A DIOPHANTINE EQUATION ARISING FROM TIGHT 4-DESIGNS

Andrew BREMNER

(Received July 5, 1978)

Ito [1,2] and Enomoto, Ito, Noda [3] show that there exist only finitely many tight 4-designs, by proving that such a design gives rise to a unique rational integral solution of the diophantine equation

$$
\begin{equation*}
\left(2 y^{2}-3\right)^{2}=x^{2}\left(3 x^{2}-2\right) \tag{1}
\end{equation*}
$$

and then invoking a result of Mordell [4] to say that this equation has only finitely many solutions in integers x, y. A privately communicated conjecture is that (1) has only the 'obvious' solutions $(\pm x, \pm y)=(1,1),(3,3)$, with the implication that the only tight 4-designs are the Witt designs. We show here that this is indeed the case.

We are exclusively interested in integral points on the curve (1), which is a lightly disguised elliptic curve; standard arguments show that the group of rational points has one generator of infinite order which may be taken to be $(3,3)$.

Suppose now that x, y are integers satisfying (1). Then there is an integer w with

$$
\begin{align*}
& 3 x^{2}-2=w^{2} \\
& 2 y^{2}-3=w x . \tag{2}
\end{align*}
$$

Clearly x, w, y are odd. Following Cassels [5] we write (2), in virtue of the identity $w^{2}-3 x^{2}+2 w x \sqrt{-3}=(w+x \sqrt{-3})^{2}$, in the form

$$
\begin{equation*}
\left(\frac{w+x \sqrt{-3}}{2}\right)^{2}-y^{2} \sqrt{-3}=\frac{-1-3 \sqrt{-3}}{2} \tag{3}
\end{equation*}
$$

We now work in the algebraic number field $Q(\theta)$ where $\theta^{2}=\sqrt{-3}$. It is easy to check that the ring of integers of $Q(\theta)$ has Z-basis $\left\{1, \theta, \frac{1+\theta^{2}}{2}, \frac{\theta+\theta^{3}}{2}\right\}$, that the class-number is 1 , and that the group of units is generated by $\{-\omega, \omega+\theta\}$ where $\omega=\frac{-1-\theta^{2}}{2}$ is a cube root of unity. The relative norm to $Q(\sqrt{ } \overline{-3})$ of
the fundamental unit $\varepsilon=\omega+\theta$, is ω.
Further, $\frac{-1-3 \sqrt{-3}}{2}$ is prime in $Z[\omega]$, and splits into two first degree primes in $Q(\theta)$:

$$
\frac{-1-3 \sqrt{-3}}{2}=\left(1-\frac{1}{2} \theta-\theta^{2}-\frac{1}{2} \theta^{3}\right)\left(1+\frac{1}{2} \theta-\theta^{2}+\frac{1}{2} \theta^{3}\right)
$$

Now the left hand side of (3) is the product of the two factors $\frac{w-x \sqrt{-3}}{2}$ $\pm y \theta$ conjugate over $Q(\sqrt{-3})$, so by unique factorisation we deduce that

$$
\frac{w+x \theta^{2}}{2}+y \theta=\eta\left(1-\theta^{2} \pm \frac{1}{2} \theta\left(1+\theta^{2}\right)\right)
$$

where η is a unit of $Q(\theta)$ with relative norm 1 - the possibilities for η are $\pm \varepsilon^{3 m}$, $\pm \omega \varepsilon^{3 m+1}, \pm \omega^{2} \varepsilon^{3 m+2}$, for some integer m. By changing the sign of y if necessary, we may thus assume that

$$
\begin{equation*}
\pm\left(\frac{w+x \theta^{2}}{2}+y \theta\right)=(\omega \varepsilon)^{i}\left(1+\frac{1}{2} \theta-\theta^{2}+\frac{1}{2} \theta^{3}\right) E^{m} \tag{4}
\end{equation*}
$$

where $i=0,1,2$ and $E=\varepsilon^{3}=\frac{1}{2}\left(11-3 \theta-3 \theta^{2}+5 \theta^{3}\right)$.
Write (4) as

$$
\pm\left(\frac{w+x \theta^{2}}{2}+y \theta\right)=\lambda E^{m}
$$

where λ is one of three possibilities,

$$
\begin{aligned}
& \lambda_{1}=1+\frac{1}{2} \theta-\theta^{2}+\frac{1}{2} \theta^{3} \\
& \lambda_{2}=\frac{5}{2}-3 \theta+\frac{3}{2} \theta^{2} \\
& \lambda_{3}=-8+\frac{5}{2} \theta+2 \theta^{2}-\frac{7}{2} \theta^{3} .
\end{aligned}
$$

