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Introduction. Let (M,g) be a compact connected riemannian manifold
and Δ the Laplacian acting on the space of diίferentiable functions on M. We
denote by Spec(M,£) the set of all eigenvalues of Δ;

Spec(M,g) ={0= X0<λ1^λ2 ̂  -. ^λ, ̂  •••} ,

where each λ, is written a number of times equal to its multiplicity. We
call it the spectrum of (Myg). Two riemannian manifolds (M,g) and (N,h) are
said to be isospectral to each other if Spec(M,<§

r)=Spec(ΛΓ,A). What are deter-
mined by the spectrum of (M,g)ϊ This problem have been studied by many
people; as in Berger [2], Colin de Verdiere [6], Duistermaat-Guillemin [7],

MaKean-Singer [8], Sakai [9], Tanno [11] and so on. For example, the spec-
trum of (M,g) determines the dimension of M, the volume of (M,g) and the leng-
ths of closed geodesies of (M,g) etc.

We are interested in the riemannian manifolds of positive constant cur-
vature, and consider whether they are determined by their spectra. Berger
(for n=2,?>) and Tanno (for #=4,5,6) have shown that the standard sphere Sn

and the standard real projective space Pn(K) are completely characterized by their
spectra as riemannian manifolds. The lens spaces are familiar examples of
compact riemannian manifold of positive constant curvature. Recently, Ta-
naka [10] have shown that if a 3-dimensional compact riemannian manifold is
isospectral to a lens space with fundamental group of order q, then the manifold
is isometric to one of the 3-dimensional lens spaces with fundamental group
of order q. In particular a 3-dimensional homogeneous lens space is charac-
terized by its spectrum as a riemannian manifold.

Now, we state our Main Theorem.

Main Theorem. Let q be a positive integer. If two ^-dimensional lens
spaces with fundamental group of order q are isospectral to each other, then they
are isometric to each other.

This theorem will be shown here in this paper only for q=P, 2Γ and 2V

where / is an odd prime and v^.\. In case of any composite number q, the
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second auther will give a proof in the forthcoming paper [14]. From the above
theorem and the result due to Tanaka, we have

Theorem. A ^-dimensional lens space is completely characterized by its

spectrum as a rίemannian manifold.

REMARK. Tanaka announced in his paper [10] that he obtained the above

main theorem for q= odd primes and 2-times odd primes.

Our proof is as follows:
First, we shall construct the generating function associated to the spectrum

of a 2#+l -dimensional lens space of constant curvature 1 (see in 1), i.e.,

where the space Ek(k+2n ) denotes the eigenspace with eigenvalue k(k+2ri) (see

more precisely (1.7)).
By the definition, the spectrum of the lens space determines the generating

function and the converse is also true.
Next, we shall consider only the 3-dimensional case, and calculate the

residues of the generating functions at suitable points. Applying Key Lemma
(Lemma 5.3) to the above residues, we shall prove our Main Theorem for q=
l\ 2Γ and 2V, case by case (see in 6,7,8 and 9).

Lemma 5.3 plays an important role in this paper. It asserts a linear in-
dependence of the values of cotangent over the rational number field Q. It will
be proved using a result in number theory obtained by Chowla [4] and Baker-

Birch- Wirsing [1].

The generating function can be defined also for any Clifford-Klein spherical

form Sn/Gy where G is a finite subgroup of fixed points free isometries. We

believe that the generating functions plays an important role studying the spectra
of these manifolds.

1. Lens spaces

Let Cn+1 be the space of (rc+l^tuples^o, #!,••*,#„) of complex numbers with
n

the standard flat kahler metric ds2=^^dzi dzi. Let q be a positive integer
k = 0

and pQipι,~ >p» integers prime to q. Put γ=exp 2π\/ — l/q. We define an
isometry g of Cn+1 by

g' *o> *ι> •"> -» r

g generates a cyclic subgroup G of the unitary group

(1.2) G = fe*}»-o.....f-ι
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Let S2n+1 be the unit sphere centered at the origin of Cn+1. The elements
gk(Q<k<q) act on S2n+1 without fixed points. The sphere S2n+1 is the universal
covering manifold of the differentiable manifold S2n+1/G. Let π be the cover-
ing projection of S2n+l onto S2n+l/G]

(1.3) π: S2n+1 -> S2n+1/G .

S2n+1/G has a unique riemannian metric such that π gives a local isometry of
S2n+1 onto S2n+1/G. This riemannian manifold S2n+1/G shall be called a lens space
and denoted by L(q:p0, ~ ,pn). By the definition, for any (#+l)-tuples (pOJ •••,

Pn)> (pΌy"99p'n) °f integers prime to q such that p'=pt : (mod q) (/=0, « ,w), the
lens space L(q:p&, — ,/>£) is isometric to L(q\pθJ' ,pn).

