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0. Introduction

The main purpose of this paper is to prove the following:

Theorem. A non-singular irreducible n-dimensional complete variety en-
dowed with an essentially effective regular action of the algebraic group SL(n; C)
(n=2) s isomorphic to one of the following:

i) First we assume n=+3, 4. Then
(1)  The complex projective space P"(C).

(2) P" Y C)XK, where K is an arbitrary non-singular complete curve.
(3) The projective bundle Proj(Opr-1(m)POpn-1(0)), meZ,, associated with the
vector bundle Opr-1(m)DOpr-1(0) over P*7(C).

ii) If n=3, then in addition to (1), (2), and (3) above, one more case is possi-
ble:

(4) The projective bundle Proj(T(P*C))) associated with the tangent bundle
T(P*C)) of P*C).

iii) If n=4, then in addition to (1), (2), and (3) above, one more case is again

possible:
4) The complex Grassmannian G,(C*) of 2-planes in C*.
(See Theorem (5.1) for the corresponding SL(n; C)-actions and more details.)

The proof is essentially reduced to classifying the closed subgroups of codi-
mension <# of the group SL(n; C), (cf. §2), whereas the main point of the
reduction is the following elementary observation, (cf. §1).

OBSERVATION. Let V be an irreducible variety endowed with a regular action
of a connected linear algebraic group G. If there exists a G-equivariant completion
V of V satisfying the conditions

(o) V is a normal variety
and

(B) V—V is a finite union of 1-codimensional G-orbits in V,
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then such a completion V is unique up to G-equivariant isomorphism, and furthermore
every G-equivariant completion v of V is dominated by V, i.., there exists a G-
equivariant birational surjective regular map : V»Vﬂ}(}hifh extends the identity
mapping idy: V (as a subset of V)—V (as a subset of 17)

NoTATIONS AND CONVENTIONS.

(0.1) Z =the set of all integers,

Z =the set of all positive integers,

C =the complex number field,

C*=the set of all non-zero complex numbers.
(0.2) All varieties and algebraic groups are defined over C.
(0.3) Assume that an algebraic group G acts on varieties V' and V' regularly.
A regular mapping f: V—V"is said to be G-equivariant, if the equality f(g-p)=
g+ f(p) holds for every pair (g, p)EGX V.
(0.4) A closed subgroup of an algebraic group G is always understood to be
an algebraic subgroup of G, (“closed” means “Zariski closed”).
(0.5) An algebraic group G is said to act essentially effectively on a variety
if the group of the elements in G which act identically on ¥V is finite.

In concluding this introduction, I wish to thank all those people who en-
couraged me and gave me suggestions, and in particular Professors S. Koba-
yashi, S.S. Roan, and I. Satake who helped me again and again during the pre-
paration of this paper.

1. Basic theorems

In this section, we shall quote three basic theorems (cf. [3], [4]) which turn
out to be very useful later.

(1.1) Here, we briefly discuss the notion of “dominant G-equivariant comple-
tion.”

DerFINITION 1.1.1. Let U be an irreducible variety on which a connected
linear algebraic group G acts regularly. Then a variety V' with a regular G-
action is said to be a G-equivariant completion of U if the following two condi-
tions are satisfied:

i) U is (embedded as) a G-invariant open dense subset of V.

ii) V is a complete variety.

A G-equivariant completion ¥ of U is said to be dominant if the following two
conditions are satisfied:

i) V is a normal variety.

ity V—U is a disjoint union of (a finite number of) 1-codimensional G-
orbits in V.
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The importance of this notion comes from the following:

Theorem 1.1.2 ([3; Corollary (1.1.3)]). Let U be an irreducible variety
on which a connected linear algebraic group G acts regularly. Assume that there
exists a dominant G-equivariant completion V' of U. Then,

1) For any G-equivariant completion V of U, the identity mapping idy,: U
(as a subset of V')—=U (as a subset of V) extends to a G-equivariant birational
surjective regular map: V'—V.

ii) In particular, any other dominant G-equivariant completion V" of U
is G-equivariantly isomorphic to V', where the isomorphism between V' and V'
is a canonical extension of the identity automorphism of U.

(1.2) We secondly quote the following theorem which is obtained as an im-
mediate consequence of Zariski’s Main Theorem.

