-1}}\left(L_{n-2}\right) \cong Z_{2}$. Then
(iv) Either $\left\langle L_{n-2}{ }^{L\left(C_{G}(x)\right)}\right\rangle=L_{n-2}$ or $\left\langle L_{n-2}{ }^{L\left(C_{G}(x)\right)}\right\rangle \cong L_{n-1}$ and is a standard component of G.

Proof. Suppose $n \geq 2$. Then by Lemmas 2.1 and 2.4, L_{n-2} is a standard component of L_{n-1} with $L_{n-2} \simeq A_{5}$ if $L_{n-1} \simeq M_{12}$ and $L_{n-2} \simeq M_{12}$ if $L_{n-1} \simeq \cdot 3$. Also $\langle x\rangle=C_{L_{n-1}}\left(L_{n-2}\right) \cong \boldsymbol{Z}_{2}$. In any event, $C_{G}(\langle t, x\rangle)$ has a component isomorphic to A_{5} or M_{12} which is not standard in G and thus by Corollary 1.4, is a link in some
chain of \mathcal{C} of length at least 3 . Thus $n \geq 2$ and (i)-(iii) hold.
In order to prove (iv), assume that $L_{n-2} \not \ddagger L\left(C_{G}(x)\right)$. Then by L-balance, $\left\langle L_{n-2}{ }^{L\left(C_{G}(x)\right)}\right\rangle=K_{0} K_{0}{ }^{t}$ where K_{0} is a component of $C_{G}(x)$ and either $K_{0}=K_{0}{ }^{t}$ or else $K_{0} \neq K_{0}{ }^{t}$ and $K_{0} / Z\left(K_{0}\right) \cong L_{n-2}$. If $K_{0}=K_{0}{ }^{t}$, then applying Lemma 1.6 with respect to $\langle t, x\rangle,\langle x\rangle$ and the components L_{n-2} of $C_{G}(\langle t, x\rangle)$ and K_{0} of $C_{G}(x)$, there exists a chain connecting L_{n-2} and K_{0} such that each link satisfies (1)-(5) of Corollary 1.4. By maximal choice of n and the fact the $L_{0} \neq\left\langle L_{0}{ }^{C_{G}(x)}\right\rangle=K_{0}$, $\mathcal{C}^{1}: L_{0}, L_{1}, \cdots, L_{n-2}, K_{0}, L_{n}$ is a chain in \mathcal{C}. Therefore, K_{0} is a standard component of G and $K_{0} \cong L_{n-1}$ by Lemma 3.4.

It remains for us to eliminate the case where $K_{0} \neq K_{0}{ }^{t}$ and $K_{0} / Z\left(K_{0}\right)$ $\cong L_{n-2} . \quad$ As $\left[K_{0}\right] \in \mathcal{A}$, it follows from Corollary 1.4 that there is a chain $C^{*} \in \mathcal{C}$ given by $C^{*}: K_{0}, K_{1}, \cdots, K_{m}=F^{*}(G)$. Since K_{0} commutes with $K_{0}{ }^{t}, K_{0}$ is not a standard component of G, hence $m \geq 2$. Consider the chain

$$
L_{0}, L_{1}, \cdots, L_{n-2}, K_{0}, K_{1}, \cdots, K_{m}=F^{*}(G)
$$

As $m \geq 2, m+n-1>n$. Hence by choice of $n, K_{i}=L_{j}$ for some $i, j, 0 \leq i<m$, $0 \leq j \leq n-2$. We shall rule out this possibility and thus prove Lemma 3.6.

Suppose first that $L_{n-1} \cong \cdot 3, L_{n-2} \cong M_{12}$. As $C_{G}\left(\left\langle t, L_{n-2}\right\rangle\right)=\langle t, x\rangle, C_{G}\left(L_{n-2}\right)$ has Sylow 2-subgroups of maximal class. In particular, L_{n-2} is the only component of $N_{G}\left(L_{n-2}\right)$ isomorphic to M_{12}. Thus any predecessor of L_{n-2} in a chain must be isomorphic to A_{5}. In particular, $L_{i} \simeq A_{5}$ for $0 \leq i<n-2$. As $\left|K_{j}\right| \geq\left|M_{12}\right|$ for all j, we must have $K_{j}=L_{n-2}$ for some $j \geq 1$. But then K_{j-1} is a predecessor of L_{n-2} with $K_{j-1} \cong M_{12}$, a contradiction.