Proposition 1.1. Let L(q:p0, ••-,/>„) and L(q:pί, •••,/>£) be lens spaces. Sup-

pose there exist an integer / and numbers £,e{— 1, 1} (ί=0, 1, ••-,#) «/£/* Z/itftf

(P'o> ',p'n) ^ a permutation of (£olpo, >£jpn) (m°d q) Then L(q:p0, ypn) is
isometric to L(q:p'0t •• ,^>«).

Proof. The isometry of S2"*1 onto S2n+1 defined by the map

(1.4) (*0, — , #,', — , *n) -* («0» •••> «,-> — > ^n)

(resp.

where cr is a permutation) induces an isometry of L(q:p0, * ,̂ >w) onto L(q:pQ9 •••,

—Pn—ipn} (resP L(q' P<r(ti>'~yp<rω)} Since ^ is a generator of G, the lens
space L(q:lpQ,' Jpn) is identical to L(q:pv ,p^. Now Proposition 1.1 follows

easily from these facts. q.e.d.

REMARK. The following fact is known (see M.M. Cohen [5]). Let L(q:p0,
•• ,^>w) and L(q:pQ, ,p'n) be lens spaces. Then L(q:pQ, " ,^w) is homeomorphic
to L(q:pQ, " ypn) if and only if there exist an integer / and numbers £,e {—1, 1}

such that (pΌ, ,p'n) is a permutation of (€0lp0, , £nlpn) (mod q). From this, espe-
cially the converse of Proposition 1.1 is also true.

A riemannian manifold M is said to be homogeneous if the isometry group
of M acts transitively on it.

Proposition 1.2 (see J.A. Wolf [13]). The riemannian manifold L(q:pQy •••,
pn) is homogeneous if and only if for any i and jy O^iJ^n, it satisfies either p{~=p.
(mod q) or pt= —pj (mod q). Furthermore two homogeneous lens spaces with same
order of fundamental groups are isometric to each other.

In the following, we denote by C°°(M) the space of all differentiable func-
tions on a manifold M and also denote by Λ the Laplacian acting on C°°(S2n+1).
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For a lens space L(q:p0, - Ά)> trιe Laplacian of L(q:p0,-~ypn) is denoted by
AL(q:Pθf...tPn) or simply Δ. For any nonnegative real number λ, we define the
spaces βλ and Eλ by

(1.6) Eλ = {/eC~(S2«+1): Δ/ = λ/} ,

(1.7) Eλ = {ftΞC~(L(q:Pθy • -., A)): Δ/ = λ/} .

The following lemma is elementary.

Lemma 1.3. (1) For any f^C°°(L(q:p0, •••,/>„)), we have

(1.8) A(,r*/) =

(2) For any G-invarίant function F on *S2w+1, Z/^r£ ixάto a unique function /Eϊ
C-(L(q:p0, ,pΛ)) such that

(1.9) F=π*f.

Corollary 1.4. L#Z (£"λ)G fo ̂  ίpα^ o/ all G-invariant functions of Ex.
Then have

(1.10) dim £λ = dim ( λ̂)G .

Proof. By Lemma 1.3, we can see easily that for any eigenfunction / of
Δ with an eigenvalue λ, there exists a unique eigenfunction F of & with the
same eigenvalue λ such that F is G-invariant and F=π*f, and conversely, for
any G-invariant eigenfunction F of Λ with eigenvalue λ, there exists a unique
eigenfunction / of Δ with eigenvalue λ such that F=π*f. These facts imply
(1.10). q.e.d.

2. Spectrum of S2n+l

Let Δ0 be the Laplacian on the space Cn+1 with respect to the flat kahler
n

metric. Put r2=^ z Zt. We denote by Pk the space of homogeneous polynomi-
ί = 0

als of degree k with respect to #0,#!, •• ,#w,£0>^ι> "*>Zn and Hk the subspace of
Pk consisting of harmonic polynomials on Cn+1

(2.1) Hk

Each unitary transformation of Cn+1 induces canonically a linear isomorphism
of Pk

y thus Pk is canonically a [7(w+l)-module.

Proposition 2.1. The space Hk is U(n+l)-invariant, and the U(n+l)-
module Pk has the direct sum decomposition;

(2.1) Pk = Hk@r2Pk~2 .
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The injection map i: S2n+l-*Cn+l induces a linear map /*: C00(CfΛ+1)-*C00(S2n+1).
The image i*(Hk) is denoted by Mk.

Proposition 2.2. Mk is an eίgenspace of Δ on S2n+l with eigenvalue k(k-{-2n)
oβ

and ]»] Mk is dense in C°°(S2n+1) by the uniform convergence topology. Moreover,
*=o

Jttk is isomorphίc to Hk as U(n+l)-modules by the /*.

For the proofs of Proposition 2.1 and 2.2, see in [2].

By Corollary 1.4 and Proposition 2.2, we have

Corollary 2.3. Let L(q:p0, ••-,/>„) be a lens space and Mk

G the space of all
G-invariant functions in Mk where G={gk}k=Q1 ... q.λ. Then we have

(2.3) dim Ek(k+2} = dim Mk

G .