Theorem 1.2.1 (¢f. [3; Theorem (1.2.1)]). Let U* (resp. U, U’) be a non-
empty open subset of a complete irreducible variety V* (resp. V, V'). Assume
that there exist regular mappings o: V¥—V and o': V*—V' such that

(1) o ly» maps U* isomorphically onto U.

(2) o' |y« maps U* isomorphically onto U’.

(3) For any point qV'—U’, a(a'”'(q)) #s a finite set.

Furthermore, we assume that:

(4) V' is a normal variety.

Then the mapping (o | y«)o(a’ | yx)™': U'—U extends to a birational surjective regular
mapping T: V'—V uniquely, and this T satisfies c=Toc".

(1.3) We finally consider algebraic group actions with equidimensional orbits.

Theorem 1.3.1 ([4; Theorem (1.2.1)]). Let V be an n-dimensional irreduci-
ble complete normal variety on which a connected linear algebraic group G acts re-
gularly, satisfying the following two conditions:

(1) All orbits in V have the same dimension r.

(2) There exists a finite subset {p;;i=1,2, -, k} of V such that, for every
DPEV, the isotropy subgroup G, of G at p is conjugate to some Gy, in G.

Then, it follows that:

(3) Gy, Gy, +++, Gy, are all conjugate.

(4) The quotient V|G exists as an (n-r)-dimensional complete normal variety.

(5) V is G-equivariantly isomorphic to G|G, X V|G.

2. Closed subgroups of codimension=n of the group SL(n;C)

In this section, we shall classify all closed subgroups of codimension=n
of the algebraic group SL(n; C).

NoraTioN. For any linear algebraic group G, its identity component
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(resp. the group of algebraic group automorphisms of G) is denoted by G° (resp.
Aut(G)).

DerintTION 2.1. Fix an arbitrary integer » such that #=2. For each
meZ,, we define a closed subgroup F(m;n) of SL(n; C) by

Fim;n) = {f= (fi)JESL(n; C); fu = fan == fu =0, (fu)" = 1} .
We also define:

D(m) = {f=(fi;)ESL(n;C);f;; =0 for i+j},
Bin) —{f=(f)eSLin; C)ify—0 for i>j},
P(n; k) = {f=(f;;)€SL(n; C);f;; =0 whenever i>k=j},

where k=1, 2, --,n—1. Note that the normalizer Ng;(;;)(D(2)) of D(2) in
SL(2; C) is expressible as

Nsie:0(D(2)) = J+-D(2), where J= {((1) (l)>, <(1) _(1)>} .

(2.2) In terms of the notation defined above, we list here all closed subgroups
of codimension=# of the algebraic group SL(n; C), n=2.

Theorem 2.2.1. i) Every algebraic group automorphism of SL(n; C) coin-
cides, up to inner automorphisms, with one of the following:

(1) #dsitai 00 SL(n; C) — SL(n; C)
f J— f ,

(2) tran.inv.: SL(n; C) — SL(n; C)
f' > tf—l

i) SL(n; C), n=2, contains no proper closed subgroups of codimension =n—2.
iii) Every (n—1)-codimensional closed subgroup of SL(n;C), n=2, is mapped
(isomorphically) onto P(n; 1) by some algebraic group automorphism of SL(n; C).
iv) Every n-codimensional closed subgroup of SL(n; C) is mapped (isomorphically)
onto one of the following by some algebraic group automorphism of SL(n; C):

(1) (In the case n=2): D(2), J-D(2), F(m;2) where m=1,2,
(2) (In the case n=3): B(3), F(m; 3) where m=1, 2,
(3) (In the case n=4): P(4;2), F(m;4) where m=1,2, -,
(4) (In the case n=5): F(m;n) where m=1, 2,

Proof of i) of (2.2.1): i) is a standard fact.

Proof of ii), iii), and iv) of (2.2.1): ii), iii), and iv) are a straightforward
consequence of the following theorem of Dynkin ([2; Chapter 1]):

Theorem. Every maximal proper connected closed subgroup of SL(n; C) is
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conjugate to one of the following three types of subgroups:
(1) P(n; k), k=1, 2, «-,n—1.
(2) Irreducible simple subgroups of SL(n; C).
(3) The Kronecker product SL(r; C)QSL(t; C) wherer, t& Z, are such that

2=ZrZt and r-t=mn.

