A HYPERSURFACE OF THE IRREDUCIBLE HERMITIAN SYMMETRIC SPACE OF TYPE EIII

Yoshio KIMURA

(Received March 11, 1978)

Introduction

Let M be the compact irreducible Hermitian symmetric space of type EIII. Then M can be imbedded holomorphically and isometrically into the 26 dimensional complex projective space $P_{26}(\boldsymbol{C})$ (Nakagawa and Takagi [5]). In this note we prove the following theorem.

Theorem. There exists a hyperplane W of $P_{26}(\boldsymbol{C})$ such that $M \cap W$ is a hypersurface of M and a Kähler C-space. Further $M \cap W=G / U$, where G is the simply connected complex simple Lie group of type F_{4} and U is a parabolic Lie subgroup of G.

It has been proved that there is no non-zero holomorphic vector field on the hypersurfaces of M with degree >1 (Kimura [3]). The theorem shows that the above result does not hold for a hypersurface of M with degree 1 .

The author would like to express his gratitude to Professor S. Murakami and Doctor Y. Sakane for their useful suggestions and encouragements.

1. The exceptional Lie algebras of type \boldsymbol{F}_{4} and \boldsymbol{E}_{6}

First we shall recall Chevalley-Schafer's models of the complex simple Lie algebras of type F_{4} and E_{6}. Denote by Q the quaternion algebra over \boldsymbol{C} with the usual base $\{1, i, j, k\}$ subject to the multiplication rules:

$$
i^{2}=j^{2}=k^{2}=-1, i j=k=-j i, j k=i=-k j, k i=j=-i k
$$

Then the Cayley algebra © over \boldsymbol{C} can be defined as $\mathbb{C}=Q+Q \cdot e$ (direct sum) with the following multiplication rule:

$$
(a+b e)(c+d e)=(a c-\bar{d} b)+(d a+b \bar{c}) e
$$

for $a, b, c, d \in Q$. Here $a \rightarrow \bar{a}$ is the usual involution in Q.
We define a 27 dimensional Jordan algebra \mathfrak{F} by

$$
\left.\mathfrak{\Im}=\left\{\left(\begin{array}{lll}
\xi_{1} & c & \bar{d} \\
\bar{c} & \xi_{2} & a \\
b & a & \xi_{3}
\end{array}\right)\right\} ; \xi_{i} \in \boldsymbol{C}(i=1,2,3), a, b, c \in \mathfrak{C}\right\}
$$

with the Jordan product $x \cdot y=\frac{1}{2}(x y+y x)$ for $x, y \in \Im$. Here $x y$ means the usual matrix-product under the multication rule in \mathfrak{c}. Define elements e_{1}, e_{2} and e_{3} of \mathfrak{G} by

$$
e_{1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad e_{2}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right), \quad e_{3}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

For $a \in \mathfrak{C}$, we define elements a_{1}, a_{2} and a_{3} of \mathfrak{J} by

$$
a_{1}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & a \\
0 & \bar{a} & 0
\end{array}\right), \quad a_{2}=\left(\begin{array}{ccc}
0 & 0 & \bar{a} \\
0 & 0 & 0 \\
a & 0 & 0
\end{array}\right), \quad a_{3}=\left(\begin{array}{ccc}
0 & a & 0 \\
\bar{a} & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Then we see the following identities.

$$
\left\{\begin{array}{l}
e_{i} \cdot e_{i}=e_{i}, \quad i=1,2,3 \tag{1}\\
e_{i} \cdot e_{j}=0, \quad i \neq j, \quad i, j=1,2,3, \\
e_{i} \cdot a_{i}=0, \quad a \in \mathbb{C}, \quad i=1,2,3, \\
e_{i} \cdot a_{j}=\frac{1}{2} a_{j}, \quad a \in \mathbb{C}, \quad i \neq j, \quad i, j=1,2,3, \\
a_{i} \cdot b_{i}=(a, b)\left(e_{j}+e_{k}\right), \quad a, b \in \mathbb{C}, \quad\{i, j, k\} \text { a permutation of }\{1,2,3\}, \\
a_{i} \cdot b_{j}=\frac{1}{2}(\bar{b} \bar{a})_{k}, \quad a, b \in \mathbb{C}\{i, i, k\} \text { a cyclic permutation of }\{1,2,3\},
\end{array}\right.
$$

where (a, b) is the symmetric form on \mathfrak{c} defined by

$$
a \bar{b}+b \bar{a}=2(a, b) 1
$$

Put $\mathfrak{Y}_{i}=\left\{a_{i} ; a \in \Subset\right\}, i=1,2,3$. Then

$$
\mathfrak{J}=C e_{1}+C e_{2}+C e_{3}+\Im_{1}+\Im_{2}+\Im_{3}(\text { direct sum }) .
$$