Moreover ', for any integer k such that diπic^GΦO, k(k-\-2n) is an eigenvalue of Δ
on L(q:pQy ••-,/>„) with multiplicity dim Mk

G and no other eigenvalues appear in the
spectrum of Δ.

3. Generating function associated to the spectrum of Z/(gr:po> >P/ι)

Let L(q:p0, ,pn) be a lens space and G the cyclic subgroup of U(n-\-V)
corresponding to it as in 1. We regard the spaces P*, Hk and Mk as G-modules.

Let %k (resp. %*) be the character of the G-module Pk (resp. Hk). Then by
Proposition 2.1, we have

(3.1) %£ = Λ,k Λ>k-2 >

where %_ f— 0 for ί>0, since r2 is invariant by G. The space Pk has a base
consisting of all monomials of the form

(3.2) z' z* = (*O) Ό .- (*Λγ (z0y* - (zuγ ,

where ί0, —,inJ0, — J«^0 and ί0H ----- h^+ ΌH ----- hj«=* Let g be the generator

of G and γ=exρ 2πV — 1/^asin 1. Then for any monomial z1 zj

y we have

(3.3) g1^1**1) = tγlW*+"'+i*p*-'<>po-'"->*p*)zI zJ .

Consider the formal expansion of

(3.4) Π

Then it is easy to see that Xk(gl) is equal to the z*'s coefficient of (3.4). On
the domain {z^C: \z\ <!}, the above power series converges to the function
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1
(3.5)

Π (1-

Now, we consider the generating function F(z) associated to the infinite

series {dimEk(n+2k)}ΐm0, i.e.,

(3.6) F(s)=£(dimEk<k^)**.
* = 0

By Corollary 1.4, the generating function F(z) determines the spectrum of
L(q:p0, ,pn)9 so that we shall call the function F(z) the generating function
associated to the spectrum of L(q:pQ, ••-,/>„). Now, consider another lens space
L(<?':/>o, •••,/>«) and denote by E(z) the generating function associated to the

spectrum of L(q':pί, •••,/>£)• Then we have

Proposition 3.1. The lens space L(q\p^ •••,/>„) is isospectral to L(qf\p^ •••••,/>£)
ί/ <2/2d only if

(3.7) F(*) = E(z).

Theorem 3.2. Let L(q:p0, ,pn) be a lens space and F(z) the generating
function associated to the spectrum of L(q:pQ, ••-,/>»). Then F(z) has the following
form on the the domain {z^C: \z\ <!}

1 9 - 1 1 ry2

(3.8) F(x) = ~ Σ -5 ^̂

Proof. By Corollary 2.3, we have

(3.9) F(z) = Σ (dim Mk

G)z*.

On the other hand by Proposition 2.2 and (3.1), we have

(3.10) dim Mk

G = — Σ (^k(gl}~^k-2(g1})
q ι=o

Note that, for a nontrivial irreducible representation of G, the sum Σ X-(g) °f

its character is zero.
By (3.5), (3.9) and (3.10), we have on the domain {*eC: \z\ <!}

\ %2

q.e.d.
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F(z) can be considered as a meromorphic function on the whole complex
plane C. Any pole of F(z) is an q-th root of one. Especially, F(z) has a pole
of order (2n-\-l) at #— 1, and

(3.11) lim (l-z)2n+1F(z) = — .
2->! q

Thus, we have proved

Corollary 3.3. Assume L(q:pQ, ••-,/>„) is isospectral to L(qr:p^ * ,̂ >ί). Then
we have

Corollary 3.4. Assume L(q:pQ, ,pn) is a homogeneous lens space and iso-
spectral to L(q:pQ, ,p'n). Then L(q:p^ •••,/>£) is homogeneous and isometric to

Proof. Let F(z) be the generating function associated to the spectrum of
L(q:pθJ ,pn). Then F(z) has a pole of order (n+1) or (2n+l) at z=any q-th

root of one if and only if for any iJ(Q<£i,f<^ri), we have either pi=pj (mod q)
or pi=—pj (mod <?). By proposition 1.2, this condition holds if and only if
L(q:pQ, ,pn) is homogeneous. By our assumption and Proposition 3.1, the
generating function associated to the spectrum of L(q:pί, ,pί) has also the
same condition as F(z) so that L(q:p'0, ,p'n) is homogeneous. By Proposition
1.2, this space is isometric to L(q:p^-",p^. q.e.d.

REMARK. M. Tanaka [10] obtained Corollary 3.4 for 3-dimensional lens
spaces.

4. Three dimensional case

Hereafter in this paper, we consider only 3-dimensional lens spaces. Let
L(q:pQ,p^) be a lens space. Choosing a suitable generator for its defining cyclic
group G, we may assume p0=l. From now on, a lens space L(q: l,p) is simply
denoted by L(q:p). Assume two lens spaces L(q:p^) and L(s:p2) are isospectral
to each other. Then by Corollary 3.3, we have q=s. Moreover, assume

(mod q). Then by Corollary 3.4, we have also ̂ $±1 (mod q).

