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MIXED PROBLEMS FOR THE WAVE EQUATION IN
A QUARTER SPACE WITH A FIRST ORDER
BOUNDARY CONDITION
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Introduction

Let us consider the mixed problem

DuE(D§~D§—"Z: Dl u=f(x,y,1) in R.x(0,co),

Bu = (D,,+"§ b,(5y, )D,,+by(y, Dy +c(y, 1))l 1—
(0.1) \ =g(?) on R*x(0, ),
Dul;g = uy(x,y) on RY,

lg = uy(x,y) on R,

i% p——i0
o ot Ox
R.)". We say that (0.1) is C~ well-posed when there exists a unique solution
u(x,,t) in C*(R%x R.) for any (f, g, u, u) EC™(RL X RL)x C=(R" X RY)
x C=(R%)x C=(R%) satisfying the compatibility condition of infinite order and
it has a finite propagation speed.

When the coefficients of B are all constant, by Sakamoto [9] we know a
necessary and sufficient condition for C* well-posedness. Agemi and Shirota
[2] studied the mixed problem (0.1) precisely when n=2, ¢=0 and b, is real
constant. Tsuji [12, 13] treats the case where b, -+,b,_,, ¢ are variable and &, ---,
b,., real-valued. Ikawa [3,4,5] investigates the C= well-posedness in other
domains than a half space.

In the present paper we shall study a sufficient condition for the mixed
problem (0.1) to be C~ well-posed and measure the propagation speed when
bo(y, 8), **+, b,_(v, t) are real-valued. TFurthermore, we shall give a necessary
condition for the C= well-posedness when b&y(y, t), ---, b,_(y, %) are not all

real-valued.
Let by(v,t) and 0'(y,2)=(by(,1), -+, b,-,(y,t)) be real-valued. Then, we have

where D,=— y oo and by(y, t), =+, b,_1(y, 1), c(y, ) EB(R* ' X

D BoM)={h(z)EC7M); |hln= 3 IDEh(z)| <eo for m=0,1,}.
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Theorem 1. If sup by(v,1)<1, then (0,1) is C* well-posed®. Its propa-

,HeRm 1 xRy
gation speed is equal to

_ L ¥y, ”
= su >1)
Ny e T O JERVA T o T Xy =

if A={(y, 0): —6(p, )| <by(y, 1)} & ¢, and equal to 1 if A=¢.

z)max

This theorem will be proved in §1. From Miyatake [7] it follows that
(0.1) is L? well-posed if and only if ,<— |¥’| (i.e., A=¢). Therefore, in the
above theorem, the propagation speed is equal to one only when (0.1) is L?
well-posed. We remark that if >3 and &y(y,, 0)=1 for some y, the problem
(0.1) is not C= well-posed (cf. Remark 3.1 and the proof of Theorem 2).

Next, let us consider the case where b,(y,?) is complex-valued. In general,
it is expected that the condition for C~ well-posedness is weaker than that for
L? well-posedness. It is true when every b, is real. However, when =3 and
by, +++, b,_, are not all real, there is little gap between both. Set

n—-1 7]
o = _bo(y: t)+12=—-;i bj(y’ t)|_,7]T s

B= b3 )-S5 b0 (0.

Then, Miyatake [7,8] has shown that (0.1) is L? well-posed if and only if the
following condition (0.2) is satisfied for all (y, t) and 70 (see also Agemi [1]):

2Rea  Im(aP)
[1] I:Im(aﬁ) 2Reaj|
[II] 1+(Im a)(Im B)>0 if [Rea|+|ReB| =0.

>0 if |Rea|+ |ReB|=0,

(0.2)

Theorem 2. Let n=3, and assume that (0.2) is violated at (y,t)=(y, 0),
n=2" and that by(y,, 0), --+, b,-1(y,, 0) are not all real. Furthermore, only when
bo(¥e, 0), =+, b,_1(v,, 0) are all purely imaginary, we assume

(0.3) 1 23 8,90 OF — iy, O 0.

Then the problem (0.1) is not C* well-posed.

2 Theorem 1 is valid also in the case where the initial condition is posed on ¢==to (for any t,ER).

3 This statement implies as follows: The propagation speed is not only less than vmax, but
also for any v satisfying 0<wv<wvmax there exist (xq, ¥o, fo), 0 (>0) and u(x, y, t) such that
u(x0, Yo, to) is not equal to zero although [ Ju=0 on C,, Bu=0 on C,|,=¢ and u=Du=0 on
Coli=ty-8 (Co=1{(x, 3, 1): (t—to)v+ | (x—nx0, y—10)| S0, £ =0, to—0=t=10}).