Suppose next that $L_{n-1} \cong M_{12}, L_{n-2} \cong A_{5}$. Clearly, if $K_{i}=L_{j}$ for some i, j, then we may assume that L_{n-2} has a predecessor $L_{n-3} \cong A_{5}$. If S_{n-3} and T_{n-2} are as in (3) of Corollary 1.4, then $L_{n-2} \neq\left\langle L_{n-3}{ }^{L\left(C_{G}\left(T_{n-2}\right)\right)}\right\rangle$ whereas L_{n-3} is a component of $C_{G}\left(N_{S_{n-3}}\left(T_{n-2}\right)\right)$. This implies that $L_{n-2} \times L_{n-2}^{s} \subseteq L\left(C_{G}\left(T_{n-2}\right)\right)$ for some $s \in N_{s_{n-3}}\left(T_{n-2}\right)-T_{n-2}$. Now let $Y=C_{G}\left(L_{n-2}\right)$ and $\bar{Y}=Y / 0(Y)$. As L_{n-2}^{s} is a component of $C_{G}\left(T_{n-2}\right)$ and $T_{n-2} \times L_{n-2}^{s} \subseteq Y, L(\bar{Y}) \neq\langle 1\rangle$ by Lemma 1.5. Furthermore, $C_{Y}(t)=\langle t, x, y\rangle$ where $C_{G}(t)=\left(\langle t\rangle \times L_{n-1}\right)\langle y\rangle, y^{2} \in\langle t\rangle$ and either $y=1$ or $C_{G}(t) \mid\langle t\rangle \cong \operatorname{Aut}\left(M_{12}\right)$. Using the notation of Lemma 3.5, we may assume that $\delta \in L_{n-2}$. Therefore $Y \subseteq \Delta$ and we conclude from Lemma 3.5 that $F^{*}(\bar{Y})$ is isomorphic to $A_{5}, A_{6}, A_{7}, \operatorname{PSL}(2,8), \operatorname{PSL}(3,3)$ or $\operatorname{PSU}(3,3)$. But L_{n-2}^{s} is a component of $C_{Y}\left(T_{n-2}\right)$, hence $\Delta=0(\Delta) Y$ with $\bar{Y} \cong S_{7}$. This, however, is incompatible with $C_{Y}(t)=\langle t, x, y\rangle$.

For convenience, set $K=L_{n-1}, J=L_{n-2} . \quad$ By Lemma 3.6 (iv), if $L=\left\langle J^{L\left(C_{G}(x)\right)}\right\rangle$, then either $L=J$ or $L \cong K$ and L is a standard component of G.

Lemma 3.7. $K \neq M_{12}$.
Proof. Suppose by way of a contradiction that $K \cong M_{12}$. There are two cases to consider, namely $L=J$ or $L \cong K$.

Assume first that $L \cong K$. Then $C_{G}(t)=\langle t\rangle \times K$. In fact, if $C_{G}(t) \mid\langle t\rangle$ $\cong \operatorname{Aut}\left(M_{12}\right)$, then $x \in C_{G}(\langle t, x\rangle)^{\prime}$ whereas $x \notin L=C_{G}(x)^{\prime}$ by Lemma 3.4. Also $x \nsim t$, since otherwise $G \cong .3$ by Theorem 1.13 against the choice of G. Now let $\langle\delta\rangle \in \operatorname{Syl}_{3}(J)$ and $\Delta=C_{G}(\delta)$. Then $C_{\Delta}(x) \cong C_{\Delta}(t)=\langle t\rangle \times\langle\delta\rangle \times H$ where $H \cong A_{4}$. We can choose $\left\langle x, x_{1}\right\rangle=0_{2}(H)$ and set $T=\left\langle t, x, x_{1}\right\rangle$. Clearly $t \notin Z^{*}(\Delta)$ and $t^{\Delta} \cap T \subseteq t\left\langle x, x_{1}\right\rangle$. It then follows using the action of H on T, that $N_{\Delta}(T)$ has orbits $t\left\langle x, x_{1}\right\rangle$ and $\left\langle x, x_{1}\right\rangle^{\#}$ on $T^{\#}$. This yields $\left|C_{\Delta}(x) \cap N_{\Delta}(T)\right|_{2}=2^{5}$ contradicting $\left|C_{\Delta}(x)\right|_{2}=2^{3}$.