Hence every element x of \mathfrak{F} can be written as

$$
x=\xi_{1} e_{1}+\xi_{2} e_{2}+\xi_{3} e_{3}+a_{1}+b_{2}+c_{3}, \quad \xi_{i} \in \boldsymbol{C}, \quad a, b, c \in \mathfrak{C} .
$$

We define the trace $T(x)$ of this element x by

$$
T(x)=\xi_{1}+\xi_{2}+\xi_{3} .
$$

Also let R_{x} be the right multiplication by x;

$$
R_{x}(y)=y \cdot x
$$

We need in the later discussion the subalgebra \mathfrak{Y}_{0} of 26 dimensions:

$$
\Im_{0}=\{x \in \mathfrak{F} ; T(x)=0\}
$$

A derivation of \mathfrak{Y} is a linear endomorphism D of \Im satisfying
(2) $D(x \cdot y)=(D x) \cdot y+x \cdot(D y)$.

The condition (2) for a derivation D may be written as
(3) $\left[D, R_{x}\right]=R_{D x} \quad$ for all $x \in \mathfrak{F}$.

Denote by $\mathfrak{D}(\Im)$ the Lie algebra of all derivations of \mathfrak{F}. Then the following theorem is known.

Theorem (Chevalley and Schafer [1]). $\mathfrak{D}(\mathfrak{F})$ (resp. $\mathfrak{D}(\Im)+R_{0}(\mathfrak{F})$) is the complex simple Lie algebra of type $F_{4}\left(\right.$ resp. $\left.E_{6}\right)$, where $R_{0}(\mathfrak{F})=\left\{R_{x} ; x \in \Im_{0}\right\}$.

Let us denote $\mathfrak{D}(\Im)+R_{0}(\mathfrak{F})$ by \mathfrak{F}_{6} for simplicity. It is known that \mathfrak{F}_{6} acts irreducibly on \mathfrak{Y} and \mathfrak{Y} is decomposed into two irreducible components as $\mathfrak{D}(\Im)$-module:

$$
\text { (4) } \mathfrak{Y}=\boldsymbol{C} 1+\mathfrak{Y}_{0} \text { (direct sum) }
$$

(Sechafter [6]).
Let

$$
\mathfrak{D}_{0}=\left\{\mathfrak{D}(\Im) ; \quad D e_{1}=D e_{2}=D e_{3}=0\right\}
$$

and

$$
\mathfrak{D}_{i}=\left\{\left[R_{a_{i}}, R_{e_{j}-e_{k}}\right] ; a_{i} \in \mathfrak{Y}_{i}\right\},
$$

where $\{i, j, k\}$ is a permutation of $\{1,2,3\}$.
Then

$$
\mathfrak{D}(\Im)=\mathfrak{D}_{0}+\mathfrak{D}_{1}+\mathfrak{D}_{2}+\mathfrak{D}_{3}(\text { direct sum })
$$

(Schafer [6]).
It is known that \mathscr{D}_{0} is isomorphic to $\mathfrak{o}(8, \boldsymbol{C})$, the Lie algebra of 8 dimensional complex orthogonal group, as Lie algebra (Schafer [6]).

Proposition 1 (Jacobson [2]). $\mathfrak{D}_{0} \mathfrak{Y}_{i} \subset \mathfrak{Y}_{i}, i=1,2,3$, and the representations \mathfrak{D}_{0} on \Im_{1}, \Im_{2} and \Im_{3} are respectively equivalent to the natural representation on \boldsymbol{C}^{8}, the even half-spin representation and the odd half-spin representation of $\mathfrak{p}(8, \boldsymbol{C})$.