 If (0.2) is violated at (y,#)=(¥0, o), the prob'em whose initial condition is posed on t=t, is
not C* well-posed.
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In §3, we show that the Lopatinski condition is not satisfied at (x,y,#)=
(0, ¥4, 0), and prave Theorem 2 by applying the methods of Kajitani [6]; i.e.,
assuming that (0.1) is C~ well-posed, we construct an appropriate asymptotic
solution of (0.1) violating an inequality to be satisfied. Let us note that Theorem
2 and its proof are valid also when the problem (0.1) is considered in other ge-
neral domains than a half space.

In the previous note [11] we have explained only Theorem 1 together

with an outline of the proof.
The author wishes to express his sincere gratitude to Professor M. Ikawa
for his many suggestions and much advice, and to Mr. N. Kohigashi for his

kind indication.

1. Reduction to the equation on the boundary
In this section, to prove Theorem 1 we shall reduce the problem (0.1) to
the equation on the boundary. Namely, consider the Dirichlet problem
{[jw(x,y, t)=0 in RLXR',
w|,o=h(y,t) on R*"'XR',
and set

Th = Bw ;

then the original problem can be reduced to the equation Th=g. Tsuji [13]
also studies the same subject as in Theorem 1 by similar methods. But it seems
for the author that his discussion (corresponding to Lemma 2.3 of our paper)
is not complete.

At first, let us give several comments concerning the propagation speed.

For a constant >0 and a point (%, y,, £,) € R" X R}, set
C,=C (%, Yo, to) = {(x, ¥, 1): (t—t)v+ {(x——xo)2+ | y—ol% 20} .

Fix (x9,¥0 1,) and let us have a positive constant v such that for any small con-
stant § (>0)

(1.1) u(x, y,t) =0 on C,N {0<t,—1<8§, x>0}
if ue C=(R" x R}) satisfies

(1.2) Bu=0 onC,N{0<t,—2t<§, x =0},
' (Dtullxl(r& =0 onC,N{t=1t—8 x>0},
Ulioy-s =0 onC,N {t =t,—8, x>0} .

{Duz 0 onC,N{0<t,—1t<§, x>0},

We call the infimum of the above v the propagation speed at (x, ¥y, £,). Fur-
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thermore, the supremum of this speed on whole R% X R} is named the propa-
gation speed of (0.1). Obviously, if v="‘the propagation speed of (0.1), (1.1)
follows from (1.2) for all x,=0, y,& R"*, t,>0 and 0=8<¢,.

Consider the equation (in )

(1.3) ~VI=NH1¥(y, t) [N +b(y, 1) = 0

under the assumptions of Theorem 1. Then, if — [¥/(y, t)| by, t), this has
a positive root

—boy, 1) 15 (y, F(y, )" —by(y, ty+1
i, ) = DO LY T DB T o

(note that Ap=1 only if — |¥"| =b,), and if — |&'(y,t)| >by(y,1), it has no real root.
Set Ay(y, )=1 in the latter case. Then the latter half of Theorem 1 implies that
the propagation speed of (0.1) is equal to  sup  Ag(y, )%

0,ER"TIXRY,
From now on, let us prove that if the assumptions of Theorem 1 are satisfied
(0.1) is C= well-posed and has a finite propagation speed less than  sup

o,0ERTIXRY,
Ao(y, £)7t. We know well the following proposition:

Proposition 1.1. For any (f',u}, ut)cC=(R"x R})x C*(R")x C*(R")
there exists a umique solution '(x,y,t) of the following Cauchy problem in
C=(R"X R}):

Cuw'(x,y, t) = f'(x,y,1) in R"X R,
D],y =ui(x,y) on R",
W =g = uf(x, ) on R".
Furthermore, this problem has a finite propagation speed, which equals one.

By this proposition it suffices to investigate (0.1) only in the case u,=u,=0
and f=0. Then, the compatibility condition of infinite order implies that
every Dig(y, +0) (=0, 1, 2, --+) equals zero.

We assume that b(2)=(6y(%), -+, b,-,(2)) and ¢(2) (z=(y, t)) are constant
when |z]| is large. 'This assumption will be used to prove Lemma 2.3 in §2.
The general case is reduced to this case. In fact, let {X;(2)},.,.., .. be a parti-
tion of unity on R" such that 0=<X;<1 and supp[X;]C {j—1<|z| <j+1}, and

N —
set ay(2)=23X,(2). Tix (xg, ¥o, 1)) E R’ X R}, arbitrarily, and let u(x, y, t) be
=0
any C* function on R X R} satisfying
(Ju=0 inR"xXR},
(14) Bu =0 on Cy(xy,y,, )N {0<1<ty, x =0},
' Dul;-=0 RY,
ult=0 =0 RZ )
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where v= sup  \(y,%)"'. Then au satisfies
0DER"IXRY,

ayu) = [[J, aylu in Rt X R},
By y(ayu) = ayBu+[B, aylu on R*"'X R},
Dayu)];=o=0 on R},

oyi|o=10 on R%,

(1.5)

where [, ] denotes the commutator and By u=(Du~+cty1s0* D+t y1561) | g=q-
The coefficients of By, are constant for large |z|, and \,(2) for the equation
(1.5) (defined by (1.3)) is not smaller than that for (1.4). Therefore, ay(y,t)
«u(x, y, 8)=0 on C,N {0<t<¢} for any large N, which implies that (0.1) has a

finite propagation speed less than ~ sup  Ay(, £)7'. Next, consider the follow-
,nER""IXRY

ing problem (for N=0, 1, -++):

