ON J_{R}-HOMOMORPHISMS

Haruo MINAMI

(Received October 13, 1978)

1. Introduction

In [8] Snaith proved the Adams conjecture for suspension spaces. In this paper we shall prove an analogous result to Snaith's theorem ([8|, Corollary 5.2) for the Real Adams operation ψ^{3} and a Real J-map J_{R} (see $\S 2$). This is proved by using the results of Seymour [7]. And as an application we shall determine an undecided order in the theorem of [6].

Here we shall inherit the notations and terminologies in [2], §1 and [6].

2. Homomorphism J_{R}

In [6] we defined the homomorphisms $J_{R, n}$ and J_{R} for doubly indexed suspension spaces $\Sigma^{p, q} X, p \geqq 0$ and $q \geqq 1$. Clearly, these definitions are also valid for any finite pointed τ-complex. But the natural map obtained in this manner

$$
J_{R}: \widetilde{K R^{-1}}(X) \rightarrow \pi_{s}^{0,0}(X)
$$

is not a homomorphism in general. As in the usual case we see that this map satisfies the following formula:

$$
J_{R}(\alpha+\beta)=J_{R}(\alpha)+J_{R}(\beta)+J_{R}(\alpha) J_{R}(\beta) \quad \alpha, \beta \in \widetilde{K R^{-1}}(X)
$$

where $a b\left(a, b \in \pi_{s}^{0,0}(X)\right)$ denotes the product of a and b induced by the loop composition in $\Omega^{n, n} \Sigma^{n, n}$ (cf. [9],p. 314).

3. Adams operation ψ^{3} in $\boldsymbol{K R}$-theory

In this section we recall the construction of the Real Adams operation ψ_{R}^{3} described in [7], §4.

Let S_{3} be the symmetric group with two generators a, b satisfying

$$
a^{3}=b^{2}=1, b a b=a^{2}
$$

and let Z_{3} be the cyclic subgroup of S_{3} generated by a. From the above relations we see that $\tau(a)=a^{2}, \tau(b)=b$ induces an automorphic involution τ on
$S_{3} . Z_{3}$ is closed under the involution τ. Therefore S_{3} (resp. Z_{3}) is regarded as a Real group with the involution τ (resp. its restriction to Z_{3}) in the sense of Atiyah-Segal [4].

We know that all simple $S_{3^{-}}$and Z_{3}-modules over \boldsymbol{C} are as follows:

$$
\begin{align*}
S_{3}: & \tilde{1}=\{\boldsymbol{C} \mid a=1, b=1\}, \tilde{M}=\{\boldsymbol{C} \mid a=1, b=-1\}, \tag{3.1}\\
& \tilde{M}_{1}=\left\{\boldsymbol{C}^{2} \mid a v=A v, b v=B v, v \in \boldsymbol{C}^{2}\right\} \\
Z_{3}: & 1=\{\boldsymbol{C} \mid a=1\}, M_{1}=\{\boldsymbol{C} \mid a v=\zeta v, v \in \boldsymbol{C}\} \\
& M_{2}=\left\{\boldsymbol{C} \mid a v=\zeta^{2} v, v \in \boldsymbol{C}\right\}
\end{align*}
$$

where $A=\left[\begin{array}{ll}\zeta & 0 \\ 0 & \zeta^{2}\end{array}\right], B=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \in G L(2, \boldsymbol{C})$ and $\zeta=\exp (2 \pi i / 3)$ (see, e.g., $\left.[5], \S 32\right)$.
Let G denote either S_{3} or Z_{3}. Clearly each G-module listed above is a Real G-module with the conjugate linear involution induced by complex conjugation. This fact shows that the forgetful map $R_{R}(G) \rightarrow R(G)$, which is injective in general, is surjective where $R_{R}(G)$ is the Grothendieck group of Real G-modules and $R(G)$ is the complex representation ring of G.