Thus, by enumerating all irreducible representations of simple algebraic
groups, we infer from comparison of dimensions that SL(n; C) contains no
irreducible simple subgroups of codimension=#n. Since SL(r; C)QSL(z; C)
has codimension (r*—1)-(#*—1)>7-t=n in SL(n; C), it follows that every closed
subgroup of codimension<# in SL(n; C) is contained in some P(n;k) with
ke{1,2,..-,n—1}. Then ii), iii), and iv) are straightforward from this fact.

3. Examples of dominant SL(2; C)-equivariant completions

In this section, a couple of examples of dominant SL(2; C)-equivariant
completions will be given for later purpose.

(3.1) ExamprE 1. We define an action of G=SL(2; C) on P'(C)x PYC) by
G = SL(2; C) x (P{(C)xXPY(C)—P (C)xP(C)
g (a,0) = (g-a,8b),
where SL(2; C) acts on P'(C) via the canonical homomorphism: SL(2; C)
—>PGL(2; C). Letq'=((1:0), (0: 1))eP(C)x P(C) and let ¢"=((1: 0), (1: 0))
EPYC)x PY(C). Then
G-¢' = {(a, b)EP(C)x P'(C); a+b}
= an open dense orbit in P{(C)x P(C),
G-q¢" = {(a, b)eP(C)x P(C); a = b}
= a 1-codimensional orbit in P*(C) X P'(C),
P(C)xPY(C) = (G-q"U(G-¢").
Since the isotropy subgroup G of G at ¢’ is D(2) in terms of the notation in
(2.1), we have:

(*) PYC)xPYC) with the above action is a dominant SL(2; C)-equivariant
completion of the homogeneous space SL(2; C)/D(2).

(3.2) ExampLE 2. We define an action of G=SL(2;C) on P*C) via the
algebraic group homomorphism:

G = SL(2; C) - PGL(3; C)

2
rit :2’ tzz’ 7t
su) 5w, s
2rs, 2tu, ru--st) .
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Since the 2-sheeted ramified covering

[+ P(C)xP{(C)— P*C)
(%2 9), (v: w) > (xv: yw: xw-+yv)

is G-equivariant in terms of the actions defined above, (see also (3.1)), it im-
mediately follows that:

G- f(q¢') = f(G-q') = an open dense orbit in P C),
G- f(¢")= f(G-¢"")= a 1-codimensional orbit in P*C),
PYC) = (G-flg)U(G f(g")),  (cf. (3.1)).

Furthermore, the isotropy subgroup Gy, of G at f(¢') is {g€G;g-9'E
Y f@)}y=J-D(2), (cf. (2.1)), and hence

(**) P¥C) with the above action is a dominant SL(2; C)-equivariant com-
pletion of the homogeneous space SL(2; C)/(J-D(2)).

4. Canonical SL(n; C)-actions on the line bundles Op:-1(m); me Z,
and equivariant completions of the homogeneous space SL(n; C)/F(m; n)

For each me Z, we denote by Ops-1(m) the m-fold tensor product of the hy-
perplane bundle on the complex projective space P""}(C), n=2. The begin-
ning of this section is spent in defining a canonical SL(n; C)-action on Ops-1(m),
with the help of which, we shall classify all SL(n; C)-equivariant non-singular
completions of the homogeneous space SL(n; C)/F(m;n), (cf. (2.1)).

(4.1) Definition of a canonical SL(n; C)-action on Opn-1(m).
Let z: C"— {0} —P""(C) be the canonical projection, and let o: @(C")—C"
be the blowing-up of the origin 0 of C". Then

Qy(C")—o7Y(0) = €"—{0},
and under this identification, the mapping = extends to
71 Qy(C") — P*Y(C).