[(Ju™ =0 in R" X R},
(BNJ,Zu(N) = Xy {g——gl(B——BjH)u“)} on R"'xX R, (Nz1),
=X, on R"!'XR, (N=0),

Dau™| g = u™|,_, =0 on R".

In view of finiteness of the propagation speed, we see that u(x,y, t):i0 uM(x%,,1)
belongs to C=(R’ X R%) and satisfies "
(Ju=0 in R}X R},
Bu=g on R*"!'XR},
lD,u],ZO =u|;o=0 on R%.
Therefore the existence of the solution in the general case is also obtained.

Now, we denote by C3(M) the set of C* functions on M (M=R’ X R" or R")
whose support lies in {t=¢,} for some t,& R.

Proposition 1.2. The Dirichlet problem

(He(x,2) =0 in R. X R",

(1.6) (@], = h(z) on R"

has a unique solution w(x, z) in C3(R. X R") for any h(z)€C5(R"), and has a
finite propagation speed, which equals one.

Extending b(y, t) and ¢(y, t) to <0 smoothly, we set (for A= C5(R"))
(L.7) Th = Bw (= (D,+b+D,+c)w| ) .

Then T is an operator from C3(R") to C3(R"). Furthermore we have
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Theorem 1.1. Let b(z) be real-valued and sup by(z)<1. Then, there exsists

ze R
a unique solution h of the equation Th=g in C3(R") for any g C3(R"), and it has
a finite propagation speed less than sup ny(2)7".
zep"

We shall prove this theorem in the next section. From this theorem and
Proposition 1.2, it follows that (0.1) is C* well-posed and has a finite propagation
speed less than  sup  N(y,#)™'. Therefore, the proof of Theorem 1 is

O, HER" T IxRY
complete if the following theorem is verified.

Theorem 1.2. Let by(y,t), -, b,-,(y,t) be real-valued and by(y,t)<1. Then
the propagation speed of (0.1) at any (0, y, t) is not smaller than \(y, t)™".

Note that the propagation speed is equal to one in a place distanct from
the boundary {x=0}. We can prove this theorem in the same way as in the
proof of Theorem 4.1 of the author [10]. Its idea is suggested by Kajitani [6]
and Appendix of Ikawa [3]. Tkawa in [5] also studies the propagation speed of
the same mixed problem by slightly different methods.

Let us give only a sketch of the proof of Theorem 1.2. Suppose that
Theorem 1.2 is not true. Since in the case Ay(¥,, t,)=1 our statement is triv-
ial, we may assume N\g(Vo, to) <1 (i.e. — |8 (Voy to) | <bo(Vo» t5)). Then there is
a constant v (1 <o <Ay(¥o, t,)7*) such that (1.1) follows from (1.2) for any small
constant & (>0). Let us indicate that this is a contradiction. We construct
an asymptotic solution

(18) un(, 3, 15 B) = 31 eM0e0g (x, y, T (k1)
7=0
such that z(0, v,, #,) =0 and
Cluy = €*®Joyk™" in a neighborhood U of
C,N{0=t,—t<8, x=0},
“Buy =0 onC,N{0<t,—1<8, x =0},

Duyliyy-s =0 on C,N {t = t,—8, 0<x},
Unli=ty-5 =0 on C,N {t = t,—8§, 0<«} .

By the former half of Theorem 1 we have a solution w,(x, v, t; k) such that
Twy = —€** vy, inU,
_BwN =0 onC,N{0<t,—t<$, x =0},
(D,leuo_a =0 onC,N{t=1-350<a},
wNIt:t0~s =0 on C,N {t = t,—§, 0<x}

and that the estimate
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|wn(0, yo, 105 R) | < C K
holds for constants C' and / independent of k. Set
u(x, y,t; k) = uy(x, v, t; R)-Fwy(x, y, t; Rk~ (I<N).

Then, u satisfies (1.2), but «(0, yy, 2,5 k) = v4(0, v, 2,) (F0) as k—co, which proves
Theorem 1.2.

