ON STABLE JAMES NUMBERS OF STUNTED COMPLEX OR QUATERNIONIC PROJECTIVE SPACES

Hideaki ŌSHIMA

(Received May 20, 1978)

Following James [7] we denote the stunted complex $(F=C)$ or quaternionic $(F=H)$ projective spaces by $F P_{n+k, k}$ (or $P_{n+k, k}$) for positive integers n and k, that is

$$
F P_{n+k, k}=F P_{n+k} / F P_{n}=F P^{n+k-1} / F P^{n-1} .
$$

Let d be the dimension of F over the real number field. Let $i: S^{n d}=F P_{n+1,1} \rightarrow$ $F P_{n+k, k}$ be the inclusion. By stable James number $F\{n, k\}$ we mean the order of the cokernel of

$$
\operatorname{deg}=i^{*}:\left\{F P_{n+k, k}, S^{n i}\right\} \rightarrow\left\{S^{n d}, S^{n d}\right\}=Z
$$

where $\{X, Y\}$ denotes the group of stable maps from a pointed space X to an other pointed space Y. In the previous papers [5, 8, 9, 10] we used the notations $k_{s}\left(F P_{n}^{n+k-1}, S^{n d}\right)$ instead of $F\{n, k\}$ and estimated $F\{1, k\}$.

The first purpose of this note is to determine $F\{n, k\}$ for small k, that is, we shall determine $H\{n, k\}$ for $k \leqq 4$, estimate them for $k=5$, determine $C\{n, k\}$ for $k \leqq 8$ and estimate them for $k=9$ and 10 . These shall be done in $\S 2$ and $\S 3$. The second purpose is to show that $F\{n, k\}$ can be identified with the James numbers defined by James in [6]. This shall be done in $\S 4$.

An application of this note to F-projective stable stems shall be given in [11].

In this note we work in the stable category of pointed spaces and stable maps between them, and we use Toda's notations of stable stems and Toda brackets in [14] freely.

The author wishes to thank Mr. Y. Hirashima for his kind advices.

1. Preliminaries

In what follows we shall be working with both real K-cohomology theory $K O^{*}$ and complex K-cohomology theory K^{*}. We use the following notations. $K O^{*}$ and K^{*} denote both the K-functors and the coefficient rings. By the same letter $\xi=\xi_{n}$ we denote the canonical F-line bundle over $F P_{n}$,
the underlying complex or real vector bundle of it. Put $z=\xi-d / 2 \in \tilde{K}\left(F P_{n}\right)$ and $t=(-1)^{1+d / 2} c_{d / 2}(\xi) \in H^{d}\left(F P_{n} ; Z\right)$, where $c_{m}(\xi)$ denotes the m-th Chern class of ξ. Put also $\tilde{\xi}=\tilde{\xi}_{n}=\xi_{n}-1 \in \widetilde{K S p^{0}}\left(H P_{n}\right)=\widetilde{K O^{-4}}\left(H P_{n}\right)$. The formal power series $\phi_{F}(x)$ are defined to be $\exp (x)-1$ for $F=C$ or $\exp (\sqrt{\bar{x}})+\exp (-\sqrt{\bar{x}})-2$ for $F=H$. The rational numbers $\alpha_{F}(n, j)$ are defined by $\left(\phi_{\bar{F}}{ }^{-1}(x) / x\right)^{n}=\sum_{i=0}^{\infty} \alpha_{F}(n, j) x^{j}$. ch: $K(\quad) \rightarrow H^{*}(\quad ; Q)$ denotes the Chern character. Then the followings are well known.

Proposition 1.1. (i) $K\left(F P_{n}\right)=Z[z] /\left(z^{n}\right)$.
(ii) $K O^{*}\left(H P_{n}\right)=K O^{*}\left[\tilde{\xi}_{n}\right] /\left(\tilde{\xi}_{n}^{n}\right)$ and $\left.\tilde{\xi}_{n}\right|_{H P_{n-1}}=\widetilde{\xi}_{n-1}$.
(iii) $H^{*}\left(F P_{n} ; Z\right)=Z[t] /\left(t^{n}\right)$.
(iv) $\operatorname{ch}(z)=\phi_{F}(t)$.

Let $i=i_{l}: F P_{n+k, k} \subset F P_{n+k+l, k+l}$ be the inclusion for $l>0, q=q_{m}: F P_{n+k, k} \rightarrow$ $F P_{n+k, k-m}$ the canonical quotient map for $0 \leqq m<k, p_{n}=p_{n}^{F}: S^{n d-1} \rightarrow F P_{n}$ the Hopf bundle projection, and $p_{n+k, k}: S^{(n+k) d-1} \rightarrow F P_{n+k, k}$ the composition of p_{n+k} and q_{n-1} : $F P_{n+k}=F P_{n+k, n+k-1} \rightarrow F P_{n+k, k}$. Let G_{k} denote the k-stem of the stable groups of spheres. Let $e_{C}: G_{k} \rightarrow Q / Z$ or $e_{R}^{\prime}: G_{8 k+3} \rightarrow Q / Z$ be the Adams' complex or real e-invariant respectively [1]. Then we have

Proposition 1.2 (Adams[1]). $e_{C}: G_{1} \rightarrow Z_{2}, e_{R}^{\prime}: G_{3} \rightarrow Z_{24}, e_{C}: G_{7} \rightarrow Z_{240}$ and $e_{R}^{\prime}: G_{11} \rightarrow Z_{504}$ are isomorphisms, while there is a split exact sequence

$$
0 \rightarrow Z_{2}\{\eta \kappa\} \rightarrow G_{15} \xrightarrow{e_{C}} Z_{480} \rightarrow 0 .
$$

In [10] we obtained the following.
Proposition 1.3. For $f \in\left\{F P_{n+k, k}, S^{n d}\right\}$ we have

$$
e_{C}\left(f \circ p_{n+k, k}\right)=-\operatorname{deg}(f) \alpha_{F}(n, k) .
$$

Since $e_{C}=2 e_{R}^{\prime}$ on ($8 k+3$)-stems [1], e_{R}^{\prime} gives more precise informations about 2-primary components, so we compute $e_{R}^{\prime}\left(f \circ p_{n+k, k}\right)$ for the case of $F=H$ and $k \equiv$ $1 \bmod (2)$ or $F=C$ and $k \equiv 2 \bmod (4)$.

We use the following notations. Let $g_{C} \in \tilde{K}\left(S^{2}\right)$ and $g_{R} \in \widetilde{K O}\left(S^{8}\right)$ denote the Bott generators. ψ^{k} denotes the Adams operation. Let $c: K O^{*} \rightarrow K^{*}$ be the complexification and $r: K^{*} \rightarrow K O^{*}$ the real restriction. Put $z_{0}=r(z) \in \widetilde{K O}\left(C P_{n}\right)$ and $z_{j}=r\left(g_{C}^{j} z\right) \in \widetilde{K O^{-2 j}}\left(C P_{n}\right)$. Put also $y_{2 k}=g_{R}^{-k} \in K O^{8 k}$ and $y_{2 k+1} \in K O^{8 k+4}$ the generator satisfying $c\left(y_{2 k+1}\right)=2 g_{c}^{-4 k-2}$ for integer k. For $f \in\{X, Y\}, C(f)$ denotes the mapping cone of f.

We consider the case of $F=H$ and $k \equiv 1 \bmod (2)$ or $F=C$ and $k \equiv 2 \bmod (4)$.

Given $f \in\left\{F P_{n+k, k}, S^{n d}\right\}$, we have the commutative diagram

Apply $\widetilde{K O^{n d}}$ and $\widetilde{K}^{n d}$ to this diagram; since $\widetilde{K O^{n d}}\left(S^{(n+k) d-1}\right)=\widetilde{K}^{n d}\left(S^{(n+k) d-1}\right)$ $=\widetilde{K}^{n d-1}\left(S^{n d}\right)=0$ and $\widetilde{K O^{n d-1}}\left(F P_{n+k, k}\right), \widetilde{K}^{n d-1}\left(F P_{n+k, k}\right)$ and $\widetilde{K O^{n d-1}}\left(S^{n d}\right)$ are finite groups, we have the following commutative diagram in which the horizontal sequences are exact.

We can choose generators $a, b \in \widetilde{K O^{n d}}\left(C\left(f \circ p_{n+k, k}\right)\right)$ and $a^{\prime}, b^{\prime} \in \widetilde{K}^{n d}\left(C\left(f \circ p_{n+k, k}\right)\right)$ such that $a^{\prime}=c(a), 2 b^{\prime}=c(b), j^{*}\left(a^{\prime}\right)$ generates $\tilde{K}^{n d}\left(S^{n d}\right) \cong Z$ and $f^{\prime *}\left(b^{\prime}\right)=g_{c}^{-n d / 2} \Sigma^{n+k}$. Here we identify $\widetilde{K}^{n d}\left(F P_{n+k+1, k+1}\right)$ with the free subgroup of $\tilde{K}^{n d}\left(F P_{n+k+1}\right)$ generated by $g_{c}{ }^{-n d / 2} z^{n}, g_{c}^{-n d / 2} z^{n+1}, \cdots, g_{c}^{-n d / 2} z^{n+k}$. Hence we can put

$$
f^{\prime *}\left(a^{\prime}\right)=g_{c}^{-n d / 2} \sum_{i=0}^{k} a_{i} z^{n+i}
$$

for some integers a_{i}. Then by the proof of (1.1) of [10] we have

$$
\begin{align*}
& a_{i}=\operatorname{deg}(f) \alpha_{F}(n, i) \quad \text { for } 0 \leqq i \leqq k-1, \\
& \quad \sum_{i=1}^{k-1} \alpha_{F}(n, i)\binom{n+i}{k-i} d^{n+2 i-k}=d^{n}\left(1-d^{k}\right) \alpha_{F}(n, k) . \tag{1.4}
\end{align*}
$$

And we have
Proposition 1.5. In case of $F \equiv H$ and $k \equiv 1 \bmod (2)$ or $F=C$ and $k \equiv 2$ $\bmod (4)$ we have
(i) $\quad e_{R}^{\prime}\left(f \circ p_{n+k, k}\right)=\frac{1}{2} a_{k}-\frac{1}{2} \operatorname{deg}(f) \alpha_{F}(n, k)$,
(ii) if $F=H, a_{k} \equiv 0 \bmod (2)$,
(iii) if $F=C, n \equiv 1 \bmod (2)$ and $\operatorname{deg}(f)$ is known, $a_{k} \bmod (2)$ is computable.