In terms of this mapping, we can regard @,(C") as the line bundle Op»-1(—1)
over P"}(C). Note that:

(1) The matrix SL(n; C)-action on C" canonically induces an SL(n;C)-
action on Q,(C") (=0Ops-1(—1)), and under this action, @Q(C") (=0Opr-1(—1))
decomposes into a disjoint union of two orbits o~'(0) (=the zero section of
Opr-1(—1)) and @,(C")—o*(0). Now, for each peP"(C), let {, denote the
corresponding line through 0 in C”, (4 is canonically identified with the fibre
of Opr-1(—1) over p), and we fix a base e, of this fibre /. For instance, if
Po=(1:0:0: ---: 0)= P"}(C), we set:
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epo = (1, O, 0, ey O)EZPO N

In terms of this notation, the fibre of Opn-1(m) (=(Opr-1(—1))®™™) over p is
expressed as (4)®™™. Hence

(2) we can now define a canonical SL(n; C)-action on Ops-1(m) by setting

g (\-(e,)®™) defn A(g-e,)® ™ for all g€ SL(n; C) and AEC.

From now, we assume meZ,. Then, in view of (1) above, we have:

(3) Opn-1(m) is a disjoint union of two orbits, one of which is the zero section
of Op»-1(m), and the other is its complement (=Ops-1(m)-(zero section)).
Recall that e,=(1,0, -+, 0)€C"— {0} (=Opr-1(—1)-(zero section)). Hence,

(€5,)®2 ™€ Opr-1(m)—(zero section),

and the isotropy subgroup of SL(%; C) at this point is, by a straightforward com-
putation, shown to be F(m;n), (cf. (2)). Thus,

(4) Opr-1(m)-(zero section) is SL(n; C)-equivariantly isomorphic to the homo-
geneous space SL(n; C)/F(m; n).

(4.2) Fix integers m and n such that m=1 and n=2. We now construct a
dominant SL(n; C)-equivariant completion of the homogeneous space SL(n; C)/
F(m;n). Later, several properties of this completion will also be discussed.

(4.2.1) Dominant SL(n; C)-equivariant completion of the homogeneous
space SL(n; C)/F(m; n).
Note that, for every vector space E, Proj(EPC) (= ((E D C)—{0})/C*) is a
disjoint union of

Proj(E®0) = Proj(E)
and

{C*-(eP1); ecE} = E.
Therefore, the projective bundle

V.0 30 Proi(@Opn-s(m) B Opa-s(0))

associated with the 2-dimensional vector bundle Ops-1(m)P Ops-1(0) over P }(C)

is a disjoint union of

(5) X_ ﬂ Pl‘OJ(Opn—x(m)EBO) = PI'Oj(Opn—l(m)) — Pu-l(C)

and

(6) X+:o@ Vs n—X_ == Opn-1(m) .

Furthermore, X, ;, decomposes into

X, 9 proj(0@Om-1(0) = PY(C)
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and

X, defn

X+ ;O_X+ = Vm H ”"'(X+ UX_) .
Note that, in terms of the isomorphism X, ;,=Ops-1(m), we identify X,

X, with the corresponding subsets of Opn-1(m) as follows:

X, = (zero section of Ops-1(m)),

()

X, = Ops-1(m)—(zero section).

Now, the SL(n; C)-actions on Ops-1(m) and Ops-1(0) defined in (4.1) induce
the one on Ops-1(m)P Ops-1(0), and hence we can canonically define an
SL(n; C)-action on V,,; ,=Proj(Ops-1(m)POps-1(0)). By the naturality of this
action, the isomorphisms in (5) and (6) are both SL(n; C)-equivariant. Hence,
in view of (3), (4), (5), and (7), we obtain:

8) Vu:n=X,UX,UX_ (disjoint uinon) such that

(8-a): both X, and X_ are 1-codimensional orbits in V,,;, and are SL(n; C)-
equivariantly isomorphic to P*~}(C),

(8-b): X, is open dense in V,,;, and forms a single orbit which is SL(n; C)-
equivariantly isomorphic to the homogeneous space SL(n; C)/F(m;n). Thus,

(9) Vi n=Proj(Opr-1(m)@Op»-1(0)) is a dominant SL(n; C)-equivariant com-
pletion of the homogeneous space SL(n; C)/F(m; n).

(4.2.2) We shall now show that the normal bundles N(V,,; ,: X.), N(V,,:,: X_)
of X,,X_inV,,,, are, under the identifications X, =P""}(C) and X_=P"7'(C),
expressed in the form

(10) N(V,: 02 X.) = Opn-s(m),
(11) N(Vy:n: X_) == Opr-i(—m).