Let us show briefly the procedure to construct the asymptotic solution
(1.8). We shall make a similar solution in §3. As is explained in [10], we
has only to solve the eiconal equation with B®|,_,=0 and the transport equa-
tion with Bv;|,-,=0. From the latter, the following equation for 7 (y,t)=v, | .-,
is obtained:

(6D, @+ D®)D0; 431 (5,D,2—D,,@)D,,2,

+(%chp+cn,,q>)z7j - ——;— L0,

(1.9)

We can choose the phase function @ so that (®,, ®,, @t)=<?g’ 6_?, v @_,
Ox 6.y1 ayn-l
|Dy|
<)

=No(Yorto). Let (v,1) (ER",))
t
be the direction of the characteristic curve of the equation (1.9) at (y,,2,). Then,

it is seen that |v| is equal to A (¥,,%,)"'. By this fact we can construct the re-
quired asymptotic solution.

%?) t (0,y,,2,) satisfies @, <0,®P,>0 and
t

2. Proof of Theorem 1.1

Throughout this section we assume that 5(2)=(b,(2), -, b,_,(2)) is real-valued
and sup b,(2)<1. These assumptions will be used to prove Lemma 2.1 and 2.2.
zep”

At first we consider the equation Th=g in the Sobolev space. Let H, (M) be
the usual Sobolev space on M of order m. We denote by H,, ,(R X R") (vE R",
m=0,1,--+) the space {u(x,%): e""u(x,2)EH,(R) X R")}, and by H,, ,(R") (vyE
R",meR) the space {u(z): e u(z)€H,(R")}. Let us define the Laplace-
Fourier transformation Fy (in 2) by
Fy[u] = #4&) = Se"“’“”’)zu(z)d:, ucsCy(R")
(§=o—iv,YER"),

and denote by F, the inverse transformation, that is,
Rf](2) = (271)—"@2&@“ Flo—iv)do .
The norm <k), y of H, 4(R") is defined by
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oy = (27:)'"8(10']2“{’ |7 1) [ h(o —iv)|’de (v=0).
We set
P={Ey=Enner™ > (|n|*8)"},
F={y=@mmnerR;7>nl},
2= {r = (n,)ER"; 7> (sup No(3) ) 71}

Proposition 2.1. We have for (£, 9, 7)€ R*"'—iT’
-r?—;i_,‘i 7 —E=0.
This proposition is obtained by the methods in §3 of Sakamoto [9].
Corollary. If (1, 7)€ R"—iT', the equation 'rz——”z_—]z 7i—E*=0in £ has a root
E(n, T) with a positive imaginary part and a root wz’thjt; negative one.

We know that the Dirichlet problem (1.6) is solvable also in the Sobolev
space:

Proposition 2.2. For any h(z)eH,, »(R") (q/ef‘, m=1,2, :++) there exists
a unique solution w(x, 2) of (1.0) in H,, (R X R"), and the solution is represented
by the form

w(x, 3) = Fy[e* OhE)] (& = o—iv).

Furthermore, for any compact set S in T' there is a constant Yo(m, S) such that
we N H, (R, XR") follows fromhe N H,y(R") (where Ks={{=p7;

1Y =Y, S 171z Yo0m, S)
YEKS YERS
vES, p>0}).

Define Th for heH,, y(R") (vef) by (1.7). 'Then, by Proposition 2.2 we
have

Th = Ryh=Fy[(£(c—iv)+b(o—i)+c)h(e—iv)]
(veT and heH,, 4(R")).

Let us note that if ke H,, (R")N H,, y(R") then Ryh=Ryh when v, v’ €K and
7], |7 | =74(m, S) (Ks and 7y(m, S) are defined in Proposition 2.2). Set

R¥h = F_[(E(c—17)+b-(c+iv)+D,-b+2)h(c+iv)] (vETD).
Then it follows that
(Ryh, g)12 = (h, R*yg)2 for h,geC3(R") (v€T).

The following lemma plays a basic role.
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Lemma 2.1. Let me R and S be any compact set of . Then, there is a
constant v(m, S) such that if |v|=vm, S) and yeKs={y=pl: S, u>0}
the following estimates hold for a constant C independent of «v:

(1) 17I<EDu v = C Ry, », hECT(R),

(1) Jv[<hy_,, A= C{R*h>_,, 5, hECF(R").

Proof. Noting that b(x) is real-valued, by an easy calculation we have
Im {Ryh, B>y y = Im (e7Ryh(z), e "*h(3)) 2
2(2n)*{ {Im £, (0 —i) —sup (b- N} | (o — i) "do
—C <ty (Cr= féllgtlDz'b(z)] —f—fg}]zanlc(z)l) .
From Lemma 2.2 below, it follows that
Im <Ry, 01 (81| —Cy)Xh%% .
Therefore we obtain (i) in the case m=0. Define A" (me R) by
Nk = Fy[(|o |*4 |7 )" ?h(a—iv)] .
Then, we have

{Ry1Dp 3 = CA"Ryhg
= SRyN"hpoy—<[A", ]+ Do y—<[A", c)hpy
g 81 I 4 I<h>m,7__CZ<h>m,'Y 5

which yields (i). In the same way we can get (ii). The proof is complete.

