SYMMETRIC GROUPOIDS. II

R.S. PIERCE*

(Received July 19, 1977)

Introduction

This paper is a sequel to the author's work [8]. It is concerned with the structure of symmetric groupoids (alias "symmetric sets," or "symmetric spaces"), and with the interplay between symmetric groupoids and groups that are generated by involutions (GI groups). As in [8], it is this close relationship between symmetric groupoids and GI groups that provides our leitsatz. Recent work on symmetric groupoids by other authors (for instance [2], [4], and [6]) has followed a similar path.

The notation and terminology of [8] will be used without explanation or apology in this paper. Our numbering here begins with Section 5; references to material in Sections 1 through 4 are to the relevant parts of [8]. Nevertheless, the dependence of this work on the earlier one is more apparent than real: the following four sections of this paper can be read with only occasional reference to Sections 1, 2, and 4 in [8].

5. Structure

A few fairly obvious statements can be made concerning the algebraic structure of symmetric groupoids. They will be made in this section.

Definition 5.1. Let A be a symmetric groupoid. A subset B of A is a subgroupoid of A if B is closed under the binary operation of A. If B satisfies

$$
a \circ b \in B \quad \text { for all } \quad a \in A \quad \text { and } \quad b \in B,
$$

then B is called a normal subgroupoid of A
Notation. We write $B<A$ if B is a subgroupoid of A, and $B \triangleleft A$ if B is a normal subgroupoid of A.

Lemma 5.2. Let A be a symmetric groupoid, and suppose that $B \subseteq A$. Then B is a normal subgroupoid of A if and only if $\xi(b) \in B$ for all $b \in B$ and

[^0]$\xi \in \Lambda(A)$.
This lemma is a corollary of 1.13.1.
Corollary 5.3. If A is a symmetric groupoid, and $a \in A$, then $\Lambda(A) a=$ $\{\xi(a): \xi \in \Lambda(A)\}$ is a normal subgroupoid of A.

The normal subgroupoids of A that have the form $\Lambda(A) a$ will be called principal. Since $\Lambda(A)$ is a group, it is clear that if $b \in \Lambda(A) a$, then $\Lambda(A) b=\Lambda(A) a$. Thus, every symmetric groupoid is partitioned into a disjoint union of principal symmetric groupoids.

Lemma 5.4. The set of all normal subgroupoids of a symmetric groupoid A is a complete atomic Boolean algebra under set operations. The atoms of this Boolean algebra are the principal normal subgroupoids of A.

Corollary 5.5. Every symmetric groupoid decomposes uniquely as a disjoint union of its principal normal subgroupoids.

Notation and terminology. Let $\left\{A_{i}: i \in J\right\}$ be the set of distinct principal normal subgroupoids of A, so that $A=\bigcup_{i \in J} A_{i}$, where the sets that occur in this union are disjoint. This expression will be called the principal decomposition of A, and the subgroupoids A_{i} will be called the principal components of A. If $|J|=1$, that is, $A=\Lambda(A) a$ for every $a \in A$, then A will be called a principal symmetric groupoid.

The following observation is a direct consequence of these observations.
Lemma 5.6. Let G be a GI group, and suppose that $A<I(G)$ is such that $\langle A\rangle=G$. A subset B of A is a normal subgroupoid of A if and only if B is closed under conjugation by elements of G. In this case, the principal decomposition of B coincides with the expression of B as a union of conjugate classes in G. Moreover, $\langle B\rangle$ is a normal subgroup of G, and $G /\langle B\rangle=\langle\{a\langle B\rangle: a \in A-B\}\rangle$.

Lemma 5.7. Let $f: A \rightarrow B$ be a homomorphism of symmetric groupoids such that $f\left(\mathscr{L}^{n}(A)\right) \subseteq \mathscr{L}^{n}(B)$ for all $n<\omega$, that is, $f \in \mathcal{S}_{\omega}$. If A_{i} is a principal component of A, then there is a principal component B_{j} of B such that $f\left(A_{i}\right) \subseteq B_{j}$.

Proof. If $A_{i}=\Lambda(A) a$, then by 1.15, $f\left(A_{i}\right)=\Lambda(f)(\Lambda(A))(f(a)) \subseteq \Lambda(B)(f(a))$.
Corollary 5.8. If $f: A \rightarrow B$ is a surjective homomorphism of symmetric groupoids, then f maps the principal components of A onto the principal components of B.

Proof. By 2.7 and 1.16, $f \in \mathcal{S}_{\omega}$ and $\Lambda(f)$ is surjective. Thus, $f(\Lambda(A) a)=$ $\Lambda(B) f(a)$.

Definition 5.9. Let A be a symmetric groupoid. A normal subgroupoid
B of A is called a factor of A if $b \circ a=a$ for all $a \in A-B$ and $b \in B$. If $A \neq \emptyset$, and the only factors of A are \emptyset and A, then A is called indecomposable.

Lemma 5.10. Let A be a symmetric groupoid.
5.10.1 If B is a factor of A, C is a factor of B, and $C \triangleleft A$, then C is a factor of A.
5.10.2. If $\left\{B_{i}: i \in J\right\}$ is a set of factors of A, then $\bigcup_{i \in J} B_{i}$ and $\bigcap_{i \in J} B_{i}$ are factors of A.

Proof. Let $a \in A-C, b \in C \subseteq B$. Either $a \in A-B$, or $a \in B-C$. In both cases, $b \circ a=a$. Hence, C is a factor of A. The proof of 5.10 .2 is similar.

In general, the complement of a factor needn't be a factor. An instance of this phenomenon is provided by the symmetric groupoid A of Example 4.13 and its factor $B=\{a, c\}$. However, for a fairly general class of symmetric groupoids, the set of factors is closed under complementation. We will call symmetric groupoid balanced if it satisfies the law

$$
u \circ v=v \rightarrow v \circ u=u .
$$

Every special symmetric groupoid is balanced, but by 4.21 there are balanced groupoids that are not special.

Lemma 5.11. Let A be a balanced symmetric groupoid. A subset B of A is a factor of A if and only if $a \circ b=b$ for all $b \in B$ and $a \in A-B$.

Proof. Since A is balanced, this condition is necessary in order that B be a factor. For the converse, it is enough to show that $c \circ b \in B$ for all $c \in B$, $b \in B$. If $c \circ b \in A-B$, then $c \circ(b \circ c)=(c \circ b) \circ c=c$. Hence, $b \circ c=c \circ(c \circ(b \circ c))=c$. Since A is balanced and $c \circ b \neq b$, this is impossible.

Corollary 5.12. If A is a balanced symmetric groupoid, then the set of all factors of A is a complete, atomic Boolean algebra under set operations. Thus, A is uniquely a disjoint union of indecomposable factors.

Lemma 5.13. Let B be a factor of the symmet is groupoid A. Then the inclusion mapping $h: B \rightarrow A$ induces an injective group homomorphism $\Lambda(h): \Lambda(B) \rightarrow$ $\Lambda(A)$. The restriction map $f: \xi \rightarrow \xi \mid(A-B)$ is a surjective homomorphism of $\Lambda(A)$ to $\Lambda(A-B)$ such that $\operatorname{Ker} f \supseteq \operatorname{Im} \Lambda(h)$.

Proof. Let $\left(b_{1}, \cdots, b_{n}\right) \in \mathscr{L}(B)$. Then $\lambda_{b_{1}} \cdots \lambda_{b_{n}}(c)=c$ for all $c \in B$, and, since B is a factor, for all $c \in A$ as well. Thus, $\left(b_{1}, \cdots, b_{n}\right) \in \mathscr{Z}(A)$. By 1.15,h induces a homomorphism $\Lambda(h): \Lambda(B) \rightarrow \Lambda(A)$. Since h is injective, so is $\Lambda(h)$ by 1.15 . To prove the second statement, let $\xi=\lambda_{a_{1}} \cdots \lambda_{a_{n}}$, where $a_{i_{1}}, \cdots, a_{i_{m}} \in$ $A-B$, and the remaining a_{i} are elements of B. Since B is a factor, it follows
that if $a \in A-B$, then $\xi(a)=\lambda a_{a_{i_{1}}} \cdots \lambda_{a_{i_{m}}}(a)$. Hence, $\xi \mid(A-B) \in \Lambda(A-B)$, so that f is a surjective homomorphism of $\Lambda(A)$ to $\Lambda(A-B)$. If $\xi \in \operatorname{Im} \Lambda(h)$, then $\xi=\lambda_{a_{1}} \cdots \lambda_{a_{m}}$ with $a_{i} \in B$. Consequently, $\xi(a)=a$ for all $a \in A-B$. That is, $\xi \in \operatorname{Ker} f$.

Proposition 5.14. Assume that the symmetri= groupoid A is a disjoint union. of factors: $A=\bigcup_{i \in J} B_{i}$. Then $\Lambda(A) \cong \sum_{i \in J} \Lambda\left(B_{i}\right)$.

Proof. By 5.13, the inclusion maps $B_{i} \rightarrow A$ induce group homomorphisms $f_{i}: \Lambda\left(B_{i}\right) \rightarrow \Lambda(A)$. Also, the restriction maps $\xi \rightarrow \xi \mid B_{i}$ are homomorphisms g_{i} : $\Lambda(A) \rightarrow \Lambda\left(B_{i}\right)=\Lambda\left(A-\bigcup_{j \neq i} R_{j}\right)$, and $\operatorname{Im} f_{i} \subseteq \operatorname{Ker} g_{j}$ if $i \neq j$. If a and b are in B_{i}, then $\left(g_{i} f_{i}\left(\lambda_{a}\right)\right)(b)=\lambda_{a}(b)$, so that $g_{i} f_{i}$ is the identity homomorphism of $\Lambda\left(B_{i}\right)$. Finally, $M(A) \subseteq \bigcup_{i \in J} \operatorname{Im} f_{i}$ implies $\Lambda(A)=\left\langle\bigcup_{i \in J} \operatorname{Im} f_{i}\right\rangle$. The proposition therefore follows from a standard characterization of direct sums of groups. (See [9], 4.2.1 for example.)

Corollary 5.15. If A is a balanced symmetric groupoid, then $\Lambda(A) \cong$ $\sum_{i \in J} \Lambda\left(B_{i}\right)$, where each B_{i} is an indecomposable symmetric groupoid.

Corollary 5.16. Let G be a GI group with trivial center. Suppose that A is a subgroupoid of $I(G)$ such that $\langle A\rangle=G$. If $B \triangleleft A$, then the following conditions are equivalent:
5.16.1. B is a factor of A;
5.16.2. B centralizes $A-B$ (as subsets of G);
5.16.3. $G=\langle B\rangle \times\langle A-B\rangle$.

This corollary follows from 1.11 and 5.14. Unfortunately, it is not true in general that if A is an indecomposable symmetric groupoid, then $\Lambda(A)$ is an indecomposable group.

The concept of a normal subgroupoid of a symmetric groupoid can be generalized.

Definition 5.17. Let B be a subgroupoid of symmetric groupoid A. A subset C of A will be called a B-submodule of A if it satisfies: $b \in B$ and $c \in C$ implies $b \circ c \in C$.

Lemma 5.18. Let B be a subgroupoid of the symmetric groupoid A. Denote $\Lambda_{A}(B)=\left\langle\left\{\lambda_{b}: b \in B\right\}\right\rangle . A$ subset C of A is a B-submodule of A if and only if $\xi(c) \in C$ for all $\xi \in \Lambda_{A}(B)$ and $c \in C$. For each $a \in A$, the set $\Lambda_{A}(B) a=$ $\left\{\xi(a): \xi \in \Lambda_{A}(B)\right\}$ is B-submodule of A, and $\left\{\Lambda_{A}(B) a: a \in A\right\}$ is a partition of A that refines the principal decomposition of A.

This lemma follows routinely from 5.17. The special case $B=\{b\}$ is worth examining in more detail. Plainly, $\Lambda_{A}(\{b\})=\left\{1_{A}, \lambda_{b}\right\}$ and $\Lambda_{A}(\{b)\} a=\{a, b \circ a\}$.

We will use the following notation and terminology. Denote $O_{b}(a)=\{a, b \circ a\}$, and call this set the b-orit of a. If $\left|O_{b}(a)\right|=2$, then this orbit is said to be non-trivial; if $\left|O_{b}(a)\right|=1$, then $O_{b}(a)$ is called trivial. We will denote the set of all non-trivial b-orbits in A by $\mathcal{O}_{b}(A)$.

Lemma 5.19. Let A be a symmetric groupoid conatining the elements a, b, and c.
5.19.1. $\quad O_{b}(b)$ is trivial.
5.19.2. $\quad O_{b}(a)=O_{b}(b \circ a)$.
5.19.3. If $\xi \in \Lambda(A)$, then $O_{\xi(b)}(\xi(a))=\xi\left(O_{b}(a)\right)$.

In particular, $O_{c o b}(c \circ a)=\lambda_{c}\left(O_{b}(a)\right)=c \circ O_{b}(a)$.
5.19.4. If $\mathcal{O}_{b}(A)=\mathcal{O}_{c}(A)$, then $\lambda_{b}=\lambda_{c}$.
5.19.5. If A is balanced, then $O_{b}(a)$ is non-trivial if and only if $O_{a}(b)$ is non-trivial.

Proof. The properties 5.19.1, 5.19.2, and 5.19.3 are consequences of the three axioms that define symmetric groupoids, and the fact that $\Lambda(A) \subseteq$ Aut A. If $\mathcal{O}_{b}(A)=\mathcal{O}_{c}(A)$, then $O_{b}(a)=O_{c}(a)$ for all $a \in A$. Hence, $b \circ a=c \circ a$ for all $a \in A$, that is, $\lambda_{b}=\lambda_{c}$. By definition, A is balanced if and only if $\left|O_{b}(a)\right|=\left|O_{a}(b)\right|$ for all a and b.

Corollary 5.20. If b and c belong to the same principal component of the symmetric groupoid A, then the cardinal number of non-trivial b-orbits in A is the same as the cardinal number of non-trivial c-orbits in A, that is $\left|\mathcal{O}_{b}(A)\right|=\left|\Theta_{c}(A)\right|$.

Proof. If $c=\xi(b), \xi \in \Lambda(A)$, then by 5.19.3, ξ maps $\mathcal{O}_{b}(A)$ bijectively to $\mathcal{O}_{c}(A)$.

Definition 5.21. Let A be a symmetric groupoid. For $b \in A$, define the degree of A at b to be the cardinal number

$$
d_{A}(b)=\left|\bigcup \mathcal{O}_{b}(A)\right|=2\left|\mathcal{O}_{b}(A)\right|
$$

If b and c belong to the same principal component of A, then $d_{A}(b)=d_{A}(c)$ by 5.20. In particular, if A is principal, then the degree function is a constant, which we will call the degree of A, and denote d_{A}.

Example 5.22. Let S_{n} be the symmetric group on $n \geq 3$ letters. Denote the conjugate class of transpositions in S_{n} by J_{n}. Then J_{n} is a principal symmetric groupoid, $\left\langle J_{n}\right\rangle=S_{n}$, and $Z\left(J_{n}\right)$ is the identity congruence. If $b=(1,2)$, then the non-trivial b-orbits are $\{(1,3),(2,3)\},\{(1,4),(2,4)\}, \cdots$, and $\{(1, n),(2, n)\}$. Thus, the degree of J_{n} is $2(n-2)$.

Example 5.23. Let H be an abelian group. Denote by D_{H} the generalized dihedral group over H, that is, the relative holomorph $\operatorname{Hol}\left(H,-1_{H}\right)$. Thus, H
is a subgroup of index 2 in $D_{H}: D_{H}=H \cup a H$, where $a^{2}=1$, and $a x a=x^{-1}$ for all $x \in H$. Then $K_{H}=I\left(D_{H}\right)-I(H)=a H$ plainly generates D_{H}. The principal decomposition of K_{H} is easily seen to be $K_{H}=\bigcup a x H^{2}$, where x ranges over a set of representatives of the cosets of H^{2} in H. Since $(a x)(a y)(a x)=a\left(x^{2} y^{-1}\right)$, the orbit $O_{a x}(a y)$ is trivial if and only if $x^{2}=y^{2}$, that is, $y x^{-1} \in I(H)$. Thus, the degree of K_{H} at $a x$ is $|H-I(H)|$. In particular, if H is a finite group of odd order n, then K_{H} is principal of degree $n-1$. Also, in this case $Z\left(K_{H}\right)$ is the identity congruence on K_{H}, since D_{H} is easily seen to have trivial center.