Proposition 2. For each $i=1,2,3, \mathfrak{D}_{i}$ and \mathfrak{Y}_{i} are isomorphic \mathfrak{D}_{0}-modules.
Proof. Let $D \in \mathfrak{D}_{0}$. Since D satisfies the condition (3),

$$
\begin{aligned}
{\left[D,\left[R_{a_{i}}, R_{e_{j}-e_{k}}\right]\right.} & =\left[\left[D, R_{a_{i}}\right], R_{e_{j}-e_{k}}\right]+\left[R_{a_{i}},\left[D, R_{e_{j}-e_{k}}\right]\right] \\
& =\left[R_{D a_{i}}, R_{e_{j}-e_{k}}\right]+\left[R_{a_{i}}, R_{D_{e_{i}}-D_{k}}\right]=\left[R_{D_{i}}, R_{e_{j}-e_{k}}\right]
\end{aligned}
$$

where $\{i, j, k\}$ is a permutation of $\{1,2,3\}$. q.e.d.

We take a Cartan subalgebra \mathfrak{h}^{\prime} of \mathfrak{D}_{0} and a basis $\left\{H_{1}, H_{2}, H_{3}, H_{4}\right\}$ of \mathfrak{h}^{\prime}. Define linear forms $\lambda_{i}, i=1,2,3,4$, by

$$
\lambda_{i}: \sum_{j=1}^{4} \lambda_{j} H_{j} \rightarrow \lambda_{i} .
$$

We may assume that $\pm \lambda_{i} \pm \lambda_{j}, i<j$, are roots of \mathfrak{D}_{0}. By Propositions 1 and 2, \mathfrak{h}^{\prime} is a Cartan subalgebra of $\mathfrak{D}(\mathfrak{F})$ and its roots are as follows:

$$
\begin{aligned}
& \pm \lambda_{i} \pm \lambda_{j}, \quad i<j, \quad i, j=1,2,3,4 \\
& \pm \lambda_{i}, \quad i=1,2,3,4, \\
& \pm \Lambda_{i}^{\prime}, \quad \text { where } \Lambda_{i}^{\prime}=\frac{1}{2}\left(\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4}\right)-\lambda_{i}, i=1,2,3,4, \\
& \pm \Lambda_{i}^{*}, \quad \text { where } \Lambda_{1}^{*}=\frac{1}{2}\left(\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4}\right), \\
& \Lambda_{2}^{*}=\frac{1}{2}\left(\lambda_{1}+\lambda_{2}-\lambda_{3}-\lambda_{4}\right), \quad \Lambda_{3}^{*}=\frac{1}{2}\left(\lambda_{1}-\lambda_{2}+\lambda_{3}-\lambda_{4}\right), \\
& \Lambda_{4}^{*}=\frac{1}{2}\left(\lambda_{1}-\lambda_{2}-\lambda_{3}+\lambda_{4}\right) .
\end{aligned}
$$

Put $\alpha_{1}=\lambda_{2}-\lambda_{3}, \alpha_{2}=\lambda_{3}-\lambda_{4}, \alpha_{3}=\lambda_{4} \alpha_{4}=-\Lambda_{1}^{\prime}$. Then $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\}$ is a fundamental root system and its Dynkin diagram is:

Let $\left\{\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right\}$ be the fundamental weights with respect to $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\}$. Then $\omega_{4}=\lambda_{1}$.

Now we give a Cartan subalgebra and roots of $⿷_{6}$. Set $H_{5}=R_{e_{1}}, H_{6}=R_{e_{2}}$, $H_{7}=R_{e_{3}}$. Then (3) and the following lemma imply that $\mathfrak{G}=\left\{\sum_{i=1}^{7} \lambda_{i} H_{i} ; \lambda_{i} \in C\right.$, $\left.\lambda_{5}+\lambda_{6}+\lambda_{7}=0\right\}$ is a commutative subalgebra of \mathfrak{F}_{6}.