Lemma 2.2. Let S be a compact setin 3. Then there is a constant § (>0)
such that

Im £,(¢)+b(z)-Im £=8|¢|, teR"—iK, :ER" .

Proof. In view of the corollary of Proposition 2.1, we have (—Im £.(£),

—Im§)&T if CER"fiI". On the other hand, noting that b(z) is real-valued
and sup &,(z) <1, we see that if YK, £<0 and (£, v)& T then there is a small
zeR"

constant § (>0) such that §< —(b+6w)+ v for any w (wE R", |o|=1). Therefore
we have

Im £,(¢)+(b—8 Im &/|Im &])-Im £20, € R"—iK,, 2 R" .

The proof is complete.
Now, let us prove Theorem 1.1. We set

S = {veR"; v'-y=0 for any VEE".}
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(: {(7]’ T)ERH; ]17] <(§‘el}lz)” )\,O(z)‘l)T}) .
It suffices to verify

Lemma 2.3. Let g(z)€ N H,, (R") (m=0) and supp [g](:i’~{—z1 for some

yeES
lyiz1

M ER".  Then there exists a unique solution h(z) of T h=g in N H, (R") such

YES
vzl

that supp [h]C 2.

In fact, take g(z) € C7(R") arbitrarily, and let {X (2)},.,,.. be the partition
of unity used in §1. By Lemma 2.3 we have a solution &, € C*(R") of T h;=

X, g for j=0, 1, --- whose support liesin U (i’+z). As is easily seen, ()

Z&supp(X j&)

:2.0 h (=) belongs to C7(R") and supp[h]C N (i'—{—z). Therefore Theorem
=0 zEsupp(

)

1.1 is obtained except the uniqueness in C5(R"). Obviously Lemma 2.1 guar-

antees the uniqueness in H, ,(R") for some veS. Hcrce, if the the data

(f, g, 1, uo) and the solution u of (0.1) have compact support, (0.1) has a finite

propagation speed less than  sup  Ay(y,#)”'. Assume that T h=0, he C7(R")
C

y,OER" "1 RY, .
and supp [A(y, t)] C {t,=1t}. Let w(x, 2)CT(R) X R") be the solution of (1.6)
for the . Then w(x, 2) satisfies
{Dw(x, 5)=20 in RiXR",
Bw(z) =0 on R".

Let yry(x)eC>(R") be equal to 1 if x<N and to 0 if N4+-1<x (N=0, 1, --+)

and set

)

Bl 3, ) = 4a(8) X, 0
Then, it follows that
(Byw) (v, 3,8) =[], Bylw  in RLX(t, =),
B(Byw) (,8) = [B, ByJw  on R"'X(, o),
D(Byw)| =y, =0 on R’ ,
(Byw) =1, =10 on R!.

Since supp ([I ], Bylw) and supp ([B, Bylw) liein {N—1=[2|=<N+1, N<a<
N+1} and {N—1= [z| = N-+1} respectively, we have

Byw(x, ) =10 on {[2]|SM(N, vmax), 0Sx=M(N, vmay)}

where the constant M(N, v,,,,) —>° as N—>co. This implies =0, hence A=0.
Thus we obtain the uniqueness.
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Proof of Lemma 2.3. Obviously the uniqueness follows from Lemma
2.1. Let b(2)=> and ¢(z)=¢ when |z] is large, and set

Th=(D,+b-D+)w|,-,,

where w(x, 2) is the solution of (1.6) for (z). Then, in the same way as T, T is
expressed by the form

T h = F[(.()+b-t+D)A(E)], h€H, (R")
(m=0, & = o—1, yef).

Noting that & and ¢ are constant, we see that the statement of Lemma 2.3 is
true for 7T (cf. Sakamoto [9]).

Let g(z)e N H, »(R") and supp[g]ci’+zl. By Lemma 2.1 thereis a

yes
1vi21

solution hz€H,, 3(R") of T hy=g for some yes (let [¥| be large enough).
Then we can write

Thy=(T—T)h5+T by
— (B—b(=))- Db+ (e —c(3))hiv+g -

Since the support of the right side lies in /-2 (for some Z& R"), we have

ke N H,4(R"). TFix wei(la)lzl) arbitrarily. If T?I_|:w and |v| is large

vel Y
[R7P=3!

enough, it follows from Lemma 2.1 that

l Y '<h7>m ,Vg C<R'Vh§>m Y= C<g>m e

Noting that the above constant C does not depend on v, we see that supp [/3]C
3/ +2;,. The proof is complete.

