element over k:

SOLUTIONS OF AN ALGEBRAIC DIFFERENTIAL EQUATION OF THE FIRST ORDER IN A LIOUVILLIAN EXTENSION OF THE COEFFICIENT FIELD

Shūji ŌTSUBO

(Received November 30, 1977)

- **0.** Introduction. Let k be an algebraically closed ordinary differential field of characteristic 0, and Ω be a universal extension of k. An element ξ of Ω will be called a weakly liouvillian element over k if there exists such an extending chain $L_0 \subset L_1 \subset \cdots \subset L_n$ of differential subfields of Ω that satisfies the following condition:
- (i) $L_0=k$, $L_n \ni \xi$; for each $i(0 \le i < n)$ we have $L_{i+1}=L_i(t_i)$, where either $t_i' \in L_i$, $t_i' | t_i \in L_i$ or t_i is algebraic over L_i . If in addition the following condition is satisfied, then ξ is called a *liouvillian*
 - (ii) The field of constants of L_n is the same as that of k.

Let F be an algebraically irreducible element of the differential polynomial algebra $k\{y\}$ of the first order. Then, by a theorem due to Kolchin ([1], p. 928) we can prove the following proposition (cf. [1]; Proof of Theorem 3, pp. 930–931):

Suppose that there exists a nonsingular solution of F=0 which is a weakly liouvillian element over k. Then, there exists a nonsingular solution of F=0 which is a liouvillian element over k.

Let y be a generic point of the general solution of F=0 in Ω over k. Then, y is transcendental over k, and k(y,y') is a one-dimensional algebraic function field over k being a differential subfield of Ω . Let K denote k(y,y') and P be a prime divisor of K. Then, the completion K_P of K with respect to P is a differential extension of K and the differentiation gives a continuous mapping from K_P to itself (cf. Rosenlicht[4]). Let τ_1 , τ_2 be two prime elements in P. Then, $\nu_P(\tau_1') \leq 0$ if and only if $\nu_P(\tau_2') \leq 0$.

Theorem. Assume that $\nu_P(\tau') \leq 0$ for each P, where τ is a prime element in P. Then, any solution of F=0 which is a weakly liouvillian element over k is contained in k.

It does not depend on the choice of a generic point y whether our assump-

290 S. Ōтsubo

tion is satisfied or not.

In the section 2 we shall give two examples of F=0 to which our Theorem can be applied with success. As a particular case of the first example, we shall obtain the following:

Corollary. Suppose that every element of k is constant. Then, any non-singular solution of

$$(y')^2 = (y-a_1)\cdots(y-a_{2m+1}), \quad a_i \in k(1 \le i \le 2m+1)$$

is not a weakly liouvillian element over k; here we assume that $a_i \neq a_i (i \neq j)$ and $m \geq 1$.

REMARK 1. By the valuation theory Rosenlicht [5] obtained a criterion for an algebraic differential equation of order n to have a solution in a liouvillian extension of the coefficient field, and proved our Corollary in the special case where m=1.

REMARK 2. Liouville ([2], pp. 536-539) stated the following theorem: Suppose that f is an algebraic function of x, y and that $f_x f_y \neq 0$. Then, any solution of a transcendental equation $\log y = f(x, y)$ is not an elementary transcendental function of x unless it is constant. Our Theorem can not be applied to prove this theorem of Liouville, a differential-algebraic proof of which can be derived from the results obtained by Rosenlicht [4]. In the special case where f = y/x, an elementary proof was given by Matsuda [3].

The author wishes to express his sincere gratitude to Dr. M. Matsuda who presented this problem and gave kind advices, and to Mr. K. Nishioka for fruitful discussions with him.

- 1. **Proof of Theorem.** Let Λ be the set of all solutions of F=0 that are not contained in k, and Γ be the set of all elements ξ of Λ such that there exists an extending chain $H_0 \subset H_1 \subset \cdots \subset H_m$ of differential subfields of Ω which satisfies the following two conditions:
 - (iii) $H_0=k, H_m\ni \xi;$
- (iv) for each $i(0 \le i < m)$, H_{i+1} is the algebraic closure of $H_i(t_i)$; here t_i is transcendental over H_i , and either $t_i' \in H_i$ or $t_i'/t_i \in H_i$.