Proof. First consider the case of $F=H$ and $n \equiv 0 \bmod (2)$. By Bott periodicity we can use $\widetilde{K O}$ and \tilde{K} instead of $\widetilde{K O^{4 n}}$ and $\tilde{K}^{4 n}$. Then we have

$$
\psi^{2}(a)=4^{n} a+\lambda b
$$

for some integer λ, and

$$
e_{R}^{\prime}\left(f \circ p_{n+k, k}\right)=\lambda /\left(4^{n}\left(4^{k}-1\right)\right) .
$$

We have

$$
\begin{aligned}
\psi^{2}\left(a^{\prime}\right)= & c\left(\psi^{2}(a)\right)=4^{n} a^{\prime}+2 \lambda b^{\prime}, \\
\psi^{2}\left(f^{\prime} *\left(a^{\prime}\right)\right) & =\psi^{2}\left(\sum_{i=0}^{k} a_{i} z^{n+i}\right)=\sum_{i=0}^{k} a_{i}\left(z^{2}+4 z\right)^{n+i} \\
& =\sum_{j=0}^{k} \sum_{i=0}^{k} a_{i}\binom{n+i}{j-i} 4^{n+2 i-j} z^{n+j}, \\
\psi^{2}\left(f^{\prime} *\left(a^{\prime}\right)\right) & =f^{\prime *}\left(\psi^{2}\left(a^{\prime}\right)\right)=f^{\prime} *\left(4^{n} a^{\prime}+2 \lambda b^{\prime}\right) \\
& =4^{n} \sum_{i=0}^{k} a_{i} z^{n+i}+2 \lambda z^{n+k} .
\end{aligned}
$$

Comparing the coefficients of z^{n+k}, we have

$$
2 \lambda=4^{n}\left(4^{k}-1\right) a_{k}+\sum_{i=0}^{k-1} a_{i}\binom{n+i}{k-i} 4^{n+2 i-k}
$$

Then by (1.4) we have

$$
e_{R}^{\prime}\left(f \circ p_{n+k, k}\right)=\frac{1}{2} a_{k}-\frac{1}{2} \operatorname{deg}(f) \alpha_{H}(n, k)
$$

as desired. Next we show (ii). Put $f^{\prime *}(a)=\sum_{i=0}^{k} d_{i} y_{n+i} \tilde{i}^{n+i}$. Then

$$
\begin{aligned}
c\left(f^{\prime *}(a)\right) & =\sum_{i=0}^{k} d_{i} c\left(y_{n+i}\right)(c(\tilde{\xi}))^{n+i}=\sum_{i=0}^{k} d_{i} \varepsilon_{i} g_{c}^{-2(n+i)}\left(g_{c}^{2} z\right)^{n+i} \\
& =\sum_{i=0}^{k} d_{i} \varepsilon_{i} z^{n+i},
\end{aligned}
$$

where $\varepsilon_{i}=1$ (if i is even) or 2 (if i is odd). We have also

$$
c\left(f^{\prime *}(a)\right)=f^{\prime *}(c(a))=\sum_{i=0}^{k} a_{i} z^{n+i}
$$

Therefore $a_{k}=d_{k} \varepsilon_{k}=2 d_{k}$.
In case of $F=H$ and $n \equiv 1 \bmod (2)$, (i) and (ii) can be proved by the quite parallel arguments to the above. We omit the details.

For $F=C$ (i) can be proved by the same methods as the above. We only prove (iii). First we consider the case of $n \equiv 3 \bmod (4)$. Put $n=4 m+3$ and $k=4 l+2$. By Bott periodicity we can use $\widetilde{K O^{-2}}$ and \tilde{K}^{-2} instead of $\widetilde{K O^{2 n}}$ and $\tilde{K}^{2 n}$. By Theorem 2 of Fujii [4], it is easily seen that $\widetilde{K O^{-2}}\left(C P_{4 m+4 l+6,4 l+3}\right)$ can
be identified with the free subgroup of $\widetilde{K O^{-2}}\left(C P_{4 m+4 l+6}\right)$ generated by $z_{1} z_{0}^{2 m+1}$, $z_{1} z_{0}^{2 m+2}, \cdots, z_{1} z_{0}^{2 m+2 l+2}$. So we can put $f^{\prime *}(a)=\sum_{i=0}^{2 l+1} d_{i} z_{1} z_{0}^{2 m+1+i}$ for some integers d_{i}. Then

$$
c\left(f^{\prime} *(a)\right)=\sum_{i=0}^{2 l+1} d_{i} c\left(z_{1}\right)\left(c\left(z_{0}\right)\right)^{2 m+1+i}=g_{c} \sum_{i=0}^{2 l+1} d_{i}(z-\bar{z})(z+\bar{z})^{2 m+1+i}
$$

where $\bar{z}=-z+z^{2}-z^{3}+\cdots$. We have also

$$
c\left(f^{\prime *}(a)\right)=f^{\prime *}(c(a))=g_{c} \sum_{i=0}^{4 l+2} a_{i} z^{4 m+3+i}
$$

So we have

$$
\sum_{i=0}^{4 l+2} a_{i} z^{4 m+3+i}=\sum_{i=0}^{2 l+1} d_{i}\left(2 z-z^{2}+z^{3}-\cdots\right)\left(z^{2}-z^{3}+\cdots\right)^{2 m+1+i} .
$$

Calculating this equation over the mod 2 integers, we have

$$
\begin{aligned}
\sum_{i=0}^{4 l+2} a_{i} z^{4 m+3+i} & \equiv \sum_{i=0}^{2 l+1} d_{i}\left(z^{2}+z^{3}+\cdots\right)^{2 m+2+i} \bmod \left(2, z^{4 m+4 l+6}\right) \\
& \equiv \sum_{j=0}^{4 l+1} \sum_{i=0}^{2 l+1} d_{i}\binom{2 m+1+j-i}{2 m+1+i} z^{4 m+4+j} \bmod (2)
\end{aligned}
$$

since $\left.\left(x^{2}+x^{3}+\cdots\right)^{u}=\sum_{j=2 u}^{\infty}{ }^{j}{ }^{j-u-1}{ }^{j-1}\right) x^{j}$. Then

$$
\begin{equation*}
a_{i} \equiv \sum_{j=0}^{2 l+1} d_{j}(2 m+i-j) \bmod (2) \quad \text { for } 1 \leqq i \leqq 4 l+2 \tag{1.6}
\end{equation*}
$$

By (1.4) and (1.6) for $1 \leqq i \leqq 4 l+1, d_{j} \bmod (2)$ is determined for $0 \leqq j \leqq 2 l$, so the equation

$$
\begin{align*}
a_{4 l+2} & \equiv \sum_{j=0}^{2 l+1} d_{j}\binom{(2 m+4 l+2-2-j}{2 m+1+j} \bmod (2) \tag{1.6}\\
& \equiv \sum_{j=0}^{l-1} d_{2 j+1}\binom{2 m+4 l+1-2 j}{2 m+2 j+2} \bmod (2)
\end{align*}
$$

determines $a_{4 l+2} \bmod (2)$, here we use the fact $\left({ }_{2 j-1}^{2 i}\right) \equiv 0 \bmod (2)$ for any i and j. Next we consider the case of $n \equiv 1 \bmod (4)$. Put $n=4 m+1$. We use $\widetilde{K O^{-6}}$ and \widetilde{K}^{-6} instead of $\widetilde{K O^{2 n}}$ and $\tilde{K}^{2 n}$. Then we can put $f^{\prime *}(a)=\sum_{i=0}^{2 l+1} d_{i} z_{3} z_{0}^{2 m+i}$ for some integers d_{i}. By the same arguments as the above we have

$$
\begin{equation*}
a_{i} \equiv \sum_{j} d_{j}\binom{2 m+i-j-1}{2 m+j} \bmod (2) \quad \text { for } 1 \leq i \leq 4 l+2 \tag{1.7}
\end{equation*}
$$

and in particular

$$
\begin{equation*}
a_{4 l+2} \equiv \sum_{i=0}^{l} d_{2 i}\left({ }_{2 m+2 i}^{2 m+2 l-2 i+1}\right) \bmod (2) . \tag{1.7}
\end{equation*}
$$

These and (1.4) determine $a_{4 l+2} \bmod (2)$. This completes the proof.

To compute $F\{n, k\}$ by inductive step on k we prepare the followings.
Proposition 1.8. $F\{n, k\}$ is a divisor of $F\{n, k+1\}$.
Proof. It is trivial by definition.
Proposition 1.9. For $f \in\left\{F P_{n+k, k}, S^{n d}\right\}$ with $\operatorname{deg}(f)=F\{n, k\}$ we have

$$
F\{n, k\} \# e_{c}\left(f \circ p_{n+k, k}\right)|F\{n, k+1\}| F\{n, k\} \#\left(f \circ p_{n+k, k}\right)
$$

where $\# g$ denotes the order of g and $a \mid b$ implies that a is a divisor of b.
Proof. Choose $f^{\prime} \in\left\{F P_{n+k+1, k+1}, S^{n d}\right\}$ with $\operatorname{deg}\left(f^{\prime}\right)=F\{n, k+1\}$. Since $i_{1} \circ p_{n+k, k}=0$, we have

$$
\begin{aligned}
0 & =e_{C}\left(f^{\prime} \circ i_{1} \circ p_{n+k, k}\right)=-\operatorname{deg}\left(f^{\prime} \circ i_{1}\right) \alpha_{F}(n, k) \\
& =-F\{n, k+1\} \alpha_{F}(n, k)=-F\{n, k\} \alpha_{F}(n, k) F\{n, k+1\} / F\{n, k\} \\
& =-e_{C}\left(f \circ p_{n+k, k}\right) F\{n, k+1\} / F\{n, k\} .
\end{aligned}
$$

Hence the first part of the conclusion is obtained. Since $\left(\#\left(f \circ p_{n+k, k}\right)\right) f \circ p_{n+k, k}=0$, there exists $h \in\left\{F P_{n+k+1, k+1}, S^{n d}\right\}$ with $h \circ i_{1}=\left(\sharp\left(f \circ p_{n+k, k}\right)\right) f$. Then $\operatorname{deg}(h)=$ $\operatorname{deg}(f) \#\left(f \circ p_{n+k, k}\right)=F\{n, k\} \#\left(f \circ p_{n+k, k}\right)$. Since $\operatorname{deg}(h)$ is a multiple of $F\{n, k+1\}$, the second part of the conclusion follows.

Proposition 1.10. For $f \in\left\{F P_{n+k, k}, S^{n d}\right\}$ with $\operatorname{deg}(f)=F\{n, k\}$ there exists $h \in\left\{F P_{n+k, k-1}, S^{n d}\right\}$ with $(F\{n, k+1\} / F\{n, k\}) f \circ p_{n+k, k}=h \circ q_{1} \circ p_{n+k, k}$.

Proof. Consider the exact sequence

$$
\cdots \rightarrow\left\{F P_{n+k, k-1}, S^{n d}\right\} \xrightarrow{q_{1}^{*}}\left\{F P_{n+k, k}, S^{n d}\right\} \xrightarrow{\operatorname{deg}}\left\{F P_{n+1,1}, S^{n d}\right\} \rightarrow \cdots
$$

Take $f^{\prime} \in\left\{F P_{n+k+1, k+1}, S^{n t}\right\}$ with $\operatorname{deg}\left(f^{\prime}\right)=F\{n, k+1\}$. Then $\operatorname{deg}((F\{n, k+1\} /$ $\left.F\{n, k\}) f-f^{\prime} \circ i_{1}\right)=0$. So there exists $h \in\left\{F P_{n+k, k-1}, S^{n d}\right\}$ with $q_{1}^{*}(h)=(F\{n, k$ $+1\} / F\{n, k\}) f-f^{\prime} \circ i_{1}$ by exactness. Then $h \circ q_{1} \circ p_{n+k, k}=((F\{n, k+1\} / F\{n, k\}) f$ $\left.-f^{\prime} \circ i_{1}\right) \circ p_{n+k, k}=(F\{n, k+1\} / F\{n, k\}) f \circ p_{n+k, k}$ as desired.