Lemma 1. $\left[R_{e_{i}}, R_{e_{j}}\right]=0 \quad$ for $1 \leqq i, j \leqq 3$.
Proof. Obviously we may assume that i is not j. We have the following identities from (1).

$$
\begin{aligned}
& {\left[R_{e_{i}}, R_{e_{j}}\right] e_{k}=\left(e_{k} \cdot e_{j}\right) \cdot e_{i}-\left(e_{k} \cdot e_{t}\right) \cdot e_{j}=0, \quad k \neq i, j} \\
& {\left[R_{e i}, R_{e_{j}}\right] e_{i}=\left(e_{i} \cdot e_{j}\right) \cdot e_{i}-\left(e_{i} \cdot e_{i}\right) \cdot e_{j}=0}
\end{aligned}
$$

Rimilarly we get [$\left.R_{e_{i}}, R_{e_{j}}\right] e_{j}=0$. On the other hand

$$
\begin{aligned}
{\left[R_{e_{i}}, R_{e_{j}}\right] a_{k} } & =\left(a_{k} \cdot e_{j}\right) \cdot e_{i}-\left(a_{k} \cdot e_{i}\right) \cdot e_{j} \\
& =\frac{1}{2} a_{k} \cdot e_{i}-\frac{1}{2} a_{k} \cdot e_{j}=\frac{1}{4} a_{k}-\frac{1}{4} a_{k}=0, \quad a \in \mathfrak{C}, k \neq i, j . \\
{\left[R_{e_{i}}, R_{e_{j}}\right] a_{i} } & =\left(a_{i} \cdot e_{j}\right) \cdot e_{i}-\left(a_{i} \cdot e_{i}\right) \cdot e_{j}=\frac{1}{2} a_{i} \cdot e_{i}=0, \quad a \in \mathbb{C}
\end{aligned}
$$

Similarly we get $\left[R_{e_{i}}, R_{e_{j}}\right] a_{j}=0$.
q.e.d.

We now claim that $a d \mathfrak{h}$ acts diagonally on \mathfrak{F}_{6}, which will prove that \mathfrak{h} is a Cartan subalgebra of \mathfrak{F}_{6}. We shall also determine the root system of \mathfrak{F}_{6} with respect to \mathfrak{h}. We define linear forms $\tilde{\lambda}_{i}, 1 \leqq i \leqq 7$, on \mathfrak{h} by

$$
\tilde{\lambda}_{i}: \sum_{i=1}^{7} \lambda_{j} H_{i} \rightarrow \lambda_{i}
$$

The definition of \mathfrak{h} implies $\tilde{\lambda}_{5}+\tilde{\lambda}_{6}+\tilde{\lambda}_{7}=0$. Since $\tilde{\lambda}_{i}, i=1,2,3,4$, are trivial extensions on \mathfrak{h} of λ_{i}, we denote $\tilde{\lambda}_{i}$ by $\lambda_{i}, 1 \leqq i \leqq 7$, for simplicity. And we regard Λ_{1}^{\prime} and $\Lambda_{i}^{*}, 1 \leqq i \leqq 4$, as linear forms on \mathfrak{h}.

We first note that the root vectors of \mathfrak{D}_{0} with respect to \mathfrak{G}^{\prime} are root vectors for \mathfrak{F}_{6} with respect to \mathfrak{h}, since such a root vector is a derivation D mapping e_{i} into 0 , and so $\left[R_{e_{i}}, D\right]=0, i=1,2,3$. In this way we obtained the roots $\pm \lambda_{i} \pm \lambda_{j}, 1 \leqq i<j \leqq 4$, for \mathfrak{F}_{6}. Next let

$$
\mathfrak{r}_{i j}=\left\{S_{i j}=R_{a_{k}}+2\left[R_{a_{k}}, R_{e_{i}}\right] ; a \in \mathfrak{C}\right\}
$$

where $\{i, j, k\}$ is a permutation of $\{1,2,3\}$. Then we have

$$
\mathfrak{F}_{6}=\left\{\sum_{i=5}^{7} \lambda_{i} H_{i} ; \lambda_{5}+\lambda_{6}+\lambda_{7}=0\right\}+\mathfrak{D}_{0}+\sum_{i \neq j} \mathrm{r}_{i j} \quad \text { (direct sum) }
$$

by the following lemma.
Lemma 2. $\left[R_{a_{i}}, R_{e_{i}}\right]=0$ and $\left[R_{a_{i}}, R_{e_{j}}\right]=-\left[R_{a_{i}}, R_{e_{k}}\right]$ for $a \in \mathbb{C}$ and $\{i, j, k\}$ a permutation of $\{1,2,3\}$.