In case the group H in 5.23 is cyclic of order n, the group D_{H} is the ordinary dihedral group of order $2 n$. As usual, this group will be denoted by D_{n}. The corresponding symmetric groupoid K_{H} will be designated by K_{n}.

6. Graphic methods

To each symmetric groupoid we can assign a directed graph. This device makes it possible to cast many questions about the structure of symmetric groupoids in geometrical form. In many cases, this graphical approach provides new insight into the structural problems.

Definition 6.1. Let A be a symmetric groupoid. The graph of A is

$$
\mathcal{S}(A)=(A, \mathcal{E}(A))
$$

where $\mathcal{E}(A)=\{(a, b): a \circ b \neq b\}$ is the set of edges of $\mathcal{S}(A)$.
Since $a \circ a=a$, it is clear that $\mathcal{S}(A)$ is a directed graph without loops. If A is balanced, then $(a, b) \in \mathcal{E}(A)$ implies $(b, a) \in \mathcal{E}(A)$. In this case, $\mathcal{S}(A)$ will be interpreted as an undirected graph \cdots the edges (a, b) and (b, a) will be identified.

Proposition 6.2. If A is a symmetric groupoid, then $\Lambda(A)$ acts as a group of automorphisms of $\mathcal{S}(A)$. This group action is transitive on vertices if and only A is principal.

Proof. Since $\Lambda(A)$ is a subgroup of Aut A, it is obvious from Definition 6.1 that the elements of $\Lambda(A)$ permute the edges of $\mathcal{S}(A)$. By definition, A is principal if and only if $\Lambda(A)$ is transitive on A.

If A is a balanced symmetric groupoid, then it is obvious that the degree of A at an element b coincides with the local degree (or valence) of the graph $\mathcal{S}(A)$ at b (see [7], p. 7).

The following observation is essentially a geometric formulation of 5.11.
Lemma 6.3. Let A be a balanced symmetric groupoid. Then the decomposition of A into a disjoint union of indecomposable factors coincides with the decomposition of the vertex set of $\mathcal{S}(A)$ into connected components.

Corollary 6.4. Let A be a balanced symmetric groupoid. Assume that A is principal, and that the degree d_{A} of A is finite. Let B be a non-empty subset of A such that for all $b \in B$, the number of $c \in B$ such that $(b, c) \in \mathcal{E}(A)$ is d_{A}. Then $B=A$.

Example 6.5. Let H be an abelian group of odd order. By 5.23, $\mathcal{S}\left(K_{H}\right)$ is the complete graph on $|H|$ vertices. Moreover, by 1.11 and $5.23, D_{H} \cong \Lambda\left(K_{H}\right)$. Thus, if H_{1} and H_{2} are non-isomorphic abelian groups of the same odd order, then $\mathcal{S}\left(K_{H_{1}}\right) \cong \mathcal{S}\left(K_{H_{2}}\right)$ and $K_{H_{1}} \neq K_{H_{2}}$.

In general, the graph of a symmetric groupoid A will be the complete graph on its vertex set if and only if $a \circ b \neq b$ for all $a \neq b$, that is, A is an F space in the terminology of Doro [2]. As Doro shows in [2], F-spaces are cryptomorphic with finite B-loops (in the sense of Glauberman [3]).

By enriching the structure of $\mathcal{S}(A)$, it is possible to recover A. This possibility results from a well known, elementary observation concerning universal algebras.

Lemma 6.6. Let V be a variety of universal algebras such that for some natural number n, all operations of the algebras in V have arity at most n. Let F denote the free V-algebra on n generators. Suppose that A and B are algebras of V, and f is a mapping from A to B. Then f is a homomorphism if and only if for every homomorphism $g: F \rightarrow A$, the map $f g: F \rightarrow B$ is a homomorphism.

Proof. It suffices to show that if 0 is an m-ary operation of the algebras in V, and if $\left(a_{1}, \cdots, a_{m}\right) \in A^{m}$, then $f\left(0\left(a_{1}, \cdots, a_{m}\right)\right)=0\left(f\left(a_{1}\right), \cdots, f\left(a_{m}\right)\right)$. Let F be freely generated by u_{1}, \cdots, u_{n}, where $n \geq m$ by assumption. Then there is a homomorphism $g: F \rightarrow A$ such that $g\left(u_{i}\right)=a_{i}$ for $1 \leq i \leq m$. By hypothesis, $f g$ is a homomorphism. Therefore, $f\left(0\left(a_{1}, \cdots, a_{m}\right)\right)=f\left(0\left(g\left(u_{1}\right), \cdots, g\left(u_{m}\right)\right)\right)=$ $\left.f g\left(0\left(u_{1}, \cdots, u_{m}\right)\right)=0\left(f g\left(u_{1}\right), \cdots, f g\left(u_{m}\right)\right)=0\left(f\left(a_{1}\right)\right), \cdots, f\left(a_{m}\right)\right)$.

The usefulness of this observation for symmetric groupoids rests on the simple form of the free symmetric groupoid on two generators. The following result can be derived from 4.12, but we will give a straightforward direct proof.

Proposition 6.7. For $m, n \in Z$, define $m \circ n=2 m-n$. Then (Z, \circ) is a symmetric groupoid that is freely generated by each pair of elements $\{k, k+1\}, k \in \boldsymbol{Z}$. The automorphism group of (\boldsymbol{Z}, \circ) is generated by the mappings $\lambda_{0}: n \rightarrow-n$, and $\alpha: n \rightarrow n-1$.

Proof. Plainly, (\boldsymbol{Z}, \circ) is a symmetric groupoid, and if $k \in \boldsymbol{Z}$, then $(k+1) \circ k=k+2, k \circ(k+1)=k-1,(k+1) \circ k \circ(k+1)=k+3, k \circ(k+1) \circ k=k-2$, and so on. Therefore, \boldsymbol{Z} is generated as a groupoid by $\{k, k+1\}$. To prove that $\{k, k+1\}$ is a free generating set, let A be a symmetric groupoid, and $a, b \in A$. Define $g(k)=b, g(k+1)=a$, and inductively $g(k+n+1)=g(k+n) \circ g(k+n-1)$,
$g(k-n)=g(k-n+1) \circ g(k-n+2)$ for $n \geq 1$. Then $g: Z \rightarrow A$ is a well defined mapping that satisfies $g(n+2)=g(n+1) \circ g(n)$ and $g(n)=g(n+1) \circ g(n+2)$ for all $n \in \boldsymbol{Z}$. Using this observation, it follows by induction on $m-n$ that $g(m) \circ g(n)=$ $g(2 m-n)=g(m \circ n)$ for all $m \geq n$. If $m<n$, then $m>2 m-n$, so that $g(m) \circ g(2 m-n)=$ $g(n)$. Thus, $g(m) \circ g(n)=g(m \circ n)$ in this case also. Plainly, λ_{0} and α are automorphisms of (\boldsymbol{Z}, \circ). Let $h \in \operatorname{Aut}(\boldsymbol{Z}, \circ)$. If $h(0)=0$, then for $n \geq 1, h(n)=$ $h(1 \circ 0 \circ 1 \circ \cdots)=h(1) \circ h(0) \circ h(1) \circ \cdots=h(1) \circ 0 \circ h(1) \circ \cdots=n h(1)$, and $h(-n)=h(0 \circ n)=$ $0 \circ h(n)=-n h(1)$. Since h maps \boldsymbol{Z} bijectively to itself, it follows that either $h=1_{Z}$, or $h=\lambda_{0}$. In general, if $h(0)=r \in \boldsymbol{Z}$, then $\left(\alpha^{r} h\right)(0)=0$, so that either $h=\alpha^{-r}$, or $h=\alpha^{-r} \lambda_{0}=\lambda_{0} \alpha^{r}$.

Henceforth, when \boldsymbol{Z} is considered as a symmetric groupoid, we will assume tacitly that $m \circ n=2 m-n$.

By 6.7, Aut $(\boldsymbol{Z}) \cong D_{Z}$, the infinite dihedral group. It is easy to see that $\Lambda(\boldsymbol{Z})$ is a subgroup of index $2 \operatorname{in} \operatorname{Aut}(\boldsymbol{Z})$, and that $\Lambda(\boldsymbol{Z}) \cong D_{\boldsymbol{Z}}$ also.

Definition 6.8. Let A be a symmetric groupoid. A cycle in A is a groupoid homomorphism of \boldsymbol{Z} to A. If A is balanced, a cycle in $\mathcal{S}(A)$ is a homomorphism γ from \boldsymbol{Z} to A such that $\mathcal{E}(\gamma)=\{(\gamma(n), \gamma(n+1)): n \in \boldsymbol{Z}\} \subseteq \mathcal{E}(A)$. In this case, $\mathcal{E}(\gamma)$ is called the edge set of γ. Cycles γ and δ in A are called equivalent if $\delta=\gamma h$ for some $h \in \operatorname{Aut}(\boldsymbol{Z})$.

Cycles in symmetric groupoids were introduced by Nobusawa in [5]. Our definition is equivalent to his. The notion of a cycle in the graph of a balanced symmetric groupoid is more geometrical, and of course more restrictive.

Proposition 6.9. Let A be a balanced symmetric groupoid, $(a, b) \in \mathcal{E}(A)$, and $k \in \boldsymbol{Z}$. Then there is a unique cycle γ in $\mathcal{S}(A)$ such that $\gamma(k)=b$ and $\gamma(k+1)=a$.

Proof. By 6.7, there is a unique cycle γ in A such that $\gamma(k)=b$ and $\gamma(k+1)=a$. Assume that there is some smallest $n \geq k$ such that $\gamma(n+1)=$ $\gamma(n-1)$. Then $n \geq k+2$, since A is balanced and $(a, b) \in \mathcal{E}(A)$. Since $\gamma(n-1)=\gamma(n+1)=\gamma(n) \circ \gamma(n-1)$, the assumption that A is balanced yields $\gamma(n)=\gamma(n-1) \circ \gamma(n)=\gamma(n-1) \circ(\gamma(n-1) \circ \gamma(n-2))=\gamma(n-2)$, contrary to the minimality of n. Thus, $\gamma(n+1) \neq \gamma(n-1)$ for all $n \geq k$. Similarly, $\gamma(n+1) \neq \gamma(n-1)$ for $n<k$, so that γ is a cycle in $\mathcal{S}(A)$.

Theorem 6.10. Let $f: A \rightarrow B$ be a bijective mapping between balanced symmetric groupoids. Then f is an isomorphism of groupoids if and only if f is a graph isomorphism of $\mathcal{S}(A)$ to $\mathcal{S}(B)$, and $\gamma \rightarrow f \gamma$ maps cycles in $\mathcal{S}(A)$ to cycles in $\mathcal{S}(B)$.

Proof. If γ is a cycle in A, then either (1) $\gamma(k)=\gamma(k+1)$ for some $k \in \boldsymbol{Z}$, (2) $\gamma(k) \neq \gamma(k+1)$ and $(\gamma(k), \gamma(k+1)) \notin \mathcal{E}(A)$ for some $k \in \boldsymbol{Z}$, or (3) γ is a cycle in $\mathcal{S}(A)$. In case $1, \gamma(n)=\gamma(k)$ for all $n \in Z$, and $f \gamma$ is plainly a cycle in B. In case 2, $\gamma(n)=\gamma(k)$ if $n \equiv k(\bmod 2)$, and $\gamma(n)=\gamma(k+1)$ if $n \equiv k+1(\bmod 2)$.

Then $f \gamma$ is a cycle in B for all such cycles γ in A if and only if f maps $\mathcal{E}(A)$ bijectively to $\mathcal{E}(B)$. Thus, 6.10 follows from 6.6.

Corollary 6.11. If A is a balanced symmetric groupoid, γ is a cycle in $\mathcal{S}(A)$, and $\xi \in \Lambda(A)$, then $\xi \gamma$ is a cycle in $\mathcal{S}(A)$. Moreover, if $\xi(\gamma(k))=\gamma(k)$ and $\xi(\gamma(k+1))=\gamma(k+1)$ for some $k \in \boldsymbol{Z}$, then $\xi \gamma=\gamma$.

Lemma 6.12. Let A be a balanced symmetric groupoid, and suppose that γ and δ are cycles in $\mathcal{S}(A)$. If $\mathcal{E}(\gamma) \cap \varepsilon(\delta) \neq \emptyset$, then δ is equivalent to γ. Conversely, if δ is equivalent to γ, then $\mathcal{E}(\delta)=\mathcal{E}(\gamma)$. Thus, edge sets of cycles partition $\mathcal{E}(A)$.

Proof. If $(\gamma(n), \gamma(n+1))=(\delta(m), \delta(m+1))$, then either $\gamma(n)=\delta(m)$, $\gamma(n+1)=\delta(m+1)$, and $\delta=\gamma \alpha^{m-n}$, or $\gamma(n)=\delta(m+1), \quad \gamma(n+1)=\delta(m)$, and $\delta=\gamma \lambda_{0} \alpha^{m+1+n}$, by 6.11. The converse is clear.

According to Definition 6.8, the structure of a cycle in a symmetric groupoid is determined by a congruence relation on the symmetric groupoid (\boldsymbol{Z}, \circ). We will now characterize these congruences.

Lemma 6.13. Let Γ be an equivalence relation on Z. Then Γ is a congruence relation of the symmetric groupoid (\boldsymbol{Z}, \circ) if and only if
6.13.1. $(m, n) \in \Gamma$ and $k \in \boldsymbol{Z}$ implies $(2 k-m, 2 k-n) \in \Gamma$ and $(m-2 k, n-2 k) \in$ Γ.
When 6.13 .1 is satisfied, the factor groupoid \boldsymbol{Z} / Γ is balanced if and only if
6.13.2. $(m, n) \in \Gamma, m \equiv n(\bmod 2)$ implies $((1 / 2)(n+m),(1 / 2)(3 n-m)) \in \Gamma$.

Proof. An equivalence relation Γ on a groupoid is a congruence relation if and only if it is stable under right and left multiplication, that is, $(m, n) \in \Gamma$ implies $(k \circ m, k \circ n) \in \Gamma$ and $(m \circ k, n \circ k) \in \Gamma$ for all $k \in \boldsymbol{Z}$. Therefore, 6.13.1 is necessary and sufficient for Γ to be a congruence relation. Note that $(k \circ n, n) \in \Gamma$ means $(2 k-n, n) \in \Gamma$. Denote $m=2 k-n$, so that $m \equiv n(\bmod 2)$ and $k=$ $(1 / 2)(n+m)$. Then $(m, n) \in \Gamma$ if and only if $(k \circ n, n) \in \Gamma$, and $((1 / 2)(3 n-m)$, $(1 / 2)(n+m)) \in \Gamma$ if and only if $(n \circ k, k) \in \Gamma$. The equivalence 6.13 .2 is an immediate consequence of these observations.

It is possible to give an explicit description of the congruence relations on (\boldsymbol{Z}, \circ). For this purpose, we will use the notation

$$
\begin{aligned}
& \Gamma_{r}=\{(m, n): m \equiv n(\bmod r)\}, \\
& \Gamma_{r}^{e}=\{(m, n): m \equiv n(\bmod r), \quad m \equiv n \equiv 0(\bmod 2)\} \\
& \Gamma_{r}^{0}=\{(m, n): m \equiv n(\bmod r), \quad m \equiv n \equiv 1(\bmod 2)\}
\end{aligned}
$$

where r is a non-negative integer. Also note that $\Gamma_{0}=\{(m, m): m \in \boldsymbol{Z}\}$ is the identity congruence on \boldsymbol{Z}.