Proposition 1.11. $C\{2 n, 2 k\}$ is a divisor of $H\{n, k\}$.
Proof. Consider the commutative diagram

in which all maps are the canonical ones. For our purpose it suffices to show that π^{\prime} is a homotopy equivalence. Indeed this holds because in the following
commutative diagram π^{*} is an isomorphism.

$$
\begin{aligned}
& H^{4 n}\left(C P_{2 n+2 k} ; Z\right) \stackrel{q^{*}}{\cong} H^{4 n}\left(C P_{2 n+2 \dot{k}, 2 k} ; Z\right) \longrightarrow H^{4 n}\left(S^{4 n} ; Z\right) \\
& \begin{array}{clll}
\pi^{*} \uparrow \cong & \pi^{*} \mid \cong & \pi^{*} \uparrow \\
H^{4 n}\left(H P_{n+k} ; Z\right) & q^{*} & \cong & H^{4 n}\left(H P_{n+k, k} ; Z\right) \\
\cong & H^{4 n}\left(S^{4 n} ; Z\right) .
\end{array}
\end{aligned}
$$

Next we compute e-invariants of some elements.
Lemma 1.12. Suppose that there is a commutative diagram

in which L denotes the multiplication by non-zero integer L. Then

$$
e_{C}(s)=L\left\{\sum_{j=1}^{k-1}\binom{n}{j} d^{k-j} C_{j}+\binom{n}{k}\right\} / d^{k}\left(d^{k}-1\right)
$$

where $C_{j}=C_{j}(n, k)$ is the coefficient of x^{n+k} in $\left(\phi_{F}(x)\right)^{n+j}$.
Proof. Applying \tilde{K} to the above diagram we have the following commutative diagram in which the horizontal sequences are exact.

Choose $a_{j} \in \tilde{K}(C(\tilde{p}))$ for $0 \leqq j \leqq k$ such that $L^{\prime *}\left(a_{j}\right)=L z^{n+j}$ for $0 \leqq j \leqq k-1$ and $L^{\prime *}\left(a_{k}\right)=z^{n+k}$. Then $i^{\prime *}\left(a_{0}\right)$ and $i^{\prime *}\left(a_{k}\right)$ generate $\tilde{K}(C(s))$. We have

$$
\psi^{2}\left(i^{\prime *}\left(a_{0}\right)\right)=d^{n} i^{\prime} *\left(a_{0}\right)+\lambda i^{\prime *}\left(a_{k}\right)
$$

for some $\lambda \in Z$ and

$$
e_{c}(s)=\lambda / d^{n}\left(d^{k}-1\right)
$$

We compute λ. We have

$$
\begin{aligned}
L^{\prime *}\left(\psi^{2}\left(a_{0}\right)\right) & =\psi^{2}\left(L^{\prime *}\left(a_{0}\right)\right)=\psi^{2}\left(L z^{n}\right)=L\left(z^{2}+d z\right)^{n} \\
& =L \sum_{j=0}^{k}\binom{n}{j} d^{n-j} z^{n+j} \\
& =\sum_{j=0}^{k-1}\binom{n}{i} d^{n-j} L z^{n+j}+L\binom{n}{k} d^{n-k} z^{n+k} \\
& =L^{\prime *}\left\{\sum_{j=0}^{k-1}\binom{n}{j} d^{n-j} a_{j}+L\binom{n}{k} d^{n-k} a_{k}\right\} .
\end{aligned}
$$

Since $L^{\prime *}$ is monomorphic, we have

$$
\psi^{2}\left(a_{0}\right)=\sum_{j=0}^{k-1}\binom{n}{j} d^{n-j} a_{j}+L\binom{n}{k} d^{n-k} a_{k} .
$$

Next consider the following commutative diagram

Choose the generators $x_{n+j} \in H^{(n+j) d}(C(\widetilde{p}) ; Z)$ for $0 \leqq j \leqq k$ such that $L^{\prime *}\left(x_{n+j}\right)$ $=L t^{n+j}$ for $0 \leqq j \leqq k-1$ and $L^{\prime *}\left(x_{n+k}\right)=t^{n+k}$. Then for $1 \leqq j \leqq k-1$

$$
\begin{aligned}
L^{\prime *}\left(\operatorname{ch}\left(a_{j}\right)\right) & =\operatorname{ch}\left(L^{\prime *}\left(a_{j}\right)\right)=\operatorname{ch}\left(L z^{n+j}\right)=L\left(\phi_{F}(t)\right)^{n+j} \\
& =L\left(t^{n+j}+\text { middle } \operatorname{dim}+C_{j} t^{n+k}\right) \\
& =L^{\prime *}\left(x_{n+j}+\text { middle } \operatorname{dim}+L C_{j} x_{n+k}\right)
\end{aligned}
$$

where the terms middle dim mean elements of middle dimensions. Since L^{*} is monomorphic, we have

$$
\operatorname{ch}\left(a_{j}\right)=x_{n+j}+\text { middle } \operatorname{dim}+L C_{j} x_{n+k} \text { for } 1 \leqq j \leqq k-1
$$

and so

$$
\begin{aligned}
\operatorname{ch}\left(i^{\prime *}\left(a_{j}\right)\right)=i^{\prime *}\left(\operatorname{ch}\left(a_{j}\right)\right)=L C_{i} i^{*}\left(x_{n+k}\right)= & \operatorname{ch}\left(L C_{j} i^{\prime} *\left(a_{k}\right)\right) \\
& \text { for } 1 \leqq j \leqq k-1 .
\end{aligned}
$$

Since $c h$ is monomorphic now, we have

$$
i^{\prime *}\left(a_{j}\right)=L C_{j} i^{\prime *}\left(a_{k}\right) \text { for } 1 \leqq j \leqq k-1
$$

Then

$$
\begin{aligned}
\psi^{2}\left(i^{\prime} *\left(a_{0}\right)\right) & =i^{\prime} *\left(\psi^{2}\left(a_{0}\right)\right)=i^{\prime} *\left\{\sum_{j=0}^{k-1}\binom{n}{j} d^{n-j} a_{j}+L\binom{n}{k} d^{n-k} a_{k}\right\} \\
& =d^{n} i^{\prime *}\left(a_{0}\right)+\left\{\sum_{j=1}^{k-1}\binom{n}{j} d^{n-j} L C_{j}+L\binom{n}{k} d^{n-k}\right\} i^{\prime *}\left(a_{k}\right) \\
& =d^{n} i^{\prime *}\left(a_{0}\right)+L d^{n-k}\left\{\sum_{j=1}^{k-1}\binom{n}{j} d^{k-j} C_{j}+\binom{n}{k}\right\} i^{\prime} *\left(a_{k}\right) .
\end{aligned}
$$

Therefore we have

$$
\lambda=L d^{n-k}\left\{\sum_{j=1}^{k-1}\binom{n}{j} d^{k-j} C_{j}+\binom{n}{k}\right\}
$$

and

$$
e_{C}(s)=L\left\{\sum_{j=1}^{k-1}\binom{n}{j} d^{k-j} C_{j}+\binom{n}{k}\right\} / d^{k}\left(d^{k}-1\right) .
$$

This completes the proof.
As a corollary of the above lemma we have
Proposition 1.13. In the same situation as (1.12) we have
(i) if $(F, k)=(C, 1), s=L n \eta$ and in particular $p_{n+1,1}=n \eta: S^{2 n+1} \rightarrow C P_{n+1,1}$ $=S^{2 n}$,
(ii) if $(F, k)=(H, 2), e_{C}(s)=\operatorname{Ln}(5 n-1) / 2^{5} \cdot 3^{2} \cdot 5$,
(iii) if $(F, k)=(C, 4), e_{C}(s)=L n\left(15 n^{3}+30 n^{2}+5 n-2\right) / 2^{7} \cdot 3^{2} \cdot 5$,
(iv) if $(F, k)=(C, 5), e_{C}(s)=\operatorname{Ln}\left(3 n^{4}+10 n^{3}+5 n^{2}-2 n+216\right) / 2^{8} \cdot 3^{2} \cdot 5$.

Proof. Since

$$
\phi_{F}(x)= \begin{cases}x+x^{2} / 2!+x^{3} / 3!+\cdots & \text { for } F=C \\ 2 x / 2!+2 x^{2} / 4!+2 x^{3} / 6!+\cdots & \text { for } F=H\end{cases}
$$

we can easily compute $e_{C}(s)$ for small k by elementary analysis, so we omit the details except (i). (i) follows from the fact that $e_{C}: G_{1} \rightarrow Z_{2}$ is an isomorphism and $e_{C}(s)=\frac{1}{2} L n=e_{C}(L n \eta)$.

Remark. (i) is well known.
In case of $F=H$ and $k \equiv 1 \bmod (2)$ or $F=C$ and $k \equiv 2 \bmod (4)$ we have $e_{C}(s)=2 e_{R}^{\prime}(s)$ so the computation of $e_{R}^{\prime}(s)$ may give more precise informations about the 2-primary components of the order of s. We do not require the whole computations but we only compute $e_{R}^{\prime}(s)$ for the case of $(F, k)=(H, 1)$ or $(C, 2)$. Let $g_{4}=p_{2}: S^{7} \rightarrow S^{4}=H P_{2}$ be the Hopf map. Put $g_{\infty}=\left\{g_{4}\right\} \in G_{3}$. Then $e_{R}^{\prime}\left(g_{\infty}\right)=1 / 24$ and

Proposition 1.14 (James [7]). $\quad p_{n+1,1}=n g_{\infty}: S^{4 n+3} \rightarrow H P_{n+1,1}=S^{4 n}$

Proof. We have the short exact sequence

$$
0 \leftarrow \widetilde{K O^{-4 n-8}}\left(H P_{n+1,1}\right) \stackrel{i *}{\leftarrow O^{-4 n-8}\left(H P_{n+2,2}\right)} q^{*} \widetilde{K O^{-4 n-8}}\left(S^{4 n+4}\right) \leftarrow 0 .
$$

It is easily seen by (1.1) that $\widetilde{K O^{-4 n-8}}\left(H P_{n+1,1}\right)=Z\left\{g_{R} \xi^{n}\right\}, \widetilde{K O^{-4 n-8}}\left(H P_{n+2,2}\right)$ $=Z\left\{g_{R} \tilde{\xi}^{n}, y_{-1} \widetilde{\xi}^{n+1}\right\}, \widetilde{K O}{ }^{-4 n-8}\left(S^{4 n+4}\right)=Z\{e\}, i^{*}\left(g_{R} \widetilde{\xi}^{n}\right)=g_{R} \widetilde{\xi}^{n} \quad$ and $\quad q^{*}(e)=y_{-1} \widetilde{\xi}^{n+1}$. We have

$$
\psi^{2}\left(g_{R} \tilde{\xi}^{n}\right)=\psi^{2}\left(g_{R}\right) \psi^{2}\left(\tilde{\xi}^{n}\right)=2^{4} g_{R}\left\{2^{4 n} \tilde{\xi}^{n}+n 2^{4 n-3} y_{1} \widetilde{\xi}^{n+1}\right\}
$$

Then

$$
e_{R}^{\prime}\left(p_{n+1,1}\right)=2^{4 n+1} n /\left(2^{4 n+6}-2^{4 n+4}\right)=n / 24=e_{R}^{\prime}\left(n g_{\infty}\right)
$$

This shows that $p_{n+1,1}=n g_{\infty}$, since $e_{R}^{\prime}: G_{3} \rightarrow Z_{24}$ is an isomorphism by (1.2).
Now consider the following commutative diagram in which the horizontal sequences are exact.

By (1.13) $q_{*}\left(p_{n+1}\right)=n \eta$. Then we have
Proposition 1.15. If $L n \equiv 0 \bmod (2)$

$$
q_{*}\left(i_{*}\right)^{-1}\left(L p_{n+1}\right)= \begin{cases}\frac{1}{2} L(n-1) g_{\infty} & \text { for } n \text { odd } \\ \left\{\frac{1}{2} L(n+2) g_{\infty},\left(\frac{1}{2} L(n+2)+12\right) g_{\infty}\right\} & \text { for } n \text { even }\end{cases}
$$

Proof. The above diagram shows that $q_{*}\left(i_{*}\right)^{-1}\left(L p_{n+1}\right)=\left(j_{*}\right)^{-1}\left(L p_{n+1,2}\right)$. Since $\left\{S^{2 n+1}, S^{2 n-1}\right\}=Z_{2}\left\{\eta^{2}\right\}$ and $p_{n, 1^{*}}\left(\eta^{2}\right)=(n-1) \eta^{3}=12(n-1) g_{\infty},\left(j_{*}\right)^{-1}\left(L p_{n+1,2}\right)$ is a coset of the subgroup of $\left\{S^{2 n+1}, C P_{n, 1}\right\}=G_{3}$ generated by $12(n-1) g_{\infty}$. This coset consists of a single element if n is odd or two elements if n is even. In case of n being odd we have the following commutative diagram by the proof of
(1.11), (i) of (1.13) and (1.14).