We are therefore, in the situation where $L=J$. For $y \in I(G)$, let $J^{*}(y)$ be the product of all components of $C_{G}(y)$ isomorphic to A_{5}; if none, set $J^{*}(y)=1$. Suppose $J^{*}(x) \neq J$. Then as $C_{G}(\langle t, x\rangle) \mid J$ is a 2 -group of rank at most 3, we have $J^{*}(x)=J \times J_{1}$ and t acts as an inner automorphism on J_{1}. Since $C_{G}(\langle J, t\rangle)$ $\supseteq C_{J_{1}}(t) \times\langle x\rangle \cong E_{8}, \quad C_{G}(t)=\langle t\rangle \times K(v)$ with v an involution chosen so that $[v, J]=1$ and $K\langle v\rangle \cong \operatorname{Aut}\left(M_{12}\right)$. Also $C_{G}(\langle t, x\rangle)=\langle t\rangle \times(\langle x, v\rangle \times J)\left\langle x_{1}\right\rangle$ where $x_{1} \sim x$ in K and $\left[x_{1}, v\right]=x$. Now $\langle t, x, v\rangle \subseteq\left\langle x, J_{1}\right\rangle$ and x_{1} normalizes J_{1}. Hence, $\left[x_{1}, v\right]=x$ then gives $x \in\left\langle x, x_{1}, J_{1}\right\rangle^{\prime}$ contradicting $\left\langle x, x_{1}, J_{1}\right\rangle \mid J_{1}$ is abelian. We have thus shown that $J^{*}(x)=J$. In particular $J \unlhd C_{G}(x)$. Therefore if $y \in I(G)$ and $J(y)$ is the product of all normal subgroups of $C_{G}(y)$ isomorphic to A_{5}, otherwise $J(y)=1$, then $J(x)=J$.

Let $z \in I(J)$ so that $C_{K}(z) \cong\left(Q_{8} * Q_{8}\right) S_{3}$ (split) with an S_{3} subgroup acting faithfully on two central factors. Suppose that $J_{0} \unlhd C_{G}(z), J_{0} \cong A_{5}$. Since $C_{J_{0}}(t) \unlhd C_{G}(\langle t, z\rangle), t$ acts as an inner automorphism on J_{0}. Now $C_{J_{0}}(t) \cong E_{4}$ and $C_{J_{0}}(t)$ contains an involution central in some Sylow 2-subgroup of $C_{G}(\langle t, z\rangle)$ implies that $C_{J_{0}}(t) \cap\langle t, z\rangle \neq 1$. At any rate, a Sylow 3 -subgroup of $C_{K}(z)$ centralizes $C_{J_{0}}(t)$, hence $C_{J_{0}}(t)=\langle t, z\rangle$, a contradiction. So $J(z)=1$.

Let $\mathscr{W}=\left\{\left\langle x, z_{1}\right\rangle \mid z_{1} \in I(J)\right\}$ and if $W \in \mathscr{W}$, set $J(W)=\left\langle J(w) \mid w \in W^{*}\right\rangle$. It follows from $J(x)=J, J(z)=1$ and the subgroup structure of K that $K=J(W)$ for each $W \in \mathscr{W}$. Thus $N_{G}(W) \subseteq N_{G}(J(W))=N_{G}(K)$ for each $W \in \mathscr{W}$. As $J \unlhd C_{G}(x), C_{G}(x)$ permutes the elements of \mathscr{W}. Therefore $C_{G}(x) \subseteq N_{G}(K)$ and by the Unbalanced Group Theorem, $C_{G}(x) \subseteq C_{G}(t)$.

Now $t^{G} \cap C_{G}(t) \neq\{t\}$ by the Z^{*}-Theorem. So $t^{G} \cap C_{G}(x) \neq\{t\}$ by Lemma 2.1. Let $w \in t^{G} \cap C_{G}(x)$ with $w \neq t$. Then $\left|C_{G}(x)\right|_{2}<\left|C_{G}(w)\right|_{2}$ implies that x induces a non-2-central involution on $L\left(C_{G}(w)\right)$. By Lemma 2.1, $J=L\left(C_{G}(\langle w, x\rangle)\right)$, hence $w \in C_{G}(\langle t, J\rangle)$. Since $w \neq t, w \sim w z$ in $N_{G}(K)$. But then $t \sim w z$ and repeating the argument with $w z$ in place of w, we have $J \subseteq C_{G}(w z)$. This gives $J \subseteq C_{G}(\langle w, w z\rangle) \subseteq C_{G}(z)$ and provides us with the final contradiction.