Proposition 6.14. The congruence relations on (Z, \circ) are the sets

$$
\begin{aligned}
& \Gamma_{r}, \text { where } 0 \leq r \in Z, \\
& \Gamma_{2 r} \cup \Gamma_{r}^{e} \text { and } \Gamma_{2 r} \cup \Gamma_{r}^{0} \text {, where } 2 \leq \mathrm{r} \in 2 \boldsymbol{Z} .
\end{aligned}
$$

Proof. Evidently, $\Gamma_{r}, \Gamma_{2 r} \cup \Gamma_{r}^{e}$, and $\Gamma_{2 r} \cup \Gamma_{r}^{0}$ satisfy 6.13.1 Suppose that Γ is a congruence relation on (Z, \circ).
(1) If $(k, k+r) \in \Gamma$, then $\Gamma_{2 r} \subseteq \Gamma$. In fact, $(k, k+r) \in \Gamma$ implies $(n, 2 r+n) \in \Gamma$ for all $n \in \boldsymbol{Z}$ by 6.13.1. It follows by induction on $|(m-n) / 2 r|$ that if $m \equiv n$ $(\bmod 2 r)$, then $(m, n) \in \Gamma$.
(2) If $(k, k+r) \in \Gamma$, where $r \geq 1$ is odd, then $\Gamma_{r} \subseteq \Gamma$. Indeed, by 6.13.1, either $(0, r) \in \Gamma$ or $(1, r+1) \in \Gamma$. Since $r=2 t+1$ for some $t \in Z$, it follows that $(0, r)=(0,2 t+1) \in \Gamma$ if and only if $(-2 t-2,-1) \in \Gamma$, which is equivalent to $(r+1,1)=(2 t+2,1) \in \Gamma$. Consequently, if $(k, k+r) \in \Gamma$ with r odd, then $(n, n+r) \in \Gamma$ for all $n \in Z$, that is, $\Gamma_{r} \subseteq \Gamma$. Assume that $\Gamma \neq \Gamma_{0}$. Then there is a smallest integer $r \geq 1$ such that $(k, k+r) \in \Gamma$ for some $k \in \boldsymbol{Z}$. By 6.13.1, either $(0, r) \in \Gamma$ or $(1, r+1) \in \Gamma$. Suppose that $(0, r) \in \Gamma$.
(3) $\Gamma_{2 r} \cup \Gamma_{r}^{e} \subseteq \Gamma$. In fact, $\Gamma_{2 r} \subseteq \Gamma$ by (1), and $\Gamma_{r} \subseteq \Gamma$ if r is odd. If r is even, then it follows from 6.13 .1 and the assumption $(0, r) \in \Gamma$ that $(m, m+n r) \in \Gamma$ for all even integers m and arbitrary $n \in \boldsymbol{Z}$. That is, $\Gamma_{r}^{e} \subseteq \Gamma$.
(4) If $m \in \boldsymbol{Z}$ and $0<s \in \boldsymbol{Z}$ satisfy ($m, m+s) \in \Gamma$, then r divides s. To prove this assertion, write $2 s=q r+t$ with $q \in Z, 0 \leq t<r$. Since $\Gamma_{2 r} \subseteq \Gamma$ and $\Gamma_{2 s} \subseteq \Gamma$ by (1), it follows easily that $(2 m, 2 m+t) \in \Gamma$, so that $t=0$ by the minimality of r. Thus, $2 s=q r$. If q is even, then r divides s, as claimed. Suppose that $q=2 u+1, u \in Z$, and r is even. Then $2 s+1=2 u r+r+1$, so that $(1, r+1) \in \Gamma$, since $\Gamma_{2 r} \subseteq \Gamma$ and $\Gamma_{2 s} \subseteq \Gamma$. Since also $(0, r) \in \Gamma$, it follows that $\Gamma_{r} \subseteq \Gamma$. The equality $s=u r+(r / 2)$ then yields $(m+s, m+(r / 2)) \in \Gamma$, which implies that $(m, m+(r / 2)) \in \Gamma$, because $(m, m+s) \in \Gamma$. Since this inclusion contradicts the minimality of r, (4) is proved.
(5) If $(m, m+s) \in \Gamma-\left(\Gamma_{2 r} \cup \Gamma_{r}^{e}\right)$, then $\Gamma_{r} \subseteq \Gamma$. In fact, by (2) there is nothing to prove if r is odd. Assume therefore that r and s are even. Then m is odd, since $(m, m+s) \notin \Gamma_{r}^{e}$; and $s=(2 v+1) r$ for some $v \in Z$, because $(m, m+s) \notin \Gamma_{2 r}$. By 6.13.1, $(1,2 v r+r+1)=(1, s+1) \in \Gamma$, so that $(1, r+1) \in \Gamma$, because $\Gamma_{2 r} \subseteq \Gamma$. As before, it follows that $\Gamma_{r} \subseteq \Gamma$. Combining (3), (4), and (5) gives the conclusion that either $\Gamma=\Gamma_{2 r} \cup \Gamma_{r}^{e}$ or $\Gamma=\Gamma_{r}$. Finally, suppose that $(0, r) \notin \Gamma$. Then $(1, r+1) \in \Gamma$, so that the congruence $\Delta=\{(m-1, n-1)$: $m, n \in \Gamma\}$ satisfies $(0, r) \in \Delta$. Thus, Δ is either $\Gamma_{2 r} \cup \Gamma_{r}^{e}$ or Γ_{r}. Consequently, Γ is either $\Gamma_{2 r} \cup \Gamma_{r}^{0}$ or Γ_{r}.

Lemma 6.15. If Γ is a congruence relation on the symmetric groupoid (\boldsymbol{Z}, \circ), then \boldsymbol{Z} / Γ is balanced if and only if Γ has one of the forms $\Gamma_{r}(0 \leq r \in \boldsymbol{Z})$, or $\Gamma_{2 r} \cup \Gamma_{r}^{e}$ or $\Gamma_{2 r} \cup \Gamma_{r}^{0}(4 \leq r \in 4 Z)$.

Proof. If $\Gamma=\Gamma_{2 r} \cup \Gamma_{r}^{e}$, with r even and \boldsymbol{Z} / Γ balanced, then $r \equiv 0(\bmod 4)$. In fact, by 6.13.2, $(0, r) \in \Gamma$ implies $((1 / 2) r,(3 / 2) r) \in \Gamma$, so that $r / 2$ must be even. Similarly, if $\Gamma=\Gamma_{2 r} \cup \Gamma_{r}^{0}$ satisfies 6.13.2, then also $r \equiv 0(\bmod 4)$. Conversely, it is a routine matter to check that if $r \equiv 0(\bmod 4)$, then $\Gamma_{2 r} \cup \Gamma_{r}^{e}$ and $\Gamma_{2 r} \cup \Gamma_{r}^{0}$ satisfy 6.13.2. Obviously, Γ_{r} satisfies 6.13 .2 for all non-negative integers r.

Corollary 6.16. Let γ be a cycle in the graph of the balanced symmetric groupoid A. Considered as a homomorphism of (\boldsymbol{Z}, \circ) to A, the kernel of γ is one of the following congruence relations: $\Gamma_{r}(0 \leq r \in Z, r \neq 1,2)$ or $\Gamma_{2 r} \cup \Gamma_{r}^{e}$ or $\Gamma_{2 r} \cup \Gamma_{r}^{0}$ ($4 \leq r \in 4 Z$).

Lemma 6.17 If Γ is a congruence relation on the symmetric groupoid (\boldsymbol{Z}, \circ), then \boldsymbol{Z} / Γ is special if and only if $\Gamma=\Gamma_{r}$ with $0 \leq r \in \boldsymbol{Z}$.

Proof. If \boldsymbol{Z} / Γ is special, then there is a cycle γ in some $I(G)$ such that Ker $\gamma=\Gamma$. If $\gamma(1)=a$ and $\gamma(0)=b$, then $\gamma(r)=\gamma(0)$ if and only if $(a b)^{r}=1$, and $\gamma(r+1)=\gamma(1)$ if and only if $(a b)^{r} a=a$. Thus, $\gamma(r)=\gamma(0)$ is equivalent to $\gamma(r+1)=\gamma(1)$. Consequently, Γ cannot be $\Gamma_{2 r} \cup \Gamma_{r}^{e}$ or $\Gamma_{2 r} \cup \Gamma_{r}^{0}$. On the other hand, Z / Γ_{r} is isomorphic to a subgroupoid of $I\left(D_{r}\right)$, where D_{r} is the dihedral group of order $2 r$.

Corollary 6.18. Let A be a special symmetric groupoid. If γ is a cycle in $\mathcal{S}(A)$, then either
6.18.1 $\gamma(m) \neq \gamma(n)$ if $m \neq n$ in Z, or
6.18.2. there exists $r \geq 3$ such that $\gamma(m)=\gamma(n)$ if and only if $m \equiv n(\bmod r)$.

If γ is a cycle in the graph of a balanced symmetric groupoid, define the order or γ to be $|\mathcal{E}(\gamma)|$, and denote this cardinal number by $|\gamma|$. If the symmetric groupoid whose graph contains γ is special, then by $6.18,|\gamma|=$ $|\{\gamma(n): n \in Z\}|$. In this case, if $|\gamma|=r$ is finite, then $\gamma(m)=\gamma(n)$ if and only if $m \equiv n(\bmod r)$.

Lemma 6.19. Let A be a special symmetric groupoid. Let γ be a cycle in $\mathcal{S}(A)$, such that $d_{A}(\gamma(0))=d$ is finite. Then $|\gamma| \leq d+2$.

Proof. Let $|\gamma|=r$. By 6.18.2, $\gamma(m)=\gamma(n)$ if and only if $m \equiv n(\bmod r)$. In particular, if $b=\gamma(0)$, then $b \circ \gamma(n)=\gamma(-n) \neq \gamma(n)$ for $1 \leq n<r / 2$. Therefore, $\{\gamma(n), \gamma(-n)\}, 1 \leq n<r / 2$, are distinct, non-trivial b-orbits in A. Thus, $d \geq r-2$.

Proposition 6.20. Let A be a principal symmetric groupoid such that $Z(A)=$ I_{A}. Assume that A has finite degree d. Then every cycle in $\mathcal{S}(A)$ has order $\leq d+1$. If there is a cycle of order $d+1$ in A, then $A=K_{d+1}($ see 5.23$)$. If $d \equiv 0(\bmod 4)$, then there is no cycle of order d in $\mathcal{S}(A)$.

Proof. The hypothesis $Z(A)=I_{A}$ implies that A is special by 1.9. If γ is a cycle in $\mathcal{S}(A)$, then $|\gamma| \leq d+2$ by 6.19. Assume that $|\gamma|=d+2$. Denote $b=\gamma(0), c=\gamma((d / 2)+1)$. Then $\mathcal{O}_{b}(A)=\{\{\gamma(n), \gamma(-n)\}: 1 \leq n \leq d / 2\}=\mathcal{O}_{c}(A)$, as in the proof of 6.19. By 5.19.4, $\lambda_{b}=\lambda_{c}$. Therefore, $(b, c) \in Z(A)$. This contradicts the hypothesis that $Z(A)=I_{A}$, because $b \neq c$ by 6.18 . Therefore, every cycle in $\mathcal{S}(A)$ has order at most $d+1$. If there is a cycle γ of order $d+1$, then by $6.4,6.8$, and $6.17, A=\{\gamma(n): n \in \boldsymbol{Z}\} \cong \boldsymbol{Z} / \Gamma_{d+1} \cong K_{d+1}$. Finally, assume that $d \equiv 0(\bmod 4)$, and there is a cycle δ of order d in $\mathcal{S}(A)$. Denote $b=\delta(0), \quad c=\delta(d / 2), \quad e=\delta(d / 4), f=\delta(-d / 4)$. For $1 \leq k<d / 2, O_{k}=\{\delta(d / 4-k)$, $\delta(d / 4+k)\}$ is a non-trivial e - and f-orbit. Therefore, $\mathcal{O}_{e}(A)=\left\{O_{1}, O_{2}, \cdots, O_{d / 2-1}\right.$, $\left.\left\{a_{1}, a_{2}\right\}\right\}$, and $\mathcal{O}_{f}(A)=\left\{O_{1}, O_{2}, \cdots, O_{d / 2-1},\left\{b_{1}, b_{2}\right\}\right\}$ for suitable $a_{1}, a_{2}, b_{1}, b_{2}$ in $A-\{\delta(n): n \in Z\}$. Since $Z(A)=I_{A}$ and $e \neq f$, it follows from 5.19.4 that $\left\{a_{1}, a_{2}\right\} \neq\left\{b_{1}, b_{2}\right\}$. As above, $b \circ \delta(n)=\delta(-n)=c \circ \delta(n)$, so that $\{\delta(n), \delta(-n)\}$ is a non-trivial b - and c-orbit. In particular, $\lambda_{b}(e)=f=\lambda_{c}(e)$ and $\lambda_{b}\left(0_{k}\right)=0_{d / 2-k}=$ $\lambda_{c}\left(0_{k}\right)$. Thus, $\lambda_{b}\left(\left\{a_{1}, a_{2}\right\}\right)=\left\{b_{1}, b_{2}\right\}=\lambda_{c}\left\{\left(a_{1}, a_{2}\right\}\right)$ by 5.19.3. If a_{1}, a_{2}, b_{1}, and b_{2} were distinct, then there would be $d+1$ non-trivial b-orbits. Thus, it can be assumed that $\lambda_{b}\left(a_{1}\right)=a_{1}=b_{1}$ and $\lambda_{b}\left(a_{2}\right)=b_{2} \neq a_{2}$. It follows that $\lambda_{c}\left(a_{2}\right)=b_{2}$, which contradicts the hypothesis $Z(A)=I_{A}$, since it implies that $\lambda_{b}=\lambda_{c}$ by 5.19.4.

Corollary 6.21. Let A be a principal symmetric groupoid such that $Z(A)=I_{A}$. 6.21.1. If $d_{A}=2$, then $A \cong K_{3}$.
6.21.2. If $d_{A}=4$, then $A \cong K_{5}$ or $A \cong J_{4}$.

Proof. Assume that $d_{A}=2$. By 6.9, there is a cycle γ in $\mathcal{S}(A)$. By $6.20,|\gamma|=3$, and $A \cong K_{3}$. Assume that $d_{A}=4$. By 6.20 , the possible orders of cycles in $\mathcal{S}(A)$ are 3 and 5 ; moreover, if $\mathcal{S}(A)$ contains a cycle of order 5 , then $A \cong K_{5}$. Therefore, assume that every cycle in $\mathcal{S}(A)$ has order 3. It follows that every element of A is in the image of exactly two inequivalent cycles. Let $a \in A$. The two cycles that pass through a form a subgraph of $\mathcal{S}(A)$ whose diagram is

Let γ be the cycle that passes through b_{1} and is disjoint from $a b_{1} b_{2}$, say $b_{1}=\gamma(2)$. Since all cycles in $\mathcal{S}(A)$ have order 3 , it follows that $\gamma(n) \neq b_{2}$ for all $n \in \boldsymbol{Z}$. Thus, $\lambda_{a} \gamma \neq \gamma$, since $\lambda_{a}\left(b_{1}\right)=b_{2}$. This observation implies that either $\lambda_{a}(\gamma(0)) \neq \gamma(0)$ or $\lambda_{a}(\gamma(1)) \neq \gamma(1)$ by 6.11. Hence, one of $\gamma(0)$ or $\gamma(1)$ is c_{1} or c_{2}. Without loss of generality, assume that $\left(b_{1}, c_{1}\right) \in \mathcal{E}(\gamma)$. Let d_{1} be the remaining element in the image of γ. Then d_{1} is distinct from a, b_{1}, c_{1}, and c_{2}. Consequently, $\lambda_{a}\left(d_{1}\right)=d_{1}$, and $\mathcal{E}\left(\lambda_{a} \gamma\right)=\left\{\left(b_{2}, c_{2}\right),\left(c_{2}, d_{1}\right),\left(d_{1}, b_{2}\right)\right\}$. By 6.4, $A=$
$\left\{a, b_{1}, b_{2}, c_{1}, c_{2}, d_{1}\right\}$, and the diagram of $\mathcal{S}(A)$ with its four cycles is

The cycles in this graph are $\left(a, b_{1}, b_{2}\right),\left(a, c_{1}, c_{2}\right),\left(b_{1}, c_{1}, d_{1}\right)$, and $\left(b_{2}, c_{2}, d_{1}\right)$. Comparing $\mathcal{S}(A)$ and its cycle structure with the graph and cycle structure of $\mathcal{S}\left(J_{4}\right)$, we conclude by 6.10 that the mapping $a \rightarrow(1,2), b_{1} \rightarrow(1,3), b_{3} \rightarrow(2,3)$, $c_{1} \rightarrow(1,4), c_{2} \rightarrow(2,4), d \rightarrow(3,4)$ is a groupoid isomorphism of A to J_{4}.