This diagram proves Proposition if n is odd. If n is even, we have the short exact sequence

$$
0 \rightarrow\left\{S^{2 n+1}, S^{2 n-1}\right\} \rightarrow\left\{S^{2 n+1}, S^{2 n-2}\right\} \xrightarrow{j_{*}}\left\{S^{2 n+1}, C P_{n+1,2}\right\} \rightarrow 0
$$

since $p_{n, 1}=(n-1) \eta$ by (i) of (1.13). For our purpose it suffices to show that

$$
\left(j_{*}\right)^{-1}\left(p_{n+1,2}\right)=\left\{(n / 2+1) g_{\infty},(n / 2+13) g_{\infty}\right\}
$$

For any $f \in\left(j_{*}\right)^{-1}\left(p_{n+1,2}\right)$ the equation
$\left.{ }^{*}\right) \quad e_{R}^{\prime}(f)=(n / 2+1+12 e) / 24$ for some integer e
implies this, because $e_{R}^{\prime}\left((n / 2+1) g_{\infty}\right)=(n / 2+1) / 24$. We prove $\left(^{*}\right)$. We use $\widetilde{K O^{-2}}$ if $n \equiv 0 \bmod (4)$ or $\widetilde{K O^{-6}}$ if $n \equiv 2 \bmod (4)$. The methods are quite parallel, so we only prove $\left(^{*}\right)$ for the case of $n \equiv 0 \bmod (4)$. Put $n=4 m$. There is the following commutative diagram in which the horizontal sequences are exact.

By Theorem 2 of Fujii [4] it is easy to see that $\widetilde{K O^{-2}}\left(C P_{4 m+1,2}\right)=Z\left\{z_{1} z_{0}^{2 m-1}\right\}$, $\widetilde{K O}^{-2}\left(C P_{4 m+2,3}\right)=Z\left\{z_{1} z_{0}^{2 m-1}, z_{1} z_{0}^{2 m}\right\}, \widetilde{K O^{-2}}\left(C P_{4 m, 1}\right)=Z\{w\}$ with $2 w=z_{1} z_{0}^{2 m-1}$ and $\widetilde{K O}^{-2}\left(C P_{4 m+2,1}\right)=Z\left\{z_{1} z_{0}^{2 m}\right\}$. Take $a \in \widetilde{K O^{-2}}\left((C(f))\right.$ with $u^{*}(a)=w$. Then a and $v^{*}\left(z_{1} z_{0}^{2 m}\right)=i^{\prime *}\left(z_{1} z_{0}^{2 m}\right)$ generate $\widetilde{K O^{-2}}(C(f))$. By definition $2 a=i^{\prime *}\left(z_{1} z_{0}^{2 m-1}\right)+e i^{\prime *}$ $\left(z_{1} z_{0}^{2 m}\right)$ for some integer e. We have $\psi^{2}(a)=2^{4 m} a+\lambda i^{\prime *}\left(z_{1} z_{0}^{2 m}\right)$ for some integer λ, and $e_{R}^{\prime}(f)=\lambda / 2^{4 m} \cdot 3$. We have also

$$
\begin{aligned}
c(2 a) & =c\left(i^{\prime *}\left(z_{1} z_{0}^{2 m-1}\right)+e i^{\prime} *\left(z_{1} z_{0}^{2 m}\right)\right) \\
& =g_{c} i^{\prime *}\left\{2 z^{4 m-1}-(4 m-1) z^{4 m}+\left(4 m^{2}+2 e\right) z^{4 m+1}\right\}
\end{aligned}
$$

and

$$
c\left(i^{\prime *}\left(z_{1} z_{0}^{2 m}\right)\right)=2 g_{c^{\prime}} i^{*}\left(z^{4 m+1}\right)
$$

and then

$$
\begin{aligned}
c\left(\psi^{2}(2 a)\right) & =c\left(2^{4 m+1} a+2 \lambda i^{\prime *}\left(z_{1} z_{0}^{2 m}\right)\right) \\
& =g_{c} i^{\prime} *\left\{2^{4 m+1} z^{4 m-1}-2^{4 m}(4 m-1) z^{4 m}+\left(2^{4 m+2} m^{2}+2^{4 m+1} e+4 \lambda\right) z^{4 m+1}\right\} .
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
c\left(\psi^{2}(2 a)\right) & =\psi^{2}(c(2 a))=\psi^{2}\left[g_{c} i^{\prime} *\left\{2 z^{4 m-1}-(4 m-1) z^{4 m}+\left(4 m^{2}+2 e\right) z^{4 m+2}\right\}\right] \\
& \left.=2 g_{c} \psi^{2} i^{\prime *}\left\{2 z^{4 m-1}-(4 m-1) z^{4 m}+\left(4 m^{2}+2 e\right) z^{4 m+1}\right\}\right] \\
& =g_{c} i^{\prime *}\left\{2^{4 m+1} z^{4 m-1}-2^{4 m}(4 m-1) z^{4 m}+2^{4 m-1}\left(2^{3} m^{2}+2 m+1+16 e\right) z^{4 m+1}\right\}
\end{aligned}
$$

Comparing the coefficients of $z^{4 m+1}$, we have

$$
\lambda=2^{4 m-3}(2 m+1+12 e)
$$

and so

$$
e_{R}^{\prime}(f)=(2 m+1+12 e) / 24
$$

This completes the proof.
In the sequel we shall need the explicit form of $\alpha_{F}(n, k)$ for small k. Since the expansion of $\phi_{F}^{-1}(x)$ is known (see e.g. [10]), we can obtain the following by elementary calculations.

Lemma 1.16.

$$
\begin{aligned}
& \alpha_{F}(n, 0)=1, \\
& \alpha_{H}(n, 1)=-n / 2^{2} \cdot 3, \\
& \alpha_{H}(n, 2)=n(5 n+11) / 2^{5} \cdot 3^{2} \cdot 5, \\
& \alpha_{H}(n, 3)=-n\left(35 n^{2}+231 n+382\right) / 2^{7} \cdot 3^{4} \cdot 5 \cdot 7, \\
& \alpha_{H}(n, 4)=n\left(175 n^{3}+2310 n^{2}+10181 n+14982\right) / 2^{11} \cdot 3^{5} \cdot 5^{2} \cdot 7, \\
& \alpha_{H}(n, 5)=-n\left(385 n^{4}+8470 n^{3}+69971 n^{2}+257246 n+355128\right) / 2^{13} \cdot 3^{6} \cdot 5^{2} \cdot 7 \cdot 11, \\
& \alpha_{C}(n, 1)=-n / 2, \\
& \alpha_{C}(n, 2)=n(3 n+5) / 2^{3} \cdot 3, \\
& \alpha_{C}(n, 3)=-n(n+2)(n+3) / 2^{4} \cdot 3, \\
& \alpha_{C}(n, 4)=n\left(15 n^{3}+150 n^{2}+485 n+502\right) / 2^{7} \cdot 3^{2} \cdot 5, \\
& \alpha_{C}(n, 5)=-n\left(3 n^{4}-30 n^{3}+785 n^{2}-78 n+1240\right) / 2^{8} \cdot 3^{2} \cdot 5, \\
& \alpha_{C}(n, 6)= n\left(63 n^{5}+1575 n^{4}+15435 n^{3}+73801 n^{2}+171150 n+152696\right) \\
& / 2^{10} \cdot 3^{4} \cdot 5 \cdot 7, \\
& \alpha_{C}(n, 7)=-n\left(9 n^{6}+315 n^{5}+4515 n^{4}+33817 n^{3}+139020 n^{2}+295748 n\right. \\
&+252336) / 2^{11} \cdot 3^{4} \cdot 5 \cdot 7, \\
& \alpha_{C}(n, 8)= n\left(135 n^{7}+6300 n^{6}+124110 n^{5}+1334760 n^{4}+8437975 n^{3}\right. \\
&\left.+74777100 n^{2}-68303596 n+138452016\right) / 2^{15} \cdot 3^{5} \cdot 5^{2} \cdot 7,
\end{aligned}
$$

$$
\begin{aligned}
\alpha_{C}(n, 9)= & -n\left(15 n^{8}+900 n^{7}+23310 n^{6}+339752 n^{5}-829745 n^{4}+38354500 n^{3}\right. \\
& \left.+27449684 n^{2}+112877136 n+100476288\right) / 2^{16} \cdot 3^{5} \cdot 5^{2} \cdot 7 \\
\alpha_{C}(n, 10)= & n\left(99 n^{9}+7425 n^{8}+244530 n^{7}+4634322 n^{6}+55598235 n^{5}\right. \\
& +436886945 n^{4}+2242194592 n^{3}+7220722828 n^{2} \\
& +38722058672 . \imath-15239326848) / 2^{18} \cdot 3^{6} \cdot 5^{2} \cdot 7 \cdot 11 .
\end{aligned}
$$

2. $H\{n, k\}$ for $k \leqq 5$

The results of this section are summarized as follows.
Theorem 2.1. (i) $H\{n, 1\}=1$,
(ii) $H\{n, 2\}=24 /(n, 24)$,
(iii) $H\{n, 3\}=H\{n, 2\} \operatorname{den}\left[H\{n, 2\} \alpha_{H}(n, 2)\right]$,
(iv) $H\{n, 4\}=H\{n, 3\} \operatorname{den}\left[\frac{1}{2} H\{n, 3\} \alpha_{H}(n, 3)\right]$,
(v) $H\{n, 5\} /\left(H\{n, 4\} \operatorname{den}\left[H\{n, 4\} \alpha_{H}(n, 4)\right]\right)$

$$
=\left\{\begin{array}{l}
1 \text { or } 2 \text { if } n \equiv 1 \bmod \left(2^{5}\right) \text { or } 34 \bmod \left(2^{6}\right) \\
1 \quad \text { otherwise, }
\end{array}\right.
$$

where den(a) denotes the denominator of a rational number a when the fraction a is expressed in its lowest terms.

Proof. (i) is trivial.
By (1.14), $\# p_{n+1,1}=24 /(n, 24)$, since $\# g_{\infty}=24$. Then $H\{n, 2\} \mid 24 /(n, 24)$ by (1.9). Choose $f \in\left\{H P_{n+2,2}, S^{4 n}\right\}$ with $\operatorname{deg}(f)=H\{n, 2\}$. Then

$$
0=f \circ i_{1} \circ p_{n+1,1}=\operatorname{deg}(f) p_{n+1,1}=H\{n, 2\} p_{n+1,1}
$$

Therefore $24 /(n, 24) \mid H\{n, 2\}$. Hence (ii) follows.
Take $f \in\left\{H P_{n+2,2}, S^{4 n}\right\}$ with $\operatorname{deg}(f)=H\{n, 2\}$. We have $\# e_{c}\left(f \circ p_{n+2,2}\right)=$ $\#\left(f \circ p_{n+2,2}\right)$, since $e_{C}: G_{7} \rightarrow Z_{240}$ is an isomorphism by (1.2). They by (1.9) $H\{n, 3\}$ $=H\{n, 2\} \cdot \# e_{C}\left(f \circ p_{n+2,2}\right) . \quad$ By (1.3) $e_{C}\left(f \circ p_{n+2,2}\right)=-H\{n, 2\} \alpha_{H}(n, 2)$. Hence (iii) is obtained.