3. Proof of Theorem 2

We denote by E.(»,7) the root of the equation 7*—#—|n|?=0 in §
(me R* !, 7=0—1v(v>0, 0 € R')) whose imaginary part is positive (cf. Corollary
of Proposition 2.1). Set

R(m,7) = Ei(n, 7)+ ’:2:1 b;(yo 0)7;+by(vo, 0)7,

which is homogeneous of order one in (7, 7).
To begin with, we shall show that if the assumptions of Theorem 2 are
fulfilled the Lopatinski condition is not satisfied:

Lemma 3.1.  Let by(y,, 0)= 1, and assume that by(y,,0), -+, b,_,(y,,0) (n=3)
are not all real. Furthermore, let (0.3) be satisfied when every b(y,,0) is purely
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imaginary. Then, if the condition (0.2) is violated, there exist T, (Im 7,<0) and
7° (€ R"™Y) such that R(n°, 7,)=0.

Remark 3.1.  If b,(y,, 0)=1, the Lopatinski condition is not satisfied; in
fact, R(0, —iv)=0 for v>0. Moreover, also if by(y,, 0)>1 and &,(y,, 0), -,
b,-1(y0, 0) (n=3) are all real, it is violated; because R(n°, —i(bj—1)"¥*)=0 for
70 (|°]=1) orthogonal to (B(yp, 0), -+, by-1(¥%, 0)).

Proof of LLemma 3.1.  Let us abbreviate b,(y,,0)(j=0,:-,n—1) to b,. For
veS={n": |7|=1} and p (Im x<0) we set

p-(u) = R(7's 1) .

This has an analytic continuation in {u€C; pe=[—1, 1]}, which is of the form

P(u) = =V p2—= 1487+ bope .

Here ¥ denotes (b, +++, b,_,) and v/ u*—1 is the branch which is positive for
u>1 (note that v/ u?—1 is single-valued in {p€C; pe[—1,1]}). Itis easily
seen that

R(77/, ) for Im x <0,
P(n) =

—R(—7', —p) for Im x>0.
We employ the following transformation pi—z, introduced by Miyatake [7]
(cf. §3 of Chapter I in [7]):

2 1—p
B P! (Im 2<0) .
Then, as Miyatake [7] shows, it follows that

(1) A{w: pe[—1, 1]} is mapped to {z: Im 2<0, 23 —i},

(i) the lines {p:pe(—1,1)}, {p: pe(—oco, —1)}, {u: pe(l, +)} are
mapped to {z: 2E€(—c0, ), 30}, {2: —ize(—00, —1)}, {z: —izE
(—1,0)} respectively; 4-co, 1 and —1 in the g-plane to —i, 0 and oo,
—ioo in the z-plane respectively,

(iii) @(p) is transformed to

P*(2) = a—2z—p <=f,,(z) ) _

2241 !
From these facts, it suffices to prove that the equation f,0(2)=0 has a root in
{z: Im 2<0, Re 20} for some »°S.

At first, we show that if (0.2) is violated for #’=%° (€S) there is a (con-
nected) neighborhood V(CS) such that for any »’V f,/(2)=0 has a root in

{z: Im2<0}. If (0.2) is not satisfied, the following three cases can be con-
sidered:



Mixep ProBLEMS FOR THE WAVE EQuaTioN 283

(1) [I] of (0.2) is violated;

(it)  [II] of (0.2) is violated and Re & =0;

(iii) [II] of (0.2) is violated and Re &"=0.

The case (i): Since |Re a|+4|Re B|%0 for #»’=7° f,/(2)=0 has no
complex conjugate pair of roots near »'=7°. Therefore we can apply the
following proposition (due to Miyatake [7]) to the polynomial f,/(2).

Proposition 3.1.  Assume that a polynomial f(2) of degree m has not any com-
plex conjugate pair of non-real roots. Then all the roots of f(2)=0 lie in {z: Im
2=0} if and only if the Bézout form for {f(2), —if(2)} is non-negative.

This is proved in [7] (see Corollary of the Hermite theorem in [7]). Here
the Bézout form for {f(2), g(2)} (f and g are polynomials of degree m) means
the quadratic form defined by the symmetric matrix 4=(a,,); ;=,.. w-1 Whose
components g;; are given by

Glf, gl = [ (x)g(n)—g=)f(y) — mz] a;jxiyj .
xX—y 1,7=0
Since the matrix defining the Bézout form for {f,/(2), —if,/(2)} is of

the form 2[?5{((;%) Iznéjﬁ;) ], Proposition 3.1 yields the requirement in the
case (i).
The case (ii): Since |Re a|+|Re B8] =0 (for ’=7°, we have Re b,=0.

Therefore, it follows that
2 R Im(aB 1
o[ 2Ree Imesr
Im(aB) 2ReB-ILO

2Rea Im(aB)
Im(aB) 2Rep
for €V (V is a neighborhood in S). Hence, by Proposition 3.1 f,/(2)=0 has
arootin Im 2<0 for V.