The cycles in the graph of a balanced symmetric groupoid can be used to present the groupoid. A presentation of a symmetric groupoid is defined in the same way as the presentations of groups, rings, and so on. In detail, a presentation of a symmetric groupoid A is a surjective homomorphism p of the free symmetric groupoid A_{α} on the set $\left\{u_{\xi}: \xi<\alpha\right\}$ of involutions (indexed by a cardinal number α) to A, together with a set $R \subseteq A_{\alpha}^{2}$ such that $\operatorname{Ker} p$ is the smallest congruence relation on A_{∞} that contains R. It is customary to designate such a presentation of A by writing

$$
A=\left\langle a_{\xi}, \xi<\alpha: v_{k}(a)=w_{k}(a), k \in K\right\rangle
$$

where $a_{\xi}=p\left(u_{\xi}\right)$, and if $R=\left\{\left(v_{k}, w_{k}\right): k \in K\right\}$, then $v_{k}(a)$ and $w_{k}(a)$ are the polynomial expressions that are obtained from the reduced representations of v_{k} and w_{k} respectively by substituting a_{ξ} for $u_{\xi}, \xi<\alpha$, in v_{k} and w_{k}.

Proposition 6.22. Let A be be a balanced symmetric groupoid. Let $D=$ $\{a \in A: a \circ b=b$ for all $b \in A\}$. Suppose that $\left\{\gamma_{k}: k \in K\right\}$ is a set of representatives of the distinct equivalence classes of cycles in $\mathcal{S}(A)$. Let $\left\{a_{\xi}: \xi<\alpha\right\}$ be a well ordering (without repetition) of the set $D \cup\left\{\gamma_{k}(0), \gamma_{k}(1): k \in K\right\}$, where α is a cardinal number. Denote by A_{∞} the symmetric groupoid that is freely generated by the set $\left\{u_{\xi}: \xi<\alpha\right\}$ of involutions. Let $p: A_{\infty} \rightarrow A$ be the homomorphism such that $p\left(u_{\xi}\right)=a_{\xi}$ for all $\xi<\alpha$. For $k \in K$, define δ_{k} to be the cycle in $\mathcal{S}\left(A_{a}\right)$ that satisfies $\delta_{k}(0)=u_{\xi}$ if $\gamma_{k}(0)=a_{\xi}$ and $\delta_{k}(1)=u_{\eta}$ if $\gamma_{k}(1)=a_{\eta}$. Define R to be the subset of A_{α}^{2} that consists of all pairs of the following kinds:
6.22.1. $\left(u_{\xi} \circ u_{\eta}, u_{\eta}\right)$, where $a_{\eta} \in D$;
6.22.2. $\left(u_{\xi} \circ \delta_{k}(m), \delta_{k}(m)\right)$, where $a_{\xi} \circ \gamma_{k}(m)=\gamma_{k}(m)$;
6.22.3. $\quad\left(\delta_{k}(m), \delta_{l}(n)\right)$, where $\gamma_{k}(m)=\gamma_{l}(n)$.

Then (p, R) is a presentation of A.
Proof. By 6.7 and the definition of δ_{k}, it follows that $p\left(\delta_{k}(m)\right)=\gamma_{k}(m)$ for
all $k \in K$ and $m \in Z$. Also, by 6.7 , every element of A is either in D or of the form $\gamma_{k}(m)$. Thus, p is surjective. It is obvious that $R \subseteq \operatorname{Ker} p$. To complete the proof, we must show that $\operatorname{Ker} p$ is contained in the smallest congruence relation Γ on A that contains R. The heart of the proof is the implication:
(*) $\left(u_{\xi_{1}} \circ \cdots \circ u_{\xi_{r}}, \delta_{k}(m)\right) \in \operatorname{Ker} p$ implies $\left(u_{\xi_{1}} \circ \cdots \circ u_{\xi_{r}}, \delta_{k}(m)\right) \in \Gamma$.
This will be established by induction on r. If $r=1$, then $a_{\xi_{1}}=\gamma_{k}(m) \notin D$. Thus, $a_{\xi_{1}}=\gamma_{l}(n)$ for some $l \in K$ and $n=0$ or 1. Then $\left(u_{\xi_{1}}, \delta_{k}(m)\right) \in R \subseteq \Gamma$ by 6.22.3. Assume that $\left(^{*}\right)$ is valid for $r-1$, where $r>1$. Then the hypothesis $\left(u_{\xi_{1}} \circ \cdots \circ u_{\xi_{r}}, \delta_{k}(m)\right) \in \operatorname{Ker} p$ means that $a_{\xi_{1}} \circ \cdots \circ a_{\xi_{r}}=\gamma_{k}(m)$. Let $b=a_{\xi_{2}} \circ \cdots \circ a_{\xi_{.}}$. Then $a_{\xi_{1}} \circ b=\gamma_{k}(m)$. If $b=\gamma_{k}(m)$, then $a_{\xi_{1}} \circ \gamma_{k}(m)=\gamma_{k}(m)$. It follows from 6.22 .2 and the induction hypothesis that $\left(u_{\xi_{1}} \circ \delta_{k}(m), \delta_{k}(m)\right) \in R \subseteq \Gamma$ and $\left(u_{\xi_{2}} \circ \cdots \circ u_{\xi_{r}}, \delta_{k}(m)\right) \in \Gamma$. Consequently, $\left(u_{\xi_{1}} \circ \cdots \circ u_{\xi_{r}}, \delta_{k}(m)\right) \in \Gamma$, because Γ is a congruence relation. Assume that $b \neq \gamma_{k}(m)$. Then there exists $l \in K$ and $n \in \boldsymbol{Z}$ such that $a_{\xi_{1}}=\gamma_{l}(n), b=\gamma_{l}(n-1)$, and $\gamma_{k}(m)=\gamma_{l}(n+1)$. By the case $r=1$, the induction hypothesis, and 6.22.3, it follows that $\left(u_{\xi_{1}}, \delta_{l}(n)\right) \in \Gamma,\left(u_{\xi_{2}} \circ \cdots \circ u_{\xi_{r}}\right.$, $\left.\delta_{l}(n-1)\right) \in \Gamma$, and $\left(\delta_{k}(m), \delta_{l}(n+1)\right) \in \Gamma$. Consequently $\left(u_{\xi_{1}} \circ \cdots \circ u_{\xi_{r}}, \delta_{l}(n+1)\right)=$ $\left(u_{\xi_{1}} \circ \cdots \circ u_{\xi_{r}}, \delta_{l}(n) \circ \delta_{l}(n-1)\right) \in \Gamma$, and therefore $\left(u_{\xi_{1}} \circ \cdots \circ u_{\xi_{r}}, \delta_{k}(m)\right) \in \Gamma$. This completes the inductive proof of $(*)$. To complete the proof of 6.22 , it suffices to show that if $\left(u_{\xi_{1}} \cdots \cdots u_{\xi_{r}}, u_{\eta}\right) \in \operatorname{Ker} p$, then $\left(u_{\xi_{1}} \cdots \cdots \circ u_{\xi_{r}}, u_{\eta}\right) \in \Gamma$. If $a_{\eta} \notin D$, this implication is a special case of $\left({ }^{*}\right)$. Assume that $a_{\eta} \in D$. Again we induce on r. If $r=1$, then $a_{\xi_{1}}=a_{\eta}$, so that $\xi_{1}=\eta$, and $u_{\xi_{1}}=u_{\eta}$. Assume that $r>1$. Then $\left(u_{\xi_{1}} \circ \cdots \circ u_{\xi_{r}}, u_{\eta}\right) \in \operatorname{Ker} p$ implies $a_{\xi_{1}} \circ \cdots \circ a_{\xi_{r}}=a_{\eta}$. Hence, $a_{\xi_{2}} \circ \cdots \circ a_{\xi_{r}}=a_{\xi_{1}} \circ a_{\eta}=a_{\eta}$, since $a_{\eta} \in D$ and A is balanced. By the induction hypothesis and 6.22.1, $\left(u_{\xi_{2}} \circ \cdots \circ u_{\xi_{0}}, u_{\eta}\right) \in \Gamma$ and $\left(u_{\xi_{1}} \circ u_{\eta}, u_{\eta}\right) \in R \subseteq \Gamma$. Thus, $\left(u_{\xi_{1}} \circ \cdots \circ u_{\xi_{r}}, u_{\eta}\right) \in \Gamma$.

In general, the presentation described in 6.22 is highly redundant. However, it provides a foundation on which to build a more efficient presentation. We illustrate this possibility by a simple example.

Example 6.23. The symmetric groupoid J_{4} has four equivalence classes of cycles. Select representatives of these cycles as shown in the next diagram: $\gamma_{1}(0)=a_{0}, \gamma_{1}(1)=a_{1} ; \gamma_{2}(0)=a_{0}, \gamma_{2}(1)=a_{2} ; \gamma_{3}(0)=a_{3}, \gamma_{3}(1)=a_{2} ; \gamma_{4}(0)=a_{3}, \gamma_{4}(1)=a_{1}$.

The construction 6.22 yields the presentation (omitting trivial relations, such as $a_{1}=a_{1}$):

$$
\begin{aligned}
J_{4}=\left\langle a_{0}, a_{1}, a_{2}, a_{3}:\right. & a_{0} \circ a_{3}=a_{3}, a_{1} \circ a_{2}=a_{2}, a_{1} \circ a_{0} \circ a_{1}=a_{0}, \\
& a_{2} \circ a_{0} \circ a_{2}=a_{0}, a_{2} \circ a_{3} \circ a_{2}=a_{3}, a_{1} \circ a_{3} \circ a_{1}=a_{3}, \\
& \left.a_{1} \circ a_{0}=a_{2} \circ a_{3}, a_{1} \circ a_{3}=a_{2} \circ a_{0}\right\rangle .
\end{aligned}
$$

Using the fact that $a_{1} \circ a_{2}=a_{2}$, the last two of these relations are equivalent to $a_{0}=a_{1} \circ a_{2} \circ a_{3}$. Thus, a_{0} can be omitted from the list of generators of J_{4}. Moreover, if a_{0} is defined to be $a_{1} \circ a_{2} \circ a_{3}$, then it is easily seen that the relations $a_{0} \circ a_{3}=a_{3}, a_{1} \circ a_{0} \circ a_{1}=a_{0}$, and $a_{2} \circ a_{0} \circ a_{2}=a_{0}$ are consequences of the remaining relations listed above. Consequently, J_{4} has the simple presentation

$$
J_{4}=\left\langle a_{1}, a_{2}, a_{3}: a_{1} \circ a_{2}=a_{2}, a_{1} \circ a_{3}=a_{3} \circ a_{1}, a_{2} \circ a_{3}=a_{3} \circ a_{2}\right\rangle
$$

7. Generation by involutions

Throughout this section, G is a group, and A is a subgroupoid of $I(G)$ such that $\langle A\rangle=G$. We will study in some detail how the elements of G can be represented as products of the involutions in A. One of our objectives is to relate $|A|$ and $|G|$. If A is infinite, then $|A|=|G|$, so that this problem is interesting only when A is finite.

Notation 7.1.

7.1.1. If A is any set, let $S(A)$ denote the set of all finite sequences of elements of A, including the empty sequence \emptyset.
7.1.2. Let $\sigma=\left(a_{0}, \cdots, a_{r-1}\right)$ and $\tau=\left(b_{0}, \cdots, b_{s-1}\right)$ be elements of $S(A)$. Denote $\sigma \tau=\left(a_{0}, \cdots, a_{r-1}, b_{0}, \cdots, b_{s-1}\right)$ and $\sigma^{-1}=\left(a_{r-1}, \cdots, a_{0}\right)$.
7.1.3. Let $\sigma=\left(a_{0}, \cdots, a_{r-1}\right) \in S(A)$. Denote $\{\sigma\}=\left\{a_{0}, \cdots, a_{r-1}\right\},|\sigma|=|\{\sigma\}|$, $\|\sigma\|=r$.
7.1.4. Assume that $A \subseteq M$, where M is a monoid (that is, an associative groupoid with an identity element 1). For $\sigma=\left(a_{0}, a_{1}, \cdots, a_{r-1}\right) \in S(A)$, define $\Pi \sigma=a_{0} a_{1} \cdots a_{r-1} \in M$, and $\Pi \emptyset=1$.

Lemma 7.2. Under the binary operation $(\sigma, \tau) \rightarrow \sigma \tau$, and with \emptyset as the identity element, the set $S(A)$ is a monoid with A as a set of free generators. If $A \subseteq M$, where M is a monoid, then $\Pi: S(A) \rightarrow M$ is a homomorphism of monoids.

These facts are well known and easily proved.
Assume that G is a group, and A is a subgroupoid of $I(G)$ such that $\langle A\rangle=G$. It then follows that the product mapping Π of 7.1 .4 is surjective. Let Γ be the kernel of this homomorphism, that is, Γ is the congruence relation on the monoid $S(A)$ that is defined by

$$
\Gamma=\{(\sigma, \tau): \Pi \sigma=\Pi \tau\}
$$

One of the main objectives of this section is to determine canonical representatives of the equivalence classes modulo Γ.

Lemma 7.3. The congruence relation Γ includes all pairs of the forms: 7.3.1. $\left(\rho \sigma \tau, \rho \sigma^{\prime} \tau\right), \sigma=(a, b, a), \sigma^{\prime}=(a \circ b)$;
7.3.2. $(\rho \pi \tau, \rho \tau), \pi=(a, a) ;$
where ρ and τ are arbitrary elements of $S(A)$.
This lemma is clear from our hypotheses and notation.
The pairs 7.3.1 and 7.3.2 are described without referring to the product operation in the ambient group G; only the groupoid operation of A enters the definition. For any symmetric groupoid A, let Γ_{0} be the equivalence relation on $S(A)$ that is generated by all pairs of the forms 7.3.1 and 7.3.2. Write $\sigma \sim \tau$ if $(\sigma, \tau) \in \Gamma_{0}$. In particular, if (σ, τ) or (τ, σ) is of the form 7.3.1 or 7.3.2, or if $\sigma=\tau$, then $\sigma \sim \tau$ will be called a primitive equivalence. By definition, $\sigma \sim \tau$ if and only if there is a sequence of primitive equivalences $\sigma_{0} \sim \sigma_{1}$, $\sigma_{1} \sim \sigma_{2}, \cdots, \sigma_{r-1} \sim \sigma_{r}$ such that $\sigma=\sigma_{0}$ and $\tau=\sigma_{r}$.

Lemma 7.4. The equivalence relation Γ_{0} is a congruence relation on $S(A)$. Moreover, $S(A) / \Gamma_{0}$ is a group. If $p: S(A) \rightarrow S(A) / \Gamma_{0}$ is the natural projection, then $p \mid A$ is a groupoid homomorphism of A to $I\left(S(A) / \Gamma_{0}\right)$ such that $\langle p(A)\rangle=S(A) / \Gamma_{0}$.

Proof. If $\sigma_{1} \sim \sigma_{2}$ is a primitive equivalence, and $\rho, \tau \in S(A)$, then $\rho \sigma_{1} \tau \sim \rho \sigma_{2} \tau$ is a primitive equivalence. It follows that Γ_{0} is a congruence relation. The last assertion of the lemma is clear, and it implies that $S(A) / \Gamma_{0}$ is a group.

It follows from the definition of Γ_{0} that the group $S(A) / \Gamma_{0}$ is identical with the group E_{A} that was introduced in 4.14, and that with this identification, $p \mid A$ corresponds to the homomorphism f_{A}.