For any $h \in\left\{H P_{n+3,2}, S^{4 n}\right\}$ we have

$$
e_{R}^{\prime}\left(h \circ q_{1} \circ p_{n+3,3}\right)=-\frac{1}{2} \operatorname{deg}\left(h \circ q_{1}\right) \alpha_{H}(n, 3)=0
$$

by (1.5). Since $e_{R}^{\prime}: G_{11} \rightarrow Z_{504}$ is an isomorphism by (1.2), $h \circ q_{1} \circ p_{n+3,3}=0$.
Then by (1.10), for $f \in\left\{H P_{n+3,3}, S^{4 n}\right\}$ with $\operatorname{deg}(f)=H\{n, 3\}, \#\left(f \circ p_{n+3,3}\right)$ is a divisor of $H\{n, 4\} / H\{n, 3\}$. Conversely (1.9) implies that $\#\left(f \circ p_{n+3,3}\right)$ is a multiple of $H\{n, 4\} / H\{n, 3\}$. Hence $\#\left(f \circ p_{n+3,3}\right)=H\{n, 4\} / H\{n, 3\}$. On the other hand $e_{R}^{\prime}\left(f \circ p_{n+3}\right)=-\frac{1}{2} H\{n, 3\} \alpha_{H}(n, 3)$ by (1.5). Hence $\#\left(f \circ p_{n+3,3}\right)=\operatorname{den}\left[\frac{1}{2} H\{n, 3\}\right.$ $\left.\alpha_{H}(n, 3)\right]$. Therefore

$$
H\{n, 4\} / H\{n, 3\}=\operatorname{den}\left[\frac{1}{2} H\{n, 3\} \alpha_{H}(n, 3)\right]
$$

and this implies (iv).
For the proof of (v) we prepare a lemma.
Lemma 2.2. If $n \equiv 0$ or $3 \bmod (4)$, the image of $p_{n+4,2}{ }^{*}:\left\{H P_{n+4,2}, S^{4 n}\right\} \rightarrow$ $\left\{S^{4 n+15}, S^{4 n}\right\}$ contains the element $\eta \kappa \in G_{15}$.

The proof of (2.2): Since all Toda brackets which appear in the proof have zero indeterminacies, we have

$$
\eta \kappa=\left\langle\varepsilon, 2 \iota, \nu^{2}\right\rangle=\langle\varepsilon, 2 \nu, \nu\rangle=\left\langle\varepsilon, 2 g_{\infty}, g_{\infty}\right\rangle .
$$

Consider the diagram

By (1.14) $p_{n+3,1}=(n+2) g_{\infty}$ and $p_{n+4,1}=(n+3) g_{\infty}$. So $p_{n+3,1} \circ(n+3) g_{\infty}=\varepsilon \circ p_{n+3,1}=0$, since $2 g_{\infty}^{2}=\varepsilon g_{\infty}=0$. Then there exists $f \in\left\{H P_{n+4,2}, S^{4 n}\right\}$ with $f \circ i=\varepsilon$, and by definition of Toda bracket

$$
f \circ p_{n+4,2} \in\left\langle\varepsilon,(n+2) g_{\infty},(n+3) g_{\infty}\right\rangle
$$

and

$$
\begin{aligned}
\left\langle\varepsilon,(n+2) g_{\infty},(n+3) g_{\infty}\right\rangle & =\frac{1}{2}(n+2)(n+3)\left\langle\varepsilon, 2 g_{\infty}, g_{\infty}\right\rangle \\
& =\frac{1}{2}(n+2)(n+3) \eta \kappa .
\end{aligned}
$$

Thus $f \circ p_{n+4,2}=\frac{1}{2}(n+2)(n+3) \eta \kappa$. Since the order of $\eta \kappa$ is 2 , the conclusion follows.

Now we prove (v). Take $f \in\left\{H P_{n+4,4}, S^{4 n}\right\}$ with $\operatorname{deg}(f)=H\{n, 4\}$. Then $e_{c}\left(f \circ p_{n+4,4}\right)=-H\{n, 4\} \alpha_{H}(n, 4)$ by (1.3), and $\#\left(f \circ p_{n+4,4}\right) / \# e_{c}\left(f \circ p_{n+4,4}\right)=1$ or 2 by (1.2). From (1.9) $H\{n, 5\} /\left(H\{n, 4\} \operatorname{den}\left[H\{n, 4\} \alpha_{H}(n, 4)\right]\right)=1$ or 2 . And by (1.2), if $\nu_{2}\left(H\{n, 4\} \alpha_{H}(n, 4)\right) \leqq-1$, we have $\#\left(f \circ p_{n+4,4}\right)=\# e_{C}\left(f \circ p_{n+4,4}\right)=\operatorname{den}\left[H\{n, 4\} \alpha_{H}\right.$ $(n, 4)]$ and

$$
H\{n, 5\}=H\{n, 4\} \operatorname{den}\left[H\{n, 4\} \alpha_{H}(n, 4)\right]
$$

where $\nu_{p}(n / m)=\nu_{p}(n)-\nu_{p}(m)$ for a prime number p and integers m and n. (1.16), (ii), (iii), (iv) and elementary analysis show that $\nu_{2}\left(H\{n, 4\} \alpha_{H}(n, 4)\right) \geqq 0$ if and only if $n \equiv 3 \bmod \left(2^{3}\right), 1 \bmod \left(2^{5}\right), 34 \bmod \left(2^{6}\right)$ or 0 and $\left(2^{10}\right)$. Consider the case of $n \equiv 3 \bmod \left(2^{3}\right)$ or $0 \bmod \left(2^{10}\right)$. By (2.2) there exists $h \in\left\{H P_{n+4,2}, S^{4 n}\right\}$ with $h \circ p_{n+4,2}$ $=\eta \kappa$. Then f or $f+h \circ q_{2}$, say f^{\prime}, satisfies the conditions $\# e_{c}\left(f^{\prime} \circ p_{n+4,4}\right)=\#\left(f^{\prime} \circ p_{n+4,4}\right)$ and $\operatorname{deg}\left(f^{\prime}\right)=H\{n, 4\}$. Then by (1.3) $\# e_{c}\left(f^{\prime} \circ p_{n+4}\right)=\operatorname{den}\left[H\{n, 4\} \alpha_{H}(n, 4)\right]$ and the conclusion (v) follows from (1.9).

3. $C\{n, k\}$ for $k \leqq 10$

In this section we determine inductively $C\{n, k\}$ for $k \leqq 8$ and estimate them for $k=9$ and 10 . The results are as follows.

Theorem 3.1. (i) $C\{n, 1\}=1$,
(ii) $C\{n, 2\}=2 /(n, 2)$,
(iii) $C\{n, 4\}=C\{n, 3\}= \begin{cases}24 /(n, 24) & \text { if } n \equiv 1 \bmod (4) \\ 12 /(n, 3) & \text { if } n \equiv 1 \bmod (8) \\ 6 /(n, 3) & \text { if } n \equiv 5 \bmod (8),\end{cases}$
(iv) $C\{n, 5\}=C\{n, 4\} \operatorname{den}\left[C\{n, 4\} \alpha_{C}(n, 4)\right]$,
(v) $C\{n, 6\}=C\{n, 5\} \operatorname{den}\left[C\{n, 5\} \alpha_{C}(n, 5)\right]$

$$
=\left\{\begin{aligned}
C\{n, 5\} & \text { if } n \equiv 0 \bmod (2), 1,11 \text { or } 27 \bmod (32) \\
2 C\{n, 5\} & \text { otherwise },
\end{aligned}\right.
$$

(vi) $C\{n, 7\}=\left\{\begin{array}{c}C\{n, 6\} \operatorname{den}\left[C\{n, 6\} \alpha_{C}(n, 6)\right] \text { if } n \equiv 0 \bmod (2) \text { or } 19 \bmod (32) \\ 2 C\{n, 6\} \operatorname{den}\left[C\{n, 6\} \alpha_{C}(n, 6)\right] \text { otherwise }\end{array}\right.$
(vii) $C\{n, 8\}=C\{n, 7\}$,
(viii) $C\{n, 9\} /\left(C\{n, 8\} \operatorname{den}\left[C\{n, 8\} \alpha_{C}(n, 8)\right]\right)$

$$
= \begin{cases}1 \text { or } 2 \text { if } n \equiv 3 \bmod \left(2^{7}\right) \text { or } 1 \bmod \left(2^{9}\right) \\ 1 & \text { otherwise }\end{cases}
$$

(ix) $C\{n, 10\} / C\{n, 9\}=\left\{\begin{array}{l}1 \quad \text { if } n \equiv 0,6 \bmod \left(2^{3}\right), 10,12 \bmod \left(2^{4}\right), \\ 18,20 \bmod \left(2^{5}\right), 34,36 \bmod \left(2^{6}\right) \text { or } 4 \bmod \left(2^{7}\right) \\ 1 \text { or } 2 \text { otherwise. }\end{array}\right.$

Proof. (i) is trivial. (ii) is proved by the same methods as the proof of (ii) of (2.1).

The proof of (iii): The first equality is a consequence of (1.9) and the fact $G_{5}=0$. We prove the second equality. Choose $f \in\left\{C P_{n+2,2}, S^{2 n}\right\}$ with $\operatorname{deg}(f)=C\{n, 2\}$. Then $C\{n, 3\} / C\{n, 2\}$ is a divisor of $\#\left(f \circ p_{n+2,2}\right)$ from (1.9), there exists $h \in\left\{C P_{n+2,1}, S^{2 n}\right\}$ with $(C\{n, 3\} / C\{n, 2\}) f \circ p_{n+2,2}=h \circ q_{1} \circ p_{n+2,2}$ from (1.10), while $q_{1} \circ p_{n+2,2}=(n+1) \eta$ from (i) of (1.13), so $C\{n, 3\} / C\{n, 2\}$ is a multiple
of $\#\left(f \circ p_{n+2,2}\right)$ if n is odd, and therefore $C\{n, 3\} / C\{n, 2\}=\#\left(f \circ p_{n+2,2}\right)$ if n is odd. From (1.5), $e_{R}^{\prime}\left(f \circ p_{n+2,2}\right)=\frac{1}{2} a_{2}-\frac{1}{2} C\{n, 2\} \alpha_{c}(n, 2)$ for some integer a_{2}. If $n \equiv 3$ $\bmod (4)$, say $n=4 m+3, a_{2} \equiv 0 \bmod (2)$ by (1.6)', then $e_{R}^{\prime}\left(f \circ p_{n+2,2}\right)=-(4 m+3)$ $(6 m+7) / 12$ by (1.16) and (ii), hence $\#\left(f \circ p_{n+2,2}\right)=\operatorname{den}[(4 m+3) / 12]=12 /(n, 24)$ by (1.2), and therefore the conclusion follows in this case since $C\{n, 2\}=2$. If $n \equiv 1$ $\bmod (4)$, say $n=4 m+1, a_{2} \equiv 1 \bmod (2)$ by (1.4),(1.7), (1.7)' and (ii), then $e_{R}^{\prime}\left(f \circ p_{n+2,2}\right)$ $=-(12 m-1)(m+1) / 6$ by (1.16) and (ii), hence $\#\left(f \circ p_{n+2,2}\right)=\operatorname{den}[(m+1) / 6]$ and the conclusion follows easily in this case also.