The case (iii): Then f,/(2) is of the form

fr(2) = i{(Im a)z*—2z2—(Im B)} .
From this form, f,/(2)=0 has a root in Im 2<0 when
D(r) = 1+(Im @) (Im )

is negative. 'Therefore, if ‘D(7°) <0’ or ‘D(n°)=0 and 7°=%+[Im 4’| *<Im 4",
the requirement is obtained. When D(%°)=0 and ‘9°=|Im &|~!.Im & or
—|Im & |~t-Im &”, it follows that

1+ S 585 =0,
=1

] = 2Rea = 2(Re b)-7 .

Noting Re 8’0, we see that the matrix [ :l is not non-negative
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which is contrary to (0.3). Therefore we get the requirement in the case (iii).

Now next, let us show that if f,/(2)=0 has a root z_(7") in Im 2<0 for
7”&V Re z_(n’) does not always vanish. Proving this, we use the assumption
n=3. Suppose that z_(7)=ir(v") for »’€V (where \»")=Im z_(")<0).
Then it follows that

(3.1) {“<Re AN+ 20— (Re ) =0,

—(Im a)*—(Im B) =0.
Eliminating A from these, we have
(3.2) Vi—(Im by)? = (Y, Im by—+Jr, Re b))>  for n'EV,

where yJr,=Re(d’-7’) and yr,=Im (8’+7’). Im b’=0 follows from the assumption
that Im b, -+, Im &,_, are not all equal to 0; because, if Im &=0, (14-~(7"))?
+(Im b,)*=0 holds for any ’V and so Im b)=0. When Re ' and Im &’ are

linearly dependent, we can write v (7")=wv+Jr,(7") for a constant ». Putting it into
(3.2), we have

{(v Im by—Re by)*— 1} yry(7')*+(Im by)? = 0 for eV .

This holds if and only if Im 4=0 and (Re b,)*==1. Therefore, b)=—1 (b,=1 is
assumed). b,=—1 yields Re ¢+Re 8=2 and Im a+Im B8=0, which is in-
compatible with (3.1). When Re & and Im &’ are linearly independent, we take
an orthogonal base {e;} ;- .. ,-; in R""' such that e, ¢, are contained by the plene
expanded by Re #” and Im &’ and thate,, -+, ¢,_, are orthogonal to Re ¥’ and Im
b’. Then, there exist constants 7, -+, %,_,, 7(#0) and an interval [0, 8,] such
that »(@)=(r cos 0)e,+(7 sin 8)e,+ 7,5+ +-+7,-,e,-, belongs to V for any =
[0, 8,]. When n"=%(8), 4, and +, are written by the form

M P it | e

sin 6

cos 0
= ‘A|: ) ] (det A=0).
sin @
Therefore, from (3.2) it follows that
(Im b,)? —(Re 4p) (Im bO)]Al:COS 9:‘
—(Re by) (Im b)) —1+(Re by)*
= —(Im b,)* for 66, 4,] .

(cos @ sin 0) ’A[

sin 6

. e ¢ [ (Im by)? —(Reb)(Imb)] :
Tt holds if and onl f‘A|:( : Y o) | 4— —(Im 6,2, Th
olds if and only i C(Re by (Im b)  —1-(Re by’ (Im b,) is

implies that b,=—=--1. We have seen earlier that 5=+1 cannot be admitted.
Thus (3.2) does not always hold for 'V, which proves Lemma 3.1,
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Proof of Theorem 2. TFor simplicity, let y,=0. Suppose that (0.1) is C*
well-posed, and let the propagation speed be less than v. We set

Qo= {(x,y,1): 0=¢<2, (x*+ | y|?)V?< 20, 0<a} .
Then there exist a domain Q4(D,) and an integer / such that

(3-3) '“10,90§ C(' Du|1,96+ ’Bull,D6+ [Du| 1,03'*‘ Iu'I,G{)) ’
u(x,y,t)eC=(RL X RY),

where D{=Q4| ,—, and G{=Q¢]|,;~,- Choose a function 8(s) C=([0, o)) satisfy-

ing (i) O<~%§(s)§% for s>0 (i) ‘%‘;(0):0 (for j=0, 1, -+, and set for a

parameter k (=1)
Q= {(x,,1): 0Zkt<1, kt— 1< 0(k(x*+ | y|?)"?), 0=a} ,
Dy = Q| =0, Gy = Q|1 -

Then we have the following lemma (corresponding to Lemma 2.1 of Kajitani
[6]):

Lemma 3.2. There exist a constant C and integers l,, I, independent of k
such that the estimate

(3~4‘) Iulo,ukéc kl"{l Du|11,9k+ |Buill,0,¢+ [Du| Il,Gk+ lulll,c,,} ,
u(x,y, )€ C=(Q,)
holds for k=1.

