Kimura, Y. Osaka J. Math. 16 (1979), 431-438

A HYPERSURFACE OF THE IRREDUCIBLE HERMITIAN SYMMETRIC SPACE OF TYPE EIII

YOSHIO KIMURA

(Received March 11, 1978)

Introduction

Let M be the compact irreducible Hermitian symmetric space of type *EIII*. Then M can be imbedded holomorphically and isometrically into the 26 dimensional complex projective space $P_{26}(C)$ (Nakagawa and Takagi [5]). In this note we prove the following theorem.

Theorem. There exists a hyperplane W of $P_{26}(C)$ such that $M \cap W$ is a hypersurface of M and a Kähler C-space. Further $M \cap W = G/U$, where G is the simply connected complex simple Lie group of type F_4 and U is a parabolic Lie subgroup of G.

It has been proved that there is no non-zero holomorphic vector field on the hypersurfaces of M with degree >1 (Kimura [3]). The theorem shows that the above result does not hold for a hypersurface of M with degree 1.

The author would like to express his gratitude to Professor S. Murakami and Doctor Y. Sakane for their useful suggestions and encouragements.

1. The exceptional Lie algebras of type F_4 and E_6

First we shall recall Chevalley-Schafer's models of the complex simple Lie algebras of type F_4 and E_6 . Denote by Q the quaternion algebra over C with the usual base $\{1, i, j, k\}$ subject to the multiplication rules:

$$i^2 = j^2 = k^2 = -1, ij = k = -ji, jk = i = -kj, ki = j = -ik.$$

Then the Cayley algebra \mathfrak{C} over C can be defined as $\mathfrak{C} = Q + Q \cdot e$ (direct sum) with the following multiplication rule:

$$(a+be)(c+de) = (ac-\overline{d}b)+(da+b\overline{c})e$$

for $a,b,c,d \in Q$. Here $a \rightarrow \overline{a}$ is the usual involution in Q.

We define a 27 dimensional Jordan algebra \Im by

Y. KIMURA

$$\mathfrak{F} = \left\{ \begin{pmatrix} \xi_1 \ c \ \bar{d} \\ \bar{c} \ \xi_2 \ a \\ b \ a \ \xi_3 \end{pmatrix} \right\}; \ \xi_i \in C(i = 1, 2, 3), a, b, c \in \mathfrak{C} \right\}$$

with the Jordan product $x \cdot y = \frac{1}{2}(xy+yx)$ for $x, y \in \mathfrak{F}$. Here xy means the usual matrix-product under the multication rule in \mathfrak{C} . Define elements e_1 , e_2 and e_3 of \mathfrak{F} by

$$e_{1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad e_{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad e_{3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

For $a \in \mathbb{C}$, we define elements a_1 , a_2 and a_3 of \Im by

$$a_{1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & a \\ 0 & a & 0 \end{pmatrix}, \quad a_{2} = \begin{pmatrix} 0 & 0 & a \\ 0 & 0 & 0 \\ a & 0 & 0 \end{pmatrix}, \quad a_{3} = \begin{pmatrix} 0 & a & 0 \\ a & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Then we see the following identities.

(1)
$$\begin{cases} e_i \cdot e_i = e_i, \quad i = 1, 2, 3, \\ e_i \cdot e_j = 0, \quad i \neq j, \quad i, j = 1, 2, 3, \\ e_i \cdot a_i = 0, \quad a \in \mathbb{C}, \quad i = 1, 2, 3, \\ e_i \cdot a_j = \frac{1}{2}a_j, \quad a \in \mathbb{C}, \quad i \neq j, \quad i, j = 1, 2, 3, \\ a_i \cdot b_i = (a, b)(e_j + e_k), \quad a, b \in \mathbb{C}, \quad \{i, j, k\} \text{ a permutation of } \{1, 2, 3\}, \\ a_i \cdot b_j = \frac{1}{2}(\bar{b}a)_k, \quad a, b \in \mathbb{C} \{i, j, k\} \text{ a cyclic permutation of } \{1, 2, 3\}, \end{cases}$$

where (a, b) is the symmetric form on \mathbb{C} defined by

$$a\bar{b}+b\bar{a}=2(a,b)1$$
.

Put $\mathfrak{F}_i = \{a_i; a \in \mathbb{C}\}, i=1, 2, 3$. Then

$$\mathfrak{F} = Ce_1 + Ce_2 + Ce_3 + \mathfrak{F}_1 + \mathfrak{F}_2 + \mathfrak{F}_3$$
 (direct sum).