We now choose to work 37-adically.
Since $E^{6} \equiv-1 \bmod 37$, we have upon putting $m=6 n+r, 0 \leq r \leq 5$,

$$
\pm\left(\frac{w+x \theta^{2}}{2}+y \theta\right)=\lambda E^{r}(-1-37 \xi)^{n}
$$

where ξ is an integer of $Q(\theta)$ which by direct calculation satisfies $\xi \equiv-15 \theta-5 \theta^{3}$ $\bmod 37$.

Accordingly, we require that the coefficient of $\frac{\theta+\theta^{3}}{2}$ in λE^{r} be congruent
to zero modulo 37: and this is clearly equivalent to the coefficient of θ^{3} being zero modulo 37.

From the following table we deduce that λE^{γ} can only be λ_{2} or $\lambda_{3} E^{-1}$ (absorbing an E^{6} into $E^{6 n}$ for convenience) where $\lambda_{3} E^{-1}=-\frac{1}{2}+\theta+\frac{1}{2} \theta^{2}$. Coefficient modulo 37 of θ^{3} in $\lambda_{i} E^{r}$:-

	$r=0$	1	2	3	4	5
$\lambda_{1} E^{r}$	19	6	14	13	1	2
$\lambda_{2} E^{r}$	0	27	3	30	27	18
$\lambda_{3} E^{r}$	15	28	12	20	18	0

In the case that $\lambda=\lambda_{2} w e$ have

$$
\begin{equation*}
\pm\left(\frac{w+x \theta^{2}}{2}+y \theta\right)=\left(\frac{5}{2}-3 \theta+\frac{3}{2} \theta^{2}\right)(1+37 \xi)^{n} \tag{5}
\end{equation*}
$$

One can treat this exponential equation in the manner of Skolem [6], but it is preferable to argue directly. Suppose in (5) that $n \neq 0$, and let the highest power of 37 that divides n, be s.

Now $(1+37 \xi)^{n}=1+37 n \xi+37^{2}\binom{n}{2} \xi^{2}+\cdots$

$$
\begin{aligned}
& \equiv 1+37 n \xi \bmod 37^{s+2} \\
& \equiv 1+37 n\left(-15 \theta-5 \theta^{3}\right) \bmod 37^{s+2}
\end{aligned}
$$

So equating to zero the coefficient of θ^{3} on the right hand side of (5) we obtain

$$
0 \equiv \frac{5}{2}(-5 n .37)+\frac{3}{2}(-15 n .37) \bmod 37^{s+2}
$$

i.e. $0 \equiv-35 n .37 \bmod 37^{s+2}$, contradiction.

Hence $n=0$ is the only possibility for a solution in (5), and it does indeed result in $(x, y)=(3,-3)$.

The case $\lambda=\lambda_{3} E^{-1}$ is treated in precisely the same way, resulting in the single solution $(x, y)=(1,1)$.

We have thus shown that the only integer solutions of (1) are indeed given by $(\pm x, \pm y)=(1,1),(3,3)$.

Emmanuel College, Cambridge

References

[1] N. Ito: On tight 4-designs, Osaka J. Math. 12 (1975), 493-522.
[2] N. Ito: Corrections and supplement to "On tight 4-designs", Osaka J. Math. 15 (1978), 693-697.
[3] H. Enomoto, N. Ito, R. Noda: Tight 4-designs, Osaka J. Math. 16 (1979), 39-43.
[4] L.J. Mordell: Diophantine equations, Academic Press, 1969, p. 276.
[5] J.W.S. Cassels: Integral points on certain elliptic curves, Proc. London Math. Soc. (3) 14A (1965), 55-57.
[6] Th. Skolem: Ein Verfahren zur Behandlung gewisser exponentialer Gleichungen, 8de Skand. mat. Kongr. Forh. Stockholm, 1934.