Proof. By (1) we have the following identities.

$$
\begin{aligned}
& {\left[R_{a_{i}}, R_{e_{i}}\right] e_{i}=\left(e_{i} \cdot e_{i}\right) \cdot a_{i}-\left(e_{i} \cdot a_{i}\right) \cdot e_{i}=e_{i} \cdot a_{i}=0,} \\
& {\left[R_{a_{i}}, R_{e_{i}}\right] e_{j}=\left(e_{j} \cdot e_{i}\right) \cdot a_{i}-\left(e_{j} \cdot a_{i}\right) \cdot e_{i}=-\frac{1}{2} a_{i} \cdot e_{i}=0,} \\
& {\left[R_{a_{i}}, R_{e_{i}}\right] b_{i}=\left(b_{i} \cdot e_{i}\right) \cdot a_{i}-\left(b_{i} \cdot a_{i}\right) \cdot e_{i}=-(b, a)\left(e_{j}+e_{k}\right) \cdot e_{i}=0, \quad b \in \mathbb{C},} \\
& {\left[R_{a_{i}}, R_{e_{i}}\right] b_{j}=\left(b_{j} \cdot e_{i}\right) \cdot a_{i}-\left(b_{j} \cdot a_{i}\right) \cdot e_{i}=\frac{1}{2} b_{j} \cdot a_{i}-\frac{1}{2} b_{j} \cdot a_{i}=0, \quad b \in \mathbb{C} .}
\end{aligned}
$$

Therefore $\left[R_{a_{i}}, R_{e_{i}}\right]=0$. Since $R_{e_{i}}+R_{e_{2}}+R_{e_{3}}=1 \mathfrak{\Im}$, we have $\left[R_{a_{i}}, R_{e_{j}}\right]+\left[R_{a i}, R_{e_{k}}\right]=0$.
Lemma 3. $\left[H, S_{a_{i l}}\right]=-\frac{1}{2}\left(\lambda_{i+4}-\lambda_{j+4}\right) S_{a_{i j}}$ for $H=\sum_{k=5}^{7} \lambda_{k} H_{k}$.
Proof. Since \mathfrak{F} is a Jordan algebra, we have

$$
\left[\left[R_{x}, R_{y}\right], R_{z}\right]=R_{\left[R_{x}, R_{y}\right]_{z}} \quad \text { for } x, y, z \in \mathfrak{Y}
$$

(Schafer [6]). By this fact and Lemma 2, we have

$$
\begin{aligned}
& {\left[R_{e_{k}}, S_{a_{i j}}\right]=\left[R_{e_{k}}, R_{a_{k}}+2\left[R_{a_{k}}, R_{e_{i}}\right]\right]=-2 R_{\left[R_{a_{k}}, R_{e_{i}}\right] e_{k}}=0,} \\
& {\left[R_{e_{i}}, S_{a_{i j}}\right]=\left[R_{e_{i}}, R_{a_{k}}+2\left[R_{a_{k}}, R_{e_{i}}\right]\right]=-\left[R_{a_{k}}, R_{e_{i}}\right]-2 R_{\left[R_{a_{k}}, R_{e_{i}}\right] e_{i}}}
\end{aligned}
$$

where $k \neq i, j$. On the other hand,

$$
\left[R_{a_{k}}, R_{e_{i}}\right] e_{i}=\left(e_{i} \cdot e_{i}\right) \cdot a_{k}-\left(e_{i} \cdot a_{k}\right) \cdot e_{i}=e_{i} \cdot a_{k}-\frac{1}{2} a_{k} \cdot e_{i}=\frac{1}{2} a_{k}-\frac{1}{4} a_{k}=\frac{1}{4} a_{k} .
$$

Hence $\left[R_{e_{i}}, S_{a_{i j}}\right]=-\frac{1}{2} S_{a_{i} l}$. Since $R_{e_{1}}+R_{e_{2}}+R_{e_{3}}=1_{\mathfrak{F}}$ and $\left[R_{e_{k}}, S_{a_{i j}}\right]=0$, we get $\left[R_{e_{i}}+R_{e_{j}}, S_{a_{i j}}\right]=0$.
Therefore $\left[R_{e_{j}}, S_{a_{i j}}\right]=\frac{1}{2} S_{a_{i j}}$.
q.e.d.

