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For the ordinary cohomology groups of a good space X we have the homo-
topy classification theorem, Hq(X; G)^[X, K(G, q)]. It has been discussed
by many authors (Olum [9], Gitler [5], Siegel [12] and McClendon [8]) that a
similar theorem is valid for the cohomology with local coefficients. In this
paper we give an elementary reasonable proof of the classfication theorem by
means of direct generalizations of the results in May [6] and Cartan [1],

We frequently use the notations introduced in [6] without notice.

1. Definitions and main theorems

Let S denote the category of simplicial sets, in which we shall work. Let
π be an abstract group, and let G be an abelian group. We fix a group homo-

morphism φ: π-^AutG, where AutG is the automorphism group of G. Let
(X, Y; T) be a simplicial pair (X, Y) (Y may be empty) with a twisting function
(see [6]) r: X->π. We define the group of cochains C%(X> Y; τ) to be

{/: Xn ->G\f(x) = 0 if x=sty or *€Ξ Yn} ,

the coboundary δ by

8f(x) = τ(x)-y(dox)+Σ(-iyf(?iX)> ^ I Λ + 1 , / G C { ( Z , Y; T) .

HRX, Y; r)=Hl{C%{Xy Y; T), δ) is called the twisted cohomology group of
(X, Y; T) by φ.

Let L be a local system on X, i.e. a contravariant functor from the funda-
mental groupoid (see [4]) πX to the category of abelian groups. Suppose X
is connected. We fix a vertex xoξ=Xo and uxEzπX(x09 x), χξ=X0, in particular
we choose uXQ—lXo. Then we have the twisting function F(xOy (ux)): X->πxX
by

a group homomorphίsm φ(L): πxX-+ AutL(x0) by
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a8 = Φ(L)(a)(s) = L(a)~\g)> cι^πxX = πX(xQ, x0),

We remark that the multiplication of the fundamental group πxX coincides

with the morphism composition of nX (see [4], [6]) contrary to the usual topo-

logical definition. We define the local coefficient cohomology group of (X, 7),

HU(X, 7 ; L) ( - # " ( * , 7 ; L, *0> («,))), to be Hfa{X, 7 ; F(xOy (ux))) (see [4;

Appendix II], [9] and [13; Part III])

Let A* be a AutG-equivariant simplicial DG abelian group, i.e. 3,, st and

δ commute with the Aut G-action.' We suppose that A* satisfies the following

axioms (see [1]).

δ δ δ δ
Axiom (a): the sequence A0 >Aι > > A'1 >••• is exact, and

ZQA=Ker {δ: A^-^A1} is Aut G-isomorphic to the trivial sίmplicial abelian group

G.

Axiom (b): An is AutG-cotractible relative {0} (n>0).

EXAMPLE 1. Let C* be the simplicial DG abelian group which is obtained

by applying the normalized cochain complex functor C*( G) to the cosimpli-

cial simplicial set

EXAMPLE 2. Let A%L be the simplicial DG algebra which is obtained by

applying the PL de Rham functor (see [3]) to the cosimplicial simplicial complex

:ΔW

These two examples C*, A%L satisfy the axioms (see [1], [6]). For example

Axiom (b) of An

PL is proved by the contraction

A"PL X Δ [ l ] - ^ A"PL X A°PL -?-+ Alp

where c^(APL)1=Q[t], c(t)=t, μ is the multiplication of the algebra AfL.

Let An X Wπ -» Wπ be the 7r-bundle with fibre An obtained by φ and the

universal ^-bundle Wπ-^Wπ (see [6]). If τ(π) is the canonical twisting

function τ(π)[gu g2, --,gq] ~gi, then AnxWπ-+Wπ is identified with the

TCP AnxWπ->Wπ. This Kan fibration AnxWπ->Wπ has the 0-section

s: Wπ-*A" X Wπ s[gl9 •• , £ j = (0, [gu —,gq]) whose image {0} X Wπ is also
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denoted by Wπ. Let θ(τ): X->Wπ be the map θ(τ)(x)=, [τ(χ)y r(dQx), ,

r(9?-^)], x^Xr Let A%(X, Y; τ)=S((JT, F), (AnX Wπ, Wπ))w« denote the

set of liftings (or maps over Wπ)

Wπ, Wπ)

