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For the ordinary cohomology groups of a good space X we have the homo-
topy classification theorem, HY(X; G)=[X, K(G, ¢q)]. It has been discussed
by many authors (Olum [9], Gitler [5], Siegel [12] and McClendon [8]) that a
similar theorem is valid for the cohomology with local coefficients. In this
paper we give an elementary reasonable proof of the classfication theorem by
means of direct generalizations of the results in May [6] and Cartan [1].

We frequently use the notations introduced in [6] without notice.

1. Definitions and main theorems
Let S denote the category of simplicial sets, in which we shall work. Let
7 be an abstract group, and let G be an abelian group. We fix a group homo-

morphism ¢: w — AutG, where AutG is the automorphism group of G. Let
(X, Y; 7) be a simplicial pair (X, Y) (Y may be empty) with a twisting function
(see [6]) T: X—=. We define the group of cochains Cy(X, Y; 7) to be

{f: X,—> G| flx) =0 if x=s5,y or x€ Y,},

the coboundary & by
81(x) = () f(0)+ 33 (—)f(0), ¥€ X, fECHX, ¥3 7).

HyX,Y; 1)=HyC¥§X, Y; 1), 8) is called the twisted cohomology group of
(X, Y; 7) by ¢.

Let L be a local system on X, i.e. a contravariant functor from the funda-
mental groupoid (see [4]) zX to the category of abelian groups. Suppose X
is connected. We fix a vertex x,€ X, and u,E7X(x,, x), xX,, in particular
we choose u,,=1,. Then we have the twisting function F(x,, (4,)): X— =X
by

F(xo’ (ux))(y) = uaoa;l-a,.yaz"'anyualaz <Ay yEXn ’
a group homomorphism ¢(L): 7, X — AutL(x,) by
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ag = p(L)(a)(g) = L(a)™\(g), acm X ==X(x,, %), §EL(x,) .

We remark that the multiplication of the fundamental group =, X coincides
with the morphism composition of zX (see [4], [6]) contrary to the usual topo-
logical definition. We define the local coefficient cohomology group of (X, V),
H'X,Y; L) (=H"(X, Y; L, x, (u,))), to be Hy (X, Y; F(x,, (1)) (see [4;
Appendix II], [9] and [13; Part III])

Let A* be a Aut G-equivariant simplicial DG abelian group, i.e. 9,, s, and
& commute with the Aut G-action. We suppose that A* satisfies the following
axioms (see [1]).

o ) 8

Axiom (a): the sequence A° A A" —> - is exact, and
Z°A=Ker {3: A*— A"} is Aut G-isomorphic to the trivial simplicial abelian group
G.

Axiom (b): A" is Aut G-cotractible relative {0} (n>0).

ExampLE 1. Let C* be the simplicial DG abelian group which is obtained
by applying the normalized cochain complex functor C*( ; G) to the cosimpli-
cial simplicial set

- -
A0l — A[l] — -+ '-—>‘_ Aln :—’..__.. e,
< . .
: :

ExampLE 2. Let 4%, be the simplicial DG algebra which is obtained by
applying the PL de Rham functor (see [3]) to the cosimplicial simplicial complex

—_ — :
0 1 "—_—
A== A — - T2A ..
: :

These two examples C*, 4%, satisfy the axioms (see [1], [6]). For example
Axiom (b) of A%, is proved by the contraction

1xc 7
L XA[l] — Ap X A, — A p

where c€(A4%,),=0([t], c(t)=t, p is the multiplication of the algebra A%,
Let A" X Wr— W= be the z-bundle with fibre A" obtained by ¢ and the

universal z-bundle Wz—> Wz (see [6]). If 7(z) is the canonical twisting

function 7(z)[g, & -+, g1 =g, then A"X Wz—Wxz is identified with the
TCP A" x Wz — Wr. This Kan fibration 4" x Wz — Wz has the 0-section
() T(T)

s: Wn—A" X Wr s[gy, -+, g,]=(0, [&, -+, £,]) whose image {0} x Wr is also
()

wn,
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denoted by Wr. Let 6(t): X—Wzr be the map 6(7)(x)= [r(x), 7(8,x), -+,
7(0§7'x)], x€X,. Let A)X, Y; 7)=S((X, Y), (4" X Wr, Wr))#, denote the