Next we consider the case of n being even. Take $f \in\left\{C P_{n+3,3}, S^{2 n}\right\}$ with $\operatorname{deg}(f)=C\{n, 3\}$. First we show that $C\{n, 3\}$ is a multiple of $24 /(n, 24)$. Since arguments are quite parallel we only consider the case of $n \equiv 0 \bmod (4)$. Put $n=4 m$ and consider the commutative diagram

We can put $f^{*}\left(g_{R}^{m}\right)=d_{0} z_{0}^{2 m}+d_{1} z_{0}^{2 m+1}$ for some integers d_{0} and d_{1}. We have

$$
\begin{aligned}
c\left(f^{*}\left(g_{R}^{m}\right)\right) & =d_{0}(z+\bar{z})^{2 m}+d_{1}(z+\bar{z})^{2 m+1} \\
& =d_{0} z^{4 m}-2 d_{0} m z^{4 m+1}+\left(\left(2 m^{2}+m\right) d_{0}+d_{1}\right) z^{4 m+2}, \\
c\left(f^{*}\left(g_{R}^{m}\right)\right) & =f^{*}\left(c\left(g_{R}^{m}\right)\right)=a_{0} 2^{4 m}+a_{1} z^{4 m+1}+a_{2} z^{4 m+2}
\end{aligned}
$$

for some integers a_{0}, a_{1} and a_{2}. Comparing the coefficients of the powers of z, by (1.4) we have

$$
\begin{gathered}
d_{0}=a_{0}=C\{n, 3\}, \\
\left(2 m^{2}+m\right) d_{0}+d_{1}=a_{2}=C\{4 m, 3\} \alpha_{C}(4 m, 2)=C\{4 m, 3\} m(12 m+5) / 6
\end{gathered}
$$

and so $d_{1}=-C\{4 m, 3\} m / 6$. Thus $C\{4 m, 3\}$ is a multiple of $\operatorname{den}(m / 6)=24 /(4 m$, 24) as desired. Second we show that $C\{n, 3\}$ is a divisor of $24 /(n, 24)$. We define $h: C P_{n+2,2}=S^{2 n} \vee S^{2 n+2} \rightarrow S^{2 n}$ by $\left.h\right|_{s^{2 n}}=24 /(n, 24)$ and

$$
\left.h\right|_{s^{2 n+2}}= \begin{cases}0 & \text { if } n \equiv 0 \bmod (16) \\ \eta^{2} & \text { for other even } n\end{cases}
$$

Since $p_{n+2,2}=\frac{1}{2} n g_{\infty} \vee \eta, h \circ p_{n+2,2}=(12 n /(n, 24)) g_{\infty}+\left.h\right|_{s^{2 n+2} \circ \eta=0 \text {. Hence there }}$ exists $f^{\prime} \in\left\{C P_{n+3,3}, S^{2 n}\right\}$ with $\left.f^{\prime}\right|_{C P_{n+2}, 2}=h$. Clearly $\operatorname{deg}\left(f^{\prime}\right)=24 /(n, 24)$, so $C\{n, 3\}$ is a divisor of $24 /(n, 24)$. Thus $C\{n, 3\}=24 /(n, 24)$ if n is even. This completes the proof of (iii).

The proof of (iv): By (1.3), $e_{C}\left(h \circ q_{1} \circ p_{n+4,4}\right)=0$ for any $h \in\left\{C P_{n+4,3}, S^{2 n}\right\}$ and then $h \circ q_{1} \circ p_{n+4,4}=0$ by (1.2). So by (1.3), (1.9) and (1.10)

$$
C\{n, 5\} / C\{n, 4\}=\#\left(f \circ p_{n+4,4}\right)=\operatorname{den}\left[C\{n, 4\} \alpha_{c}(n, 4)\right] .
$$

The proof of (v) : First consider the case of $n \equiv 1 \bmod (2)$. Choose $f \in$ $\left\{C P_{n+5,5}, S^{2 n}\right\}$ with $\operatorname{deg}(f)=C\{n, 5\}$. Recall that $G_{9}=Z_{2}\{\eta \bar{\nu}\} \oplus Z_{2}\{\eta \varepsilon\} \oplus Z_{2}\{\mu\}$ and the kernel of $e_{C}: G_{9} \rightarrow Q / Z$ is $Z_{2}\{\eta \bar{\nu}\} \oplus Z_{2}\{\eta \varepsilon\}$. Hence, if $e_{c}\left(f \circ p_{n+5,5}\right)=0$, we can choose $h \in\left\{C P_{n+5,1}, S^{2 n}\right\}=G_{8}$ with $\left(f+h \circ q_{4}\right) p_{n+5,5}=0$, because $q_{4} \circ p_{n+5,5}=$ $p_{n+5,1}=\eta$ by (i) of (1.13). Since $\operatorname{deg}\left(f+h \circ q_{4}\right)=\operatorname{deg}(f)=C\{n, 5\}$, by (1.9) we have

$$
C\{n, 6\}=C\{n, 5\}=C\{n, 5\} \# e_{c}\left(f \circ p_{n+5,5}\right) .
$$

If $e_{C}\left(f \circ p_{n+5,5}\right) \neq 0,(1.9)$ implies

$$
C\{n, 6\}=2 C\{n, 5\}=C\{n, 5\} \# e_{c}\left(f \circ p_{n+5,5}\right) .
$$

Since $C\{n, 5\}$ and $\alpha_{C}(n, 5)$ are known, we can easily compute $\operatorname{den}\left[C\{n, 5\} \alpha_{C}(n, 5)\right]$ by elementary analysis. Indeed

$$
\begin{aligned}
\# e_{c}\left(f \circ p_{n+5,5}\right) & =\operatorname{den}\left[C\{n, 5\} \alpha_{c}(n, 5)\right] \\
& =\left\{\begin{array}{l}
1 \text { if } n \equiv 1,11 \text { or } 27 \bmod (32) \\
2 \text { for other odd } n .
\end{array}\right.
\end{aligned}
$$

This completes the proof of (v) if n is odd.
Suppose that n is even. It is easy to see that $\operatorname{den}\left[C\{n, 5\} \alpha_{c}(n, 5)\right]=1$. From (1.8) and (1.11)

$$
C\{n, 5\}|C\{n, 6\}| H\{n / 2,3\} .
$$

By the previous calculations $C\{n, 5\}$ and $H\{n / 2,3\}$ are coinside if $n \equiv 0$ $\bmod (4), 6,10$ or $14 \bmod (16)$, so $C\{n, 5\}=C\{n, 6\}$ in this case, while if $n \equiv 2$ $\bmod (16)$ the odd components are coinside but

$$
2=\nu_{2}(C\{n, 5\}) \leqq \nu_{2}(C\{n, 6\}) \leqq \nu_{2}(H\{n / 2,3\})=3
$$

Put $n=16 m+2$. We construct a commutative diagram in which $\operatorname{deg}(f)=$ $C\{16 m+2,5\}$.

By (i) of (1.13), $q_{16 m+5} \circ p_{16 m+7}=p_{16 m+7,1}=0$ and so by (1.15) we have

$$
q_{16 m+4^{*}}\left(i_{1^{*}}\right)^{-1}\left(p_{16 m+7}\right)=\left\{(8 m+4) g_{\infty},(8 m+16) g_{\infty}\right\}
$$

Take $s_{1}^{\prime} \in\left(i_{1^{*}}\right)^{-1}\left(p_{16 m+7}\right) \subset\left\{S^{32 m+13}, C P_{16 m+6}\right\}$ with $q_{16 m+4} \circ s_{1}^{\prime}=(8 m+16) g_{\infty}$. Put $s_{1}=$ $q_{16 m+1} \circ \circ_{1}^{\prime}$. Then

$$
q_{3} \circ 3 s_{1}=q_{16 m+4} \circ 3 s_{1}^{\prime}=3(8 m+16) g_{\infty}=0 .
$$

Hence there exists $s_{2} \in\left\{S^{32 m+13}, C P_{16 m+5,3}\right\}$ with $i_{1} \circ s_{2}=3 s_{1}$. Since $q_{2} \circ s_{2} \in G_{5}=0$, there exists $s_{3} \in\left\{S^{32 m+13}, C P_{16 m+4,2}\right\}$ with $i_{1} \circ s_{3}=s_{2}$. Next we define h by $\left.h\right|_{s^{32 m+4}}=$ $C\{16 m+2,4\}$ and $\left.h\right|_{s^{32 m+6}=\eta^{2}}$. Since $p_{16 m+4,2}=(8 m+1) g_{\infty} \vee \eta$ by the proof of (1.11), (1.14) and (i) of (1.13), we have

$$
\begin{aligned}
k \circ p_{16 m+4,2} & =C\{16 m+2,4\}(8 m+1) g_{\infty}+\eta^{3} \\
& =\frac{24(8 m+1)}{(16 m+2,24)} g_{\infty}+12 g_{\infty} \\
& =0
\end{aligned}
$$

So there exists $h^{\prime} \in\left\{C P_{16 m+5,3}, S^{32 m+4}\right\}$ with $h^{\prime} \circ i=h$. Since $h^{\prime} \circ p_{16 m+5,3} \in G_{5}=0$, there exists $h^{\prime \prime} \in\left\{C P_{16 m+6,4}, S^{32 m+4}\right\}$ with $h^{\prime \prime} \circ i=h^{\prime}$. By (1.2), (1.3) and (iv) we have

$$
\begin{aligned}
\#\left(h^{\prime \prime} \circ p_{16 m+6,4}\right) & =\# e_{C}\left(h^{\prime \prime} \circ p_{16 m+6,4}\right) \\
& =\operatorname{den}\left[\operatorname{deg}\left(h^{\prime \prime}\right) \alpha_{C}(16 m+2,4)\right] \\
& =C\{16 m+2,5\} / C\{16 m+2,4\}
\end{aligned}
$$

Hence there exists $f \in\left\{C P_{16 m+7,5}, S^{32 m+4}\right\}$ with $(C\{16 m+2,5\} / C\{16 m+2,4\}) h^{\prime \prime}$ $=f \circ i$ and $\operatorname{deg}(f)=\operatorname{deg}\left(h^{\prime \prime}\right) C\{16 m+2,5\} / C\{16 m+2,4\}=C\{16 m+2,5\}$. This completes the construction of the above diagram.

Now we proceed to the proof of (v). We may write $s_{3}=s_{3}^{\prime} \vee q_{1} \circ s_{3}$ for some $s_{3}^{\prime} \in\left\{S^{32 m+13}, S^{32 m+4}\right\} . \quad$ By (iii) of (1.13)

$$
e_{C}\left(q_{3} \circ s_{3}\right)=(16 m+3)\left(3840 m^{3}+2640 m^{2}+590 m+43\right) / 2^{3} \cdot 3 \cdot 5
$$

so by (1.2) $q_{1} \circ s_{3}$ is divisible by 2 . Then

$$
\begin{aligned}
f \circ p_{16 m+7,5} & =f \circ 3 p_{16 m+7,5}, \text { since } 2 G_{9}=0, \\
& =(C\{16 m+2,5\} / C\{16 m+2,4\}) h \circ s_{3} \\
& =(C\{16 m+2,5\} / C\{16 m+2,4\})\left(C\{16 m+2,4\} s_{3}^{\prime}+\eta^{2} \circ q_{1} \circ s_{3}\right) \\
& =(C\{16 m+2,5\} / C\{16 m+2,4\})(0+0), \text { since } C\{16 m+2,4\} \equiv 0 \bmod (2) \\
& =0 . \quad \text { and } 2 \eta=0
\end{aligned}
$$

Thus by (1.9), $C\{16 m+2,6\}=C\{16 m+2,5\}$. This completes the proof of (v).