π, Wπ) ,

then we can define the group structure on AΦ{X, F; T) by the fibrewise addition,
the fibrewise inversion and the 0-section. Further we define the differential
(δx 1)* so that {A%{X, Y\ T), (δx 1)*) is a DG abelian group. We remark that

TOT) TC7T)

the sequence

0 - A;(X, Y; r) - A;(X; T) -* Al{ Y; r \ r) - 0

is exact, since S is a closed model category (see [10]) and ΆιX Wπ->Wπ is
TOO

a trivial flbration. By Axiom (a) we find ZnA=Ker {δ: An->An+1} is an
Eilenberg-MacLane complex of type (G, ή), especially ZnC is a K(G, ή). Let
[(X, Y), (ZnA X Wπf Wπ)]ψ« denote the set of vertical homotopy classes of
liftings

{ZnAx Wπ, Wπ)

(Wπ, Wπ)

The set [(X, Y), (ZnA X Wπ, Wπ)]ψ« has also the group structure induced by

that of J ; ( Z , Y; T). Z T X J ^ T Γ - Z ^ C X Wπ=K(G, n) X TΓ r is sometimes

denoted by LΦ(G, n) (see [5]).

Theorem 1.1.

H\A%{X, Y; r), (δ X 1)*) = [(X, Y), (ZnA X Wπ, Wπ)]w« .

Theorem 1.2. There is a natural chain isomorphism

(Cf{X, Y; r), δ)«(S((Z, Y), (LΦ(G, *), Wπ))w«, (δ x 1)*).
T(τf)

Corollary 1.3.

H&X, Y; τ)^[(X, Y), (LΦ(G, n), Wπ)]Wηι.

Therefore as a corollary we have the vertical homotopy classification of
the cohomology groups of (X, Y) with local coefficients in L.
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Corollary 1.4.

H\X, Y; L)e*[(X, Y), (Lφω(G, n), l

2. Proofs of main theorems

As the proof of Theorem 1.1 is essentially the same as that of [1], we only
outline it. Bundle-theoretic replacement of the notion of exact sequence leads to

Ker {A}(X, Y; τ) -> An

φ

+1(X, Y; τ)} = S((X> Y), (ZnAxWπy Wπ))w«.
The equality

Im {AΓ\X9 Y; τ) - A%X, Y; T)} =

{ / G S ( ( I , Y), (ZnA X Wπ, Wπ))ψjf is fibre homotopic to the trivial fibre map}
TOO

is proved by Axiom (b) and the CHEP (Covering Homotopy Extension Property)
of A"'1 X Wπ -> ZnA x Wπ which follows from the next

TOO TOO

Lemma 2.1. 7/̂  π acts simplicially on sίmplicial abelίan groups A and B,
and if ψ : A->B is a π-equίvarίant simplίcial epίmorphism, then A X Wπ~>
B X Wπ is a Kan fibration.

Proof. Suppose x09 •••,#*_!, xk+i, •••, ΛJ + 1 ^ ( ^ 4 x Wπ)q satisfy 9 f f f y =9 ,-!#,•,

_ T C 7 °
*<j,i,j*k, and (6, [ft, •• ,<§

rJ) e (β^X Wπ)q+1 satisfies 9,(6, [ft, ••• ,gq]) =

(ψX l)xz, z'Φ&. Since A X TF7Γ-> T̂7Γ is a Kan fibration, there exists (α, [ft, •••,

^J)e(^4 X Wπ)q+1 such that 9t(α, [ft, —,gq])=xt, *ΦΛ. It follows that 9,6=

9»^(a)> ίφΛ. We note that ψ is a principal Ker ψ bundle, therefore it is a
Kan fibration. It follows that there exists a'^Aq+1 such that 9,β=0, zφ&, and
ψa'=b—ψa. T h e n (a-\-a'y [gl9 * 9gq])^(A X Wπ)q+ι satisfies d^a+a', [gι> •••,

&])=*,•> i=*=*, and (ψ X \){a+a\ [gu — ,^])=(6, [ft, — ,^J) . This completes
the proof.