(T
set of liftings (or maps over Wr)
(A”?( W?Z‘, Wn‘)
T(x)
(Wﬂ', Wn)
then we can define the group structure on A¥(X, Y; 7) by the fibrewise addition,

the fibrewise inversion and the O-section. Further we define the differential
(8 1)4 so that (AF(X, Y; 7), (§x 1)) is a DG abelian group. We remark that
() T(x)

the sequence
0= A}X,Y; 1) = Ay(X;7) = AyY; 7]|y) =0
is exact, since S is a closed model category (see [10]) and A" X Wr— Wr is
)

a trivial fibration. By Axiom (a) we find Z"4=Ker {§: A"— A"} is an
Filenberg-MacLane complex of type (G, n), especially Z"C is a K(G, n). Let
[(X, Y), (Z"A x Wr, Wr)]w, denote the set of vertical homotopy classes of
liftings o

(4 ”A,?,f) Wr, Wx)
X, V) o) |#
(Wr, Wr)
The set [(X, Y), (Z"Agi) Wr, Wr)]w, has also the group structure induced by
that of AYX, Y;7). Z"CxXWr—=Z"C X Wa=K(G, n)x Wr is sometimes
denoted by L4(G, n) (see [5]).ﬂ - h
Theorem 1.1.
H"(A§(X, Y; ), (Sé)l)*) = [(X, Y), (ZnA7<>,,<) Wr, Wr)lw. -
Theorem 1.2. There is a natural chain isomorphism
(CEX, Y3 7), )=(S(X, V), (L(G, ), Wrl)ier (5. 1))
Corollary 1.3.
HYX, Y; 1)=[(X, Y), (Lo(G, n), Wr)]w.

Therefore as a corollary we have the vertical homotopy classification of
the cohomology groups of (X, Y) with local coefficients in L.



222 Y. HIRASHIMA

Corollary 1.4.
H'(X, Y; L)=[(X, Y), (Lsw(G, n), WmiX)]we,x -

2. Proofs of main theorems

As the proof of Theorem 1.1 is essentially the same as that of [1], we only
outline it. Bundle-theoretic replacement of the notion of exact sequence leads to

Ker {43(X, YV; 7) = A§*\(X, V;7)} = S(X, Y), (Z"A X Wr, Wr))w,.
The equality o

Im {457(X, Y3 7) > 44X, V; M)} —
{feS(X,Y),(Z"4 x Wr, Wr))w.| f is fibre homotopic to the trivial fibre map}
()

is proved by Axiom (b) and the CHEP (Covering Homotopy Extension Property)
of A*"' X Wr — Z"A x W= which follows from the next

T(®) ()
Lemma 2.1. If = acts simplicially on simplicial abelian groups A and B,

and if \r: A—>B is a m-equivariant simplicial epimorphism, then A X Wn—
B X Wr is a Kan fibration. «

T(®)
Proof. Suppose %y, ***, %41, Fpi1, 5 X1 E(A X W), satisfy 0;x,=0,_1x;,
T(m)
i<j,i, j*k, and (b, [g, &) E(B X I’T’7z)q+1 satisfies 9,(b, [g1, =+, g,]) =
(\1r>< l)x,, i*+k. Since A X Wr— Wr is a Kan fibration, there exists (a, [g;, ***,

()

gq])E(A X Wr),+, such that 0,(a, [g, -+, g,])=x,, i+k. It follows that 8,b=
T

0,yr(a), if=k. We note that + is a principal Ker v bundle, therefore it is a

Kan fibration. It follows that there exists a’ 4., such that 9,a=0, i==k, and

va'=b—+ra. Then (a-+a’, [g, -, &) E(4 X Wr),,, satisfies 0,(a+d’, [g,, -,
()

gJ)=x;, i%k, and (xp >< 1)(a+a lgw -, 8 )=(b, [g1 --*»8,])- This completes
the proof.

As for Example 1 we remark that C*™! X Wz — Z"C X Wz can be written

Lo (0
directly as a TCP so that we need not Lemma 2.1,

To prove Theorem 1.2 we must generalize [6; § 24] to our situation. Since
CoX,Y; )=Ker {Cy(X; 1)—>C3(Y; Tlp)}, S(X,Y), (Ls(G, n), Wr))z,.=
Ker {S(X, L4(G, n))iw.— S(Y, Ls(G, n))i7.}, a proof of the absolute version of
Theorem 1.2 suffices to prove Theorem 1.2. We define the n-cochain u(=u,) €
C.’,’.(C”TES) Wr; (z)p) by ulc, [g1 > £.]) =¢(0, 1, .-+, n) of which we call the

fundamental n-cochain. If xE(C" >< Wr),, then &*: C4(C" X Wr; 7(x)p)—
T

C"(A[q]; 7(=)p®) is induced by %: A[q]—»C” X Wr. Let E: Ci(A[q]; 7(z)px)
— Ct=C"*(A[q]; G) be a map defined by o
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Efy = m(m)pR(0, y,) [y, ¥ = (Yo Y1 = Vi) E Al FECHA[g]; T(7)p%) .
Lemma 2.2.