Let X be a Real space with trivial G-action and $F \rightarrow X$ be a Real G-vector bundle in the sense of [4], §6. Then we see easily that the decomposition of F as a complex G-vector bundle ([4], §8)

$$
\begin{equation*}
\underset{\text { II }}{\oplus \operatorname{Hom}^{c}(\underline{M}, F) \otimes \underline{M} \xrightarrow{\cong} F} \tag{3.2}
\end{equation*}
$$

becomes an isomorphism of Real G-vector bundles. Here M runs through the simple G-modules over C and \underline{M} denotes the product bundle $M \times X$ ovei X. And so we see that (3.2) induces a natural isomorphism $K R_{G}(X) \cong K R(X)$ $\otimes R(G)$.

Let $E \rightarrow X$ be a Real vector bundle over X with the involution $\tau_{E}: E \rightarrow E$. We define a Real structure $\widetilde{\tau}_{E}$ on $E^{\otimes 3}$ by $\widetilde{\tau}_{E}=(1 \otimes t) \tau_{E}^{\otimes 3}$ where $t: E^{\otimes 2} \rightarrow E^{\otimes 2}$ is the switching map. Then $E^{\otimes 3}$ becomes a Real S_{3}-vector bundle with the S_{3} action permuting the factors.

Applying (3.2) to $E^{\otimes 3}$ we have an isomorphism of Real S_{3}-vector bundles

$$
\begin{align*}
E^{\otimes 3} \cong \operatorname{Hom}^{s_{3}}\left(\underline{\underline{1}}, E^{\otimes 3}\right) & \otimes \tilde{\underline{1}} \oplus \operatorname{Hom}_{3}^{s_{3}}\left(\underline{\tilde{M}}, E^{\otimes 3}\right) \otimes \underline{\tilde{M}} \tag{3.3}\\
& \oplus \operatorname{Hom}^{s_{3}}\left(\underline{\tilde{M}}_{1}, E^{\otimes 3}\right) \otimes \underline{\tilde{M}}_{1}
\end{align*}
$$

with the notations of (3.1). And by (3.3), as a Real Z_{3}-vector bundle we obtain

$$
\begin{align*}
& E^{\otimes 3} \cong\left(\operatorname{Hom}^{s_{3}}\left(\underline{\underline{1}}, E^{\otimes 3}\right) \oplus \operatorname{Hom}^{s_{3}}\left(\underline{\tilde{M}}, E^{\otimes 3}\right)\right) \otimes \underline{1} \tag{3.4}\\
& \oplus \operatorname{Hom}^{s_{3}}\left(\underline{\tilde{M}_{1}}, E^{\otimes 3}\right) \otimes\left(\underline{M}_{1} \oplus \underline{M}_{2}\right)
\end{align*}
$$

Put

$$
\begin{aligned}
& V_{0}=\operatorname{Hom}^{s_{3}}\left(\underline{\tilde{1}}, E^{\otimes 3}\right) \oplus \operatorname{Hom}^{S_{3}}\left(\underline{\tilde{M}}, E^{\otimes 3}\right), \\
& V_{1}=\operatorname{Hom}^{S_{3}}\left(\underline{\tilde{M}}_{1}, E^{\otimes 3}\right)
\end{aligned}
$$

and

$$
N=1 \oplus M_{1} \oplus M_{2}, \text { the regular representation of } Z_{3}
$$

then by (3.4)

$$
\begin{equation*}
E^{\otimes 3} \cong V_{0} \otimes \underline{1} \oplus V_{1} \otimes\left(\underline{M}_{1} \oplus \underline{M}_{2}\right) \tag{3.5}
\end{equation*}
$$

as a Real Z_{3}-vector bundle and so

$$
\left[E^{\otimes 3}\right]=\left(\left[V_{0}\right]-\left[V_{1}\right]\right) \otimes 1+\left[V_{1}\right] \otimes N
$$

in $K R_{Z_{3}}(X)=K R(X) \otimes R\left(Z_{3}\right)$ where $[A]$ denotes the isomorphism class of A.
Here we define ψ_{R}^{3} by

$$
\begin{equation*}
\psi_{R}^{3}([E])=\left[V_{0}\right]-\left[V_{1}\right] . \tag{3.6}
\end{equation*}
$$

Then we can easily check that ψ_{R}^{3} satisfies the properties of Adams operation. And moreover by [3], Proposition 2.5 we see that forgetting the Real structure, ψ_{R}^{3} is reduced to the complex Adams operation ψ_{U}^{3}.