Let $H \in \mathfrak{G}^{\prime} \subset \mathfrak{D}_{0}$. Then,

$$
\left[H, S_{a_{i} j}\right]=\left[H, R_{a_{k}}\right]+2\left[H,\left[R_{a_{k}}, R_{e_{i}}\right]\right]=R_{H a_{k}}+2\left[R_{H a_{k}}, R_{e_{i}}\right], \quad k \neq i, j
$$

It follows that if $a_{k} \in \Im_{k}$ is a weight vector for the representation of \mathfrak{D}_{0} on \Im_{k}, then the corresponding $S_{a_{i j}}$ will be a root vector for \mathfrak{h}. In this way we obtain the following roots:

$$
\pm \lambda_{i} \pm \frac{1}{2}\left(\lambda_{6}-\lambda_{7}\right), \pm \Lambda_{i}^{\prime} \pm \frac{1}{2}\left(\lambda_{5}-\lambda_{7}\right), \pm \Lambda_{i}^{*} \pm \frac{1}{2}\left(\lambda_{5}-\lambda_{6}\right),
$$

where $i=1,2,3,4$. Thus we have shown that $a d \mathfrak{G}$ acts diagonally on \mathfrak{F}_{6}, and obtained all roots of \mathfrak{F}_{6} with respect to \mathfrak{h}. We may take a fundamental root system $\left\{\beta_{1}, \cdots, \beta_{6}\right\}$ as follows:

$$
\begin{aligned}
& \beta_{1}=-\Lambda_{1}^{\prime}+\frac{1}{2}\left(\lambda_{7}-\lambda_{5}\right), \quad \beta_{2}=\lambda_{4}+\frac{1}{2}\left(\lambda_{6}-\lambda_{7}\right), \\
& \beta_{3}=\lambda_{3}-\lambda_{4}, \quad \beta_{4}=\lambda_{4}-\frac{1}{2}\left(\lambda_{6}-\lambda_{7}\right), \\
& \beta_{5}=-\Lambda_{1}^{\prime}-\frac{1}{2}\left(\lambda_{7}-\lambda_{5}\right), \quad \beta_{6}=\lambda_{2}-\lambda_{3} .
\end{aligned}
$$

Then the Dynkin diagram of $\left\{\beta_{1}, \cdots, \beta_{6}\right\}$ is:

Let $\left\{\tilde{\omega}_{1}, \cdots, \tilde{\omega}_{6}\right\}$ be the fundamental weights with respect to $\left\{\beta_{1}, \cdots, \beta_{6}\right\}$. Then $\tilde{\omega}_{1}=\lambda_{1}+\frac{1}{2}\left(\lambda_{6}+\lambda_{7}\right)$.

2. Proof of the theorem

By (1) and Proposition 1, we have the following propositions.
Proposition 3. The weights of the irreducible representation of \mathfrak{F}_{6} on \mathfrak{F} are the followings:

$$
\lambda_{5}, \lambda_{6}, \lambda_{7}, \pm \lambda_{i}+\frac{1}{2}\left(\lambda_{6}+\lambda_{7}\right), \pm \Lambda_{i}^{\prime}+\frac{1}{2}\left(\lambda_{5}+\lambda_{7}\right), \pm \Lambda_{i}^{*}+\frac{1}{2}\left(\lambda_{5}+\lambda_{6}\right),
$$

where $i=1,2,3,4$. Further the highest weight among these is $\tilde{\omega}_{1}=\lambda_{1}+\frac{1}{2}\left(\lambda_{6}+\lambda_{7}\right)$.
Proposition 4. The weights of the irreducible representation of $\mathfrak{D}(\Im)$ on \Im_{0} are the followings:

$$
0, \pm \lambda_{i}, \pm \Lambda_{i}^{\prime}, \pm \Lambda_{i}^{*}, \quad i=1,2,3,4
$$

Further the highest weight among these is $\omega_{4}=\lambda_{1}$.
Let $v \in \Im_{1}$ be an eigen vector belonging to the highest weight ω_{4} of the representation of $\mathfrak{D}(\mathfrak{F})$ on \Im_{0}. By Propositions 3 and 4,v is also a highest weight vector of the representation of \mathfrak{F}_{6} on \mathfrak{F}. Therefore v is a common highest weight vector of the above two representations.