Proof. We have the following extension operator E: For data F=(f,g,
uy, ) €C'(Qy) (= CHQ) X CH(D,) X C'(G,) X C(G,)) with the compatibility
condition of order I—1, EF=(f, g, @, #,) belongs to C(Q,) (i.e., EF=CY(Q,)
and supp EFCQ,) and satisfies the compatibility condition of order 7— 1;
furthermore E: C'(Q,)—>Ci(Q,) is continuous. For data F(X)eC(Q,)
(X=(x,y,t)) with the compatibility condition of order /— 1, we transform them
as follows:

X\_m0n E ~ o =
FX) ——> F(-)EF(X)—»EF(X) > ERkX).
(X=kX) \k (X=k'X)

Then, EF(kX)=(f", &, ul, u) belongs to C;’;(.Qo) and satisfies the compatibility
condition of order /—1. Furthermore, there are constants C and /, independent
of k (=1) such that

(3.5) L1700+ 1817 pyt |6l 7,60+ |41 7 6,
§Ck{°(lff1,9k+ lgl 10, (ulll,c,,“}' (4ol 1,6,)-
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In view of finiteness of the propagation speed and the shape of the domain Q,
we see that the solution for (f”, g/, u{, ug) coincides with that for (f, g, u;, u,) on
Q. Therefore, from (3.3) and (3.5) the estimatc (3.4) is derived. The proof is
complete.

Let us set

B(k) = k{D,,—i—ij1 bj(k'y, kKT't)D, +by(k™'y, R7't)D} +c(k7'y, k') .

By change of the variable ’=k™'x, y’=k'y, #’=k™'t and Lemma 3.2, we obtain
the following lemma (corresponding to Lemma 2.2 of Kajitani [6]):

Lemma 3.3. There are integers 1,, 1, independent of k, v (=1) such that

(3°6) ]u|o,g\,§cuk12{[ Cu| 1,,9-,+ IB(k)ul Il,Dv+ | Du| 11,0«,‘}‘ lul 11,G~,} s
uw(x, y, 1) eC=(Q,),
where the constant C., does not depend on k.

From now on, we shall construct an asymptotic solution violating (3.6) in
the same way as in Kajitani [6]. Set

BO — DﬂLif b,(0)D,,+b,0)D; ,

L d Yyt (0
) — )
B Elmg 1a’z'<8y> Y J(O) yi m;‘:, 10[|l|(a ) ot ( )

(I=1,2,).
Then B(k) is written by the form

B(k) = kBO4+B® .. { k- NHBO) | p=Ny(N+1)

Here r&*b is a first order operator and the norms (|+];q,) of its coefficients
are bounded as k—co. If the assumptions of Theorem 2 are satisfied, by
Lemma 3.1 and Remark 3.1 we have constants &, 7% 7, (Im £,>0, 2’ R"™,
Im 7,<0) such that

T—E—|7°12=0,
BO(E,, 7, 7)) = go+:§;: b,(0)n%+by(0)7y = 0.

We set ®(x, y, t)=Ex+7n"-y+ 7. Let us make

(3.7)

N
uy(x,y,t; k) = Z}O eIy (x,y, 1)k

satisfy both [juy=0 on Q, and B(k)uy=0 on D, (asymptotically). Noting
(3.7), we have only to solve the following transport equation with a boundary
condition:
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{Z(TODt—EODx_UO'Dy)‘UI_I— v,y =0, x=0 ('1’-1 =0),
{BO+(BO®)} o424, = 0,8 =0,

where A, ;= {(B@®)v, |+ +(BEH®) v} + {BVv,_ -+ +BWog} (B is the
principal part of B®). Combining these equations on {x=0}, we have the
equation for #,(y, t)=v,| ,=¢:

(o Eb(OND D+ (Eb(0)— 70D, 17+ (BY®YD 45,y = 0,

where 3,_1:<—;—D7J,_1+§0A,_1>],,:0. Here, we can choose (7, 7°) so that the

above coefficients 7,4 Egby(0), E:by(0)—n1, +++, Eeby-1(0)—7n_, do not all vinish
(Eo=E+(79, 7°))V. Therefore, by the Cauchy-Kowalewski theorem we get the
solution &, with #,(0)=0, and so v, with v,(0)3=0. Take the integer N satisfy-
ing N>I+1,+1 (/, and I, are the integers in Lemma 3.3), and fix v so largely
that vy, .-+, vy are all defined on Q, and vy(x, y,#)=0 on Q,. Then it follows
that

g w.,g{ |v0(0, 0, %>| _c, k—l}e<-1m0>m ,

[ Cuyl e+ | B(R)yuy| 1,0y = Cy Rt oo ImTblY |

[Dauyli e, + lunli e, =Cs R
Therefore, by Lemma 3.3 we have
{l’l)o(O, 0, i) |—-C, k_l}e("l‘”o)“"é C,Cy kil 1N p(-ImT)k/¥
14

+C,Cy kit
This cannot hold when k— oo, which proves Theorem 2.
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