4. Real Adams conjecture for $\psi_{\boldsymbol{R}}^{\mathbf{3}}$

The purpose of this section is to prove the following theorem.
Theorem 4.1. Let X be a finite pointed τ-complex. Then

$$
J_{R}\left(\psi_{R}^{3}(x)\right)=J_{R}(x) \quad \text { for any } x \in \widetilde{K R}^{-1}(X)
$$

in $\pi_{s}^{0,0}(X)\left[\frac{1}{3}\right]$.
Let Y be a τ-space with trivial Z_{3}-action. As in $\S 3$ we assume here that $E^{\otimes 3}$ has the twisted Real structure for a Real vector bundle E over Y. We have the following lemmas as in [7], $\S 1$.

Lemma 4.2 (cf. [7], Proposition 1.2). There is a natural isomorphism of Real Z_{3}-vector bundles

$$
(E \oplus F)^{\otimes 3} \cong E^{\otimes 3} \oplus F^{\otimes 3} \oplus\left(U^{\prime}(E, F) \otimes \underline{N}\right)
$$

for Real vector bundles E and F over Y.
Lemma 4.3 (cf. [7], p.399). For the trivial Real vector bundle \underline{n} of dimension n over Y there is a canonical isomorphism of Real Z_{3}-vector bundles

$$
\theta_{n}: \underline{n}^{\otimes 3} \rightarrow \underline{n} \oplus\left(\underline{n}^{\prime} \otimes \underline{N}\right)
$$

such that

$$
\pi_{n} \theta_{n}\left(\left(\sum_{i=1}^{n} z_{i} e_{i}\right)^{\otimes 3}, x\right)=\left(\sum_{i=1}^{n} z_{i}^{3} e_{i}, x\right) \quad\left(z_{i} \in C, x \in X\right)
$$

where let π_{n} denote the projection of $\underline{n} \oplus\left(\underline{n}^{\prime} \otimes \underline{N}\right)$ onto \underline{n} and let e_{1}, \cdots, e_{n} denote
the standard basis of \boldsymbol{C}^{n}.
Let $f_{k}: \underline{n}^{\otimes 3} \rightarrow \underline{n} \oplus\left(\underline{n}^{\prime} \otimes \underline{N}\right)(k=1,2)$ be isomorphisms of Real Z_{3}-vector bundles. Consider the direct sum

$$
f_{1} \oplus f_{2}: 2 \underline{n}^{\otimes 3} \rightarrow 2 \underline{n} \oplus\left(2 \underline{n}^{\prime} \otimes \underline{N}\right)
$$

By Lemma 4.2, adding $U^{\prime}(\underline{n}, \underline{n}) \otimes \underline{N}$ to the above isomorphism we have an isomorphism of Real Z_{3}-vector bundles

$$
(\underline{2 n})^{\otimes 3} \rightarrow \underline{2 n} \oplus\left((\underline{2 n})^{\prime} \otimes \underline{N}\right)
$$

for which we write $f_{1}+f_{2}$.
By modifying the proof of [7], Proposition 2.5 we get the following
Lemma 4.4 (cf. [7], Proposition 2.5). Given an isomorphism of Real Z_{3} vector bundles $f: \underline{n}^{\otimes 3} \rightarrow \underline{n} \oplus\left(\underline{n}^{\prime} \otimes \underline{N}\right)$, there is an isomorphism of Real Z_{3}-vector bundles $g: \underline{n}^{\otimes 3} \rightarrow \underline{n} \oplus\left(\underline{n}^{\prime} \otimes \underline{N}\right)$ such that $f+g$ is homotopic to $\theta_{2 n}$ through Real Z_{3}-isomorphism.