Proof of (10): (10) is straightforward:

NV, ;0 Xy) == N(X, ;o X)) == N(Ops-1(m): (zero section)), (cf. (6), (7)),
= Ops-1(m) .

Proof of (11): Recall that there is a canonical isomorphism

(12) j: Proj(Ope-1(m)DOps-1(0)) == Proj(Ops-1(—m)@(Ops-1(m)DOp-1(0)))
(= Vinsn) (= Proj(Ops-1(0) D Opr-1(—m))) -

The images of X, X_, X_U X, under this isomorphism j are
J(X) = Proj(Opr-1(—m)Q (0D Opr-1(0))) = Proj(0P Ops-1(—m)) .
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J(X2) = Proj(Opr-1(—m)R(Opr-1(m)D0)) = Proj(Ope-1(0)0) -
JXU X)) = j(Vis ) —4(X4) -

Now we put X_;,=X_UX, Then the same argument as in deriving (6) and
(7) shows that:

7(X_;,) is canonically identified with Ops-1(—m), and under this identifica-
tion, we have j(X_)=(zero section of Ops-1(—m)). Hence

N(Vsw: Xo) == N(X_ 500 X.) = NG(X-0): J(X-))
= N(Opr-1(—m): (zero section)) = Ops-1(—m).

(4.2.3) In concluding (4.2), we shall show that there exists a surjective SL(n; C)-
equivariant regular mapping from V;;, to P*(C): First note that Ops-1(0)P
Opr-1(—1) is, as a variety, identified with CX Qy(C") (cf. (4.1)). Therefore the
canonical projection idg X a: CX Qy(C")—C X C"(=C"*") is regarded as a regular
mapping from Ops-1(0)DOp--1(—1) onto C**! and hence it induces a surjective
regular map

a': Proj(Opr-1(0)DOps-1(—1)) — Proj(C**)(=P"(C)) .
Thus, in view of the equality j(V, v; »)=Proj(Opr-1(0) DOpr-1(—1)), (cf.(12)), we

obtain:

(13) o” defn a’of: Vy;,—~P"(C) is a well-defined surjective regular mapping.

Here, one can immediately check the following properties of o”:
i) ¢ is SL(n; C)-equivariant,
ii) ¢”/(X_)=the origin 0 of C"(=P"(C)),
iii) o maps V,;,—X_ isomorphically onto P*(C)— {0},
where P"(C) is endowed with the SL(n; C)-action which extends the standard
SL(n; C)-action on C” via the inclusion

c" (SN P"(C)
(21, Rgy o0y 2,) 2 (i 2pi 2 001 3,) .

(In particular, our SL(n; C)-action has the only fixed point 0€C"<P"(C).)
We now state our main purpose in §4:

Theorem 4.3.1. We fix m, ncZ, with n=2, and let V be a non-singular
irreducible variety which is, at the same time, an SL(n; C)-equivariant completion
of the homogeneous space SL(n; C)[F(m;n). Then
() If m=2, V is SL(n; C)-equivariantly isomorphic to V,, ; ,=Proj(Ops-1(m)PD
Opr-1(0)).

(b) If m=1, V is SL(n; C)-equivariantly isomorphic to either V,;,=
Proj(Ops-1(m) B Ops-1(0)) or P*(C).
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Here, the SL(n; C)-action on V,, ; , (resp. P"(C)) is defined in (4.2.1) (resp. (4.2.3)).

Proof of (4.3.1): Let U be the open dense subset of V' which is identified
with the homogeneous space SL(n; C)/F(m;n). Since V,;, is a dominant
SL(n; C)-equivariant completion of the open dense subset X,=<SL(n; C)/F(m;n),
(cf. (8-b) and (9) of (4.2.1)), i) of Theorem (1.1.2) asserts that the canonical
identification

id: X, > U
extends to an SL(n; C)-equivariant birational surjective regular map
T Vpin—=V.

Since V,,;, is a disjoint union of three orbits X, X, and X_, Zariski’s Main
Theorem (cf. Mumford [6; p. 414-v]) applied to the birational proper regular
map 7 shows the disjointness of 7(X,) (=U), 7(X,), and 7(X_). Hence,

(14) V is a disjoint union of three orbits U, 7(X,), and 7(X_).