As for Example 1 we remark that Cn~ι X Wπ->ZnC X Wπ can be written

directly as a TCP so that we need not Lemma 2.1.
To prove Theorem 1.2 we must generalize [6; §24] to our situation. Since

φ\Λ., I , Tj = Jver \Lsφ{Λ., TJ—->Cφ^-ί , T I jrJJ , o ^ . Λ , I ) , {JUφyLr, n)y VV7C))wit —

Ker {S(X, LΦ(G, n))ψ<-*S(Y, LΦ(G, n))^}, a proof of the absolute version of
Theorem 1.2 suffices to prove Theorem 1.2. We define the w-cochain u(=un)^i
Cl{Cn X Wπ; r(π)p) by u(c, [ft, ••',£«]) = c(0, 1, — ,n) of which we call the

TOO

fundamental w-cochain. If χ(=(Cn X Wπ)ay then £*: Cl(Cn X T^TΓ; τ(π)p)-*
τ C « ) ^ τC7T)

CM(Δ[?]; r(π)px) is induced by Λ: A[q]-*Cn X W7 .̂ Let £ : Ck

φ{A[q]\ τ\
-> C k

q=Ck{A[q] G) be a map defined by T°°
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= τ(π)px(0,y0Γfy, y = (y0>yu -,yk)^[a}k, /eCj

Lemma 2.2.

(1)

(2)

(3)

•e δ,:

E is a chain isomorphism.

E8(Z=\ SfE (ίφO).

Eσf=σfE.

A[q-~l]-^Δ[q], σ f: Δ^+lJ-^Δfg] are the standard

223

((Δ[<?] τ(π)pX).

(co)face and (co)
degeneracy operators.

Proof. (1) Iίy=(y0, - ,^)eΔ[g]» then

Eδf(y) = τ(π)(px(O,yo))-iτ

+± (- iyr(π)(px(Q,

(2) Consider the next diagram

px)-JUck

q

I 9 =δf

I f 3'=(jo. - , Λ ) e Δ [ ϊ - l ] 4 , / e C ^ Δ [ ί ] ; T(Λ ) ^ ) , then we find

Eδff(y) = τ(π){px$,{0, J0)

= r(π)(px(δfi, S

= τ(«r)(/Λ(0, δ,0))

= τ(w)(/«(o, sfl

(3) The proof is parallel to that of (2).

Lemma 2.3. Let X: Cl(Cn X Wπ; r(π)p)^(C X Wπ). be the map * (/ )=
TOO T CΌ

Λ:). ΓAen we have X(u)=x.

Proof. Put x=(c, g)(Ξ(C" X Tf^r),. Let y=(y0, » j , ) e Δ [ f ] , be a non-
degenerate simplex. At first we find y=y*(0> 1, •••, q), y* — δ^θ^ 9, ί_n>

i X - ^ i , - , , ^ ? * b w > J « > *Ί> —,V»} = {°' ^ "•'?}• Thus we have
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Es*υHy) •= r(π)(px(O, yo))~ιu{xy) = r(π

j «(y*c, y*g) (y0 = 0)

Since τ(π){dib)=τ(b), i>\, we find

r(π)(dh-dlg_j) = τ(π)(pX(di2-dtΰ_n)(0, 1, ..-, q)))

= τ(π)(px(0, yo)),

so that

Ex*u(y) = y*c(09 1, — ,Λ)

It follows that ^(w)=(^ ^)=JC as desired.

Theorem 1.2 (absolute version).

Z>e/m* a: S{X,LΦ(G, n))Wηc->C%{X\ T)

by α (/)=/*t t , i8(7)(Λ?)=*(7) (=(^Λ*7, β(τ)(Λ»). Then we have

(1) α is a homomorphism of groups,

(2) /3 w ̂ ^// έfc^wβί/,

(3) <χβ=id, βa=td and

(4) δα=α(δxl)*.
TOO

Proof. (1) It is easy.

(2) We must see that β(y) is simplicial. If x^Xn+ι then we find by

Lemma 2.2

£(7X8,*) = (£δf* , 8,/Mt)

= ί (τί«)(/ *)
" ( (d EX*, diPX) (»ΦO)

= 8(/8(7K«)

Similarly we have β(ιγ)(six)=siβ(rγ)(x).

(3) If j e l , is non-degenerate we find

aβ(y)(x) = β(7)*(u)(x) = «(i?**7> ^ ) - £ je*τ(O, 1, •-, n) = γ(x).