Define a map $\delta: \boldsymbol{C}^{n} \rightarrow \boldsymbol{C}^{n}$ by $\delta\left(z_{1}, \cdots, z_{n}\right)=\left(z_{1}^{3}, \cdots, z_{n}^{3}\right)\left(z_{i} \in \boldsymbol{C}\right)$. Then δ induces a base-point-preserving τ-map of $\Sigma^{n, n}$ into itself which we denote by the same letter δ. Now, according to [2], Theorem 12.5

$$
\pi_{n, n}\left(\Sigma^{n, n}\right)=Z[\rho] /\left(1-\rho^{2}\right)
$$

for $n \geqq 1$. We observe $[\delta]^{\tau} \in \pi_{n, n}\left(\Sigma^{n, n}\right)$, the τ-homotopy class of δ.
Lemma 4.5. With the above notations, we have

$$
[\delta]^{\tau}=\frac{1+3^{n}}{2}+\frac{1-3^{n}}{2} \rho \quad(n \geqq 1)
$$

in $\pi_{n, n}\left(\Sigma^{n, n}\right)$.
Proof. We have

$$
\psi(1)=1, \phi(1)=1, \psi(\rho)=-1 \text { and } \phi(\rho)=1
$$

where ψ and ϕ are the forgetful and fixed-point homomorphisms respectively. So putting $[\delta]^{\tau}=x+y \rho(x, y \in Z)$ we have

$$
x=\frac{1+3^{n}}{2} \text { and } y=\frac{1-3^{n}}{2}
$$

since $\psi\left([\delta]^{\tau}\right)=3^{n}$ and $\phi\left([\delta]^{\tau}\right)=1$ by the definition. q.e.d.
For a τ-map σ of $\Sigma^{l, l}$ into itself we define a τ-map $t_{\sigma}: \Omega^{m, m} \Sigma^{m, m} \rightarrow \Omega^{l+m, l+m}$ $\Sigma^{l+m, l+m}$ by $t_{\sigma}(\eta)=\sigma \wedge \eta\left(\eta \in \Omega^{m, m} \Sigma^{m, m}\right)$ where ' \wedge ' denotes the smash product upon one point compactification. Let ε be a τ-map of $\Sigma^{n, n}$ into itself such that

$$
[\varepsilon]^{\tau}=\frac{1+3^{n}}{2}-\frac{1-3^{n}}{2} \rho
$$

in $\pi_{n, n}\left(\Sigma^{n, n}\right)$. Then $[\varepsilon \delta]^{\tau}=3^{n}$ for δ as in Lemma 4.5. Hence we have

$$
\varepsilon \wedge \delta \simeq_{\tau} \varepsilon \delta \wedge 1 \simeq_{\tau} 3^{n}: \Sigma^{2 n, 2 n} \rightarrow \Sigma^{2 n, 2 n}
$$

where 1 is the identity map of $\Sigma^{n, n}$.
For a τ-map $h: X \rightarrow G L(n, \boldsymbol{C})$ we define a τ-map $\tilde{h}: X \rightarrow \Omega_{0}^{3 n, 3 n} \Sigma^{3 n, 3 n}$ to be the composition

$$
\begin{aligned}
X & \xrightarrow{h} G L(n, C) \stackrel{i}{\subset} \Omega^{n, n} \Sigma^{n, n} \xrightarrow{t_{\delta}} \Omega^{2 n, 2 n} \Sigma^{2 n, 2 n} \\
& \xrightarrow{t_{\mathrm{e}}} \Omega^{3 n, 3 n} \Sigma^{3 n, 3 n} \xrightarrow{\tilde{t}} \Omega^{3 n, 3 n} \Sigma^{3 n, 3 n} .
\end{aligned}
$$

Here i is the canonical inclusion map and \tilde{t} is the map given by adding a fixed map of degree $\left(-3^{n}\right)$ to the elements of $\Omega^{3 n, 3^{n}} \Sigma^{3 n, 3^{n}}$ with respect to the loop addition along fixed coordinates of $\Sigma^{3 n, 3 n}$. By ad h we denote the adjoint of \breve{h}. Then, by the definition of $J_{R, 3 n}$ we have