Hence every element x of \Im can be written as

$$x = \xi_1 e_1 + \xi_2 e_2 + \xi_3 e_3 + a_1 + b_2 + c_3, \quad \xi_i \in \mathbb{C}, \quad a, b, c \in \mathbb{C}.$$

We define the trace T(x) of this element x by

$$T(x) = \xi_1 + \xi_2 + \xi_3.$$

Also let R_x be the right multiplication by x;

432

$$R_x(y) = y \cdot x \, .$$

We need in the later discussion the subalgebra \mathfrak{F}_0 of 26 dimensions:

$$\mathfrak{F}_0 = \{x \in \mathfrak{F}; \ T(x) = 0\}.$$

A derivation of \Im is a linear endomorphism D of \Im satisfying

(2)
$$D(x \cdot y) = (Dx) \cdot y + x \cdot (Dy)$$
.

The condition (2) for a derivation D may be written as

$$(3) \quad [D, R_x] = R_{Dx} \quad \text{for all } x \in \mathfrak{Y}.$$

Denote by $\mathfrak{D}(\mathfrak{F})$ the Lie algebra of all derivations of \mathfrak{F} . Then the following theorem is known.

Theorem (Chevalley and Schafer [1]). $\mathfrak{D}(\mathfrak{Y})$ (resp. $\mathfrak{D}(\mathfrak{Y})+R_0(\mathfrak{Y})$) is the complex simple Lie algebra of type F_4 (resp. E_6), where $R_0(\mathfrak{Y})=\{R_x; x\in\mathfrak{Y}_0\}$.

Let us denote $\mathfrak{D}(\mathfrak{F}) + R_0(\mathfrak{F})$ by \mathfrak{E}_6 for simplicity. It is known that \mathfrak{E}_6 acts irreducibly on \mathfrak{F} and \mathfrak{F} is decomposed into two irreducible components as $\mathfrak{D}(\mathfrak{F})$ -module:

(4)
$$\Im = C1 + \Im_0$$
 (direct sum)

(Sechafter [6]).

Let

$$\mathfrak{D}_{_{0}}=\left\{ \mathfrak{D}(\mathfrak{J}); \;\; De_{_{1}}=De_{_{2}}=De_{_{3}}=0
ight\}$$
 ,

and

 $\mathfrak{D}_i = \{ [R_{a_i}, R_{e_i - e_{\mathbf{I}}}]; a_i \in \mathfrak{F}_i \},\$

where $\{i, j, k\}$ is a permutation of $\{1, 2, 3\}$.

Then

$$\mathfrak{D}(\mathfrak{Y}) = \mathfrak{D}_0 + \mathfrak{D}_1 + \mathfrak{D}_2 + \mathfrak{D}_3$$
 (direct sum)

(Schafer [6]).

It is known that \mathfrak{D}_0 is isomorphic to $\mathfrak{o}(8, \mathbf{C})$, the Lie algebra of 8 dimensional complex orthogonal group, as Lie algebra (Schafer [6]).

Proposition 1 (Jacobson [2]). $\mathfrak{D}_0\mathfrak{F}_i\subset\mathfrak{F}_i$, i=1, 2, 3, and the representations \mathfrak{D}_0 on \mathfrak{F}_1 , \mathfrak{F}_2 and \mathfrak{F}_3 are respectively equivalent to the natural representation on \mathbb{C}^8 , the even half-spin representation and the odd half-spin representation of $\mathfrak{o}(8,\mathbb{C})$.

Y. KIMURA

Proposition 2. For each $i=1, 2, 3, \mathfrak{D}_i$ and \mathfrak{F}_i are isomorphic \mathfrak{D}_0 -modules.

Proof. Let $D \in \mathfrak{D}_0$. Since D satisfies the condition (3),

$$\begin{split} [D, [R_{a_i}, R_{e_j - e_k}]] &= [[D, R_{a_i}], R_{e_j - e_k}] + [R_{a_i}, [D, R_{e_j - e_k}]] \\ &= [R_{Da_i}, R_{e_j - e_k}] + [R_{a_i}, R_{De_i - De_k}] = [R_{Da_i}, R_{e_j - e_k}], \end{split}$$

q.e.d.

where $\{i, j, k\}$ is a permutation of $\{1, 2, 3\}$.