Now recall the following fact: Let Y be a variety such that there exists a
surjective regular mapping f: P'(C)—Y, (r€Z,). Then either dim Y=ror Y
is a singleton. )

Therefore, in view of X,=P"}(C) and X_=P""(C), (cf. (8-a) of (4.2.1)), the
following four cases are possible:

Casei) dim7(X,)=dim 7(X_)=n—1.

Case ii)) dim 7(X,)=n—1 and 7(X_) is a singleton.

Case iii)) dim 7(X_)=n—1 and 7(X,) is a singleton.

Case iv) Both 7(X,) and 7(X_) are a singleton.

Since N(V,,; ,: X,)=0p»-1(m) and N(V,,; ,: X_)= Op»-1(—m), (cf. (10) and (11)
of (4.2.2)), a theorem of Moisezon [5; Chapter III, Corollary 2] immediately
implies

() If m=2, then only Case i) can happen.

(B) If m=1, then only Cases i) and ii) can happen.

First, we consider Case i): In this case, V as well as I/,,;, is a dominant
SL(n; C)-equivariant completion of SL(n; C)/F(m;n). Hence by ii) of Theorem
(1.1.2), V is SL(n; C)-equivariantly isomorphic to V,,; ,.

Secondly, we consider Case ii) under the assumption m=1: In this case,
we have the following two regular mappings:

o”: Vysy— PYC),  (cf. (13) of (4.2.3)),
T 2 Vl P and V.

Let p denote the singleton 7(X_). Then the restriction
Tlyip-x_t Visy—X_ = V— {r}
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is a birational surjective regular map with finite fibres, which is, by Zariski’s
Main Theorem, an isomorphism. On the other hand, by iii) of (4.2.3),

" |yyi-x_1 Visg—X_ — P*(C)— {0}

is also an isomorphism. Hence, by Theorem (1.2.1),

(" lvgsnx)o(Tlvssx ) V—{p} > P"(C)— {0}

canonically extends to an SL(n; C)-equivariant isomorphism of V with P"(C).
Thus, in view of («) and (8) above, we obtain:

(a) If m=2, then V is SL(n; C)-equivariantly isomorphic to V,,;,.

(b) If m=1, then V is SL(n; C)-equivariantly isomorphic to either V,,;, or

P"(C).

RemaRrk 4.3.2. With a little more work, we can obtain the classification of
all normal SL(n; C)-equivariant completions of the homogeneous space SL(n; C)/
F(m; n).

5. Classification of essentially effective SL(n; C)-actions on alge-
braic n-folds

Let V be a variety endowed with a regular action v: GX V—V of an al-
gebraic group G. (We denote such a V by the pair (V;v).) Then, to every
algebraic group automorphism % of G, we associate a regular G-action v*: GX V—

V by
Mg, y) = v(k(g), y), forall (g, »)EGXV.

Before stating the main theorem, we first list seven types of z-dimensional
varieties which admit an essentially effective action of SL(n; C).
(1) P*(C) with the SL(n; C)-action which is induced from the homo-

morphism gl—»((l) g) from SL(n; C) to PGL(n+1; C), (cf. (4.2.3), [3; Theorem

4.1.2)).

2;) Proj(Opr-1(m) B Opn-1(0)), me Z,, with the SL(n; C)-action defined in
(4.2.1).

(3) P*'(C)xK, (where K is an arbitrary non-singular complete curve),
endowed with the SL(n; C)-action which factors to the product of the standard
homogeneous one on P*"(C) and the trivial one on K.

(4) PY(C)xPYC) with the SL(2; C)-action defined in (3.1).

(5) P*C) with the SL(2; C)-action defined in (3.2).