Lemma 4.6. With the above notations

$$
[\operatorname{ad} h]^{\tau}=3^{n} J_{R, 3 n}\left([j h]^{\tau}\right)
$$

where j is a canonical inclusion map of $G L(n, \boldsymbol{C})$ into $G L(3 n, \boldsymbol{C})$.
As we note in [6] we have

$$
\widetilde{K R^{-1}}(X) \cong \widetilde{K R}\left(\Sigma^{0,1} X\right) \cong[X, G L(\infty, C)]^{\tau}
$$

So we see that any Real vector bundle over $\Sigma^{0,1} X$ is obtained from the clutching of the trivial bundles $E_{1}=C^{m} \times \Sigma_{+}^{0,1} X$ and $E_{2}=C^{m} \times \Sigma_{-}^{0,1} X$ by a base-pointpreserving τ-map from X to $G L(m, C)$. Here,

$$
\begin{aligned}
& \Sigma_{+}^{0,1} X=\{t \wedge x \in S X \mid t \geqq 0\}, \Sigma_{-}^{0,1} X=\{t \wedge x \in S X \mid t \leqq 0\} \\
& X=\Sigma_{+}^{0,1} X \cap \Sigma_{-}^{0,1} X
\end{aligned}
$$

and we consider that \boldsymbol{C}^{m} has the natural Real structure, i.e., $\boldsymbol{C}^{m}=\boldsymbol{R}^{m, m}$.
Proof of Theorem 4.1. Denote by E_{α} the associated vector bundle with a base-point-preserving τ-map $\alpha: X \rightarrow G L(m, C)$. From (3.5) we have a decomposition

$$
E_{\alpha}^{\otimes 3} \cong V_{0} \oplus V_{1} \otimes\left(\underline{M_{1}} \oplus \underline{M_{2}}\right)
$$

as a Real Z_{3}-vector bundle over $\Sigma^{0,1} X$ where ' $\otimes \underline{1}$ ' is omitted for the simplicity. Also we have a vector bundle V_{1}^{*} over $\Sigma^{0,1} X$ such that $V_{1} \oplus V_{1}^{*} \cong \underline{2} s$ where let $\operatorname{dim} V_{1}=s$. Adding $V_{1} \oplus V_{1}^{*}$ to the above isomorphism we obtain an isomorphism

$$
E_{\infty}^{\otimes 3} \oplus \underline{2} s \cong\left(V_{0} \oplus V_{1}^{*}\right) \oplus\left(V_{1} \otimes \underline{N}\right) .
$$

By Lemmas 4.2 and 4.3, adding $\left((\underline{2 s})^{\prime} \oplus U^{\prime}\left(E_{a}, \underline{2 s}\right)\right) \otimes \underline{N}$ we obtain an isomorphism

$$
\begin{equation*}
\beta:\left(E_{a} \oplus \underline{2 s}\right)^{\otimes 3} \xrightarrow{\cong}\left(V_{0} \oplus V_{1}^{*}\right) \oplus\left((\underline{2 s})^{\prime} \oplus U^{\prime}\left(E_{a}, \underline{2 s}\right) \oplus V_{1}\right) \otimes \underline{N} . \tag{4.1}
\end{equation*}
$$

And by (3.6) we have

$$
\begin{equation*}
\left[V_{0} \oplus V_{1}^{*}\right] \cong \psi_{R}^{3}\left(\left[E_{\alpha}\right]\right)+\underline{2 s} . \tag{4.2}
\end{equation*}
$$

Observe the restrictions of (4.1) over $\Sigma_{+}^{0,1} X$ and $\Sigma_{-}^{0,1} X$, then β yields an isomorphism of trivial bundles over each space since $\Sigma_{ \pm}^{0,1} X$ are contractible. Therefore we have a homotopy commutative diagram

Here the dotted arrows denote isomorphisms which are defined only over X and $\beta_{ \pm}$are given by $\beta_{ \pm}(v, x)=(\beta(v, *), x)\left(x \in \boldsymbol{C}^{m^{3}}, x \in \Sigma_{ \pm}^{0,1} X\right)$ respectively where $*$ is the base-point of $\Sigma^{0,1} X$.

