Otsubo, S. Osaka J. Math. 16 (1979), 289-293

SOLUTIONS OF AN ALGEBRAIC DIFFERENTIAL EQUATION OF THE FIRST ORDER IN A LIOUVILLIAN EXTENSION OF THE COEFFICIENT FIELD

SHŪJI **OTSUBO**

(Received November 30, 1977)

0. Introduction. Let *k* be an algebraically closed ordinary differential field of characteristic 0, and Ω be a universal extension of k. An element of Ω will be called a *weakly liouvillίan element* over *k* if there exists such an ex tending chain $L_0 \subset L_1 \subset \cdots \subset L_n$ of differential subfields of Ω that satisfies the following condition:

(i) $L_0 = k$, $L_n \Rightarrow \xi$; for each $i(0 \leq i < n)$ we have $L_{i+1} = L_i(t_i)$, where either $t_i \in L_i$, $t_i/t_i \in L_i$ or t_i is algebraic over L_i .

If in addition the following condition is satisfied, then *ξ* is called a *liouvillian element* over *k:*

(ii) The field of constants of L_n is the same as that of k .

Let F be an algebraically irreducible element of the differential polynomial algebra $k\{y\}$ of the first order. Then, by a theorem due to Kolchin ([1], p. 928) we can prove the following proposition (cf. [1]; Proof of Theorem 3, pp. 930– 931):

Suppose that there exists a nonsingular solution of $F=0$ which is a weakly liouvillian element over k. Then, there exists a nonsingular solution of $F=0$ which is a liouvillian element over *k.*

Let y be a generic point of the general solution of $F=0$ in Ω over k. Then, *y* is transcendental over *k*, and $k(y, y')$ is a one-dimensional algebraic function field over *k* being a differential subfield of Ω . Let *K* denote *k*(y, y') and *P* be a prime divisor of K . Then, the completion K_P of K with respect to P is a dif ferential extension of *K* and the differentiation gives a continuous mapping from K_p to itself (cf. Rosenlicht[4]). Let τ_1 , τ_2 be two prime elements in *P*. Then, $\nu_p(\tau'_1) \leq 0$ if and only if $\nu_p(\tau'_2) \leq 0$.

Theorem. Assume that $\nu_P(\tau') \leq 0$ for each P, where τ is a prime element *in* P. Then, any solution of $F=0$ which is a weakly liouvillian element over k *is contained in k.*

It does not depend on the choice of a generic point *y* whether our assump

290 S. OTSUBO

tion is satisfied or not.

In the section 2 we shall give two examples of *F=0* to which our Theorem can be applied with success. As a particular case of the first example, we shall obtain the following:

Corollary. *Suppose that every element of k is constant. Then, any nonsingular solution of*

$$
(y')^2 = (y-a_1)\cdots(y-a_{2m+1}), \quad a_i \in k(1 \leq i \leq 2m+1)
$$

is not a weakly liouvillian element over k ; here we assume that $a_i \! \neq \! a_j(i)$

REMARK 1. By the valuation theory Rosenlicht [5] obtained a criterion for an algebraic differential equation of order *n* to have a solution in a liouvillian extension of the coefficient field, and proved our Corollary in the special case where $m=1$.

REMARK 2. Liouville ([2], pp. 536-539) stated the following theorem: Suppose that f is an algebraic function of x, y and that $f_x f_y = 0$. Then, any solution of a transcendental equation $\log y = f(x, y)$ is not an elementary tran scendental function of *x* unless it is constant. Our Theorem can not be applied to prove this theorem of Liouville, a differential-algebraic proof of which can be derived from the results obtained by Rosenlicht [4]. In the special case where $f=y/x$, an elementary proof was given by Matsuda [3].

The author wishes to express his sincere gratitude to Dr. M. Matsuda who presented this problem and gave kind advices, and to Mr. K. Nishioka for fruitful discussions with him.

1. Proof of Theorem. Let Λ be the set of all solutions of *F—Q* that are not contained in k, and Γ be the set of all elements ξ of Λ such that there exists an extending chain $H_0{\subset} H_1{\subset}\cdots{\subset} H_m$ of differential subfields of Ω which satisfies the following two conditions:

(iii) $H_0=$ *k*, H_m ∋ξ;

(iv) for each $i(0 \le i < m)$, H_{i+1} is the algebraic closure of $H_i(t_i)$; here t_i is transcendental over H_i , and either $t_i' \in H_i$ or $t_i'/t_i \in H_i$.