Suppose that there exists in Λ a weakly liouvillian element over k. Then, Γ is not empty. To each element ξ of Γ we can correspond a positive integer $n(\xi)$ which satisfies the following two conditions:

- (v) There exists a chain $H_0 \subset \cdots \subset H_{n(\xi)}$ which satisfies the two conditions (iii) and (iv) with $m=n(\xi)$;
- (vi) for any chain $I_0 \subset \cdots \subset I_m$ satisfying the two conditions (iii) and (iv) with $H_i = I_i$ we have $m \ge n(\xi)$.

Take an element η of Γ such that

(1)
$$n(\eta) = \min \{n(\xi); \xi \in \Gamma\},$$

and let $H_0 \subset \cdots \subset H_{n(\eta)}$ be a chain which satisfies the two conditions (iii), (iv) with $\xi = \eta$ and $m = n(\eta)$. For convenience we represent $n(\eta)$ by m, H_{m-1} by N and t_{m-1} by t. Then, η is a transcendental element over N satisfying F = 0. The equation is algebraically irreducible over N, since it is so over an algebraically closed field k. Let M_1 and M_2 denote $N(\eta, \eta')$ and $N(\eta, \eta', t)$ respectively. They are one-dimensional algebraic function fields over N, being differential subfields of H_m . Since t is transcendental over N, there exists a prime divisor Q of M_2 such that $\nu_Q(t) < 0$. Restricting ν_Q to M_1 we have a valuation of M_1 over N belonging to a certain prime divisor S of M_1 , because M_2 is an algebraic extension of M_1 of finite degree. The completion N_2 of M_2 with respect to Q is a differential extension field of the completion N_1 of M_1 with respect to S. We have $t = \rho^{-d}$ for a prime element ρ in Q, where d > 0. Let σ be a prime element in S. Then, in N_2 we have

$$\sigma = a_0 \rho^e + a_1 \rho^{e+1} + \cdots \qquad (a_0 \neq 0);$$

here $a_i \in N(i \ge 0)$ and e > 0. Hence, $\nu_S(\sigma') > 0$ if $\nu_Q(\rho') > 0$. Let us prove that $\nu_Q(\rho') > 0$. First suppose that t' = b and $b \in N$. Then,

$$b = -d\rho' \rho^{-d-1}$$
.

Secondly suppose that t'/t=c and $c \in \mathbb{N}$. Then,

$$c\rho^{\scriptscriptstyle -d} = -d\rho'\rho^{\scriptscriptstyle -d-1}\,.$$

In any case we have $\nu_{\varrho}(\rho')>0$. Therefore, $\nu_{\varsigma}(\sigma')>0$. We shall show that it leads us to a contradiction.

First suppose that $\nu_s(\eta) < 0$. Then, restricting ν_s to $k(\eta, \eta')$ we have a normalized valuation of $k(\eta, \eta')$ over k belonging to a certain prime divisor P of $k(\eta, \eta')$, since k is algebraically closed. The completion of $k(\eta, \eta')$ with respect to P is a differential subfield of N_1 . A prime element τ in P is a prime element in S. By our assumption, $\nu_s(\tau') \leq 0$. This is a contradiction. Secondly suppose that $\nu_s(\eta-\alpha)>0$ with an element α of k. Then, we also meet a contradiction. Lastly suppose that $\nu_s(\eta-\beta)>0$ with an element β of N which is not contained in k. Then, by a theorem of Rosenlicht [5], β is a solution of F=0: In fact, we have

$$\eta = \beta + b_1 \sigma + b_2 \sigma^2 + \cdots$$
 $(b_i \in N, i \ge 1)$

in N_1 and

$$\eta'=eta'+(b_1'\sigma+b_2'\sigma^2+\cdots)+\sigma'(b_1+2b_2\sigma+\cdots)$$
 .