Lemma 7.5. Let $a_{0}, a_{1}, \cdots, a_{r-1}$ be elements of the symmetric groupoid A, where $r \geq 2$. Then

$$
\begin{aligned}
& \left(a_{0}, \cdots, a_{i-1}, a_{i}, a_{i+1}, \cdots, a_{i+j-1}, a_{i+j}, a_{i+j+1}, \cdots, a_{r-1}\right) \sim \\
& \left(a_{0}, \cdots, a_{i-1}, a_{i} \circ a_{i+1}, \cdots, a_{i} \circ a_{i+j}, a_{i}, a_{i+j+1}, \cdots, a_{r-1}\right) \sim \\
& \left(a_{0}, \cdots, a_{i-1}, a_{i+j}, a_{i+j} \circ a_{i}, \cdots, a_{i+j} \circ a_{i+j-1}, a_{i+j+1}, \cdots, a_{r-1}\right) .
\end{aligned}
$$

Proof. If $r=2$, then there is a sequence of primitive equivalences ($a_{0} \circ a_{1}, a_{0}$) $\sim\left(a_{0}, a_{1}, a_{0}, a_{0}\right) \sim\left(a_{0}, a_{1}\right) \sim\left(a_{1}, a_{1}, a_{0}, a_{1}\right) \sim\left(a_{1}, a_{1} \circ a_{0}\right)$. The general case follows from the case $r=2$, using induction and the fact that Γ_{0} is a congruence relation.

Henceforth in this section, assume that G is a group, and that A is a subgroupoid of $I(G)-\{1\}$ such that $\langle A\rangle=G$. Both of the congruence relations
Γ and Γ_{0} are defined on $S(A)$. By 7.3, $\Gamma_{0} \subseteq \Gamma$. In other words,

$$
\sigma \sim \tau \quad \text { implies } \Pi \sigma=\Pi \tau
$$

This fact will be used often in the rest of this section.
Definition 7.6. Let $x \in G$. The A-length of x (or just the length of x when this abbreviation will not cause confusion) is defined to be

$$
l(x)=\min \{\|\sigma\|: \sigma \in S(A), \Pi \sigma=x\}
$$

A sequence $\sigma \in S(A)$ is reduced if $l(\Pi \sigma)=\|\sigma\|$.
Lemma 7.7. Let $x, y \in G$.
7.7.1. $l(x)=0$ if and only if $x=1$.
7.7.2. $l(x)=1$ if and only if $x \in A$.
7.7.3. $l(x y) \leq l(x)+l(y)$.
7.7.4. $l\left(x^{-1}\right)=l(x)$.
7.7.5. $\quad l\left(y x y^{-1}\right)=l(x)$.

Corollary 7.8. If $\sigma, \tau \in S(A)$ are such that $\sigma \tau$ is reduced, then σ and τ are reduced.

Proof. By 7.7.3, $\|\sigma \tau\|=l(\Pi \sigma \tau) \leq l(\Pi \sigma)+l(\Pi \tau) \leq\|\sigma\|\|+\mid \tau\|=\|\sigma \tau\|$.
Corollary 7.9. Every subsequence of a reduced sequence in $S(A)$ is reduced.
Proof. Let $\sigma=\left(a_{0}, \cdots, a_{r-1}\right) \in S(A)$ be reduced, and suppose that $0 \leq i_{0}<$ $i_{1}<\cdots<i_{t-1} \leq r-1$. By repeated use of 7.5 we obtain $\sigma \sim \tau=\left(a_{i_{0}}, \cdots, a_{i_{t-1}}\right.$, b_{1}, \cdots, b_{r-t}) with $b_{j} \in A$. By 7.3, $\Pi \tau=\Pi \sigma$, so that τ is reduced. Thus $\left(a_{i_{0}}, \cdots, a_{i_{t-1}}\right)$ is reduced by 7.8.

Definition 7.10. If $x \in G$, and $a \in A$, then a divides x if there exist $y, z \in G$ such that $x=y a z$ and $l(x)=l(y)+l(z)+1$.

Notation. Write $a \mid x$ if a divides x, and $a \nmid x$ if a does not divide x.
Lemma 7.11. If $x \in G$ and $a \in A$, then $a \mid x$ if and only if $x=a w$ for some $w \in G$ such that $l(w)=l(x)-1$.

Proof. Assume that $x=y a z$, where $l(x)=l(y)+l(z)+1$. Let $y=\Pi \sigma$, $z=\Pi \tau$ with $l(y)=\|\sigma\|, l(z)=\|\tau\|$. By $7.5, \sigma a \tau \sim a \rho \tau$, where $\|\rho\|=\|\sigma\|$. Thus, $x=a w$, where $w=\Pi \rho \tau$ has length $l(x)-1$.

Lemma 7.12. Let $x \in G$, and $a \in A$.
7.12.1. $l(x)-1 \leq l(a x) \leq l(x)+1$.
7.12.2. $l(a x)=l(x)-1$ if and only if $a \mid x$.

These assertions follow respectively from 7.7.3 and 7.11. In general, it is not true that if $a \nmid x$, then $l(a x)=l(x)+1$.

Lemma 7.13. The following conditions on the pair (G, A) are equivalent. 7.13.1. If $a \in A$ and $x \in G$ satisfy a $X x$, then $l(a x)=l(x)+1$.
7.13.2. If $\sigma \in S(A)$, then $l(\Pi \sigma) \equiv\|\sigma\|(\bmod 2)$.

Proof. Assume that 7.13.2 fails. Let σ be a counterexample to 7.13.2 for which $\|\sigma\|$ is minimal, say $\sigma=\left(a_{0}, a_{1}, \cdots, a_{r-1}\right)$. Since $1 \notin A, r \geq 2$. Denote $x=\Pi \sigma$. By assumption, $l(x) \equiv r-1(\bmod 2)$. The minimality of r implies $a_{1} \cdots a_{r-1}=a_{0} x$ has length that is congruent to $r-1(\bmod 2) . \quad$ By $7.12, l\left(a_{0} x\right)=l(x)$ and $a_{0} X x$, so that 7.13.1 fails. Conversely, if 7.13 .1 is not satisfied, then by 7.12 there exists $a \in A$ and $x \in G$ such that $l(a x)=l(x)$. Let $x=\Pi \tau$, where $\|\tau\|=l(x)$. Then $\sigma=(a, \tau)$ furnishes a contradiction to 7.13.2.

In the next section, it will be shown that the pairs (G, A) satisfying the equivalent conditions 7.13.1 and 7.13.2 occur rather frequently.

Notation 7.14. Assume that a well ordering \leq of A is given. As usual, write $a \geq b$ interchangeably with $b \leq a$; and write $a>b$ or $b<a$ if $b \leq a$ and $b \neq a$. For $x \in G-\{1\}$, denote

$$
\mu(x)=\min \{a \in A: a \text { divides } x\}
$$

Lemma 7.15. For $x \in G-\{1\}$ and $a \in A$, the following statements are equivalent:
7.15.1. $\quad \mu(x)=a$;
7.15.2. $a \mid x$ and $b \not \subset x$ for all $b<a$;
7.15.3. $l(a x)=l(x)-1$ and $l(b x) \geq l(x)$ for all $b<a$.

In particular, $\mu(x)=x$ if and only if $x \in A$.
Proof. The equivalence of 7.15.1, 7.15.2, and 7.15 .3 follows easily from the definition of $\mu(x)$ and 7.12. The last statement is a consequence of 7.7.2 and 7.7.1.

Definition 7.16. Let $x \in G$. The standard sequence corresponding to x is the element $\sigma_{x} \in S(A)$ that is defined by $\sigma_{1}=\emptyset$ and $\sigma_{x}=\left(a_{0}, a_{1}, \cdots, a_{r-1}\right)$, where $x \neq 1, r=l(x), a_{0}=\mu(x), a_{1}=\mu\left(a_{0} x\right), a_{2}=\mu\left(a_{1} a_{0} x\right), \cdots, a_{r-1}=\mu\left(a_{r-2} \cdots a_{0} x\right)$.

Proposition 7.17. Let $x \in G$, and suppose that $\sigma_{x}=\left(a_{0}, a_{1}, \cdots, a_{r-1}\right)$. Then 7.17.1. $\Pi \sigma_{x}=x$,
7.17.2. $a_{0}<a_{1}<\cdots<a_{r-1}$,
7.17.3. σ_{x} is reduced,
7.17.4. $\mu\left(a_{k} a_{k+1} \cdots a_{r-1}\right)=a_{k}$ for all $k<r$.

Proof. If $r=0$, then $x=1, \sigma_{x}=\phi$, and all statements of the proposition are
vacuously true. Proceeding inductively with $r \geq 1$, note that the standard sequence of $a_{0} x$ is $\left(a_{1}, \cdots, a_{r-1}\right)$ by 7.15.3. Thus, $a_{0} x=a_{1} \cdots a_{r-1}$, and $x=a_{0} a_{1} \cdots a_{r-1}=\Pi \sigma_{x}$. Consequently, $a_{1} \mid x$, so that by 7.15.2, $a_{0} \leq a_{1}$. Plainly, $a_{0} \neq a_{1}$. Moreover, $l\left(\Pi \sigma_{x}\right)=l(x)=r=\left\|\sigma_{x}\right\|$, that is, σ_{x} is reduced. Finally, $\mu\left(a_{k} a_{k+1} \cdots a_{r-1}\right)=a_{k}$ for $k \geq 1$ by the induction hypothesis and the fact that $\sigma_{a_{0} x}=\left(a_{1}, \cdots, a_{r-1}\right)$; and $\mu\left(a_{0} a_{1} \cdots a_{r-1}\right)=\mu(x)=a_{0}$ by the definition of σ_{x}.

Lemma 7.18. Let $\sigma=\left(a_{0}, a_{1}, \cdots, a_{r-1}\right) \in S(A)$ satisfy $\mu\left(a_{k} a_{k+1} \cdots a_{r-1}\right)=a_{k}$ for all $k<r$. Then $\sigma=\sigma_{x}$, where $x=\Pi \sigma$.

Proof. This is clear from the definition of σ_{x}, when it is noted that the hypothesis implies $l(x)=r$.

Definition 7.19. A standard sequence in A is an element $\sigma=\left(a_{0}, a_{1}, \cdots, a_{r-1}\right)$ in $S(A)$ such that

$$
\mu\left(a_{k} a_{k+1} \cdots a_{r-1}\right)=a_{k}
$$

for all $k<r$.
By 7.17.4 and 7.18, the standard sequences in A are exactly the sequences σ_{x} for a unique $x \in G$. Thus, our objective of providing canonical representatives of the Γ-classes is attained.

Theorem 7.20. The mapping $\sigma \rightarrow \Pi \sigma$ is a bijective map from the set of standard sequences in A to the the group G. Thus, the standard sequences in A form a set of representatives of the Γ-classes in $S(A)$.

The rest of this section is concerned with applications of 7.20. Our first observation is an obvious, but interesting consequence of 7.20 .

Corollary 7.21. $|G|=\mid\{\sigma \in S(A): \sigma$ is standard $\} \mid$. In particular, if A is finite, then $|G| \leq 2^{|A|}$.

The equality $|G|=2^{|A|}$ is attained if G is an elementary abelian 2-group, and A is a basis of G. If G is not commutative, then this estimate can be improved. However, before pursuing this development, we present a different generalization of 7.21.

Lemma 7.22. Let H be a subgroup of G such that $|A-H|=m$ is finite. Then $[G: H] \leq 2^{m}$.

Proof. Let $A-H=\left\{b_{1}, b_{2}, \cdots, b_{m}\right\}$. We can assume that the well ordering \leq of A that was introduced in 7.14 satisfies $b_{1}<b_{2}<\cdots<b_{m}<c$ for all $c \in A \cap H$. Then by 7.17.2, every standard sequence $\sigma \in S(A)$ has the form $\sigma=\tau_{1} \tau_{2}$, where $\tau_{1} \in S(A-H)$ and $\tau_{2} \in S(A \cap H)$. Consequently, $\Pi \sigma=\Pi \tau_{1} \Pi \tau_{2}$,
and $\Pi \tau_{2} \in H$. By 7.20 , the elements $\Pi \tau_{1}$ form a set of representatives of the cosets of H in G. Thus, $[G: H] \leq 2^{m}$.

Proposition 7.23. Let G be a group, and suppose that $A<I(G)-\{1\}$ is such that $\langle A\rangle=G$. Assume that $A=A_{1} \cup A_{2} \cup \cdots \cup A_{s}$ is the principal decomposition of A, that is, A is the union of exactly s conjugate classes in G. Choose $a_{i} \in A_{i}$, and assume that the degree $d_{i}=d_{A}\left(a_{i}\right)$ of A at a_{i} is finite. Then A and G are finite, and $|A| \leq s \cdot 2^{n}$, where $n=\sum_{i=1}^{s} d_{i}$.

Proof. Let $B_{i}=A-C_{G}\left(a_{i}\right)=\left\{b \in A: a_{i} \circ b \neq b\right\}$. Thus, $\left|B_{i}\right|=d_{i}$. Denote $B=\bigcup_{i=1}^{s} B_{i}=A-H$, where $H=\bigcap_{i=1}^{s} C_{G}\left(a_{i}\right)$ is a subgroup of G. Then $|B| \leq n$, so that by $7.22,[G: H] \leq 2^{n}$. Therefore, $\left|A_{i}\right|=\left[G: C_{G}\left(a_{i}\right)\right] \leq[G: H] \leq 2^{n}$, and $|A|=\sum_{i=1}^{s}\left|A_{i}\right| \leq s \cdot 2^{n}$. By 7.21, G is also finite.

Corollary 7.24. Let A be a principal, special symmetric groupoid whose degree $d_{A}=d$ is finite. Then $|A| \leq 2^{d}$. In particular, there are only a finite number of isomorphism classes of principal, special symmetric groupoids of a given degree d.

Lemma 7.25. Assume that the pair (G, A) satisfies the conditions in 7.13 Then every subsequence of a standard sequence in A is standard.

Proof. It is sufficient to prove that if $\sigma=\left(a_{0}, \cdots, a_{r-1}, b, c_{0}, \cdots, c_{s-1}\right)$ is standard, then $\tau=\left(a_{0}, \cdots, a_{r-1}, c_{0}, \cdots, c_{s-1}\right)$ is standard. If $r=0$, this conclusion is obvious. Assume that $r \geq 1$, and proceed by induction on r. By 7.17.3 and 7.9, $l(\Pi \tau)=r+s$. If $d<a_{0}$, then $d \nmid \Pi \sigma$ by 7.15.2. Therefore, by 7.13.1, $l(d \Pi \sigma)=r+s+2$, so that $l(d \Pi \tau)=r+s+1$ according to 7.9. This argument shows that $\mu(\Pi \tau)=a_{0}$ by 7.15. The induction is therefore complete.

In the remainder of this section, it will be assumed that (G, A) satisfies the conditions in 7.13. Consequenctly, every subsequence of a standard sequence in A is standard. It is also convenient to adopt the hypothesis that A is finite, say $|A|=m$. Our results are valid in the infinite case, but they are uninteresting if A is infinite.

Lemma 7.26. Let $W=\left\{\tau_{1}, \tau_{2}, \cdots, \tau_{n}\right\}$ be a set of non-standard sequences in $S(A)$. Then
7.26.1. $|G| \leq \sum_{v \subseteq W}(-1)^{|V| 2^{m-|u V|}}$,
where $\cup V=\left\{\tau_{i_{1}}\right\} \cup \cdots \cup\left\{\tau_{i_{r}}\right\} \subseteq A$ (in the notation of 7.1.3) if $V=\left\{\tau_{i_{1}}, \cdots, \tau_{i_{r}}\right\} \subseteq W$.
Proof. By 7.21, 7.25, and 7.17.2, $|G| \leq|U|$, where $U=\{\sigma \in S(A): \sigma$ is strictly increasing, $\left.\left\{\tau_{i}\right\} \mp\{\sigma\}, 1 \leq i \leq n\right\}$. Let P denote the set of all subsets of A, and for $1 \leq i_{1}<i_{2}<\cdots \ldots<i_{r} \leq n$, denote $P\left(i_{1}, i_{2}, \cdots, i_{r}\right)=\left\{S \in P:\left\{\tau_{i_{1}}\right\} \subseteq S\right.$, $\left.\left\{\tau_{i_{2}}\right\} \subseteq S, \cdots,\left\{\tau_{i_{r}}\right\} \subseteq S\right\}$. The inclusion-exclusion pinciple yields

$$
\begin{equation*}
|U|=|P|-\sum_{i_{1}}\left|P\left(i_{1}\right)\right|+\sum_{i_{1}<i_{2}}\left|P\left(i_{1}, i_{2}\right)\right|-\cdots+(-1)^{n}|P(1,2, \cdots, n)| . \tag{*}
\end{equation*}
$$

If $V=\left\{\tau_{i_{1}}, \tau_{i_{2}}, \cdots, \tau_{i_{r}}\right\}$, then there is plainly a bijective correspondence between $P\left(i_{1}, i_{2}, \cdots, i_{r}\right)$ and the set of all subsests of $A-U V$. Thus, $\left|P\left(i_{1}, i_{2}, \cdots, i_{r}\right)\right|=$ $2^{m-|U V|}$, and 7.26.1 follows from (*).