Now, we rewrite Proposition 1.1 for 3-dimensional lens spaces.

Proposition 4.1. Let L(q:p^) and L(q:p2) be 3 -dimensional lens spaces.
Then, the lens space Lfaipt) is isometric to L(q:p2) if either

(4.1) Pι±p2=0 (modj),
or

(4.2) AAΞ±1 (mod?).
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Proof. By Proposition 1.1, L(q:p1) is isometric to L(q:p2) if there exists an

integer / such that

either

/S±1
(4.3) f/S

[Ip1 = ±p2 (mod #),
or

= ±l (mod?).

Now, it is easily seen that (4.3) (resp. (4.4)) is equivalent to (4.1) (resp. (4.2)).

This proves Proposition 4.1. q.e.d.

For two integers a and by we denote by (α,ό) the greatest common divisor

of a and b.

Lemma 4.2. Let q be a positive integer 2^2 and p an integer prime to q.

Choose an integer p* satisfying pp* = 1 (mod q). Then have

(4.5) (p+l,q) = (/>*+!, q)

and

(4.6) (p-\,q) = (p*-\,q).

Proof. Since ^> is prime to q, we have

and

(/>*-!, q) = (p^*-l), ?) - (p-1, ?) , q.e.d.

The following lemma is easy to see.

Lemma 4.3. Let q,p and p* be as in Lemma 4.2. Let k be an integer such

that

(4.7) (/>+l)£ΐO (mod £)

and

(4.8) (p~-l)k^0 (mod}).

Then we have

(4.9) (/>*+l)&3Ξθ (mody)

and

(4.10) (£*-l)AiO (mod g).

Lemma 4.4. Suppose L(q:p1) is ίsospectral to L(q:p2) and p^±l (mod q).

Then we have
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either

or

Moreover the greatest common divisor ((pi— 1,?), (pι+l>#)) ̂  £?^*° 1 or 2.
</ ά odd (resp. even), it is necessarily 1 (resp. 2).

Proof. The last statement is easy to see, since (p1+l)—(p1~l)=2 and

/>! is odd for even q.

Now, we shall give a proof of Lemma 4.4 in the case q is odd. Let F^z)
(resp. F2(z)) be the generating function associated to the spectrum of L(q:p^

(resp. L(q:p2)). By our assumption and Proposition 3.1, F1(z)=F2(z). It is
clear that if F^z) has a pole of order 2 at γ* (0<k<q), then A must satisfy

either (p!-\-l)k = 0 (mod q) or (pλ — l )k = Q (mod q). Conversely, if k satisfies

either (^+1)^ = 0 (mod q) or (pl—V)k=Q (mod <?), then F^z) has a pole of

order 2 at z=rγk. In fact, if k satisfies (/>!+!)& = () (mod q) (resp. (/>ι —1)&^0

(mod <?)), then we have

k 2 2

(resp.

lim (*—γ*)2/^*) — J Φθ).

By this fact, we can see easily that if (/>ι+l>#)~C?ι—1>?)=1> then (p2~}~l><l)=

Now, assume ί/ι=(/>ι+l,ϊ)>lv Then at z=rγ<1/dι, F^z) has a pole of
order 2. Since F1(z)=F2(z)> F2(z) has also a pole of order 2 at <yq/dι. Hence,

we have either (p2Jr^)^~=^ (mod q) θι (/>2— l)-2-ΞU (mod g). Therefore rfx
ttj «!

is a divisor of either d2=(p2-\-1, )̂ or e2=(p2— 1, q). We may assume dγ is a divisor

of ί/2 Since rf2=^ι>l> we can apply the same argument as the above and we
see that d2 is a divisor of either dλ or e1=(pl—1,#). If d2 is a divisor of dly then

we have d2=dλ. Suppose d2 is a divisor of el9 Since dl is a divisor of rf2, dλ

is a divisor of eλ. Since έ/ι>l, this contradicts the last statement in our Lemma

4.4. If #!>! (resp. £2>1), then in the same way as before, we have either
eλ=e2 or el=d2 (resp. e2=dλ}. But the latter condition contradicts also the
last statement in our Lemma 4.4. Thus we have Lemma 4.4 when q is odd.
By slight modification of the above argument, we can prove Lemma 4.4 when

q is even. q.e.d.
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The following corollary can be obtained easily by using Lemma 4.4.

Corollary 4.5. Let L(q:p1) and L(q:p2) be as in Lemma 4.4. Let k be an
integer such that

(4.13) (/>!+!)£$() (modq)

and

(4.14) (pl — 1 )k ΞJΞ 0 (mod q).

Then we have

(4.15) (Λ+1)A*0 (modq)

and

(4.16) (£>— I)&ΞJΞ() (mod q).