The proof of (vi): First consider the case of n being odd. For any $h \in$ $\left\{C P_{n+6,5}, S^{2 n}\right\}$, by (i) of (1.5) we have

$$
e_{R}^{\prime}\left(h \circ q_{1} \circ p_{n+6,6}\right)=\frac{1}{2} a
$$

for some integer a. By (1.6) and (1.7) a is even. Then $h \circ q_{1} \circ p_{n+6,6}=0$ by (1.2). Thus (1.9) and (1.10) imply

$$
C\{n, 7\}=C\{n, 6\} \#\left(f \circ p_{n+6,6}\right)
$$

for $f \in\left\{C P_{n+6,6}, S^{2 n}\right\}$ with $\operatorname{deg}(f)=C\{n, 6\}$. Again by (i) of (1.5)

$$
e_{R}^{\prime}\left(f \circ p_{n+6,6}\right)=\frac{1}{2} a_{6}-\frac{1}{2} C\{n, 6\} \alpha_{C}(n, 6)
$$

for some integer a_{6}, and by the proof of (iii) of (1.5) we have

$$
a_{6} \equiv \begin{cases}0 \bmod (2) & \text { if } n \equiv 3 \bmod (4) \text { or } 33 \bmod (64) \\ 1 \bmod (2) & \text { for other odd } n\end{cases}
$$

Then since $\#\left(f \circ p_{n+6,6}\right)$ is equal to $\# e_{R}^{\prime}\left(f \circ p_{n+6,6}\right)=\operatorname{den}\left[\frac{1}{2} a_{6}-\frac{1}{2} C\{n, 6\} \alpha_{C}(n, 6)\right]$ by (1.2), elementary analysis draws the conclusion for odd n by (iii), (iv), (v) and (1.16).

Next suppose that n is even. Choose $f \in\left\{C P_{n+6,6}, S^{2 n}\right\}$ with $\operatorname{deg}(f)=C\{n, 6\}$. (1.2) says that $e_{C}=2 e_{R}^{\prime}: G_{11} \rightarrow Q / Z$ is monomorphic on the odd component, so (vi) is true about the odd components by (1.3) and (1.9). So we only see the 2primary part. Recall that $G_{11}=Z_{8}\{\zeta\} \oplus Z_{63}$. By (1.3), (1.16) and elementary analysis show that

$$
\nu_{2}\left(\# e_{c}\left(f \circ p_{n+6,6}\right)\right) \leqq 2 .
$$

If $\nu_{2}\left(\# e_{c}\left(f \circ p_{n+6,6}\right)\right)=0, \nu_{2}\left(\#\left(f \circ p_{n+6,6}\right)\right) \leqq 1$ by (1.2) and (1.5). If $\nu_{2}\left(\#\left(f \circ p_{n+6,6}\right)\right)$ $=0$, the result follows by (1.9). If $\nu_{2}\left(\#\left(f \circ p_{n+6,6}\right)\right)=1$, we have

$$
f \circ p_{n+6,6} \equiv 4 \zeta \bmod \text { (odd components). }
$$

Since $4 \zeta=\mu \eta^{2}$ and $p_{n+6,1}=q_{5} \circ p_{n+6,6}=\eta$,

$$
\left(f+\mu \eta q_{5}\right) p_{n+6,6} \equiv 0 \bmod (\text { odd components }) .
$$

Clearly $\operatorname{deg}\left(f+\mu \eta q_{5}\right)=\operatorname{deg}(f)=C\{n, 6\}$, so the result follows again by (1.9). If $\nu_{2}\left(\# e_{C}\left(f \circ p_{n+6,6}\right)\right)=u=1$ or 2 ,

$$
\nu_{2}(C\{n, 6\})+u \leqq \nu_{2}(C\{n, 7\})
$$

by (1.9), and

$$
\nu_{2}\left(\#\left(f \circ p_{n+6,6}\right)\right)=u+1
$$

by (1.2) and (1.5), so

$$
f \circ p_{n+6,6} \equiv 2^{2-u \zeta \bmod \left(2^{3-u} \zeta, \text { odd components }\right) ~}
$$

and then

$$
\left(2^{u} f+\mu \eta q_{5}\right) \circ p_{n+6,6} \equiv 0 \bmod (\text { odd components })
$$

Put $\#\left(\left(2^{u} f+\mu \eta q_{5}\right) \circ p_{n+6,6}\right)=2 m+1$. Then there exists $h \in\left\{C P_{n+7,7}, S^{2 n}\right\}$ with $\left.h\right|_{C P_{n+6,6}}=(2 m+1)\left(2^{u} f+\mu \eta q_{5}\right)$. Clearly $\operatorname{deg}(h)=2^{u}(2 m+1) \operatorname{deg}(f)=2^{u}(2 m+1)$. $C\{n, 6\}$. Since $\operatorname{deg}(h)$ is a multiple of $C\{n, 7\}$, we have

$$
\nu_{2}(C\{n, 7\}) \leqq \nu_{2}(C\{n, 6\})+u
$$

and hence

$$
\begin{aligned}
\nu_{2}(C\{n, 7\}) & =\nu_{2}(C\{n, 6\})+u \\
& =\nu_{2}(C\{n, 6\})+\nu_{2}\left(\# e_{c}\left(f \circ p_{n+6,6}\right)\right) \\
& =\nu_{2}\left(C\{n, 6\} \operatorname{den}\left[C\{n, 6\} \alpha_{C}(n, 6)\right]\right)
\end{aligned}
$$

as desired. This completes the proof of (vi).
The proof of (vii): Since $G_{13}=Z_{3}\left\{\alpha_{1} \beta_{1}\right\}, C\{n, 8\} / C\{n, 7\}=1$ or 3 by (1.9). In case of n being even, the relations

$$
C\{n, 7\}|C\{n, 8\}| H\{n / 2,4\}
$$

and the previous calculations show that the 3-components of the first and the third are equal so that the 3 -components of these three are equal. Thus $C\{n, 8\}$ $=C\{n, 7\}$ if n is even.

Choose $h \in\left\{C P_{n+7,2}, S^{2 n+10}\right\}$ with $\operatorname{deg}(h)=C\{n+5,2\}$. Then

$$
\begin{aligned}
e_{C}\left(h \circ q_{5} \circ p_{n+7,7}\right) & =-C\{n+5,2\} \alpha_{C}(n+5,2) \\
& =-(n+5)(3 n+20) /(12(n+5,2))
\end{aligned}
$$

so by (1.2)
$\#\left(h \circ q_{5} \circ p_{n+7,7}\right) \equiv 0 \bmod (3)$ if and only if $n \neq 1 \bmod (3)$.
Therefore if $n \neq 1 \bmod (3)$, the image of

$$
p_{n+7,2} *=\left(q_{5} \circ p_{n+7,7}\right)^{*}:\left\{C P_{n+7,2}, S^{2 n+10}\right\} \rightarrow\left\{S^{2 n+13}, S^{2 n+10}\right\}=G_{3}
$$

contains $Z_{3}\left\{\alpha_{1}\right\}$.
Take $f \in\left\{C P_{n+7,7}, S^{2 n}\right\}$ with $\operatorname{deg}(f)=C\{n, 7\}$. Suppose that $n \neq 1 \bmod (3)$. If $f \circ p_{n+7,7}=0, C\{n, 8\}=C\{n, 7\}$ by (1.9). If $f \circ p_{n+7,7} \neq 0$, that is $f \circ p_{n+7,7}= \pm \beta_{1} \alpha_{1}$, the above implies that there exists $h^{\prime} \in\left\{C P_{n+7,2}, S^{2 n+10}\right\}$ with $h^{\prime} \circ q_{5} \circ p_{n+7,7}=\mp \alpha_{1}$, and we have

$$
\begin{aligned}
& \quad\left(f+\beta_{1} \circ h^{\prime} \circ q_{5}\right) \circ p_{n+7,7}=0 \\
& \operatorname{deg}\left(f+\beta_{1} \circ h^{\prime} \circ q_{5}\right)=\operatorname{deg}(f)=C\{n, 7\}
\end{aligned}
$$

and so by (1.9)

$$
C\{n, 8\}=C\{n, 7\}
$$

Therefore $C\{n, 8\}=C\{n, 7\}$ if $n \neq 1 \bmod (3)$.
We must prove (vii) for the case of $n \equiv 1 \bmod (6)$. Put $n=6 m+1$. Take $f \in\left\{C P_{6 m+8,7}, S^{12 m+2}\right\}$ with $\operatorname{deg}(f)=C\{6 m+1,7\}$. By the same methods as the proof of (v) we can construct a commutative diagram

Take $a \in\left\{C P_{6 m+5,4}, S^{12 m+2}\right\}$ with $\operatorname{deg}(a)=C\{6 m+1,4\}$ and $b \in\left\{C P_{6 m+3,2}, S^{12 m+2}\right\}$ with $\operatorname{deg}(b)=C\{6 m+1,2\}=2$. Consider the diagram

$$
\begin{gathered}
\left\{S^{12 m+6}, S^{12 m+2}\right\}=0 \\
\downarrow \\
\left\{S^{12 m+8}, S^{12 m+2}\right\} \xrightarrow{q^{*}}\left\{C P_{6 m+5,4}, S^{12 m+2}\right\} \rightarrow\left\{C P_{6 m+4,3}, S^{12 m+2}\right\} \rightarrow\left\{S^{12 m+7}, S^{12 m+2}\right\}=0 \\
\left\{S^{12 m+3}, S^{12 m+2}\right\} \xrightarrow{\eta^{*}}\left\{S^{12 m+4}, S^{12 m+2}\right\} \rightarrow\left\{C P_{6 m+3,2}, S^{12 m+2}\right\} \rightarrow\left\{S^{12 m+2}, S^{12 m+2}\right\}
\end{gathered}
$$

in which the horizontals and the vertical are the parts of suitable Puppe exact sequences. Then a generates a free part of $\left\{C P_{6 m+5,4}, S^{12 m+2}\right\}$ which is of rank 1 , and so

$$
\begin{aligned}
f \circ i \circ i \circ i & =(\operatorname{deg}(f) / \operatorname{deg}(a)) a+q^{*}(e) \\
& =(C\{6 m+1,7\} / C\{6 m+1,4\}) a+q^{*}(e)
\end{aligned}
$$

for some $e \in\left\{S^{12 m+8}, S^{12 m+2}\right\}=G_{6}$. Then

$$
\begin{aligned}
2 f \circ p_{6 m+8,7} & =8 f \circ p_{6 m+8,7}, \text { since } G_{13}=Z_{3} \\
& =f \circ i \circ i \circ i \circ s_{3} \\
& =(C\{6 m+1,7\} / C\{6 m+1,4\}) a \circ \varsigma_{3}+e \circ q \circ s_{3} \\
& =(C\{6 m+1,7\} / C\{6 m+1,4\}) a \circ s_{3}, \text { since } G_{6} \circ G_{7}=0 .
\end{aligned}
$$

By the previous calculations and elementary analysis it follows that

$$
\begin{aligned}
& \nu_{3}(C\{6 m+1,7\})=\left\{\begin{array}{l}
3 \text { if } m \equiv 1 \text { or } 2 \bmod (3) \\
2 \text { if } m \equiv 3 \text { or } 6 \bmod (9) \\
1 \text { if } m \equiv 0 \bmod (9),
\end{array}\right. \\
& \nu_{3}(C\{6 m+1,4\})=1
\end{aligned}
$$

so if $m \neq 0 \bmod (9)$ we have

$$
C\{6 m+1,7\} / C\{6 m+1,4\} \equiv 0 \bmod (3)
$$

and so

$$
f \circ p_{6 m+8,7}=0
$$

and then by (1.9)

$$
C\{6 m+1,8\}=C\{6 m+1,7\} \quad \text { if } m \neq 0 \bmod (9) .
$$

Next suppose that $m \equiv 0 \bmod (9)$. By (iii) of (1.13) we can easily see that

$$
\nu_{3}\left(\# e_{c}\left(q_{3} \circ \Omega_{3}\right)\right)=0 .
$$

So by (1.13) and the same methods as the proof of (v), we can construct a commutative diagram