Let E_{6} be a simply connected complex Lie group with Lie algebra \mathfrak{F}_{6} and let F_{4} be a connected Lie subgroup of E_{6} with Lie algebra $\mathfrak{D}(\mathfrak{F})$. Then there exists the irreducible representation $\left(f_{\omega_{1}}, \mathfrak{F}\right)$ of \mathfrak{F}_{6} in \mathfrak{F} which induces the representation of $⿷_{6}$ on \mathfrak{F}. Denote by $P(\Im)$ the complex projective space consisting of all 1-dimensional subspaces of \mathfrak{F}. Then E_{6} acts canonically on $P(\Im)$ via the representation $\left(f_{\omega_{1}}, \mathfrak{F}\right)$. The weight space $\boldsymbol{C} v$ in \mathfrak{J} for the highest weight $\tilde{\omega}_{1}$ being of dimension 1 , it is an element of $P(\Im)$. It is known that the isotropy subgroup U of E_{6} at $\boldsymbol{C} v$ is a parabolic subgroup of E_{6} and the quotient manifold E_{6} / U is fully imbedded in $P(\Im)$ as the orbit of $\boldsymbol{C} v$ (Nakagawa and Takagi [5]). And E_{6} / U is compact irreducible Hermitian symmetric space of type EIII.

The restriction to F_{4} of $f_{\omega_{1}}$ leaves \Im_{0} invariant. By Proposition 4, the representation of F_{4} on \Im_{0} induced by $f_{\omega_{1}}$ is irreducible (with highest weight $\left.\omega_{4}\right)$. Let $P\left(\Im_{0}\right)$ be the complex projective space consisting of all 1-dimensional subspaces of \Im_{0}. Then F_{4} acts canonically on $P\left(\Im_{0}\right)$. Similarly as for the above case, the isotropy subgroup U^{\prime} of F_{4} at $\boldsymbol{C} v \in P\left(\Im_{0}\right)$ is a parabolic subgroup of F_{4} and the quotient manifold $\mathrm{F}_{4} / U^{\prime}$ is a Kähler C-space imbedded in $P\left(\Im_{0}\right)$ as the orbit of $\boldsymbol{C} v$. Therefore $\mathrm{F}_{4} / U^{\prime}$ is contained in $\mathrm{E}_{6} / U \cap P\left(\Im_{0}\right)$. It is known that $\operatorname{dim} \mathrm{E}_{6} / U=16$ and $\operatorname{dim} \mathrm{F}_{4} / U^{\prime}=15$ (Nakagawa and Takagi [5]). Since E_{6} / U is fully imbedded in $P(\Im), \mathrm{E}_{6} / U$ is not contained in $P\left(\Im_{0}\right)$, namely, $\mathrm{E}_{6} / U \cap P\left(\Im_{0}\right) \neq \mathbf{E}_{6} / U . \quad$ Since E_{6} / U is connected, it follows that $\operatorname{dim} \mathrm{E}_{6} / U \cap P\left(\Im_{0}\right)$ $=15=\operatorname{dim} \mathrm{F}_{4} / U^{\prime}$. The fact that E_{6} / U is connected implies easily that $\mathrm{E}_{6} / U \cap$
$P\left(\Im_{0}\right)$ is connected (Milnor [4]). Therefore $\mathrm{F}_{4} / U^{\prime}=\mathrm{E}_{6} / U \cap P\left(\Im_{0}\right)$. Thus we have proved our theorem.

Nagasaki Institute of Applied Science

References

[1] C. Chevalley and R.D. Schafer: The exceptional simple Lie algebras F_{4} and E_{6}, Proc. Nat. Acad. Sci. U.S.A. 36 (1950), 137-141.
[2] N. Jacobson: Exceptional Lie algebras, Lecture note, Dekker, 1971.
[3] Y. Kimura: On the hypersurfaces of Hermitian symmetric spaces of compact type, Osaka J. Math. 16 (1979), 97-119.
[4] J.W. Milnor: Lectures on Morse theory, Ann. Math. Studies No. 51, Princeton Univ. Press, 1963.
[5] H. Nakagawa and R. Takagi: On locally symmetric Kaehler submanifolds in a complex projective space, J. Math. Soc. Japan 28 (1976), 638-667.
[6] R.D. Schafer: An introduction to nonassociative algebras, Academic Press, Inc., 1966.