(6) Proj(T(P*C))) (=the associated projective bundle of the tangent
bundle T(P*C)) of P¥C)) endowed with the SL(3; C)-action which is can-
onically induced from the standard homogeneous one on P*C).
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(7) Gy(C*) (=the complex Grassmannian of 2-planes in C*) endowed
with the canonical SL(4; C)-action.
We now prove the following main theorem:

Theorem 5.1. Let V be a non-singular irreducible n-dimensional complete
-variety endowed with an essentially effective regular action v of the algebraic
group G=SL(n; C), n=2. Then, for some algebraic group automorphism h of G,
the space (V'; v*) is G-equivariantly isomorphic to one of the following:

i) (In the case n=2): The varieties in (1), (2), (3), (4), and (5) above.
i) (In the case n=3): The varieties in (1), (2), (3), and (6) above.
iii) (In the case n=4): The varieties in (1), (2), (3), and (7) above.
iv) (In the case n=5): The varieties in (1), (2), and (3) above.

Proof of (5.1). Let 7 be the minimal dimension of the G-orbits in V' and
r’ be the maximal dimension of the G-orbits in V. Since SL(n; C) contains no
proper closed subgroups of codimension <n—2, (cf. (ii) of Theorem (2.2.1)),
either =0 or r>n—2. Hence the following four cases are possible:
Case A: r=0, (i.e., VC%¢).
Case B: r=r'=n—1."
Case C: r=n—1 and r'=n.
Case D: r=r'=n.

First we consider Case A: Since V¢=#¢, a theorem in [3; cf. (4.1.2)] im-
mediately implies that:

(#) In Case A, for some k< Aut(G), the space (V;v*) is G-equivariantly
isomorphic to P"(C) in (1) above.

Secondly, we consider Case B: Since r=r'=n—1, all orbis in ¥ have the
same dimension n—1. Hence, by Theorem (1.3.1) applied to k=2, (cf. (i) and
(iii) of Theorem (2.2.1)), there exists an A€ Aut(G) such that (V; %) is G-
equivariantly isomorphic to (G/P(n; 1)) X (V|G), where the quotient V/G exists
as a 1-dimensional normal (and hence non-singular) complete variety. Since
G/P(n; 1) is regarded as P""!(C) with the standard G-action, we obtain:

(#8) In Case B, for some A= Aut(G), the space (V;v"*) is G-equivariantly
isomorphic to some P"}(C)x K in (3) above.

Thirdly, we consider Case C: Since r'=n=dim V, V contains a unique
open dense (n-dimensional) G-orbit (which we denote by U=G"-p), (cf. Borel [1;
p-98]). Then, by r<\n, the isoiropy subgroup of G at p is non-parabolic and of
codimension n. Hence, in view of iv) of Theorem (2.2.1), we immediately
infer that, for some & Aut(G), our U endowed with (the restriction to U of)
the G-action v* is G-equivarian.ly isomorphic to one of the following:
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(In the case n=2): G|D(2), G/(J-D(2)), G|F(m;2) where m=1, 2, ---.
(In the case n=3): G/F(m;n) where m=1, 2, ---.

Now, by the equality r=n—1, (V; ¥*) is a dominant G-equivariant completion
of the homogeneous space (U; v*). Therefore, in view of (*) of (3.1), (**) of
(3.2), and (9) of (4.2.1), the uniqueness theorem of dominant G-equivariant
completions (cf. (ii) of (1.1.2)) enables us to conclude that:

(#44) In Case C, for some h€Aut(G), the space (V; ") is G-equivariantly
isomorphic to one of the following:

{ The varieties in (2), (4), and (5) above, if n=2.
The varieties in (2), if n=3.

Finally, we consider Case D: Since, in this case, G=SL(n; C) acts homo-
geneously on the complete variety V/, we can regard V as the quotient space of
SL(n; C) by some n-codimensional parabolic subgroup. But then, by iv) of
Theorem (2.2.1), such subgroups exist only when n=3, 4. Noting that
Proj(T(P*(C))) (resp. Go(C*)) endowed lwith the standard SL(3; C)-action (resp.
SL(4; C)-action) is naturally identified with the homogeneous space SL(3; C)/
B(3) (resp. SL(4; C)/P(4; 2)), we now conclude the following, (cf. (iv) of
(2.2.1)):

(#488) In Case D, = is either 3 or 4, and for some A= Aut(G), the space
(V; v") is G-equivariantly isomorphic to

Proj(T(P*C))) in (6) above, if n=3.
{ G,(CY in (7) above, if mn=4.

Thus, (8#), (8%), (#4%), and (###4#) above complete the proof of Theorem
(5.1).
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