We take a Cartan subalgebra \mathfrak{h}' of \mathfrak{D}_0 and a basis $\{H_1, H_2, H_3, H_4\}$ of \mathfrak{h}' . Define linear forms λ_i , i=1, 2, 3, 4, by

$$\lambda_i:\sum_{j=1}^4\lambda_jH_j\to\lambda_i.$$

We may assume that $\pm \lambda_i \pm \lambda_j$, i < j, are roots of \mathfrak{D}_0 . By Propositions 1 and 2, \mathfrak{h}' is a Cartan subalgebra of $\mathfrak{D}(\mathfrak{F})$ and its roots are as follows:

$$egin{aligned} &\pm\lambda_i\,\pm\lambda_j\,,\ i\!<\!j\,,\ i,j=1,2,3,4\,,\ &\pm\lambda_i\,,\ i=1,2,3,4\,,\ &\pm\Lambda_i'\,,\ ext{where}\ \Lambda_i'=rac{1}{2}(\lambda_1\!+\!\lambda_2\!+\!\lambda_3\!+\!\lambda_4)\!-\!\lambda_i,\,i=1,2,3,4\,,\ &\pm\Lambda_i^*\,,\ ext{where}\ \Lambda_1'=rac{1}{2}(\lambda_1\!+\!\lambda_2\!+\!\lambda_3\!+\!\lambda_4)\,,\ &\Lambda_2^*=rac{1}{2}(\lambda_1\!+\!\lambda_2\!-\!\lambda_3\!-\!\lambda_4)\,,\ &\Lambda_3^*=rac{1}{2}(\lambda_1\!-\!\lambda_2\!+\!\lambda_3\!-\!\lambda_4)\,,\ &\Lambda_4^*=rac{1}{2}(\lambda_1\!-\!\lambda_2\!-\!\lambda_3\!+\!\lambda_4)\,. \end{aligned}$$

Put $\alpha_1 = \lambda_2 - \lambda_3$, $\alpha_2 = \lambda_3 - \lambda_4$, $\alpha_3 = \lambda_4 \alpha_4 = -\Lambda'_1$. Then $\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$ is a fundamental root system and its Dynkin diagram is:

$$\begin{array}{c|c} 0 & \hline & 0 \\ \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 \end{array}$$

Let $\{\omega_1, \omega_2, \omega_3, \omega_4\}$ be the fundamental weights with respect to $\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$. Then $\omega_4 = \lambda_1$.

Now we give a Cartan subalgebra and roots of \mathfrak{G}_6 . Set $H_5 = R_{e_1}$, $H_6 = R_{e_2}$, $H_7 = R_{e_3}$. Then (3) and the following lemma imply that $\mathfrak{h} = \{\sum_{i=1}^{7} \lambda_i H_i; \lambda_i \in C, \lambda_5 + \lambda_6 + \lambda_7 = 0\}$ is a commutative subalgebra of \mathfrak{G}_6 .

Lemma 1. $[R_{e_i}, R_{e_j}] = 0$ for $1 \le i, j \le 3$.

Proof. Obviously we may assume that i is not j. We have the following identities from (1).

$$\begin{split} & [R_{e_i}, R_{e_j}]e_k = (e_k \cdot e_j) \cdot e_i - (e_k \cdot e_i) \cdot e_j = 0, \quad k \neq i, j. \\ & [R_{e_i}, R_{e_j}]e_i = (e_i \cdot e_j) \cdot e_i - (e_i \cdot e_i) \cdot e_j = 0. \end{split}$$

434

Rimilarly we get $[R_{e_i}, R_{e_j}]e_j = 0$. On the other hand

$$\begin{split} [R_{\epsilon_i}, R_{\epsilon_j}]a_k &= (a_k \cdot e_j) \cdot e_i - (a_k \cdot e_i) \cdot e_j \\ &= \frac{1}{2}a_k \cdot e_i - \frac{1}{2}a_k \cdot e_j = \frac{1}{4}a_k - \frac{1}{4}a_k = 0, \quad a \in \mathfrak{C}, \, k \neq i, j. \\ [R_{\epsilon_i}, R_{\epsilon_j}]a_i &= (a_i \cdot e_j) \cdot e_i - (a_i \cdot e_i) \cdot e_j = \frac{1}{2}a_i \cdot e_i = 0, \quad a \in \mathfrak{C}. \end{split}$$

Similarly we get $[R_{e_i}, R_{e_j}]a_j = 0$.