Applying Lemma 4.4 to the horizontal isomorphisms in (4.3) we obtain the following homotopy commutative diagram

where \tilde{f}, \tilde{g} and \tilde{g}^{\prime} are isomorphisms over X which are naturally induced from f^{\prime}, g^{\prime} and $g^{\prime \prime}$ respectively.

Put $n=2 m$ in (4.4). By Lemma 4.3 we see that the composition

$$
\underline{n} \xrightarrow{\Delta_{n}} \underline{n}^{\otimes 3} \xrightarrow{\theta_{n}} \underline{n} \oplus\left(\underline{n}^{\prime} \otimes \underline{N}\right) \xrightarrow{\pi_{n}} \underline{n}
$$

induces a constant τ-ma;

$$
\gamma: X \rightarrow \Omega^{n, n} \Sigma^{n, n}
$$

given by $\gamma(x)=\delta(x \in X)$ where $\Delta_{n}(u)=u^{\otimes 3}$ and δ is as in Lemma 4.5. Besides we see that \tilde{f} and \tilde{g} induce τ-maps

$$
f: X \rightarrow G L(n, \boldsymbol{C}) \text { and } g: X \rightarrow G L(n, \boldsymbol{C})
$$

in the natural way. By the commutativity of (4.4), we have

$$
(i g) \circ \gamma \simeq_{\tau} \gamma \circ(i f): X \rightarrow \Omega^{n, n} \Sigma^{n, n}
$$

where $i: G L(n, C) \subset \Omega^{n, n} \Sigma^{n, n}$ denotes the inclusion map and $f \circ h$ is given by $(f \circ h)(x)(z)=f(x)(h(x)(z))\left(x \in X, z \in \Sigma^{n, n}\right)$ for τ-maps $f, h: X \rightarrow \Omega^{n, n} \Sigma^{n, n}$. Therefore we obtain

$$
\begin{equation*}
\gamma \wedge i g \simeq_{\tau} \gamma \wedge i f: X \rightarrow \Omega^{2 n, 2 n} \Sigma^{2 n, 2 n} \tag{4.5}
\end{equation*}
$$

where $f \wedge h$ is given by $(f \wedge h)(x)\left(z_{1} \wedge z_{2}\right)=f(x)\left(z_{1}\right) \wedge h(x)\left(z_{2}\right)\left(x \in X, z_{1}, z_{2}\right.$ $\in \Sigma^{n, n}$) for τ-maps $f, h: X \rightarrow \Omega^{n, n} \Sigma^{n, n}$. Therefore, by (4.5) and Lemma 4.6 we obtain

$$
\left.3^{n} J_{R, 3 n}(\Gamma j f]^{\tau}\right)=3^{n} J_{R, 3 n}\left([j g]^{\tau}\right)
$$

This shows

$$
J_{R, 3 n}\left([j f]^{\tau}\right)=J_{R, 3 n}\left([j g]^{\top}\right)
$$

in $\left[\Sigma^{3 n, 3 n} X, \Sigma^{3 n, 3 n}\right]\left[\frac{1}{3}\right]$. Consequently, passing the direct limit we have

$$
J_{R}\left(\left\{E_{\alpha}\right\}\right)=J_{R}\left(\psi_{R}^{3}\left(\left\{E_{\alpha}\right\}\right)\right)
$$

in $\pi_{s}^{0,0}(X)\left[\frac{1}{3}\right]$ where $\{A\}$ denotes the stable isomorphism class of A, because the vector bundles associated with f and α are stably equivariant and g respresents $\psi_{R}^{3}\left(\left\{E_{\alpha}\right\}\right)$ stably by (4.2). This completes the proof.
5. $\boldsymbol{J}_{\boldsymbol{R}}\left(\boldsymbol{\pi}_{m, n}(\boldsymbol{G L}(\infty, \boldsymbol{C}))\right.$

In [6] we showed that if p is odd and k is even then the image $J_{R}\left(\pi_{2 p-2 k, 2 p+2 k-1}\right.$ $(G L(\infty, \boldsymbol{C}))(p>k \geqq 0)$ is a cyclic group and its order is either $m(2 p)$ or $2 m(2 p)$. Here we prove the following

Therem 5.1. The image $J_{R}\left(\pi_{2 p-2 k, 2 p+2 k-1}(G L(\infty, C))\right.$ is a cyclic group of order $m(2 p)$ for $p>k \geqq 0, p$ odd and k even.