Lemma 3.8. $K \neq \cdot 3$.

Proof. Suppose not. Again, there are two cases to consider, namely $L=J$ or $L \cong K$. The elimination of both cases is similar to but less complicated that in the proof of Lemma 3.7.

Let δ be an element of order 3 of J with $C_{J}(\delta) \cong Z_{3} \times A_{4}$. Then $C_{K}(\delta) \cong Z_{3}$ $\times \operatorname{Aut}(P S L(2,8))$ with $I\left(C_{K}(\delta)\right) \subseteq x^{K}$. Let $\Delta=C_{G}(\delta)$ and $\bar{\Delta}=\Delta / 0(\Delta)$. Since $C_{\bar{\Delta}}(\bar{t})=\overline{C_{\Delta}(t)} \cong Z_{2} \times \operatorname{Aut}(P S L(2,8))$, we have from Lemma 3.5 that $L(\bar{\Delta})$ is isomorphic to $\operatorname{PSL}(2,8), \operatorname{PSL}(2,8) \times \operatorname{PSL}(2,8), G_{2}(3), \operatorname{PSL}(2,64), \operatorname{PSU}(3,8)$ or $\operatorname{PSL}(3,8)$. Since $\bar{x} \in L\left(C_{\bar{\Delta}}(\bar{t})\right) \subseteq L(\bar{\Delta}), C_{\bar{\Delta}}(\bar{x})$ is solvable. An immediate consequence is that $L \neq K$. Otherwise, $C_{\Delta}(x)$ contains a subgroup isomorphic to $\operatorname{PSL}(2,8)$.

Therefore, we have $L=J$. For $y \in I(G)$, let $J(y)$ be the product of all normal subgroups of $C_{G}(y)$ isomorphic to M_{12}, otherwise $J(y)=1$. Since $\delta \in J$ and $C_{\Delta}(x)$ is solvable, it follows from the structure of Δ that J is the unique component of $C_{G}(x)$ isomorphic to M_{12}. Thus $J(x)=J$. Let \mathscr{W} be the set of all four subgroups W of $\langle x, J\rangle$ with $\left|C_{\langle x, J\rangle}(W)\right|_{2}=|\langle x, J\rangle|_{2}$. If $W=\langle x, w\rangle$ with $w \in J$, then $w x \sim w$ and $C_{K}(w) \cong S \hat{p(6,2)}$. Since $C_{K}(w)$ centralizes $J(w), x$ centralizes $J(w)$ and so $[J(w), J]=1$. But then $[\delta, J(w)]=1$ and the structure of Δ gives $J(w)=1$. As $C_{G}(x)$ is maximal in $K, K=\left\langle J(w) \mid w \in W^{\ddagger}\right\rangle$ for all $W \in \mathscr{W}$ and since $C_{G}(x)$ permutes the members of \mathscr{W}, we conclude that $C_{G}(x) \subseteq N_{G}(K)$. Again, by the Unbalanced Group Theorem, this yields $C_{G}(x) \subseteq C_{G}(t)$.

Now $t \notin Z(G)$, hence by the Z^{*}-Theorem and inspection, there exists $t_{1} \in t^{G}$ $\cap C_{G}(x)$ with $t_{1} \neq t$. Let $K_{1}=C_{G}\left(t_{1}\right)^{\prime}$. Then x acts as a non-2-central involution on K_{1} yields $J=L\left(C_{K_{1}}(x)\right)$. Therefore $t_{1} \in C_{G}(\langle x, J\rangle)=\langle t, x\rangle$. We have shown that $\{t, t x\}=t^{G} \cap C_{G}(x)$. But if w is a 2-central involution of K centralizing x, then $x \sim x w$ in K. So, $t \sim t x \sim t x w$ whereupon $\langle t, t x w\rangle$ centralizes J. In particular $x w$ centralizes J, a contradiction.

Lemma 3.6 completes the proof of Theorem 1.12.