We now claim that *ad* \mathfrak{h} acts diagonally on \mathfrak{E}_6 , which will prove that \mathfrak{h} is a Cartan subalgebra of \mathfrak{E}_6 . We shall also determine the root system of \mathfrak{E}_6 with respect to \mathfrak{h} . We define linear forms $\tilde{\lambda}_i$, $1 \leq i \leq 7$, on \mathfrak{h} by

$$\tilde{\lambda}_i: \sum_{i=1}^7 \lambda_j H_i \rightarrow \lambda_i$$
.

The definition of \mathfrak{h} implies $\tilde{\lambda}_5 + \tilde{\lambda}_6 + \tilde{\lambda}_7 = 0$. Since $\tilde{\lambda}_i$, i=1, 2, 3, 4, are trivial extensions on \mathfrak{h} of λ_i , we denote $\tilde{\lambda}_i$ by λ_i , $1 \leq i \leq 7$, for simplicity. And we regard Λ'_1 and Λ^*_i , $1 \leq i \leq 4$, as linear forms on \mathfrak{h} .

We first note that the root vectors of \mathfrak{D}_0 with respect to \mathfrak{h}' are root vectors for \mathfrak{E}_6 with respect to \mathfrak{h} , since such a root vector is a derivation D mapping e_i into 0, and so $[R_{e_i}, D]=0$, i=1, 2, 3. In this way we obtained the roots $\pm \lambda_i \pm \lambda_j$, $1 \le i < j \le 4$, for \mathfrak{E}_6 . Next let

$$\mathfrak{r}_{ij} = \{S_{ij} = R_{a_k}{+}2[R_{a_k}, R_{e_i}]; a{\in}\mathbb{G}\}$$
 ,

where $\{i, j, k\}$ is a permutation of $\{1, 2, 3\}$. Then we have

$$\mathfrak{E}_{6} = \{\sum_{i=5}^{7} \lambda_{i} H_{i}; \lambda_{5} + \lambda_{6} + \lambda_{7} = 0\} + \mathfrak{D}_{0} + \sum_{i \neq j} \mathfrak{r}_{ij} \quad (\text{direct sum})$$

by the following lemma.

Lemma 2. $[R_{a_i}, R_{e_i}] = 0$ and $[R_{a_i}, R_{e_j}] = -[R_{a_i}, R_{e_k}]$ for $a \in \mathbb{C}$ and $\{i, j, k\}$ a permutation of $\{1, 2, 3\}$.

Proof. By (1) we have the following identities.

$$\begin{split} & [R_{a_i}, R_{e_i}]e_i = (e_i \cdot e_i) \cdot a_i - (e_i \cdot a_i) \cdot e_i = e_i \cdot a_i = 0, \\ & [R_{a_i}, R_{e_i}]e_j = (e_j \cdot e_i) \cdot a_i - (e_j \cdot a_i) \cdot e_i = -\frac{1}{2}a_i \cdot e_i = 0, \\ & [R_{a_i}, R_{e_i}]b_i = (b_i \cdot e_i) \cdot a_i - (b_i \cdot a_i) \cdot e_i = -(b, a)(e_j + e_k) \cdot e_i = 0, \qquad b \in \mathfrak{C}, \\ & [R_{a_i}, R_{e_i}]b_j = (b_j \cdot e_i) \cdot a_i - (b_j \cdot a_i) \cdot e_i = \frac{1}{2}b_j \cdot a_i - \frac{1}{2}b_j \cdot a_i = 0, \qquad b \in \mathfrak{C}. \end{split}$$

Therefore $[R_{a_i}, R_{e_i}] = 0$. Since $R_{e_i} + R_{e_2} + R_{e_3} = 1$ 3, we have $[R_{a_i}, R_{e_j}] + [R_{a_i}, R_{e_k}] = 0$. q.e.d.

Lemma 3. [H,
$$S_{a_{ij}} = -\frac{1}{2} (\lambda_{i+4} - \lambda_{j+4}) S_{a_{ij}}$$
 for $H = \sum_{k=5}^{7} \lambda_k H_k$.

Proof. Since \Im is a Jordan algebra, we have

q.e.d.