(1) E is a chain isomorphism.
(2) Est= i (=) (px)SEE  (i=0)
| oFE (i=0).

Here §,: A[g—1]— A[q], o:: Alg+1]— A[q] are the standard (co) face and (co)
degeneracy operators.

Proof. (1) If y=(ys, -+ ys) EA[g]s then

E8f(y) = w(x)(p5(0, y) (=) p3(2)) £(2)
+2 (—1)7(m)(p5(0, 30) " £(8.9)
= @) (PR(0, 3" @)+ 2 (— 17(m) (50, 9) " (B1)
= 33 (~1)'Bf@,y)
= 8Ef(y).

(2) Consider the next diagram

E
C(Alq]; 7(=)p2) ——> C;
5% la.-za:-k
C(Alg—1]; 7(z)pdix) - C'i_, .
If y=(%y, ==, ys) EA[g—1],, f ECH(A[g]; T(x)p%), then we find

E8Tf(y) = 7()(p%840, 30))"f(8:7)

= 7(w)(p%(8:0, 8,3,))"'f(8:7)
= 7(m)(p*(0, 5:0))7(=)(p%(0, 8:30))"S(8:)
= 7(z)(p%(0, 3,0))37Ef(y) .

(3) The proof is parallel to that of (2).

Lemma 2.3. Let %: C,}’,(C"Té)Wz; T(?z')j))—)(cﬂgci )Wn),, be the map X(f)=

(Ex*f, px). Then we have X(u)=x.
Proof. Put x=(c, g)E(C”Té)Wn)q. Let y= (¥, ***, .)€ Alg], be a non-

degenerate simplex. At first we find y=y*(, 1, ---,¢), y*=19,9;,---9;,_,
0<4, <8, <+ <0, <q Vo =**» Y 11y **» L=, } = {0, 1, -+, ¢}.  Thus we have
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Ex*u(y) = 1(z)(px(0, o) u(®y) = T(z)(p(0, yo)) "u(y*x)
_ w0 y*e)  (30=0)

[ 7(=)(p%(0, 30))w(r(7)(3,.8;,+0;, &% ¥*8)  (3=0)
Since 7(7)(0,;b)=7(b), i>1, we find

(7)(0;,++0,,_,8) = T(=)(p(0;,+-9,,_ )0, 1, -+, q)))
= T(z)(p%(0, Yo» V1> ***» In))

= 7(z)(p%(0, 3,)) ,
so that

Ex*u(y) = y*¢(0, 1, -+, n)
= cyx(0, 1, -+, n)
=y)-
It follows that (u)=(c, g)=x as desired.

Theorem 1.2 (absolute version).

Define a: S(X,Ls(G, n))iz,—~CHX; 7) and B: CyX; 7)=>S(X, Ly(G, 1))z
by a(f)=f*u, B(7)(*)=%(Y) (=(Ex*y, 0(7)(x))). Then we have

(1)  « is a homomorphism of groups,

(2) B is well defined,

() aB=id, Ba=id and

“4 8a=a(87§)1)*.

Proof. (1) It is easy.

(2) We must see that B(7v) is simplicial. If ¥€X,,, then we find by
Lemma 2.2

B(7)(0;x) = (E8¥x*, 0, px)
_ { ((=)(px)0,Ex*y, Dopx)  (i=0)
| (8:E=*, 0,px) (i+0)
= 0.8(7)(x) -

Similarly we have B(7)(s;x)=s;8(7)(x).
(3) If x=X, is non-degenerate we find

aB(v)(x) = B(Y)*(u)(x) = w(E®*Y, px) = Ex*v(0, 1, -+, n) = ¥(x).
And if feS(X, Ly(G, 1))y, x&X,, then we have
Ba(f)(x) = F(f*u) = (E®*f*u, px) = fa(u) = fx.