Proposition 4.6. Let L(q:p1) and L(q:p2) be as in Lemma 4.4. Then for
any integer k satisfying (4.13) and (4.14), we have

^ * ' 1 _ .— f h -4-1\b Λ _ . — fft — 1 M» 1 — fΛ*-ί-Λ\b Λ — ( h* — \\b

Proof. Let k be an integer satisfying (4.13) and (4.14). Then by multi-
plying (4.13) and (4.14) by pf , we have (pf+l)k=£θ(modq) and (/>*—
(mod q). We calculate the residue of F^z) at z=rγk.

lim (*— γ*
z^γ*

,

+

«» y-^-y-^D* (l.y-O.^-l-yίo.-l)*}

7* / 1 1 I
ϊ j * — s ί

= _A ̂ _ ( t !tti+1)t-1 ^π-^ \^-,_ \«.lv)

_2_

Λ
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Since F1(z)=F2(z), we have the similar result for F2(z). Now, we obtain (4.17)
q.e.d.

Corollary 4.7. Let L(q:pλ)9 L(q:p2) and k be as in Corollary 4.5. Then
we have

(4.18) cot — (p!+l)A-cot— (p!-l)ft+cot— (ρf+l)ft-cot— (pf-l)A
9 9 9 q

-cot— (p2+l)k+cot~ (p2-l)k-cot— (p*+l)k+cot— (pί-l)k=0.
q q q q

Proof. Using an elementary formula;

we can obtain easily (4.18) from (4.17). q.e.d.

5. Key Lemma

In this section we shall give a key Lemma to show our Main Theorem.
We denote by Q the field of rational numbers and by Φq the q-th cyclotomic

polynomical. The following theorem is due to S. Chowla [4], and A. Baker,
B.J. Birch and E.A. Wirsing [1].

Theorem 5.1. /// is a nonvanίshing function defined on the integers with
algebraic numbers such that (i) for any integer ry f(r+q) = f(r), (ii) f(r)=0 if

l<(r,q)<q and (iii) Φq is irreducible over Q(f(l )>•••>/(<?))> then

(5.1)
» = ι n

•p'/oΛ
Let Γ(#) be the Gamma-function. Define ψ (#)=:L-^, where Γ'(z)

d ΓW
= —Γ(z). Then we have

dz

(5.2) ψ(\—z)—ty(z) = π cot πz ,

(see p. 240 in [12]).
The generalized Zeta-function

7 - >w=o (n+a)

where a is a constant with 0<#5^1, is absolutely convergent and holomorphic
function on {s^C: Re s>l}. It satisfies

(5.3) ξ(s, a)--±-- = -ψ(a)+o(s-l) ,
S — 1
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where lim?ίί=Al=0, (see p. 271 in [2] [12]).
s->ι s — 1

Lemma 5.2. Let {an}n=ι be an infinite sequence of complex numbers.
n

Assume the sums Λn= ̂ ^ak are bounded. Then the series

«=ι n

converges for all real s>0. For any δ>0, its convergence is uniform in the in-
terval [δ, oo ), so that the function h(s) is continuous on (0, oo).

Proof. See p. 331 in [3].

Under the above preparations, we give our key lemma.

Lemma 5.3. Let q be an arbitrary natural number. Then the real numbers

C0t

 q

 < 2 ' 'q'

are linearly independent over Q.

Proof. Let / be a nonvanishing function defined on the integers with

rational numbers such that (i) for any integer, r, f(r+q)=f(r), (ii) /(r)=0 if
l<(r,q)<q and (iii) f(r)+f(q—r)=0, where l^r<g. Then the function /
satisfies the assumption for/in Theorem 5.1, so that we have

(5.4) fj ίW Φ 0 .
»=ι n

On the other hand, using (i) and (iii), we see easily that the sequence {f(ri)}n=\
satisfies the assumption in Lemma 5.2. Thus the function

(5.5) h(s) =
«=ι n

is continuous on the interval (0, oo).
Using (5.2), (5.3) and the conditions for/, we have for real

(5.6) ±M

JL -f-
q* «=ί- I s— ]
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= 4 Σ /(«)cot-^«+0(ί-l).
q ι^m<v/2) q

By the continuity of h(s) at s=l, we have

(5.7) ^M=IL

The numbers f(m) (l^nK--, (m, #) = !) can take any rational numbers. This

implies Lemma 5.3. q.e.d.

6. Proof of Main Theorem for odd prime q

In the following sections, we shall give a proof of our Main Theorem stated
in the introduction for the case where q is an odd prime, /V(^Ξ>2), 2F(v^l) or

2V(^ 1) (/ is an odd prime).

Lemma 6.1. Main Theorem holds when q^ 10.

Proof. Suppose #5ΠO. Then the equivalence classes related by (4.3)
and (4.4) are at most two classes. One is homogeneous and the other, if exists,
is not. By Corollary 3.4, if two inequivalence classes appear, these are not
isospectral to each other. q.e.d.