Y. KIMURA

$$[[R_x, R_y], R_z] = R_{[R_x, R_y]_z} \quad \text{for } x, y, z \in \mathfrak{Y}$$

(Schafer [6]). By this fact and Lemma 2, we have

$$\begin{split} [R_{e_k}, S_{a_ij}] &= [R_{e_k}, R_{a_k} + 2[R_{a_k}, R_{e_i}]] = -2R_{[R_{a_k}, R_{e_i}]e_k} = 0, \\ [R_{e_i}, S_{a_ij}] &= [R_{e_i}, R_{a_k} + 2[R_{a_k}, R_{e_i}]] = -[R_{a_k}, R_{e_i}] - 2R_{[R_{a_k}, R_{e_i}]e_i}, \end{split}$$

where $k \neq i, j$. On the other hand,

$$[R_{a_k}, R_{e_i}]e_i = (e_i \cdot e_i) \cdot a_k - (e_i \cdot a_k) \cdot e_i = e_i \cdot a_k - \frac{1}{2}a_k \cdot e_i = \frac{1}{2}a_k - \frac{1}{4}a_k = \frac{1}{4}a_k$$

 $\begin{array}{l} \text{Hence } [R_{e_i}, S_{a_{ij}}] = -\frac{1}{2} S_{a_{il}}. \quad \text{Since } R_{e_1} + R_{e_2} + R_{e_3} = 1_{\mathfrak{S}} \\ \text{and } [R_{e_k}, S_{a_{ij}}] = 0, \text{ we get } [R_{e_i} + R_{e_j}, S_{a_{ij}}] = 0. \\ \text{Therefore } [R_{e_j}, S_{a_{ij}}] = \frac{1}{2} S_{a_{ij}}. \end{array}$

Let $H \in \mathfrak{h}' \subset \mathfrak{D}_0$. Then,

$$[H, S_{a_{ij}}] = [H, R_{a_k}] + 2[H, [R_{a_k}, R_{e_i}]] = R_{Ha_k} + 2[R_{Ha_k}, R_{e_i}], \quad k \neq i, j.$$

It follows that if $a_k \in \mathfrak{F}_k$ is a weight vector for the representation of \mathfrak{D}_0 on \mathfrak{F}_k , then the corresponding $S_{a_{ij}}$ will be a root vector for \mathfrak{h} . In this way we obtain the following roots:

$$\pm\lambda_i\pmrac{1}{2}(\lambda_6-\lambda_7),\pm\Lambda_i'\pmrac{1}{2}(\lambda_5-\lambda_7),\pm\Lambda_i^*\pmrac{1}{2}(\lambda_5-\lambda_6),$$

where i=1, 2, 3, 4. Thus we have shown that *ad* h acts diagonally on \mathfrak{E}_6 , and obtained all roots of \mathfrak{E}_6 with respect to h. We may take a fundamental root system $\{\beta_1, \dots, \beta_6\}$ as follows:

$$egin{aligned} eta_1 &= -\Lambda_1' + rac{1}{2} (\lambda_7 - \lambda_5) \,, \quad eta_2 &= \lambda_4 + rac{1}{2} (\lambda_6 - \lambda_7) \,, \ eta_3 &= \lambda_3 - \lambda_4 \,, \quad eta_4 &= \lambda_4 - rac{1}{2} (\lambda_6 - \lambda_7) \,, \ eta_5 &= -\Lambda_1' - rac{1}{2} (\lambda_7 - \lambda_5) \,, \quad eta_6 &= \lambda_2 - \lambda_3 \,. \end{aligned}$$

Then the Dynkin diagram of $\{\beta_1, \dots, \beta_6\}$ is:

Let $\{\tilde{\omega}_1, \dots, \tilde{\omega}_6\}$ be the fundamental weights with respect to $\{\beta_1, \dots, \beta_6\}$. Then $\tilde{\omega}_1 = \lambda_1 + \frac{1}{2}(\lambda_6 + \lambda_7)$.

436

2. Proof of the theorem

By (1) and Proposition 1, we have the following propositions.

Proposition 3. The weights of the irreducible representation of \mathfrak{E}_6 on \mathfrak{F} are the followings:

$$\lambda_5, \lambda_6, \lambda_7, \pm \lambda_i + \frac{1}{2}(\lambda_6 + \lambda_7), \pm \Lambda_i' + \frac{1}{2}(\lambda_5 + \lambda_7), \pm \Lambda_i^* + \frac{1}{2}(\lambda_5 + \lambda_6),$$

where i=1, 2, 3, 4. Further the highest weight among these is $\tilde{\omega}_1 = \lambda_1 + \frac{1}{2}(\lambda_6 + \lambda_7)$.