(4) LetfeS(X, Ly(G, )i, xEX,11. Put fa=(c, px) € Ly(G, n),+,, then
we find
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(8 X D = (8¢, px) = 8¢(0, 1, -+, n+-1)
= ST (—1)e(8(0, 1, -+, n+1))
= 3T (—1)0,(0, 1, -, m),

Bt f(x) = () (p)"f 1 (03)+ 2 (— 11,0,
= () (p) () (P)00t, o)+ 3 (— 1O, 3:p%)

n4l

=3} (—1)9,¢(0, 1, -, ),

[

R
+

so that we find (8 X 1)4=38a. This completes the proof.
()

3. Topological version

Let T be a path connected topological space, and let L be a local system
on T. Since we can identify the fundamental groupoid =T of T with that of
the singular simplicial set ST, we regard L to be a local system on ST. The
fundamental group =, T is defined to be #, ST for some fixed t,&ST\(=T) as a
set, but the multiplication is defined as usual, so that the inversion I: 7, T —
m ST, I(g)=g™, is an isomorphism. We understand ¢: =, T — Aut L(t,) to be
$(L)I, where ¢(L) is the group homomorphism given by L and ¢, as before.
The cohomology groups of T with coefficients in L, H*(T; L, t,, (u;)), are de-
fined as Hg,,(ST; F(t,, (u,)) for some fixed paths u,&xT(t, t), tT (see [2]).

We have to describe the (vertical) homotopy classification of H"*(T';L) in the
category of topological spaces. Roughly speaking, the geometric realization
functor induces the isomorphism from the simplicial vertical homotopy classes
to the topological ones in our case.

Let K(G, n)=|W"G|=|Z"C| be the Eilenberg-MacLane complex on
which 7, T acts from the right (i.e. |¢p(L)|(g, a)=a-g, ac K(G, n), gem,T).

Lemma 3.1.  The geometric realization of the Kan fibration Z"C X W, ST
(e ST

— Wn\ST is homeomorphic to the fibre bundle |Z"C | >< En,T— Br,T, where
En,T—Bn,T is the universal =T bundle in the sense of Mtlﬂram (see [7]).

Proof. Define the bisimplicial set K by K, ,=Z"C,x Wz, ST, 8}=09,x1,
((T(nlST)(b)a, 0,0) (1=0)

st=s;x1, 0/(a, b)= , and s//=1xs,. The geometric
[(a, 3;b) (i+0)’
realization of the diagonal simplicial set Z*C X Wm ST of K is naturally
T(,8T)

homeomorphic to the successive geometric realization of K, which is homeomro-
phic to the geometric bar construction B(|Z"C|, =T, %) (see [7]) by making use
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of the simplicial homeomorphism f=(f,), f,: |Z"C |x Wz, ST—|Z"C|X (=,T)",
fda, g, -+, g))=alg, -+, g,]. Further B(|Z"C|, =,T, *) is homeomorphic to
| Z"C| X B(m,T, =, T, ) by Corollary 8.4 of [7]. 'This completes the proof.

7[11'

Proposition 3.2. Let p: E— B be a Kan fibration, and let §: X — B be a
simplicial set over B. Then the geometric realization functor gives the bijection

[X, El;— [ X]|, |E|]is -
Corollary 3.3. We have the topological (vertical) homotopy classification
H™(T, L)=[|ST|, K(G, n) X Ez,T ], -
T

If T=|X| the geometric realization of some connected simplicial set
X, for example if T is a path connected regular CW complex, we can regard X
as a sub simplicial set of ST by the adjoint 7 of 1,: | X |—T. We suppose
that t,e X, and u,enX(t, t) if tX,. Then we have the following

Proposition 3.4. i: X— ST induces the isomorphism
i*: HY(T; L)— H"(X; Liy) .
Corollary 3.5. We have the classification
H"(T; L)=[T, K(G, n) 2<TE7z1'1‘]B,,1T .

Proof of Proposition 3.2. The adjointness of the geometric realization

functor to the singular complex functor defines the natural bijection
S(X, S|E)sim— T(1 X1, |E|)ip, where T(| X |, |E|)ip is the set of topolo-
gical liftings

IE|
[ X] / llpl
~E

We find easily that the above natural bijection and its inverse map preserve
vertical homotopies, so that we have the bijection [X, S|E|]sz—[|1X |, |E|] 5.
By adjointing the identity maps 1: |E|—|E|, 1: |B|—|B| we have the com-
mutative diagram

i
E—>S|E|

o, sl
B-2>S|B|

)

which induces the map (i, 75)«: [X, E]z—[X, S|E|]siz. The formal proper-
ties of adjointness lead to the commutative diagram
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[X, E]s >[1 X, |E|]in

\(iE: ip)% 7

[Xr [ E | ]SlBI
The following Lemma 3.6 completes the proof.