In the following, we assume L(q:p^) is isospectral to L(q:p2) and q>lO

and also assume ̂ ,^^±1 (mod q).
Consider the formula (4.18). Note that if we have a θ with cot τr0<0,

then we can take — cot πφ instead of cot πθ with 0<φ< — and φ=—θ (mod

1), because of

(6.1) cot τr(l-0) = -cot πθ .

Proof of Main Theorem for odd prime q

Assume q is an odd prime. By Proposition 4.1, it is sufficient to show
that either pι = ±p2 (mod q) or pι = ±p* (mod q). Substituting k=l (which
satisfies (4.13) and (4.14)) in the formula (4.18), we have

(6.2) cot^

Assume pι^±p2 and pι^±p* (mod q). Applying Lemma 5.3 to (6.2),
only the following cases are possible

(6.3) A+lΞΞ^-1 (mod ?),



460 A. IKEDA AND Y. YAMAMOTO

(6.4)

(6.5) (modj).

It is clear that (6.3) can not happen. Suppose the case (6.4). We multiply
both side by plβ Then we have pι+pι=—(l+pι) (mod q). Therefore we
have (pι+l)2=0 (mod q). Since q is an odd prime and p^ — 1 (mod q), this
leads a contradiction.

Next, we consider the case (6.5). In this case we obtain also

(6.6) Pl-i = pf+i (mod?).

Subtracting (6.6) from (6.5) both side separately, we obtain

(6.7) 2 ΞΞ-2 (modj).

This contradicts our assumption #>10. q.e.d.

7. Proof of Main Theorem for q=Γ (/ is an odd prime and ι>^

In the case (pι+1, ?)=(/>ι — 1, ί)=l, we can prove in the same way as in 6.

Since L(q:p^} (resp. L(q:p2)) is isometric to L(q\q—p^) (resp. L(q:q—p2)),
by Lemma 4.4, we may assume

(7.1) (Pι+l,?) = (fc+l, ?) = /",

where ι/>μ^l.
Since / is an odd prime, we have (pi— 1, ί) = l. Therefore by Lemma 4.2, we
have

(7 2}

Since )fe=l and ft=/v~μ— 1 satisfy (4.13) and (4.14), by Corollary 4.7, we have

(7.3)

cot

(7.4) -cot

ϊ ϊ

—
9

JL(pf + l)+cot -^-(pf-1) = 0 ,
1 1

— (/>f-l)Λ
1

-^ίpf-l)* = 0,
q

where k=lv~μ — 1.
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Taking the sum of (7.3) and (7.4), we have

(7.5) -cot^-(p1-ί)-cot^-(p1-l)k-cot^(p:f-l)-cot^(p:f-l)k
9 9 9 9

9 9 9 9

Since k is prime to ?, all the integers ^—1, (pl—V)k^ _/>* — !, (pf — l)k,p2—ly

(p2— l)k,p$ — 1 and (p$ — l)k are prime to q. Suppose pι^±p2 (mod q) and
Pι^±p* (mod q). Then applying Lemma 5.3 to (7.5), only the following
cases are possible

(7.6) Pl-i = -(pl-i)k (mod?),

(7.7) A_i = _Q> f_i) (mod?),

(7.8) A_ι = _(p?_i)fc (mod?),

(7.9) A_ι = (p2_i)Λ (mod?),

(7.10) Λ_ι = (pf _i)jfe (mod ?) .

In case (7.6), we obtain (pl— 1) (&+l)=0 (mod ?). Since />j— 1 is prime to
?, &+l=/v~λ and v>v— μ^l, the case (7.6) can not happen.

In case (7.7), in the same way as in case (6.4), we obtain (p1—l)2 = 0 (mod

q). This contradicts the facts (pi— 1, ?)=! and/)^ — 1 (mod q).

Next, we consider the case (7.8). Multiplying by p1 both side in (7.8), we
obtain (pλ — 1) (pl — K) = 0 (mod ?). Hence, we have

(7.11) p,=k (mod?).

By the same argument for p2 as in the cases (7.6) and (7.7), we have either

(7.12) p2-l = -(p*-l)k (mod?)

or

(7.13) ^-iΞΞ^-iμ (mod ?) .

In case (7.12), in the same way as before, we get

(7.14) p2=k (mod?).

Together this with (7.10), we have

(7.15) p,=p2 (mod ?) .

This contradicts our assumption pλ ̂  p2 (mod ?).

In case (7.13), by the same argument for p2 as in the cases (7.6) and (7.7),
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we have

(7.16) (p$-l)=-(p2-l)k (mod q) .

Using this and in the same way as before, we get

(7.17) pϊ = k (mod?).

Together this with (7.11), we have

(7.18) A = />f (mod?).

Thus we have a contradiction.

By the above arguments, we see

(7.19) Each two members of the first four terms (resp. the second four terms) in
(7.5) do not cancel to each other.