Proposition 4. The weights of the irreducible representation of $\mathfrak{D}(\mathfrak{F})$ on \mathfrak{F}_0 are the followings:

$$0, \pm \lambda_i, \pm \Lambda'_i, \pm \Lambda^*_i, \quad i = 1, 2, 3, 4.$$

Further the highest weight among these is $\omega_4 = \lambda_1$.

Let $v \in \mathfrak{F}_1$ be an eigen vector belonging to the highest weight ω_4 of the representation of $\mathfrak{D}(\mathfrak{F})$ on \mathfrak{F}_0 . By Propositions 3 and 4, v is also a highest weight vector of the representation of \mathfrak{E}_6 on \mathfrak{F} . Therefore v is a common highest weight vector of the above two representations.

Let E_6 be a simply connected complex Lie group with Lie algebra \mathfrak{E}_6 and let F_4 be a connected Lie subgroup of E_6 with Lie algebra $\mathfrak{D}(\mathfrak{F})$. Then there exists the irreducible representation $(f_{\omega_1}, \mathfrak{F})$ of \mathfrak{E}_6 in \mathfrak{F} which induces the representation of \mathfrak{E}_6 on \mathfrak{F} . Denote by $P(\mathfrak{F})$ the complex projective space consisting of all 1-dimensional subspaces of \mathfrak{F} . Then E_6 acts canonically on $P(\mathfrak{F})$ via the representation $(f_{\omega_1}, \mathfrak{F})$. The weight space Cv in \mathfrak{F} for the highest weight $\tilde{\omega}_1$ being of dimension 1, it is an element of $P(\mathfrak{F})$. It is known that the isotropy subgroup U of E_6 at Cv is a parabolic subgroup of E_6 and the quotient manifold E_6/U is fully imbedded in $P(\mathfrak{F})$ as the orbit of Cv (Nakagawa and Takagi [5]). And E_6/U is compact irreducible Hermitian symmetric space of type *EIII*.

The restriction to F_4 of f_{ω_1} leaves \mathfrak{F}_0 invariant. By Proposition 4, the representation of F_4 on \mathfrak{F}_0 induced by f_{ω_1} is irreducible (with highest weight ω_4). Let $P(\mathfrak{F}_0)$ be the complex projective space consisting of all 1-dimensional subspaces of \mathfrak{F}_0 . Then F_4 acts canonically on $P(\mathfrak{F}_0)$. Similarly as for the above case, the isotropy subgroup U' of F_4 at $Cv \in P(\mathfrak{F}_0)$ is a parabolic subgroup of F_4 and the quotient manifold F_4/U' is a Kähler C-space imbedded in $P(\mathfrak{F}_0)$ as the orbit of Cv. Therefore F_4/U' is contained in $E_6/U \cap P(\mathfrak{F}_0)$. It is known that dim $E_6/U=16$ and dim $F_4/U'=15$ (Nakagawa and Takagi [5]). Since E_6/U is fully imbedded in $P(\mathfrak{F})$, E_6/U is not contained in $P(\mathfrak{F}_0)$, namely, $E_6/U \cap P(\mathfrak{F}_0) \neq E_6/U$. Since E_6/U is connected, it follows that dim $E_6/U \cap P(\mathfrak{F}_0)$ $=15=\dim F_4/U'$. The fact that E_6/U is connected implies easily that $E_6/U \cap$ $P(\mathfrak{F}_0)$ is connected (Milnor [4]). Therefore $F_4/U' = E_6/U \cap P(\mathfrak{F}_0)$. Thus we have proved our theorem.

NAGASAKI INSTITUTE OF APPLIED SCIENCE

References

- [1] C. Chevalley and R.D. Schafer: The exceptional simple Lie algebras F_4 and E_6 , Proc. Nat. Acad. Sci. U.S.A. **36** (1950), 137-141.
- [2] N. Jacobson: Exceptional Lie algebras, Lecture note, Dekker, 1971.
- [3] Y. Kimura: On the hypersurfaces of Hermitian symmetric spaces of compact type, Osaka J. Math. 16 (1979), 97-119.
- [4] J.W. Milnor: Lectures on Morse theory, Ann. Math. Studies No. 51, Princeton Univ. Press, 1963.
- [5] H. Nakagawa and R. Takagi: On locally symmetric Kaehler submanifolds in a complex projective space, J. Math. Soc. Japan 28 (1976), 638-667.
- [6] R.D. Schafer: An introduction to nonassociative algebras, Academic Press, Inc., 1966.