Corollary 7.27. Let $W=\left\{\tau_{1}, \tau_{2}, \cdots, \tau_{n}\right\}$ be a set of non-standard sequences in $S(A)$, and suppose that $W=W_{1} \cup W_{2} \cup \cdots \cup W_{k}$, where $\left(\cup W_{i}\right) \cap\left(\cup W_{j}\right)=\emptyset$ if $i \neq j$. Then

$$
\text { 7.27.1. }|G| \leq 2^{m} \Pi_{i=1}^{k}\left(\sum_{V_{i} \leq W_{i}}(-1)^{\left.\left|V_{i}\right| 2^{-\left|u V_{i}\right|}\right) .}\right.
$$

Proof. For $V \subseteq W$, denote $V_{i}=V \cap W_{i}, 1 \leq i \leq k$. Then V is the disjoint union $\dot{V}_{1} \cup V_{2} \cup \cdots \cup V_{k},|V|=\left|V_{1}\right|+\left|V_{2}\right|+\cdots+\left|V_{k}\right|$, and $|\cup V|=\left|\cup V_{1}\right|+$ $\left|\bigcup V_{2}\right|+\cdots+\left|\bigcup V_{k}\right| . \quad$ By 7.26.1,

$$
\begin{aligned}
|G| & \leq 2^{m} \sum_{V_{1} \subseteq W_{1} \cdots, V_{k} \leq W_{k}}(-1)^{\left.\left|V_{1}\right|+\cdots+\left|V_{k}\right| 2^{-\left(\left|\cup U V_{1}\right|+\cdots+\left|U V_{k}\right|\right.}\right)} \\
& =2^{m} \prod_{i=1}^{k}\left(\sum_{V_{i} \subseteq W_{i}}(-1)^{\left|V_{i}\right|} 2^{-\left|U V_{i}\right|}\right)
\end{aligned}
$$

To use 7.26 and 7.27, we need some non-standard sequences. The following lemma provides a few of them.

Lemma 7.28. Let $a<b<c$ in A be such that either $a=b \circ c, b=c \circ a$, or $c=a \circ b$. Then (b, c) is not standard.

Proof. In these respective cases, 7.3 and 7.5 yield: $(b, c) \sim(a, b) ;(b, c) \sim$ ($a, a \circ c$); $(b, c) \sim(a, a \circ b \circ a) . \quad$ By 7.4, (b, c) is not standard.

Lemma 7.29. Let $A=A_{1} \cup \cdots \cup A_{s} \cup \cdots \cup A_{t}$ be the principal decomposition of A, where $\left|A_{i}\right| \geq 2$ for $1 \leq i \leq s$, and $\left|A_{i}\right|=1$ for $s<i \leq t$. Then

$$
\text { 7.29.1. }|G| \leq(3 / 4)^{s} 2^{m}
$$

Proof. If $m=0$ or 1 , or if $s=0,7.29 .1$ follows from 7.21. We proceed by induction on m, assuming that $s \geq 1$. Denote $B=A_{2} \cup \cdots \cup A_{s} \cup \cdots \cup A_{t}$, $N=\langle B\rangle \triangleleft G, C=\left\{a N: a \in A_{1}\right\}$, and $H=G / N=\langle C\rangle$ (see 5.6). By the induction hypothesis, $|N| \leq(3 / 4)^{s-1} 2^{m-\left|A_{1}\right|}$. If $|C|=1<\left|A_{1}\right|$, then $|H| \leq 2 \leq(1 / 2) 2^{\left|A_{1}\right|}$, so that $|G|=|H| \cdot|N|<(3 / 4)^{s_{2} m}$. If $|C|>1$, then by 5.8 and 7.28 , there is a non-standard $\tau \in S(C)$ with $|\tau|=2$. Applying 7.26 with $W=\{\tau\}$ gives $|H| \leq$ $(-1)^{|Q|} 2^{|C|}+(-1)^{\mid\{\tau| |} 2^{|C|-|\tau|}=(3 / 4) 2^{|C|} \leq(3 / 4) 2^{\left|A_{1}\right|}$. Hence, $|G| \leq(3 / 4)^{s} 2^{m}$ in this case also.

Lemma 7.30. Assume that $a \in A$, and $d_{A}(a)=d \geq 2$. Then 7.30.1. $|G| \leq(3 / 4)^{d / 2} 2^{m}$.

Proof. By Definition 5.21, there exist distinct elements $b_{1}, c_{1}, b_{2}, c_{2}, \cdots, b_{d / 2}$, $c_{d / 2}$ in A such that $a \circ b_{i}=c_{i}$ for $1 \leq i \leq d / 2$. Choose the well ordering of A so that $a<b_{1}<c_{1}<b_{2}<c_{2}<\cdots<b_{d / 2}<c_{d / 2}$. By 7.28, $\tau_{i}=\left\{b_{i}, c_{i}\right\}$ is non-standard.

The estimate 7.30 .1 follows from 7.27 by taking $W=\left\{\tau_{1}, \tau_{2}, \cdots, \tau_{d / 2}\right\}$ and W_{i} to be the singleton τ_{i} for $1 \leq i \leq d / 2$.

We conclude this section with an example. It will be shown that the estimate 7.27.1 is sharp when it is applied to the pair $\left(S_{n}, J_{n}\right)$ of 5.22 .

Example 7.31. Let $G=S_{n}$ be the symmetric group on $n \geq 3$ letters, and let $A=J_{n}$ be the symmetric groupoid consisting of all transpositions in S_{n}. Then $\left(S_{n}, J_{n}\right)$ satisfies 7.13 .2 , so that 7.27 is applicable in this case. For $1 \leq i<j \leq n$, denote $a_{i j}=a_{j i}=(i, j)$. Then $A=\left\{a_{i j}: 1 \leq i<j \leq n\right\}$ has cardinality $(1 / 2) n(n-1)$. Order A lexicographically: $a_{i j}<a_{k l}$ if $\min \{i, j\}<\min \{k, l\}$ or $\min \{i, j\}=\min \{k, l\}$ and $\max \{i, j\}<\max \{k, l\}$. If $i<j<k$, then $a_{i j}<a_{i k}<a_{j k}$ and $a_{i j} \circ a_{i k}=a_{j k}$, so that $\left(a_{i k}, a_{j k}\right)$ is non-standard by 7.28. For $k \geq 3$, let $\left.W_{k}=\left\{\left(a_{i k}, a_{j k}\right\}\right): i<j<k\right\}$, and $W=W_{3} \cup \cdots \cup W_{n}$. By 7.27.1, we have
7.31.1. $|G| \leq 2^{(1 / 2) n(n-1)} \prod_{k=3}^{n} N_{k}$,
 the set $P_{2}\left(I_{k-1}\right)$ of all two element subsets of I_{k-1}, where $I_{l}=\{1,2, \cdots, l\}$ for any natural number l. Making this identification, $N_{k}=\sum_{V \leq P_{2}\left(I_{k-1}\right)}(-1)^{|V|} 2^{-|U V|}=$ $\sum_{U \subseteq I_{k-1}} 2^{-|U|}\left(\sum_{V \subseteq P_{2}(U), U V=U}(-1)^{|V|}\right)$. The parenthetical sum in this last expression depends only on $|U|$, so that if we denote
7.31.2. $\quad a_{r}=\sum_{V \subseteq P_{2}\left(I_{r}\right), U V=I .}(-1)^{|V|}$,
then
7.31.3. $\quad N_{k}=\sum_{\substack{k=1 \\ r=0 \\ a_{r}}}\binom{k-1}{r} 2^{-r}$.

If $V \subseteq P_{2}\left(I_{r+1}\right)$ and $\cup V=I_{r+1}$, then V is uniquely the disjoint union $V^{\prime} \cup\left(I_{r}-\cup V^{\prime}\right) \times\{r+1\} \cup T \times\{r+1\}$, where $V^{\prime} \subseteq P_{2}\left(I_{r}\right), T \subseteq \bigcup V^{\prime}$, and $T \neq \emptyset$ if $\cup V^{\prime}=I_{r} . \quad$ Conversely, each pair $\left(V^{\prime}, T\right)$ satisfying these conditions gives rise to $V \subseteq P_{2}\left(I_{r+1}\right)$ such that $\bigcup V=I_{r+1}$. Using these observations, a straightforward calculation based on 7.31.2 gives the recursion relation $a_{r+1}=(-1)^{r}-a_{r}$. Since $a_{0}=(-1)^{0}=1$, it follows by induction that
7.31.4. $a_{r}=(-1)^{r-1}(r-1)$.

Hence, 7.31 .4 and 7.31 .3 yield $N_{k}=1+(1 / 2) \sum_{s=1}^{k-2} s\binom{k-1}{s+1}(-1 / 2)^{s}$. This sum can be evaluated by differentiating the binomial expansion of $x^{-1}(1+x)^{k-1}$, obtaining $\sum_{s=1}^{k-2} s\binom{k-1}{s+1} x^{s}=x^{-1}\left(1+((k-2) x-1)(1+x)^{k-2}\right)$. Consequently, $N_{k}=$ $k(1 / 2)^{k-1}$. Substituting this value of N_{k} into 7.31 .1 and simplifying gives $|G| \leq n!$ Thus, the apparently crude estimate given by 7.27 .1 is sharp for the case under consideration. Some interesting byproducts come from this conclusion. First, we see that for the given ordering of J_{n}, the non-standard sequences of length 2
are exactly those of the form $\left(a_{i k}, a_{j k}\right)$ with $i<j<k$. Second, a strictly increasing sequence of length greater than 2 in J_{n} is standard if and only if it contains no non-standard subsequence of length 2 . Combining these observations with Theorem 7.20 gives a canonical form for the representation of permutations as products of transpositions.

Corollary 7.32. The elements of $S_{n}, n \geq 3$, are canonically represented as products of transpositions in the form $\left(i_{1}, k_{1}\right)\left(i_{2}, k_{2}\right) \cdots\left(i_{m}, k_{m}\right)$, where
7.32.1. $1 \leq i_{j}<k_{j} \leq n$ for $1 \leq i \leq m$,
7.32.2. $\quad i_{1} \leq i_{2} \leq \cdots \leq i_{m}$,
7.32.3. if $i_{j}=i_{j+1}$, then $k_{j}<k_{j+1}$,
7.32.4. $k_{1}, k_{2}, \cdots, k_{m}$ are distinct.

8. Symmetrically presented groups

In this section, as in the last one, the objects of our interest are pairs (G, A), where G is a group, $A<I(G)$, and $\langle A\rangle=G$. Now, however, the group G will be more closely related to its generating symmetric groupoid A. To a considerable extent, this section is a continuation of the work that was started in Section 4.

Proposition 8.1. Let G be a group, and suppose that A is a subgroupoid of $I(G)$ such that $\langle A\rangle=G$. The following conditions are equivalent.

8.1.1. $\Pi: S(A) \rightarrow G$ has kernel Γ_{0}.

8.1.2. If H is a group, and $f: A \rightarrow I(H)$
is a groupoid homomorphism, then f extends to a group homomorphism of G to H.
8.1.3. The groupoid homomorphism $f_{A}: A \rightarrow I\left(E_{A}\right)$ that was defined in 4.14 extends to an isomorphism of G to E_{A}.

Proof. (1) 8.1.1 implies 8.1.2. Let $f: A \rightarrow I(H)$ be a groupoid homomorphism. It can be assumed that $H=\langle f(A)\rangle$. Let $f^{\prime}: S(A) \rightarrow S(f(A))$ be the monoid homomorphism induced by f, and let $\Pi^{\prime}: S(f(A)) \rightarrow H$ be defined as in 7.1.4. Plainly, the kernel Γ of $\Pi^{\prime} f^{\prime}$ includes all pairs of the form 7.3.1 and 7.3.2, so that $\Gamma_{0} \subseteq \Gamma$. Thus, there is a group homomorphism $g: G \rightarrow H$ such that $\Pi^{\prime} f^{\prime}=g \Pi$. In particular, $g(a)=f(a)$ for all $a \in A$.
(2) 8.1.2 implies 8.1.3. By virtue of 8.1.2, there is a group homomorphism $g: G \rightarrow E_{A}$ extending f_{A}. It follows easily from 4.14 .3 that g is surjective. By 4.14.4, there is a group homomorphism $h: E_{A} \rightarrow G$ such that $h f_{A}$ is the inclusion map of A to G. Since $G=\langle A\rangle$, it follows that $h g=1_{G}$. Thus, g is an isomorphism.
(3) 8.1.3 implies 8.1.1. Let $g: G \rightarrow E_{A}$ be the isomorphism that extends
f_{A}. By the remark following 7.4, there is a monoid homomorphism $k: S(A) \rightarrow E_{A}$ such that $\operatorname{Ker} k=\Gamma_{0}$. It is also easy to see that the restriction of k to the one element sequences of $S(A)$ coincides with the corresponding restriction of $g \Pi$. Hence, $g \Pi=k$, and $\operatorname{Ker} \Pi=\operatorname{Ker} k=\Gamma_{0}$.

Definition 8.2. Let G be a group, and suppose that A is a subgroupoid $I(G)$ such that $G=\langle A\rangle$. Then G is symmetrically presented by A if the equivalent conditions of 8.1 are satisfied.

Corollary 8.3. If A is a special symmetric groupoid, then there is a group G such that G is symmetrically presented by A. Moreover, G is uniquely determined to within an isomorphism that fixes the elements of A.

This corollary is a special case of 4.14 and 4.15. The result was found independently by S . Doro; it appears in his paper [2].

It is useful to note that if G is symmetrically presented by A, then $1 \notin A$. In fact, the mapping sends every element of A to -1 in the multiplicative group $H=\{1,-1\}$ is a groupoid homomorphism of A to $I(H)$ that surely cannot be extended to a group homomorphism if $1 \in A$. This same argument gives the stronger conclusion that no element of A can be in the commutator subgroup G^{\prime} of G. In particular, $G \neq G^{\prime}$. A more precise version of this observation will be established later in this section.

Corollary 8.4. Assume that the group G is symmetrically presented by the symmetric groupoid A. Let H be a group such that there is an injective groupoid homomorphism $f: A \rightarrow I(H)$, and $H=\langle f(A)\rangle$. Then there is a surjective group homomorphism $g: G \rightarrow H$ extending f, and $\operatorname{Ker} g \subseteq C(G)$.

Proof. The homomorphism g exists by 8.1.2, and $g(G)=g(\langle A\rangle)=\langle g(A)\rangle=$ $\langle f(A)\rangle=H$. The inclusion $\operatorname{Ker} g \subseteq C(G)$ is a special case of our next lemma.

Lemma 8.5. Let G be a group, $A<I(G)$ such that $\langle A\rangle=G$, and suppose that $g: G \rightarrow H$ is a surjective group homomorphism.
8.5.1. If $g \mid A$ is injective, then $g^{-1}(C(H))=C(G)$.
8.5.2. If $Z(A)=I_{A}$ and $\operatorname{Ker} g \subseteq C(G)$, then $g \mid A$ is injective.