Suppose that there exists in Λ a weakly liouvillian element over *k.* Then, is not empty. To each element *ξ* of Γ we can correspond a positive in teger *n(ξ)* which satisfies the following two conditions:

(v) There exists a chain $H_0 \subset \cdots \subset H_{n(k)}$ which satisfies the two conditions (iii) and (iv) with $m=n(\xi)$;

(vi) for any chain $I_0 \subset \cdots \subset I_m$ satisfying the two conditions (iii) and (iv) with $H_i = I_i$, we have $m \ge n(\xi)$.

Take an element *η* of Γ such that

SOLUTIONS OF AN ALGEBRAIC DIFFERENTIAL EQUATION 291

(1)
$$
n(\eta) = \min \{n(\xi); \xi \in \Gamma\},
$$

and let $H_0 \subset \cdots \subset H_{n(\eta)}$ be a chain which satisfies the two conditions (iii), (iv) with $\xi = \eta$ and $m=n(\eta)$. For convenience we represent $n(\eta)$ by m , H_{m-1} by N and t_{m-1} by t . Then, η is a transcendental element over N satisfying $F=0$. The equation is algebraically irreducible over *N,* since it is so over an algebrai cally closed field $k.$ Let M_{1} and M_{2} denote $N(\eta, \eta')$ and $N(\eta, \eta', t)$ respectively. They are one-dimensional algebraic function fields over *N,* being differential subfields of *H^m .* Since *ΐ* is transcendental over *N,* there exists a prime divisor Q of M ₂ such that $\nu_{\mathcal{Q}}(t)$ <0. Restricting $\nu_{\mathcal{Q}}$ to M ₁ we have a valuation of M ₁ over N belonging to a certain prime divisor S of M_1 , because M_2 is an algebraic extension of M_1 of finite degree. The completion N_2 of M_2 with respect to Q is a differential extension field of the completion N_1 of M_1 with respect to S . We have $t = \rho^{-d}$ for a prime element ρ in O, where $d > 0$. Let σ be a prime element in *S.* Then, in *N²* we have

$$
\sigma = a_0 \rho^e + a_1 \rho^{e+1} + \cdots \qquad (a_0 \pm 0);
$$

here $a_i \in N(i \ge 0)$ and $e > 0$. Hence, $\nu_s(\sigma') > 0$ if $\nu_q(\rho') > 0$. Let us prove that $\nu_{\varrho}(\rho') > 0$. First suppose that $t' = b$ and $b \in N$. Then,

.

$$
b=-d\rho'\rho^{-d-1}
$$

Secondly suppose that $t'/t = c$ and $c \in N$. Then,

$$
c\rho^{-d}=-d\rho'\rho^{-d-1}.
$$

In any case we have $\nu_{\mathcal{Q}}(\rho'){>}0$. Therefore, $\nu_{\mathcal{S}}(\sigma'){>}0$. We shall show that it leads us to a contradiction.

First suppose that $\nu_s(\eta) < 0$. Then, restricting ν_s to $k(\eta, \eta')$ we have a normalized valuation of *k(η, η')* over *k* belonging to a certain prime divisor *P* of $k(\eta, \eta')$, since k is algebraically closed. The completion of $k(\eta, \eta')$ with respect to P is a differential subfield of N_1 . A prime element τ in P is a prime element in S. By our assumption, $\nu_s(\tau'){\leq}0$. This is a contradiction. Secondly suppose that $\nu_s (\eta - \alpha) {>} 0$ with an element α of $k.$ Then, we also meet a con tradiction. Lastly suppose that *v^s (η—β)>0* with an element *β* of *N* which is not contained in k. Then, by a theorem of Rosenlicht [5], β is a solution of *F=0:* In fact, we have

$$
\eta = \beta + b_1 \sigma + b_2 \sigma^2 + \cdots \qquad (b_i \in N, i \geq 1)
$$

in N_1 and

$$
\gamma'=\beta'+(b'_1\sigma+b'_2\sigma^2{+}\cdots){+}\sigma'(b_1{+}2b_2\sigma{+}\cdots)\,.
$$

Because of $\nu_s(\sigma') > 0$, $\nu_s(\eta' - \beta') > 0$. Hence, $F(\beta, \beta') = 0$. Since $\beta \in N$, β

is an element of Γ and $n(\beta) < n(\eta)$. This inequality contradicts the assumption (1). Therefore, there does not exist in Λ any weakly liouvillian element over k .