Next, we consider the case (7.9). Then by (7.19), we have either

(7.20) (Pl-l}k=p2-l (mod9)

or

(7.21) (Pl-i)k=p*-l (mod?).

Together (7.9) with (7.20), we obtain k2=l (mod q). Hence, we have

(7.22) (k+l) (Λ-l) = 0 (mod q) .

Since v>v— μ^l and / i s odd, (k—l) is prime to / and 0<(£+1)<?. Thus
the case (7.20) can not happen.

Now, we assume (7.9) and (7.21). Then, by our assumption and (7.19),
we have

(7.23) (pf-i) = (pf-i)k (mod?)

Substituting (7.9) to (7.21) and (7.21) to (7.23) respectively, we have

(7.24) (fc-l)#Ξ=(pf-l) (mod?)

and

(7.25) (pf-l) = (Pl-ί)k2 (mod?)

respectively.
From (7.24) and (7.25), in the same way as before, we have

(7.26) p$ = -k2 (mod?)

and

(7.27) pι=-k2 (mod?)
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respectively.

Therefore, we have

(7.28) Λ=j>f (mod?),

which contradicts our assumption. Thus, the case (7.9) can not happen.

In the same way as for the above, we can see the case (7.10) can not happen.
q.e.d.

8. Proof of Main Theorem for q=2Γ(l is an odd prime and v^l)

First, we consider the case

(8.1) U>ι+l,ϊ) = (A- 1,9) = 2.

Since k=\ satisfies (4.13) and (4.14), by Corollary 4.7, we have

(8.2) cot^^i+l-cot^^^+cot^ίi+l-cot^^^
?o 2 ?o 2 qa 2 ?o 2

_cot *- ̂ +l+cot ̂ Pl^λ-cot ?LPl+λ +cot «.£ίn! = o ,
q0 2 q0 2 q0 2 ?„ 2

where q0=P.

By (8.1), Lemma 4.2 and Lemma 4.4, all the integers ̂ ^ , &*1 , ̂ ^ and
•it

^ - are prime to qQ. Applying Lemma 5.3 to (8.2), in the same way as in

6, we see either pι=±p2 (mod q0) or p!=±p$ (mod #0). Since all the integers

Pit Piy p2 and/)* must be odd, we have either pλ= ±p2(m.od q) orp!=±p* (mod q)y

which proves our Main Theorem in this case.
Next, we consider the case where one of the integers (/>ι+l) and (p1 — 1)

is divisible by /. Since L(q:p^) (resp. L(q:p2)) is isometric to L(q:q—p^) (resp.
L(q:q—p2)), by Lemma 4.4, we may assume

where v > μ ̂  1 .
Substituting by k=l and k=lv~μ'-l (which satisfy (4.13) and (4.14)) in (4.18),
and taking their sum, we obtain

(8.4) -cot^^^-cot^^lll^-cot^^^-cot^^^^
?o 2 ?o 2 ?o 2 ^o 2

^2 2 2 2

where k=Γ~μ'—l.
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By (8.3) and Lemma 4.2, all the integers = , = k, , = k, - ,
Δt Z* Δi Δt Δt

P2~ k,P2~ and P2 ~ k are prime to q0. Applying Lemma 5.3 to (8.4), in
Δt Δι Δt

the same way as in 7, we see either pι=p2 (mod qQ) or pι=p* (mod qQ). From
this, as we have seen as before, we see either pι = p2 (mod q) or p\=p* (mod #),
which proves Main Theorem in this case (8.3). Thus we have proved Main
Theorem for q=2l\ q.e.d.

9. Proof of Main Theorem for g=2v (* ̂  1)

By Lemma 6.1, we may assume z^4. Since <?=2V, either pι+1 or p1— 1
is divisible by 22. So that, by the same reason as in the preceding sections, we
may assume

where
First, assume z^ — μ=l. Then it is easy to see that

which proves our assertion.

Next, assume v—μ^>2. Substituting k=\ and &=2v~μ— 1 (which satisfy
(4.13) and (4.14)) in (4.18) and taking their sum, we obtain;

(9.2) -cot^
q0

,
q0 2 q0 2 q0 2 q0 2

where &=2v-μ-l and qQ=2v~^

Lemma 9.1. (i) If ρl=l (mod q0), then pf = pl+2^~1 (mod q). (ii) //
pι = p2 (mod q0) and pi = I (mod q0), then pι = p2 (mod q) or pλ=p$ (mod q).

Proof, (i) Suppose pl= 1 (mod q). Then we have (pi— I) (pι+l) = Q (mod
q). Since (pλ— 1) (/>!+!)== 2μ+1 (mod 2μ+2) and v > μ+ 1 > 0, we have a contradic-
tion. Thus we have ̂ fΞl+2v~1 (rnod^). Since pl(pl+2v~1) = pl+2'"-1==l (mod
q), we have/)? = p1+2v~1 (modg). (ii) Assume ^^^(modgo) and pi = 1 (mod(?0).
Then we have pι=p2 (mod ̂ ) or />1 = />2+2v~1 (mod#), and pf = pl+2'"-1(modq).