And iff&S(X, Lφ(G, «))ίr*> ^ e ^ ? > then we have

(4) Let/eS(Z, L#(G,»))^ir,*e2ΓII+,. Put/*=(c,/w)eL+(G,n),+ι,then

Λve find
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a(δ x l)φ = «,+,(&, px) = δc(0, I, - , »
T(jr)

8af(x) =

—

ί = 0

« + l

ί = 0

^)(pχ)-V

τ(π)(Px) u

« 4 1

ιyc(δi(ί

λτ\π)\ί

<o,i, .

M,

«+l

'+ΣC
ί = l

w)9oC,

,n+l))

-i)'/^0
M+l

1 = 1

so that we find a(δ X l )*=δα. This completes the proof.
TOOTOO

3. Topological version

Let Γ be a path connected topological space, and let L be a local system
on T. Since we can identify the fundamental groupoid πT of T with that of
the singular simplicial set ST, we regard L to be a local system on 5T. The
fundamental group ^ Γ i s defined to be πxST for some fixed to&STo(=T) as a
set, but the multiplication is defined as usual, so that the inversion /: πxT-+
πβT, ί(g)=g~1, is an isomorphism. We understand φ: πιT-*AutL(t0) to be
φ(L)7, where φ(L) is the group homomorphism given by L and t0 as before.
The cohomology groups of T with coefficients in L, Hn(T; L, t0, («,)), are de-
fined as H$(L)(ST; F(t0, (ut)) for some fixed paths ut<=πT(tOf t), t£ΞT (see [2]).

We have to describe the (vertical) homotopy classification of Hn(T;L) in the
category of topological spaces. Roughly speaking, the geometric realization
functor induces the isomorphism from the simplicial vertical homotopy classes
to the topological ones in our case.

Let K(Gy n) = \ WnG\^\ZnC\ be the Eilenberg-MacLane complex on
which πλT acts from the right (i.e. \φ(L)\(g, ά)=a-gy a^K(G> n),

Lemma 3.1. The geometric realization of the Kanfibration ZnC X WπλST
TCITJOT)

-^WπβT is homeomorphic to the fibre bundle \ZnC\ X Eπ^Γ-^Bπ^Γ, where

Eπ^T-^BπγT is the universal πλT bundle in the sense of Mίlgram (see [7]).

Proof. Define the bisimplicial set K by Kp q=ZnCpX WqπxST, 9f=8, x 1,

,ί-,χ 1, «'(., * ) - | £ ™ m %l, »d -ί'-l XV The geo.ne.nc

realization of the diagonal simplicial set ZnC X WπγST of K is naturally

homeomorphic to the successive geometric realization of K, which is homeomro-
phic to the geometric bar construction B( |ZnC |, πxT, *) (see [7]) by making use
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of the simplicial homeomorphism / = (/,), fq: \ZnC\χ WqπλST-* \ZnC\x (πγT)\
fq(

a> [gu —>gq])=a[gi> ~'>gq]' Further B(\ZnC\, πλT, *) is homeomorphic to
\ZnC\ xBfaT, πλT, *) by Corollary 8.4 of [71. This completes the proof.

ir l Γ

Proposition 3.2. Let p: E-^B be a Kan fibratίon, and let θ: X->B be a
simplicial set over B. Then the geometric realization functor gives the bisection

\, \E\lm.

Corollary 3.3. We have the topological (vertical) homotopy classification

Hn(T, L)^[\ST\,K(G, n) x Eπ.T]^ .

If T= IXI the geometric realization of some connected simplicial set
X, for example if T is a path connected regular CW complex, we can regard X
as a sub simplicial set of *ST by the adjoint i of lτ: \X\-*-T. We suppose
that ί o 6 l o and ut^πX(t0, t) if ί 6 l 0 . Then we have the following

Proposition 3.4. i: X-+ST induces the isomorphism

**: Hn(T;L)->Hn(X',Llx).

Corollary 3.5. We have the classification

H-(Γ; L)^[T, K(G, n) X Eπ.T}^ .