2. Examples. Let k_0 be an algebraically closed field of characteristic 0 . We set $c' = 0$ for all elements c of k_0 .

EXAMPLE 1. Let us assume that $k=k_0$ and

$$
F(y, y') = G(y, y')y'''' + H(y),
$$

where $m>0$, $G \in k[y, y']$, $H \in k[y]$. We set on *F* the following conditions:

- (vii) *H* has only simple roots;
- (viii) deg_{*v*} G < *m* and deg_{*v*} G < deg_{*y}* H ;</sub>
- (ix) $G(a, y') \neq 0$ for any root *a* of *H*.

Then, *F* is algebraically irreducible. Let us set on *F* one more condition:

$$
(x) \quad m>1 \text{ and } m+\deg_{y,y'} G < \deg_y H.
$$

We prove that the assumption of our Theorem is satisfied by *F.* First suppose that $\nu_P(y) < 0$. Then, $y = \tau^{-e}$ with $e > 0$. If $\nu_P(\tau') > 0$, then $\nu_P(y') \ge -e$ and

$$
\nu_P(Gy^{m})\geq -e(m+\deg_{y,y'}G) > -e\cdot \deg_y H = \nu_P(H)
$$

Secondly suppose that $\nu_P(y-a) > 0$ for some root a of H. Then, $y=a+\tau^e$ with $e > 0$. If $\nu_P(\tau') > 0$, then $\nu_P(y') \geq e$ and

$$
\nu_P (G {y'}^m)\!\ge\! e m\!>\! e=\nu_P(H)\ .
$$

Lastly suppose that $\nu_P(y-b) > 0$ with an element b of k different from any root of *H*. If $\nu_p(\tau') > 0$, then $\nu_p(y') \ge 1$ and

$$
\nu_P(Gy''')\geqq\!m\!>\!0=\nu_P(H)\,.
$$

In any case we meet a contradiction if it is assumed that $\nu_p(\tau')>0$. Since

$$
\partial F/\partial y' = y'^{m-1}(mG + y'\partial G/\partial y'),
$$

any nonsingular solution of $F=0$ is not a constant. Hence, by our Theorem, any nonsingular solution of $F=0$ is not a weakly liouvillian element over k.

EXAMPLE 2. Let us assume that k is the algebraic closure of the onedimensional rational function field $k_0(x)$ over k_0 with $x'=1$, and that

$$
F(y, y') = xy' - y(1-y)^{n} - x, \; n > 0.
$$

Then, it can be proved that any element of k does not satisfy $F=0$. We show that the assumption of our Theorem is satisfied by *F.* First suppose that $\nu_P(y)$ < 0. Then, we have $y = \tau^{-1}$ and

$$
\tau' = -\tau^{1-n}(\tau-1)^n/x - \tau^2.
$$

Hence, $\nu_P(\tau') = 1 - n \leq 0$. Secondly suppose that $\nu_P(y-a) > 0$ with an element *a* of *k*. Then, $y = a + \tau$. Since *a* can not be a solution of $F = 0$, we have $\nu_P(\tau') \leq 0$. Hence, by our Theorem, any solution of $F=0$ is not a weakly liouvillian element over *k.*

OSAKA UNIVERSITY

Bibiography

- [1] E. R. Kolchin: *Existence theorems connected with the Picard-Vessiot theory of homogeneous linear ordinary differential equations,* Bull. Amer. Math. Soc. 54 (1948), 927-932.
- [2] J. Liouville: *Suite du memoire sur la classification des transcendantes, et sur Vimpos*sibilité d'éxprimer les racines de certaines équation en fonction finie explicite des coeffi*cients,* J. Math. Pures Appl. 3 (1838), 523-546.
- [3] M. Matsuda: *Liouville's theorem on a transcendental equation* $\log y = y/x$, J. Math. Kyoto Univ. 16 (1976), 545-554.
- [4] M. Rosenlicht: *On the explicit solvability of certain transcendental equations,* Publ. Math. Inst. HES. 36 (1969), 15-22.
- [5] -----: An analogue of L'Hospital's rule, Proc. Amer. Math. Soc. 37 (1973), 369-373.