Because of $\nu_s(\sigma')>0$, $\nu_s(\eta'-\beta')>0$. Hence, $F(\beta,\beta')=0$. Since $\beta \in \mathbb{N}$, β

292 S. Ōtsubo

is an element of Γ and $n(\beta) < n(\eta)$. This inequality contradicts the assumption (1). Therefore, there does not exist in Λ any weakly liouvillian element over k.

2. Examples. Let k_0 be an algebraically closed field of characteristic 0. We set c'=0 for all elements c of k_0 .

EXAMPLE 1. Let us assume that $k=k_0$ and

$$F(y, y') = G(y, y')y'^{m} + H(y),$$

where m>0, $G\in k[y,y']$, $H\in k[y]$. We set on F the following conditions:

- (vii) H has only simple roots;
- (viii) $\deg_{v'} G < m$ and $\deg_{v} G < \deg_{v} H$;
- (ix) $G(a, y') \neq 0$ for any root a of H_{\bullet}

Then, F is algebraically irreducible. Let us set on F one more condition:

(x) m>1 and $m+\deg_{y,y'}G<\deg_y H$.

We prove that the assumption of our Theorem is satisfied by F. First suppose that $\nu_P(y) < 0$. Then, $y = \tau^{-e}$ with e > 0. If $\nu_P(\tau') > 0$, then $\nu_P(y') \ge -e$ and

$$\nu_P(Gy'^m) \ge -e(m + \deg_{y,y'} G) > -e \cdot \deg_y H = \nu_P(H)$$
.

Secondly suppose that $\nu_P(y-a)>0$ for some root a of H. Then, $y=a+\tau^e$ with e>0. If $\nu_P(\tau')>0$, then $\nu_P(y')\geq e$ and

$$\nu_P(Gy'^m) \geq em > e = \nu_P(H)$$
.

Lastly suppose that $\nu_P(y-b)>0$ with an element b of k different from any root of H. If $\nu_P(\tau')>0$, then $\nu_P(y')\geq 1$ and

$$\nu_P(Gy'^m) \geq m > 0 = \nu_P(H)$$
.

In any case we meet a contradiction if it is assumed that $\nu_P(\tau')>0$. Since

$$\partial F/\partial y' = y'^{m-1}(mG+y'\partial G/\partial y')$$
,

any nonsingular solution of F=0 is not a constant. Hence, by our Theorem, any nonsingular solution of F=0 is not a weakly liouvillian element over k.

EXAMPLE 2. Let us assume that k is the algebraic closure of the one-dimensional rational function field $k_0(x)$ over k_0 with x'=1, and that

$$F(y, y') = xy' - y(1-y)^n - x, n > 0.$$

Then, it can be proved that any element of k does not satisfy F=0. We show that the assumption of our Theorem is satisfied by F. First suppose that $\nu_P(y) < 0$. Then, we have $y=\tau^{-1}$ and

$$\tau' = -\tau^{1-n}(\tau-1)^n/x-\tau^2$$
.

Hence, $\nu_P(\tau')=1-n\leq 0$. Secondly suppose that $\nu_P(y-a)>0$ with an element a of k. Then, $y=a+\tau$. Since a can not be a solution of F=0, we have $\nu_P(\tau')\leq 0$. Hence, by our Theorem, any solution of F=0 is not a weakly liouvillian element over k.

OSAKA UNIVERSITY

Bibiography

- [1] E. R. Kolchin: Existence theorems connected with the Picard-Vessiot theory of homogeneous linear ordinary differential equations, Bull. Amer. Math. Soc. 54 (1948), 927-932.
- [2] J. Liouville: Suite du memoire sur la classification des transcendantes, et sur l'impossibilité d'éxprimer les racines de certaines équation en fonction finie explicite des coefficients, J. Math. Pures Appl. 3 (1838), 523-546.
- [3] M. Matsuda: Liouville's theorem on a transcendental equation log y=y/x, J. Math. Kyoto Univ. 16 (1976), 545-554.
- [4] M. Rosenlicht: On the explicit solvability of certain transcendental equations, Publ. Math. Inst. HES. 36 (1969), 15-22.
- [5] ——: An analogue of L'Hospital's rule, Proc. Amer. Math. Soc. 37 (1973), 369-373.