Proof of Proposition 3.2. The adjointness of the geometric realization
functor to the singular complex functor defines the natural bijection
S(XyS\E\)s]B^T(\X\y \ E \ ) ] B { 9 w h e r e T(\X\, \ E \ ) l B l is t h e se t of t o p o l o -

gical liftings

We find easily that the above natural bijection and its inverse map preserve
vertical homotopies, so that we have the bijection [X, S\E\]S\B\-*[\X\, \E\]\Bl.
By adjointing the identity maps 1: 12? | —> 12? |, 1: 12? | —>• 12? | we have the com-
mutative diagram

\i. lsιpι

B-±->S\B\ ,

which induces the map (iE, ig)^: [X, E]B-*\X, S\E\]slBί. The formal proper-
ties of adjointness lead to the commutative diagram
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[X,E]B — - [ | Λ Ί , \E\ll B i

[X,

The following Lemma 3.6 completes the proof.

Lemma 3.6. (iE) ίB)% is a bijection.

if

Proof. Let Ef > S\E\ be the pullback diagram. It is easy to see

V l
B -

that (/', iB)*\ [Xy E']B->[X, S\E\]slB<{ is a bijection. We have to find that
j * : [X, E]B-+[X> E']B is bijective for j : E->Ef the canonical injection.

Let p\M: M->B be a minimal fibration of p: E-+B and r: E-+M be a
retraction. Since j : E-^Er is a trivial cofibration (i.e. anodyne extension, or
map which is both cofibration and weak equivalence) of the closed model
category S, for the diagram

E -?-+M

E' ^—

the filler rr exists. Let h: ExA[ί]->E be a homotopy from \E to r over B.

Since E x Δ[l] U ^ X Δ[l] c Έf x Δ[l] is a trvial cofibration (see [4 IV, 2.2]), for

the diagram

n ;' \pf

ρfρr I

the filler H exists and makes p\M: M->B the strong deformation retract of
pf\ E'->B. This proves Lemma 3.6.

Proof of Proposition 3.4. By Corollary 1.3 and naturality we have the
commutative diagram

H"(T; L) ^ [ST, Lφω(G, n)]^ιST

\ I
Hn{X, L\x) ^ [X, Lφω(G> n)]^iS

The next Lemma 3.7 completes Proposition 3.4.
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Lemma 3.7. Let θ: Z->B and p: E*-*B be a simplicίal set over B and
a Kan fibration respectively. If i: A-+Z is a trivial cofibration} then ι*: [Z, E]B

-+[A, E]B is a bisection.

Proof. Since /: A->Z is a trivial coίibration, for every commutative dia-
gram

A >E

the filler exists and this follows the surjectivity of z*. To prove the injectivity
of i* we have to see that the inclusion i x Δ [ l ] U Z x Δ [ l ] c Z χ Δ [ l ] is a
trivial cofibration. It follows from [4;IV, 2.2]. This proves Lemma 3.7.

We remark that the relative version of Corollary 3.5 is available. We only
give some hints.

(1) If a Kan fibration p: E->B has a section s: B-+E, then we can choose
a minimal fibration p\M: M->Bofp such that MZ)sB.

This implies the relative version of Lemma 3.6 and therefore that of Pro-
position 3.2.

(2) Let X be a connected sίmplίcial set and let YdX be a connected sub
simplίcial set. Since X Γ\ S \ Y | = Y and i\γ is a anodyne extension in the com-
mutative diagram

Y >X

\i\γ j
S\Y\ >S\X\ ,

X C X U S I Y I =X11S \Y\ is a anodyne extension, and therefore X U S \ Y \ c
Y

S\X\ is also a trivial cofibration. We easily find that the map ix*: [(S\X\,
S\Y\)9(E, sB)]B-*[(X, 7), (E, sB)]B ia a bijectionfor a Kan fibration p: E->B
with a section s.

This implies the relative version of Proposition 3.4 and therefore that of
Corollary 3.5.

4. Appendix

In this section we generalize some results in [6; §25]. For simplicity we
assume that all simplicial sets are one vertexed Kan complexes.

Let K be an Eilenberg-MacLane complex K(G> n), n>2. It is shown in
[6 § 25] that the group complex A(K) of invertible elements in Kκ is isomor-
phic to AutGxK with the group structure
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χJ\y) \fy+χ

The action A(K)xK~>K is identified with (AutGxK)xK->Ky / f \y=fy+xy

f(ΞAutGy x,y<EΞKq. \x)

Let p: KxB-*B be a Kan fibration. If we put τ(b)= (f(b)\y then /, x
\x(b)J

satisfy the following formulae

j f(b) =f(di+1b)
f(b)=f(si+1b)

iG =Λsφ)

dtx{b) = x{di+ιb)

siX(b) = x(si+1b)

Since f(b)=f(d2d3-dib), b^Bq and f(b)=f(b') if έ, ό' are hornotopic 1-simplexes,

/ factors as f=φF, where F: B-*nβ is the twisting function defined by

F(b)=\d2d3 dqb], b<ΞBr It is easily seen that φ: πβ-^AutG, φ([b])=f(b) is

a group homomorphism.