Wayne State University

Ohio State University

References

[1] M. Aschbacher: A characterization of Chevalley groups over fields of odd order, I, II, Ann. of Math. 106 (1977), 353-398, 399-468.
[2] M. Aschbacher: Standard components of alternating type centralized by a 4-group, to appear.
[3] M. Aschbacher: On finite groups of component type, Illinois J. Math. 19 (1975), 87-115.
[4] M. Aschbacher and G. Seitz: On groups with a standard component of known type, Osaka J. Math. 13 (1976), 439-482.
[5] N. Burgoyne and P. Fong: The Schur multipliers of the Mathieu groups, Nagoya Math J. 27 (1966), 733-745; Correction, ibid. 31 (1968), 297-304.
[6] J. H. Conwav: Three lectures on exceptional groups, in "Finite Simple Groups," Academic Press, New York, 1971.
[7] L. Finkelstein: The maximal subgroups of Conway's group C_{3} and McLaughlin's
group, J. Algebra 25 (1973), 58-89.
[8] L. Finkelstein: Finite groups with a standard component of type Janko-Ree, J. Algebra 36 (1975), 416-426.
[9] L. Finkelstein: Finite groups with a standard component of type HJ or HJM, J. Algebra 43 (1976), 61-114.
[10] L. Finkelstein: Finite groups with a standard component whose centralizer has cyclic Sylow 2-subgroups, Proc. Amer. Math. Soc. 62 (1977), 237-241.
[11] R. Foote: Finite groups with components of 2-rank 1, I, II, J. Algebra 41 (1976), 16-46, 47-57.
[12] G. Glauberman: Central elements in core-free groups, J. Algebra 4 (1966), 403420.
[13] R. Gilman and R. Solomon: Finite groups with small unbalancing 2-components, to appear in Pac. J. Math.
[14] D. Gorenstein and K. Harada: Finite groups whose 2-subgroups are generated by at most 4 elements, Mem. Amer. Math. Soc. 147 (1974).
[15] D. Gorenstein and J.H. Walter: Balance and generation in finite groups, J. Algebra 33 (1975), 224-287.
[16] R. Griess: Schur multipliers of some sporadic simple gıoups, J. Algebra 32 (1974), 445-466.
[17] R. Griess, D. Mason and G. Seitz: Bender groups as standard component, to appear.
[18] R. Griess and R. Solomon: Finite groups with unbalancing 2-components of $\left\{\widehat{L_{3}(4)}\right.$, $H e\}$-type, to appear in J. Algebra.
[19] K. Harada: On finite groups having self-centralizing 2-subgroups of small order, J. Algebra 33 (1975), 144-160.
[20] M. Harris: PSL(2,q)-type 2-components and the unbalanced group conjecture, to appear.
[21] M. Harris and R. Solomon: Finite groups having an involution centralizer with a 2-component of dihedral type I, Illinois J. Math. 21 (1977), 575-620.
[22] P. Landrock and R. Solomon: A characterization of the Sylow 2-subgroups of PSU $\left(3,2^{n}\right)$ and $\operatorname{PSL}\left(3,2^{n}\right)$, Aarhus Universitet Preprint Series No. 13, 1974/75.
[23] J.H. Lindsey II: On a six dimensional projective representation of the Hall-Janko group, Pacific J. Math. 35 (1970), 175-186.
[24] C.K. Nah: Uber endlichen einfach Gruppen die eine standard Untergruppe A besitzen derart, das $A / Z(A) z u L_{3}(4)$ isomorph ist, Ph.D. Dissertation, Johannes Gutenberg Universitat, Mainz, 1975.
[25] G. Seitz: Standard subgroups of the type $L_{n}\left(2^{a}\right)$, J. Aigebra 48 (1977), 417-438.
[26] R. Solomon: Finite groups with intrinsic 2-components of type $\hat{A_{n}}$, J. Algebra 33 (1975), 498-522.
[27] R. Solomon: Standard components of alternating type, I, J. Algebra 41 (1976), 496-514; II, J. Algebra 47 (1977), 162-179.
[28] R. Solomon: Some standard subgroups of sporadic type, J. Algebra 53 (1978), 93-124.
[29] J.H. Walter: A characterization of Chevalley groups I, Proceedings of the International Symposium on Theory of Finite Groups, Sapporo, Japan, 1974, 117-141.
[30] D. Wright: The irreducible characters of the simple group of M. Suzuki of order 448, 345, 397, 600, J. Algebra 29 (1974), 303-323.
[31] D. Wright: The non-existence of a certain type of finite simple group, J. Algebra 29 (1974), 417-420.
[32] T. Yoshida: A characterization of Conway's group C_{3}, Hokkaido Math J. 3 (1974), 232-242.

[^0]: 1) First author was partly supported by NSF Grant MCS76-06997
 2) Second author was partly supported by NSF Grant MCS75-08346