Then

$$
f \circ p_{6 m+8,7}=640 f \circ p_{6 m+8,7}
$$

$$
\begin{aligned}
& =\left.f\right|_{C P_{6_{m+3}, 2} \circ \Omega_{5}} \\
& =(\operatorname{deg}(f) / \operatorname{deg}(b)) b \circ s_{5} \\
& =(C\{6 m+1,7\} / 2) b \circ s_{5} \\
& =0, \text { since } C\{6 m+1,7\} \equiv 0 \bmod (6)
\end{aligned}
$$

so by (1.9)

$$
C\{6 m+1,8\}=C\{6 m+1,7\} \quad \text { if } m \equiv 0 \bmod (9)
$$

This completes the proof of (vii).
The proof of (viii): Take $f \in\left\{C P_{n+8,8}, S^{2 n}\right\}$ with $\operatorname{deg}(f)=C\{n, 8\}$. First consider the case of n being even. By (i) of (1.13) $p_{n+8,1}=q_{7} \circ p_{n+8,8}=\eta$. Then f or $f+\kappa q_{7}$, say f^{\prime}, satisfies

$$
\begin{aligned}
& \#\left(f^{\prime} \circ p_{n+8,8}\right)=\# e_{c}\left(f^{\prime} \circ p_{n+8,8}\right)=\operatorname{den}\left[C\{n, 8\} \alpha_{c}(n, 8)\right] \\
& \operatorname{deg}\left(f^{\prime}\right)=\operatorname{deg}(f)=C\{n, 8\}
\end{aligned}
$$

by (1.2), and so the conclusion follows from (1.9). Next suppose that n is odd. By (1.2)

$$
\#\left(f \circ p_{n+8,8}\right) / \# e_{c}\left(f \circ p_{n+8,8}\right)=1 \text { or } 2 .
$$

By the previous calculations and elementary analysis we have
$\nu_{2}\left(\operatorname{den}\left[C\{n, 8\} \alpha_{C}(n, 8)\right]\right)=0 \quad$ if and only if $n \equiv 3 \bmod \left(2^{7}\right)$ or $1 \bmod \left(2^{9}\right)$. Therefore if $n \neq 3 \bmod \left(2^{7}\right)$ and $1 \bmod \left(2^{9}\right)$, by (1.2) we have

$$
\#\left(f \circ p_{n+8,8}\right)=\# e_{C}\left(f \circ p_{n+8,8}\right)=\operatorname{den}\left[C\{n, 8\} \alpha_{C}(n, 8)\right]
$$

and so the conclusion follows.
The proof of (ix): Since $2 G_{17}=0$, by (1.9) we have

$$
C\{n, 10\} / C\{n, 9\}=1 \text { or } 2 .
$$

In case of n being even, by the following relations and an elementary analysis conclusion follows if $n \equiv 0 \bmod \left(2^{3}\right), 10,12,14 \bmod \left(2^{4}\right), 18,20,22 \bmod \left(2^{5}\right)$, $34,36 \bmod \left(2^{6}\right)$ or $4 \bmod \left(2^{7}\right)$

$$
C\{n, 9\}|C\{n, 10\}| H\{n / 2,5\}
$$

If $n \equiv 6 \bmod \left(2^{5}\right)$, the conclusion follows from the same methods as the proof of (vii).

4. Relations with other James numbers

In this section we use the notations and terminologies of James [6,7] freely.

Consider the fibration of Stiefel manifolds

$$
O_{n-1, k-1} \rightarrow O_{n, k} \xrightarrow{p} O_{n, 1}=S^{n d-1}
$$

and the cofibration of quasi-projective spaces

$$
Q_{n-1, k-1} \rightarrow Q_{n k} \xrightarrow{q} Q_{n, 1}=S^{n d-1}
$$

where $n>k>0$. Following James [6] we define non-negative integers $O\{n, k\}$, $O^{s}\{n, k\}, Q\{n, k\}$ and $Q^{s}\{n, k\}$ by the equations

$$
\begin{aligned}
p_{*} \pi_{n d-1}\left(O_{n, k}\right) & =O\{n, k\} \pi_{n d-1}\left(S^{n d-1}\right) \\
p_{*} \pi_{n d-1}^{s}\left(O_{n k}\right) & =O^{s}\{n, k\} \pi_{n d-1}^{s}\left(S^{n d-1}\right) \\
q_{*} \pi_{n d-1}\left(Q_{n, k}\right) & =Q\{n, k\} \pi_{n d-1}\left(S^{n d-1}\right) \\
q_{*} \pi_{n d-1}^{s}\left(Q_{n, k}\right) & =Q^{s}\{n, k\} \pi_{n d-1}^{s}\left(S^{n d-1}\right)
\end{aligned}
$$

here $\pi_{m}^{s}(X)=\left\{S^{m}, X\right\}$ for a pointed space X. We have
Lemma 4.1. $O\{n, k\}\left|Q\{n, k\}, O^{s}\{n, k\}\right| O\{n, k\}$ and $Q^{s}\{n, k\} \mid Q\{n, k\}$.
Proof. The first conclusion follows from the commutative diagram

and the others follow immediately by definition.
Let $M_{k}(F)$ be the order of the canonical F-line bundle over $F P_{k}$ in the J-group $J\left(F P_{k}\right)$ [3] which was determined by Adams-Walker [2] and SigristSuter [13]. We have

Lemma 4.2. $Q^{s}\{n, k\}=O^{s}\{n, k\}$.
Proof. For any m with $m \equiv 0 \bmod \left(M_{k}(F)\right)$ there exists S^{0}-section $w: Q_{m, 1}$ $\rightarrow Q_{m, k}$, that is, $q \circ w \simeq 1$. By James [7] we have the diagram

in which $g^{\prime} \circ(w * 1) \circ(1 * i)$ is a homotopy equivalence by (7.3) of [7], the first
square is commutative, the second is homotopy commutative and the third is homotopy commutative up to sign from quasi-projective case of (5.2) of [7]. Applying $\pi_{(m+n) d-1}^{s}$ to this diagram we have the following diagram

in which the first and second squares are commutative and the third is commutative up to sign. Hence $Q^{s}\{m+n, k\}\left|O^{s}\{n, k\}\right| Q^{s}\{n, k\}$. Since $Q^{s}\{m+n, k\}$ $=Q^{s}\{n, k\}$, the conclusion follows.

We have also
Lemma 4.3. If $n \geqq 2(k-1)+2 / d$, then

$$
Q^{s}\{n, k\}=O^{s}\{n, k\}=O\{n, k\}=Q\{n, k\}
$$

Proof. Since $Q_{n, k}$ and $O_{n, k}$ are $(n-k+1) d-2$ connected, the canonical homomorphisms $\pi_{n d-1}\left(Q_{n, k}\right) \rightarrow \pi_{n d-1}^{s}\left(Q_{n, k}\right)$ and $\pi_{n d-1}\left(O_{n, k}\right) \rightarrow \pi_{n d-1}^{s}\left(O_{n, k}\right)$ are epimorphisms if $n \geqq 2(k-1)+2 / d$. Then $Q^{s}\{n, k\}=Q\{n, k\}$ and $O^{s}\{n, k\}=O\{n, k\}$ in this case, and the conclusion follows from (4.2).

Atiyah [3] proved that $Q_{n, k}$ and $P_{k-n, k}$ are S-duals. His proof gives the following precise theorem.

Theorem 4.4. For any j with $j M_{k}(F) \geqq n$, there exists a $\left(d j M_{k}(F)-1\right)-$ duality $u \in\left\{Q_{j M_{k}(F)-n+k, k} \wedge P_{n, k}, S^{d M_{k}(F)-1}\right\}$.

Consider the cofibrations

$$
\begin{aligned}
& S^{(n-k) d} \subset{ }^{i} P_{n, k} \rightarrow P_{n, k-1} \rightarrow S^{(n-k) d+1} \\
& S^{m d-2} \rightarrow Q_{m-1, l-1} \subset Q_{m, l} \rightarrow S^{m d-1}
\end{aligned}
$$

We have
Proposition 4.5. If $j M_{k}(F) \geqq n,\left(d j M_{k}(F)-1\right)$-dual of $i: S^{(n-k) d} \rightarrow P_{n, k}$ is $q: Q_{j M_{k}(F)-n+k, k} \rightarrow S^{\left(j M_{k}(F)-n+k\right) d-1}$, and hence $F\{n-k, k\}=Q^{s}\left\{j M_{k}(F)-n+k, k\right\}$.

Proof. By Puppe exact sequences associated with the above cofibrations it is easily seen that $\left\{S^{(n-k) d}, P_{n, k}\right\}$ and $\left\{Q_{j M_{k}(F)-n+k, k}, S^{\left(j M_{k}(F)-n+k\right) d-1}\right\}$ are infinite cyclic groups with generators i and q respectively. Then the conclusion follows from (4.4).

As a corollary of (4.3) and (4.5) we have
Theorem 4.6. $F\{n, k\}$ is equal to $O\left\{j M_{k}(F)-n, k\right\}$ if $j M_{k}(F) \geqq n+2 k-2$ $+2 / d$.

In case of $F=C$, Sigrist [12, Théorème I] proved that a prime number p is a factor of $O\{m, l\}$ if and only if p is a factor of $M_{l}(C) /\left(m, M_{l}(C)\right)$. His proof is valid for the case of $F=H$, since $M_{l}(H)$ is known [13]. Then by (4.6) we have

Proposition 4.7. A prime number p is a factor of $F\{n, k\}$ if and only if p is a factor of $M_{k}(F) /\left(n, M_{k}(F)\right)$.

Osaka City University

References

[1] J.F. Adams: On the groups $J(X)$-IV, Topology, 5 (1966), 21-71.
[2] J.F. Adams and G. Walker: Complex Stiefel manifolds, Proc. Cambridge Philos. Soc. 61 (1965), 81-103.
[3] M.F. Atiyah: Thom complexes, Proc. London Math. Soc. 11 (1961), 291-310.
[4] M. Fujii: K_{0}-groups of projective spaces, Osaka J. Math. 4 (1967), 141-149.
[5] Y. Hirashima and H. Ōshima: A note on stable James numbers of projective spaces, ibid. 13 (1976), 157-161.
[6] I.M. James: Cross-sections of Stiefel manifolds, Proc. London Math. Soc. 8 (1958), 536-547.
[7] I.M. James: Spaces associated with Stiefel manifolds, ibid. 9 (1959), 115-140.
[8] H. Ōshima: On the stable James numbers of complex projective spaces, Osaka J. Math. 11 (1974), 361-366.
[9] H. Ōshima: On stable James numbers of quaternionic projective spaces, ibid. 12 (1975), 209-213.
[10] H. Ōshima: On F-projective homotopy of spheres, ibid. 14 (1977), 179-189.
[11] H. Ōshima: On F-projective stable stems, ibid. 16 (1979), 505-528.
[12] F. Sigrist: Sur les nombres de James des variétés de Stiefel complexes, Illinois J. Math. 13 (1969), 198-201.
[13] F. Sigrist and U. Suter: Cross-sections of symplectic Stiefel manifolds, Trans. Amer. Math. Soc. 184 (1973), 247-259.
[14] H. Toda: Composition methods in homotopy groups of spheres, Annals of Mathematical Studies 49, Princeton 1962.