Proof. Consider the following diagram

$$
\begin{array}{cc}
\pi_{2 p-2 k, 2 p+2 k-1}(G L(\infty, \boldsymbol{C})) \xrightarrow{c_{1}} \longrightarrow \pi_{4 p-1}(G L(\infty, \boldsymbol{C})) \\
\uparrow \cong & \uparrow \cong \\
\pi_{0,4 k-1}(G L(\infty, \boldsymbol{C}))=\pi_{4 k-1}(G L(\infty, \boldsymbol{R})) \xrightarrow{c_{2}} \pi_{4 k-1}(G L(\infty, \boldsymbol{C}))
\end{array}
$$

where the isomorphisms are the complex and Real Thom isomorphisms, and c_{1} and c_{2} are the natural complexification homomorphisms. Then we see easily that this diagram is commutative and c_{2} is an isomorphism since k is even. Therefore c_{1} becomes an isomorphism. Let g be a generator of $\pi_{2 p-2 k, 2 p+2 k-1}$ $(G L(\infty, C))=Z$. Then we have

$$
\psi_{R}^{3}(g)=3^{2 p} g
$$

because $c_{1} \psi_{R}^{3}=\psi_{U}^{3} c_{1}$ and $\psi_{U}^{3}\left(c_{1}(g)\right)=3^{2 p} c_{1}(g)$. Moreover we have $\nu_{2}\left(3^{2 p}-1\right)$ $=\nu_{2}(m(2 p))$ by [1], Lemma 2.12 (ii). When we denote by G the quotient module of $\pi_{2 p-2 k, 2 p+2 k-1}(G L(\infty, \boldsymbol{C}))$ by $\left(\psi_{R}^{3}-1\right)\left(\pi_{2 p-2 k, 2 p+2 k-1}(G L(\infty, \boldsymbol{C}))\right)$ we obtain

$$
G_{(2)} \cong Z_{2} \nu_{2(m(2 p))}
$$

by the above arguments where $G_{(2)}$ denotes the module obtained from G by localizing at the prime ideal (2). Now Theorem 4.1 yields the following 2local factrization:

$$
\begin{aligned}
& \pi_{2 p-2 k, 2 p+2 k-1}(G L(\infty, C))_{(2)} \\
& \searrow \pi_{2 p(2)}^{s} \\
& \nearrow \\
& G_{(2)}
\end{aligned}
$$

This result and the theorem of [6] show that the order of $J_{R}\left(\pi_{2 p-2 k, 2 p+2 k-1}\right.$ $(G L(\infty, \boldsymbol{C}))$) is equal to $m(2 p)$.

Osaka City University

References

[1] J.F. Adams: On the groups $J(X)$ II, Topology 3 (1965), 137-171.
[2] S. Araki and M. Murayama: τ-Cohomology theories, Japan. J. Math. 4 (1978), 363-416.
[3] M.F. Atiyah: Power operation in K-theory, Quart. J. Math., Oxford, 17 (1966), 165-193.
[4] M.F. Atiyah and G.B. Segal: Equivariant K-theory and completion, J. Differential Geometry 3 (1969), 1-18.
[5] C.W. Curtis and I. Reiner: Representation theory of finite groups and associative algebras, Pure and Applied Mathematics vol. XI, J. Wiley and Sons, Inc., 1962.
[6] H. Minami: On Real J-homomorphisms, Osaka J. Math. 16 (1979), 529-537.
[7] R.M. Seymour: Vector bundles invariant under the Adams operations, Quart. J. Math., Oxford, 25 (1974), 395-414.
[8] V. Snaith: The complex J-homomorphism I, Proc. London Math. Soc. 34 (1977), 269-302.
[9] R.M.W. Wood: Framing the exceptional Lie group G_{2}, Topology 15 (1976), 303320.