Lemma 4.1. For a Kan fibration p: KxB-+B πβ-action on πnK= G is φ.

Proof. Consider the following commutative diagram

Kx(0)

KxA[l] - ^

The filler h defines a homotopy equivalence h( , (1)): K->Ky and πn(h( , (1)))

&AutG is the automorphism given by [άje^ΰ. Since K(~K(G, n), n>2)

is one vertexed, x(b)—Q for b^Bλ and therefore TΦ{y))=f(b(y)). Put a priori

h(z,y)=(f(b(0,y))(z), b(y))y z(=Kqi y(=A[l], then h is simplicial. We find

h(z, (l))=(/(i)^> *)• This completes the proof.

If we give πxBxK a similar multiplication as AutGxKy then we have

the twisting function τ'; B-^πβxK, τ'(b) = lF{b)\ and the group homo-

morphism φ x l : πβxK^AutGxK. W(b)/

Lemma 4.2. The group of the bundle p: KχB—>B can always be reduced

to

Lemma 4.3. K X W(πλB x K)->W{πλB x K) is ίsomorphίc to

WKX WπxB-+ WKX WπxB (=LΦ(G, ήj).

Proof. Consider the commutative diagram
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TJ

K X WfaBxK) >WK X Wπβ^WKxWπλB
fl) B

WfaBxK) > WK^X

where

H(r /FXλ — ((r F~ιr F~1F71κ ••• F~1F71 F~1v } F1} v p K

JC

~ιx Ί F}

These i/, h are simplicial isomorphisms. This completes the proof.
By making use of the above Lemmas we have the next

Theorem 4.4. p: KxB->B is classified by the element o(p)(=ΞHu

φ

+1(B; F)

corresponding to hθ{τ'): B-^LΦ(G, n+1).

Theorem 4.5. If pλ: KxB->B, p2: KxB-^B are fibre homotopy equiva-

lent, then there is a πβ-equivariant automorphism g, i.e. φ2(l^g)=gφi> such that

g*o(Pi)=°(p2)

Proof. Put τi(δ)=//i(6)\, T2(b)z=f f2(b)X Since K is a minimal Kan com-

U(*) Φ))
plex, px and p2 are minimal fibrations. Therefore they are strongly A(K)-
equivalent. By Lemma 20.2 of [6] there is a map θ : KxB^-KxB, θ(y, b)=

T l T 2

((g(b)\y,b\, g: B-^AutG, z: B-^K, such that

x2(b)+f2(b)d0z(b) = z(dtib)+g(dob)x1(b),

g(b)=g(dtb)

Since g(b)=g(dqb)= — =g(d1d2—dqb)=g(*), b<=Bq, g is contstant.

If we put τ3(b)=(f2(b) \ = / ί?/1(%-1\, then we have the TCP p3: KxB-*
\gφ)J \gφ) I

B. It is easily seen that p? and p3 are strongly πxB X X"-equivalent by the map
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of TCP's &:KxB->KxB,&(y,b)={n \y, b\. Therefore we find

V\-*(*)/ /
o(p2)=o(p3). We have the map of TCP's θ " : KχB->KχB, &\y, ft) =

(gy> b) which is induced by the commutative diagram

Wex 1
WK x W ——> WK x W

x IF 1 ^ > TTϋ: x W.

This completes Theorem 4.5.

Let (Xy x0) be a connected minimal Kan complex, and let (#0, -SΓ(1), X(2\ •••,

X (M), •••) denote the natural Postnikov system of X. Then AT*")-* JΓ**""1* is

isomorphic to pn: K(πnX, ή)xX{n~ι)->X{n'ι). A sequence of cocycles of

o(pn)'s is called a set of ^-invariants of X. As Corollaries of our results we

have Theorems 25.7 and 25.8 of [6] without any restriction on 72^-action.
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