Proof. Since g is surjective, $C(G) \subseteq g^{-1}(C(H))$. Suppose that $g(x) \in C(H)$, where $x=a_{1} a_{2} \cdots a_{n}, a_{i} \in A$. Then for all $b \in A, g(b)=g(x) g(b) g(x)^{-1}=g\left(a_{1} \circ a_{2} \circ \cdots\right.$ $\left.\circ a_{n} \circ b\right)$. If $g \mid A$ is injective, then $b=a_{1} \circ a_{2} \circ \cdots \circ a_{n} \circ b=x b x^{-1}$ for all $b \in A$. Hence, $x \in C(G)$ because $\langle A\rangle=G$. The implication 8.5.2 is a consequence of the observation that $Z(A)=\left\{(a, b) \in A^{2}: a b \in C(G)\right\}$, and $g(a)=g(b)$ implies $a b \in \operatorname{Ker} g \subseteq$ $C(G)$ for $a, b \in A$.

The result 8.4 shows that the groups H that are generated by a given subgroupoid A of $I(H)$ can be found among the central homomorphs of the unique
group G that is symmetrically presented by A. Not all $G I$ groups are symmetrically presented by a symmetric groupoid A. For example, if G is a finite, nonabelian simple group, then G is generated by involutions (by the Feit-Thompson theorem), but G cannot be symmetrically presented because $G^{\prime}=G$. However, by 8.4 and $8.5, G=H / C(H)$, where H is symmetrically presented by any class of involutions.

Example 8.6. Let G_{a} be the free $G I$ group on a set of α involutions. Then G_{ω} is symmetrically presented by $I\left(G_{a}\right)-\{1\}$. In fact, by 4.12 and 4.4 , any groupoid homomorphism from $I\left(G_{a}\right)-\{1\}$ to $I(H)$, where H is a group, extends to a group homomorphism of G_{a} to H. Thus, $\left(G_{a}, I\left(G_{a}\right)-\{1\}\right)$ satisfies 8.1.2.

Example 8.7. For $n \geq 2$, the symmetric group S_{n} is symmetrically presented by the symmetric groupoid J_{n} of all transpositions. If $n=2$, this assertion is obvious. If $n \geq 3$, then it follows from Example 7.31 that Γ_{0} is the kernel of the homomorphism $\Pi: S\left(J_{n}\right) \rightarrow S_{n}$, that is, 8.1.1 is satisfied.

Proposition 8.8. Let G be a group that admits a presentation

$$
G=\left\langle a_{\xi}, \xi<\alpha: a_{\xi}^{2}=1, \xi<\alpha ; w_{k}(a)=1, k \in K\right\rangle,
$$

where a is α cardinal number, and for every $k \in K, w_{k}(a)$ is a word of the form

$$
\text { 8.8.1. } \quad a_{n} a_{\xi_{1}} \cdots a_{\xi_{r-1}} a_{\xi_{r}} a_{\xi_{r-1}} \cdots a_{\xi_{1}} .
$$

Let A be the union of the conjugate classes of the elements $a_{\xi}, \xi<\alpha$. Then G is symmetrically presented by A.

Proof. Plainly, $A<I(G)$ and $\langle A\rangle=G$. Let F be the free group on $\left\{x_{\xi}: \xi<\alpha\right\}$, and define the homomorphism $p: F \rightarrow G$ by the condition $p\left(x_{\xi}\right)=a_{\xi}$ for all $\xi<\alpha$. By the definition of a presentation, p is surjective, and $\operatorname{Ker} p$ is the smallest normal subgroup of G that contains all words of the form $x_{\xi}^{2}, \xi<\alpha$, and $w_{k}=x_{n} x_{\xi_{1}} \cdots x_{\xi_{r-1}} x_{\xi_{r}} x_{\xi_{r-1}} \cdots x_{\xi_{1}}$. Suppose that H is a group, and $f: A \rightarrow I(H)$ is a groupoid homomorphism. Define a group homomorphism $h: F \rightarrow H$ by the condition $h\left(x_{\xi}\right)=f\left(a_{\xi}\right)$ for all $\xi<\alpha$. Then $h\left(x_{\xi}^{2}\right)=f\left(a_{\xi}\right)^{2}=1$, since $f\left(a_{\xi}\right) \in I(H)$. Hence, $x{ }_{\xi}^{2} \in \operatorname{Ker} h$. Also, $h\left(x_{\xi_{1}} \cdots x_{\xi_{r-1}} x_{\xi_{r}} x_{\xi_{r-1}} \cdots x_{\xi_{1}}\right)=h\left(x_{\xi_{1}}\right) \cdots h\left(x_{\xi_{1}}\right) \cdots h\left(x_{\xi_{1}}\right)=$ $f\left(a_{\xi_{1}}\right) \cdots f\left(a_{\xi_{-}}\right) \cdots f\left(a_{\xi_{1}}\right)=f\left(a_{\xi_{1}}\right) \circ \cdots \circ f\left(a_{\xi_{r}}\right)=f\left(a_{\xi_{1}} \circ \cdots \circ a_{\xi_{r}}\right)=f\left(a_{\eta}\right)=h\left(x_{\eta}\right)$, where $w_{k}(a)=a_{\eta} a_{\xi_{1}} \cdots a_{\xi_{r-1}} a_{\xi_{r}} a_{\xi_{r-1}} \cdots a_{\xi_{1}}$ (so that $a_{\eta}=a_{\xi_{1}} \cdots \circ a_{\xi_{r}}$ in A). Consequently, $w_{k}=\left(x_{\eta}^{2}\right)\left(x_{\eta}^{-1} x_{\xi_{1}} \cdots x_{\xi_{r-1}} x_{k_{r}} x_{\xi_{r-1}} \cdots x_{\xi_{1}}\right) \in \operatorname{Ker} h$. Thus, $\operatorname{ker} p \subseteq \operatorname{Ker} h$, so that h factors through p. That is, there is a group homomorphism $g: G \rightarrow H$ such that $h=g p$. In particular, $g\left(a_{\xi}\right)=g\left(p\left(x_{\xi}\right)\right)=h\left(x_{\xi}\right)=f\left(a_{\xi}\right)$. Since G is generated as a group by $\left\{a_{\xi}: \xi<\alpha\right\}$, it follows that A is generated as a groupoid by $\left\{a_{\xi}: \xi<\alpha\right\}$. Consequently, $g \mid A=f$, so that G is symmetrically presented by A, according to 8.1.2.

Corollary 8.9. Every Coxeter group G is symmetrically presented by a subgroupoid of $I(G)$.

Proof. Every Coxeter group G has a presentation $G=\left\langle a_{1}, \cdots, a_{n}: a_{i}^{2}=\right.$
 of the form 8.8.1.

Since the symmetric group S_{n} is a Coxeter group, this corollary generalizes Example 8.7.

There is a converse of 8.8.
Proposition 8.10. Let A be a special symmetric groupoid with a presentation
8.10.1. $\quad A=\left\langle a_{\xi}, \xi<\alpha: v_{0 k}(a)=v_{1 k}(a), k \in K\right\rangle$,
where $v_{0 k}(a)$ and $v_{i k}(a)$ are words in the language of groupoids involving the generators a_{ξ}. For $k \in K$, define $w_{k}(a)=a_{\eta_{s}} a_{n_{s-1}} \cdots a_{\eta_{1}} a_{\xi_{1}} \cdots a_{\xi_{r-1}} a_{\xi_{r}} a_{\xi_{r-1}} \cdots a_{\xi_{1}} a_{\eta_{1}} \cdots a_{\eta_{s-1}}$ whenever $v_{0 k}(a)=a_{\xi_{1}} \circ \cdots \circ a_{\xi_{r-1}} \circ a_{\xi_{r}}$, and $v_{1 k}(a)=a_{\eta_{1}} \circ \cdots \circ a_{n_{s-1}} \circ a_{\eta_{s}}$. Let G be the group that is symmetrically presented by A. Then G has the presentation

8.10.2. $\quad G=\left\langle a_{\xi}, \xi<\alpha: a_{\xi}^{2}=1, \xi<\alpha ; w_{k}(a)=1, k \in K\right\rangle$.

Proof. Let G_{a} be the group that is freely generated by the set $\left\{u_{\xi}: \xi<\alpha\right\}$ of involutions (as in 4.3), and denote $A_{\infty}=I\left(G_{a}\right)-\{1\}$. By 4.12, A_{a} is the free symmetric groupoid on $\left\{u_{\xi}: \xi<\alpha\right\}$. Let N be the smallest normal subgroup of G_{∞} that includes all of the words w_{k}, and denote by Γ the smallest congruence relation on A_{a} that contains all of the pairs ($v_{0 k}, v_{1 k}$), $k \in K$. Here, w_{k} represents the group word that is obtained from $w_{k}(a)$ by replacing each occurrence of a_{ξ} by u_{ξ}, and $v_{0 k}, v_{1 k}$ are the groupoid words obtained from $v_{0 k}(a), v_{1 k}(a)$ by the same replacements. If $\Delta=\left\{\left(v_{0}, v_{1}\right) \in A_{\alpha}^{2}: v_{1}^{-1} v_{0} \in N\right\}$, then because Δ is a congruence relation on A_{a} that obviously includes all pairs ($v_{0 k} v_{1 k}$), $k \in K$, it follows that $\Gamma \subseteq \Delta$. Since 8.10.1 is a presentation of A, the kernel of the homomorphism $p: A_{\infty} \rightarrow A$ such that $p\left(u_{\xi}\right)=a_{\xi}$ for all $\xi<\alpha$ is Γ. By the hypothesis that A is special and the fact noted in 8.6 that G_{a} is symmetrically presented by A_{a}, it follows that p can be extended to a group homomorphism $g: G_{\infty} \rightarrow H$, where H is a group such that $A<I(H)$. Plainly, $N \subseteq \operatorname{Ker} g$, and $\Gamma=\operatorname{Ker} p=\operatorname{Ker} g \mid A_{a} \supseteq \Delta$. Therefore, $\Gamma=\Delta$. By the proof of 4.3, the group G_{a} has a presentation $G_{a}=\left\langle u_{\xi}, \xi<\alpha: u_{\xi}^{2}=1, \xi<\alpha\right\rangle$. Therefore, by 8.8, the group G defined by 8.10.2 is symmetrically presented by A_{α} / Γ, that is, by A.

Taken together, 8.8 and 8.10 imply the following closure property of the class of symmetrically presented groups.

Corollary 8.11. Assume that G_{i} is symmetrically presented by A_{i} for each i in the index set J. Then the free product $G=*_{i \in J} G_{i}$ is symmetrically presented
by the union of the conjugate classes in G of the elements in $\bigcup_{i \in J} A_{i}$.
There is an analogous result for direct sums.
Lemma 8.12. Assume that G_{i} is symmetrically presented by A_{i} for each i in the index set J. Then the direct sum $G=\sum_{i \in J} G_{i}$ is symmetrically presented $A=\bigcup_{i \in J} A_{i}$.

Proof. Plainly, $\mathrm{A}<I(G)$ and $\langle A\rangle=\left\langle\bigcup_{i \in J} A_{i}\right\rangle=\sum_{i \in J} G_{i}=G$. Let f : $A \rightarrow I(H)$ be a groupoid homomorphism, where H is some group. By 8.1.2, there exist group homomorphisms $g_{i}: G_{i} \rightarrow H$ such that $g_{i}\left|A_{i}=f\right| A_{i}$ for all $i \in J$. If $i \neq j, a \in A_{i}$ and $b \in A_{j}$, then $g_{i}(a) g_{j}(b) g_{i}(a)=f(a) f(b) f(a)=f(a \circ b)=f(b)=g_{j}(b)$. Since $G_{i}=\left\langle A_{i}\right\rangle$ and $G_{j}=\left\langle A_{j}\right\rangle$, it follows that $g_{i}\left(G_{i}\right)$ centralizes $g_{j}\left(G_{j}\right)$. Consequently, there is a homomorphism $g: G \rightarrow H$ such that $g \mid G_{i}=g_{i}$ for all $i \in J$. In particular, g extends f. By 8.1.2, G is symmetrically presented by A.

There is a straightforward converse of 8.12 . It will be omitted.
The results of Section 7 can be improved considerably when they are applied to pairs (G, A) such that G is symmetrically presented by A. In fact, even slightly weaker hypotheses give these improvements.

Hypotheses and Notation 8.13. Assume that G is a group, $A<I(G)-\{1\}$, and $\langle A\rangle=G$. Let $A=\bigcup_{i \in J} A_{i}$ be the principal decomposition of A. For $i \in J$, and $\sigma=\left(a_{0}, a_{1}, \cdots, a_{r-1}\right) \in S(A)$, denote

$$
\|\sigma\|_{i}=\left|\left\{k<r: a_{k} \in A_{i}\right\}\right| .
$$

Lemma 8.14. With the notation and hypotheses of 8.13, and the relation Γ_{0} defined in Section 7,
8.14.1 if $(\sigma, \tau) \in \Gamma_{0}$, then $\|\sigma\|_{i} \equiv\|\tau\|_{i}(\bmod 2)$ for all $i \in J$.

In particular, if G is symmetrically presented by A, then
8.14.2 if $\sigma, \tau \in S(A)$ satisfy $\Pi \sigma=\Pi \tau$, then $\|\sigma\|_{i} \equiv\|\tau\|_{i}(\bmod 2)$ for all $i \in J$.

Proof. If $b \in A_{i}$ and $a \in A$, then $a \circ b \in A_{i}$. It follows that 8.14.1 is satisfied whenever (σ, τ) has one of the forms 7.3.1 or 7.3.2. The general case of 8.14 .1 follows by induction on the length of a sequence of primitive equivalences connecting σ and τ. The implication 8.14 .2 is a direct consequence of 8.8.1 and 8.14.1.

The property 8.14 .2 of symmetrically presented groups makes it possible to define a signature map that generalizes the notion of the sign of a permutation. It turns out that the pairs (G, A) satisfying 8.14 .2 are considerably more common than the prototype: G is symmetrically presented by A. It therefore seems worthwhile to introduce yet another definition.

Terminology 8.15. A pair (G, A) that satisfies the hypotheses of 8.13 will be called an S-pair if the implication 8.14 .2 is satisfied.

If (G, A) is an S-pair, then the equivalent conditions of 7.13 are plainly satisfied. Therefore, the various estimates of $|G|$ that were developed in the last part of Section 7 are applicable in this case.

Lemma 8.16. Assume that the conventions of 8.13 are in effect.
8.16.1. If $a \in A_{i}$ and $b \in A_{i}$, then $a b \in G^{\prime}$.
8.16.2. Every element of G^{\prime} can be expressed in the form $\Pi \sigma$, where $\sigma \in S(A)$ satisfies $\|\sigma\|_{i} \equiv 0(\bmod 2)$ for all $i \in J$.
8.16.3. If $\left\{a_{i}: i \in J\right\}$ is a set of representatives of the principal components of A, then G / G^{\prime} is an elementary abelian 2-group that is spanned by $\left\{a_{i} G^{\prime}: i \in J\right\}$.
8.16.4. If $\left\{a_{i}: i \in J\right\}$ is a set of representatives of the principal components of A, then $\left\{a_{i} G^{\prime}: i \in J\right\}$ are distinct, non-zero, linearly independent elements of G / G^{\prime} if and only if (G, A) is an S-pair.