Hence, we have/>!=/>2 (mod q) or pι=p* (mod ^). q.e.d.

Lemma 9.2. We have
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(9.3) &=- $ -^^ k (mod ft)

and

(9.4) ίcϋ^-fcl (modq0),

fori=l,2.

Proof. It sufficies to show Lemma 9.2 for i=\. Assume

(9.5) h=ll = -h=lk (mod ft).

Then we obtain

(9.6) (Pi—1) (k+l) = 0 (mod q).

Since (pi—1, ?)=2 and &+l = 2v~μ (mod q), we have

(9.7) (Pι-1) (Λ+l)ΞΞ2v-μ+1 (mod 2v~μ+2).

Since v—μ^2 and μ^2, we have

(9.8) z^>ϊ;—μ+l>0.

So that the (9.6) contradicts (9.7).
Next, assume

(9.9) A=l = _fcl (mod ft).

Then we get

(9.10) (p!—1)2=0 (mod?),

which is a contradiction because (pλ—1)2=22 (mod 23) and z^^4. q.e.d

We assume pιίp2 (mod q) and pi^pf (mod ?). Applying Lemma 5.3
and Lemma 9.2 to (9.2), we see easily that only the following cases are possible;
Case A,

'(9.11) Pi^l=-P±^lk (mod <?<,)

(9.12) P^& = _Pl_Z_ (mod ft),

Case B,

(9.13) h^λ = -U^λk (mod ft)

^ ^
(9.14) fcl^^M^l (mod ft),
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Case C,

((9.15) &=± = P*=λk (mod?0)

(9.16) h=l = k=lk (mod ίo),
2 2

Case D,

[(9.17) ^ = ̂ 6 (mod ίβ)

1(9.18) A^!£=,fcl (mod g0),V \ 2 2

and the cases where we interchange p2 and p* with each other in the cases B,C
andD.

Here, we shall prove that, under our assumptions pι^p2 (mod q) and pi
(mod #), the cases A, B, C and D do not occure. The other cases can be treated

in the same way as in cases B, C and D.

Case A.

In this case we have also

(9.19) £tzl = _£!lll* (modίo).

From (9.11), (9.12) and (9.19), we obtain

(9.20) pλ=p^=p2=k (mod ?0) .

Since (9.20) shows the conditions in (ii) of Lemma 9.1, we have a contradiction.

q.e.d.

Case B.

In this case we have also

(9.21)

From (9.14) we obtain

(9.22) -̂1)*= _(£,_!) (mod?).

By (9.13) and (9.21), we have in the same way as before

(9.23) Pι = ρ2=k (mod jo).

From this we have
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(9.24) (k-l)p2=k(k-l) (mod q)

and

(9.25) pλp2=k2+2^ (modj),

because (k— 1) is even a.ndpι^p2 (mod q).
Substituting (9.24) and (9.25) to (9.22), we obtain

(9.26) (&M-1) (k-l) = 2^ (mod q) .

Since v—μ^l, we have k2+l = 2 (mod 22) and &— 1=2 (mod 22). Thus, we
have a contradiction because z^— 1^3. q.e.d.

Case C.

In this case we have also

(9.27) 2ί_ll = M_zlA (mod <?„).

Substituting (9.15) to (9.16), we obtain

(9.28) (Λ+i)(Λ_i) = 0 (mod ?0).

Since A+l=2v-μ, *-l=2v-*-2 and μ^2, we see

(9.29) μ = 2 .

Sustituting (9.29) to (9.15) and (9.27), we obtain

(9.30) />1=-/)2+2v-1+2 (mod q)

and

(9.31) pf = -p$+2^+2 (mod?).

Multiplying (9.30) by (9.31) both sides separately, we have

(9.32) lΞl-(2-1+2)(/.2+p?)+(2-1+2)2 (mod?).

From this we have

(9.33) p2+P? = 2 (modίo).

First, suppose

(9.34) ρ2+P$ = 2 (mod?).

Then, multiplying by p2 in (9.34), we obtain

(9.35) (P2-1)2=0 (mod?),

which contradicts v^4.
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Next, suppose

(9.36) p2+p$ = 2^+2 (mod q) .

Then, by (9.30) and (9.36), we have

(9.37) p,=pi (mod?),

wih which contradicts our assumption. q.e.d.

Case D.

In this case we have also

(9.38) ^ k (mod9o),

(9.39) Λ = (mod ft).

Substituting (9.17) to (9.18), (9.18) to (9.38) and (9.38) to (9.39), we have

(9.40) p* = p* = p2=-k2 (mod ίo) .

Since (9.40) shows the conditions in (ii) of Lemma 9.1, we have a contradiction.

q.e.d.
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