Proof. (1) By 5.6, if $a, b \in A_{i}$, then $b=x a x^{-1}=x a^{-1} x^{-1}$ for some $x \in G$. Hence, $a b=a x a^{-1} x^{-1} \in G^{\prime}$.
(2) It sufficies to observe that if $x, y \in G$, say $x=\Pi \rho, y=\Pi \tau$, then $x y x^{-1} y^{-1}=\Pi \sigma$, where $\sigma=\rho \tau \rho^{-1} \tau^{-1}$ satisfies $\|\sigma\|_{i} \equiv 0(\bmod 2)$ for all $i \in J$.
(3) Since $G=\langle A\rangle$, it follows that G / G^{\prime} is an abelian $G I$ group, hence an elementary 2-group. If $f: G \rightarrow G / G^{\prime}$ is the natural projection, then $G / G^{\prime}=$ $f(G)=f(\langle A\rangle)=\langle f(A)\rangle=\left\langle\left\{f\left(a_{i}\right): i \in J\right\}\right\rangle$ by 8.16.1.
(4) Assume that (G, A) is an S-pair. By 8.16.2, $\sigma \in S(A)$ and $\Pi \sigma \in G^{\prime}$ implies $\|\sigma\|_{i} \equiv 0(\bmod 2)$ for all $i \in J$. It follows that if i_{1}, \cdots, i_{r} are distinct elements of J, then $a_{i_{1}} \cdots a_{i_{r}} \notin G^{\prime}$. Hence, passing to additive notation, $a_{i_{1}} G^{\prime}+\cdots+a_{i r} G^{\prime} \neq 0$ in G / G^{\prime}. Conversely, if (G, A) is not an S-pair, then there exist $\sigma, \tau \in S(A)$ such that $\Pi \sigma=\Pi \tau$, and $\|\sigma\|_{j} \equiv\|\tau\|_{j}(\bmod 2)$ for some $j \in J$. Let $\rho=\sigma \tau^{-1}$. Then $\Pi \rho=1$ and $K=\left\{i \in J:\|\rho\|_{i} \equiv 1(\bmod 2)\right\}$ is not empty. By 8.16.1, $\sum_{i \in K} a_{i} G^{\prime}=0$ in G / G^{\prime}.

Corollary 8.17. If (G, A) satisfies the hypotheses of 8.13 , and A is principal, then (G, A) is an S-pair if and only if $|G| G^{\prime} \mid=2$.

Corollary 8.18. Let G be a finite 2-group. The following conditions are equivalent.
8.18.1. There exists $A<I(G)$ such that (G, A) is an S-pair.
8.18.2. G is generated by involutions.
8.18.3. G / G^{\prime} has a generating set that consists of cosets of the form $a G^{\prime}$, where $a \in I(G)$.

Proof. By the definition of S-pairs, 8.18.1 implies 8.18.2, and 8.18.2
implies 8.18 .3 by 8.16 .3 . If 8.18 .3 is satisfied, say $\left\{a_{1} G^{\prime}, \cdots, a_{r} G^{\prime}\right\}$ is a basis of G / G^{\prime} such that $a_{i} \in I(G)$ for $1 \leq i \leq r$, let A be the union of the conjugate classes of these a_{i}. Then $A<I(G)-\{1\}$, and $\langle A\rangle=G$ by the Burnside basis theorem. By 8.16.4, (G, A) is an S-pair.

Corollary 8.19. If (G, A) is an S-pair, and $A \subset C<I(G)$, then (G, C) is not an S-pair.

Proposition 8.20. Assume that the hypotheses of 8.13 are satisfied, and that (G, A) is an S-pair. Define the signature map sgn: $G \rightarrow\{-1,1\}^{J} b y(\operatorname{sgn} x)(i)=$ $(-1)^{\|\sigma\|_{i}}$, where $x=\Pi \sigma, \sigma \in S(A)$. Then sgn is a well defined, group homomorphism of G onto the subgroup F_{J} of $\{-1,1\}^{J}$ that consists of all ψ such that $\psi(i)=1$ for almost all $i \in J$. The kernel of $\mathbf{~ s g n}$ is the commutator subgroup G^{\prime} of G.

Proof. Since (G, A) is an S-pair, the definition of sgn is well posed. Also, sgn is a homomorphism because $\|\sigma \tau\|_{i}=\|\sigma\|_{i}+\|\tau\|_{i}$ for all $\sigma, \tau \in S(A)$, and $i \in J$. If $\psi \in F_{J}$, let $K=\{i \in J: \psi(i)=-1\}$, and select an arbitrary $a_{i} \in A_{i}$ for each $i \in K$. Plainly, if $x=\prod_{i \in K} a_{i}$, then $\operatorname{sgn} x=\psi$. Conversely, it is clear that $\operatorname{sgn} x \in F_{J}$ for all $x \in G$. Hence, F_{J} is the image of $\mathbf{s g n}$. It follows from 8.16.1 and 8.16.2 that the kernel of $\mathbf{s g n}$ is G^{\prime}.

Corollary 8.21. If (G, A) is an S-pair, and $f: G \rightarrow H$ is a surjective homomorphism of groups such that $\operatorname{Ker} f \subseteq G^{\prime}$, then $(H, f(A))$ is an S-pair.

Proof. Since $\operatorname{Ker} f \subseteq G^{\prime}=\operatorname{Ker}(\mathbf{s g n})$, the signature map factors through f, that is, sgn $=h f$ for some homomorphism $h: H \rightarrow F_{J}$. It follows that $f(A) \subseteq$ $I(H)-\{1\}$ and that $f\left(A_{i}\right) \cap f\left(A_{j}\right)=\emptyset$ if $i \neq j$ in J. We conclude from 5.8 that $f(A)=\bigcup_{i \in J} f\left(A_{i}\right)$ is the principal decomposition of $f(A)$. Moreover, if $\sigma \in S(A)$, then $\|f \sigma\|_{i}=\|\sigma\|_{i}$. Consequently, $\Pi f \sigma=\Pi f \tau$ implies $\Pi \sigma \tau^{-1} \in$ $\operatorname{Ker} f \subseteq G^{\prime}$, so that $\|f \sigma\|_{i}=\|\sigma\|_{i} \equiv\|\tau\|_{i}=\|f \tau\|_{i}(\bmod 2)$ for all $i \in J$. Thus, $(H, f(A))$ is an S-pair.

If a pair (G, A) is given satisfying the hypotheses 8.13 , then the criterion 8.16.4 can generally be used to determine whether or not (G, A) is an S-pair. Unfortunately, there is no effective criterion for determining whether G is symmetrically presented by A. The rest of this section is devoted to constructing the group that is symmetrically presented by a symmetric groupoid of the form K_{H}, where H is a 2-divisible abelian group (see 5.23).

Example 8.22 . Let H be an arbitrary abelian group, written multiplicatively. Let $L=\Lambda^{2} H$ be the homogeneous component of degree 2 in the exterior algebra of H. Then L is an abelian group that will also be written multiplicatively. The map $H \times H \rightarrow L$ defined by $(x, y) \rightarrow x \wedge y$ is easily seen to be a
factor set with respect to the trivial action of H on L. Let M be the corresponding extension of L by H. Thus, there is a surjective homomorphism $p: M \rightarrow H$ with Ker $p=L$, and a cross section $\pi: H \rightarrow M$ (satisfying $p \pi=1_{H}$) such that:
(1) each element of M is uniquely represented in the form $\pi(x) l$ with $x \in H$ and $l \in L$;
(2) $\quad(\pi(x) l)(\pi(y) m)=\pi(x y)(x \wedge y) l m,(\pi(x) l)^{-1}=\pi\left(x^{-1}\right) l^{-1}$, and $\pi(1)=1$.

Since $\pi(x y)^{-1} \pi(x) \pi(y)=x \wedge y$, it follows that
(3) $M=\langle\pi(x): x \in H\rangle$.

Define $\theta: M \rightarrow M$ by $\theta(\pi(x) l)=\pi\left(x^{-1}\right) l$. By a routine calculation.
(4) $\theta \in$ Aut $M, \theta^{2}=1_{M}$, and $\left\{w \in M: \theta(w)=w^{-1}\right\}=\{\pi(x): x \in H\}$.

The facts given in (3) and (4) imply that θ can be used to construct a generalized dihedral group over M. Specifically, define G to be the semidirect product
(5) $G=M \times{ }_{\theta}\langle a\rangle=M \cup a M$,
where $a^{2}=1$ and $a w a=\theta(w)$ for all $w \in M$. Denote $A=\{a \pi(x): x \in H\}$. It follows from (3) and (4) that $A<I(G)-\{1\}$ and $\langle A\rangle=G$. In fact,
(6) $(a \pi(x)) \circ(a \pi(y))=a \pi\left(x^{2} y^{-1}\right)$.

Let $D_{H}=H \times{ }_{-1_{H}}\langle a\rangle$ be the generalized dihedral group over H that was defined in 5.23. The projection homomorphism $p: M \rightarrow H$ induces a surjective homomorphism $f: G \rightarrow D_{H}$ by $f\left(a^{i} w\right)=a^{i} p(w)(i=0,1 ; w \in M)$ such that $\operatorname{Ker} f=L$. Since $f(a \pi(x))=a x$, it follows that $f \mid A$ is a groupoid isomorphism to A to K_{H}. A routine calculation shows that if H is not an elementary abelian 2-group, then $C\left(D_{H}\right)=H_{2}$. It follows from 8.5.1 that if H is not an elementary abelian 2group, then
(7) $C(G)=\left\{\pi(x) l: x \in H_{2}, l \in L\right\}$.

In particular, if $I(H)=\{1\}$, then $C(G)=L$. The commutator subgroup of G is easily calculated to be
(8) $G^{\prime}=\left\{\pi(x) l: x \in H^{2}, l \in L^{2}\right\}$.

Let G_{H} denote the group that is symmetrically presented by K_{H}. In more detail, there is an injective mapping $x \rightarrow a(x)$ from H to $I\left(G_{H}\right)$ such that $a(x) \circ a(y)=a\left(x^{2} y^{-1}\right)$ for all x and y in H, and G_{H} is symmetrically presented by $\{a(x): x \in H\}$. By 8.1.2, there is a surjective group homomorphism $g: G_{H} \rightarrow G$ such that $g(a(x))=a \pi(x)$ for all $x \in H$. Consequently, the homomorphism $h=f g: G_{H} \rightarrow D_{H}$ satisfies $h(a(x))=a x$.
(9) Ker $h=\left\{a\left(x_{1}\right) a\left(x_{2}\right) \cdots a\left(x_{2 n}\right): x_{1} x_{3} \cdots x_{2 n-1}=x_{2} x_{4} \cdots x_{2 n}\right\}$. In fact, $h\left(a\left(x_{1}\right) a\left(x_{2}\right)\right.$ $\left.\cdots a\left(x_{r}\right)\right)=a x_{1} x_{2}^{-1} x_{3} \cdots x_{r}$ if r is odd, and $h\left(a\left(x_{1}\right) a\left(x_{2}\right) \cdots a\left(x_{r}\right)\right)=x_{1}^{-1} x_{2} x_{3}^{-1} \cdots x_{r}$ if r is even; (9) follows, since $G_{H}=\langle\{a(x): x \in H\}\rangle$.

For $x, y \in H$, denote $b(x, y)=a(x) a(1) a(y) a(x y)$. By (9), $b(x, y) \in \operatorname{Ker} h$. In particular, $b(x, y) \in C\left(G_{H}\right)$ by 8.5.
(10) $g(b(x, y))=x \wedge y$.

In fact, $g(b(x, y))=a \pi(x) \pi(y) a \pi(x y)=(\pi(x) \pi(y))^{-1} \pi(x y)=x \wedge y$.
(11) $\operatorname{Ker} h=\langle\{b(x, y): x, y \in H\}\rangle$.

Indeed, suppose that $a\left(x_{1}\right) a\left(x_{2}\right) \cdots a\left(x_{2 n}\right) \in \operatorname{Ker} h$, with $x_{1} x_{3} \cdots x_{2 n-1}=x_{2} x_{4} \cdots x_{2 n}$ $(n \geq 2)$ in accordance with (8). Then $a\left(x_{1}\right) a\left(x_{2}\right) \cdots a\left(x_{2 n}\right)=b\left(x_{1}, x_{2}^{-1}\right) b\left(x_{1} x_{2}^{-1}, x_{3}\right)$ $a\left(x_{1} x_{2}^{-1} x_{3}\right) a\left(x_{4}\right) \cdots a\left(x_{2 n}\right)$, and $\left(x_{1} x_{2}^{-1} x_{3}\right) x_{5} \cdots x_{2 n-1}=x_{4} x_{6} \cdots x_{2 n}$. Thus, (11) follows by induction on n.

We now develop some properties of the mapping $b: H \times H \rightarrow C\left(G_{H}\right)$. Let x, y, and z be any elements of H.
(12) $\quad b(x, y)=b(y, x)^{-1}$.

In fact, $b(x, y) b(y, x)=a(x) a(1) a(y) b(y, x) a(x y)=a(x) a(1) a(y) a(y) a(1) a(x) a(x y) a(x y)$ $=1$.
(13) $b(1, x)=b(x, 1)=1$.
(14) $b(x, y)=b\left(x, x^{-1} y\right)=b\left(x y^{-1}, y\right)$.

Since $a(x) \circ a(y)=a\left(x^{2} y^{-1}\right)$, we have $a(y) a(x y) a(x)=a\left(x^{-1} y\right)$, so that $b(x, y)=$ $a(x) a(1) a(y) a(x y)=a(x) a(1) a\left(x^{-1} y\right) a(y)=b\left(x, x^{-1} y\right)$. Also, $b(x, y)=b\left(x y^{-1}, y\right)$ by (12).
(15) $b(z x, y) b(z y, x)=b(z, x) b(z, y)$.

Indeed, $b(z x, y) b(z y, x)=a(z x) a(y) a(1) b(z y, x) a(z x y)=a(z x) a(1) a(y) a(z y) a(1) a(x)$ $=a(z x) a(z) a(z) a(1) a(y) a(z y) a(1) a(x)=a(z x) a(z) b(z, y) a(1) a(x)=b(x, z)^{-1} b(z, y)=$ $b(z, x) b(z, y)$ by (12).
(16) $b\left(x^{2}, y\right)=b(x, y)^{2}=b\left(x, y^{2}\right)$.

By (13), (14), and (15), $b(x, y)=b(x, y) b\left(x, x^{-1} x\right)=b(x, y) b(x, x)=b\left(x^{2}, y\right) b(x y, x)$ $=b\left(x^{2}, y\right) b(y, x)$, so that (16) follows from (12).
(17) $b(x y, z)^{2}=b(x, z)^{2} b(y, z)^{2}$.

By (15), $b(x y, z) b(x z, y)=b(x, y) b(x, z)$ and $b(x y, z) b(y z, x)=b(y, x) b(y, z)$. Multiplying these equalities, and using (12) and (15) gives $b(x, z) b(y, z)=$ $b(x y, z)^{2} b(x z, y) b(y z, x)=b(x y, z)^{2} b(z, x) b(z, y)$. Thus, (17) follows, using (12).

It follows from (16) and (17) that if the group H is 2-divisible (that is, $\left.H^{2}=H\right)$, then $b(x y, z)=b(x, z) b(y, z)$ for all x, y, and z in H. Thus, by (12), b is an alternating bilinear mapping from $H \times H$ to $C\left(G_{H}\right)$. The universal property of $\Lambda^{2} H$ then implies that there is a group homomorphism $k: \Lambda^{2} H \rightarrow C\left(G_{H}\right)$ such that $k(x \wedge y)=b(x, y)$ for all $x, y \in H$. It follows from (10) that k is the inverse of $g \mid C\left(G_{H}\right)$. Summarizing: if H is a 2-divisible abelian group, then the center $C\left(G_{H}\right)$ of the group G_{H} that is symmetrically presented by K_{H} is isomorphic to $\Lambda^{2} H$; moreover, G_{H} is isomorphic to the group G whose construction was described above (since $\operatorname{Ker} g=\{1\}$ by 8.5).

University of Arizona

References

[1] H.S.M. Coxeter: Discrete groups generated by reflections, Ann. of Math. 35 (1934), 588-621.
[2] S. Doro: The algebraic structure of symmetric spaces, to appear.
[3] G. Glauberman: On loops of odd order, J. Algebra 1 (1964), 374-396.
[4] M. Kano, H. Nagao, and N. Nobusawa: On finite homogeneous symmetric sets, Osaka J. Math. 13 (1976), 399-406.
[5] N. Nobusawa: On symmetric structure of a finite set, Osaka J. Math. 11 (1974), 569-575.
[6] N. Nobusawa: Simple symmetric sets and simple groups, Osaka J. Math. 16 (1979)
[7] O. Ore: Theory of graphs, Providence, 1962.
[8] R.S. Pierce: Symmetric groupoids, Osaka J. Math. 15 (1978), 51-76.
[9] W.R. Scott: Group theory, Englewood Cliffs, 1964.

[^0]: * Supported in part by NSF Grant MCS76-06632