Lemma 3.6. (i, i5)4 is a bijection.

4
Proof. Let E’ LN S|E| be the pullback diagram. It is easy to see
7. |sinl
B2 s(P
that (7, i3)x: [X, E'];—[X, S|E|]siz is a bijection. We have to find that
Jx: [X, E]s—[X, E’]; is bijective for j: E— E’ the canonical injection.

Let p|): M— B be a minimal fibration of p: E—B and r: E—~M be a
retraction. Since j: E— E’ is a trivial cofibration (i.e. anodyne extension, or
map which is both cofibration and weak equivalence) of the closed model
category S, for the diagram

E sy

. f/z
lf P’ lpw
E"—5 B
the filler 7" exists. Let A: EXA[1]—E be a homotopy from 1, to 7 over B.
Since E X A[1JU E” X A[l] C E’ x A[1] is a trvial cofibration (see [4; IV, 2.2]), for
the diagram

. jRU1lz U7
ExA[I]UE’XA[I]%E’
n T lp’
E'x A[1] == PP >B

the filler H exists and makes p,,: M — B the strong deformation retract of
p’: E'— B. This proves Lemma 3.6.

Proof of Proposition 3.4. By Corollary 1.3 and naturality we have the
commutative diagram

HYT; L) == [ST, Lsy(G, n)]liza,sr

i* o
H"(X, Lix) = [X, Ly)(G, 7)]asr

The next Lemma 3.7 completes Proposition 3.4.
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Lemma 3.7. Let 0: Z— B and p: E— B be a simplicial set over B and
a Kan fibration respectively. If i: A— Z is a trivial cofibration, then 1*: [Z, E],
—[A, E]p is a bijection.

Proof. Since i: A—Z is a trivial cofibration, for every commutative dia-
gram
A—E

l /z
t 2 P
0

——> B

the filler exists and this follows the surjectivity of 7*. To prove the injectivity
of 7* we have to see that the inclusion AXA[l]UZXAtl]CZX All] is a
trivial cofibration. It follows from [4;IV, 2.2]. This proves Lemma 3.7.

We remark that the relative version of Corollary 3.5 is available. We only
give some hints.

(1) If a Kan fibration p: E— B has a section s: B— E, then we can choose
a minimal fibration p,y: M — B of p such that M DsB.

This implies the relative version of Lemma 3.6 and therefore that of Pro-
position 3.2.

(2) Let X be a connected simplicial set and let Y C X be a connected sub
simplicial set. Since XNS|Y |=Y and i,y is a anodyne extension in the com-
mutative diagram

Yy — X

lqy lax

S|YI— S|X]|,

XcXUS|Y|=X||S|Y]| is a anodyne extension, and therefore X US|Y | C
Y

S| X | is also a trivial cofibration. We easily find that the map i*: [(S|X],
S1Y), (E, sB)];—[(X, Y), (E, sB)]s ia a bijection for a Kan fibration p: E— B
with a section s.

This implies the relative version of Proposition 3.4 and therefore that of
Corollary 3.5.

4. Appendix

In this section we generalize some results in [6; §25]. For simplicity we
assume that all simplicial sets are one vertexed Kan complexes.

Let K be an Eilenberg-MacLane complex K(G, n), n>>2. It is shown in
[6; §25] that the group complex A(K) of invertible elements in K¥ is isomor-
phic to Aut G x K with the group structure
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(f \(g >=<fg >, fe€dAutG, x yek,.
xJ\y JARR:

The action 4(K)x K—K is identified with (4utG x K) x K—K, <f >y:fy—i—x,
fEAuG, x, yeK,. x
Let p: KX B-—B be a Kan fibration. If we put T(b)z(f(b)), then f, x
T x(b)

satisfy the following formulae

f(b) = £(8,5)"f(B,b) 055(b) = £(35b) " (—(0sb)+(8,0))
fﬂm:f(aiﬂb) (i>0) 0.%(b) = x(8,1,6)  (i>0)
(f(b)=f<s,~+lb> (i>0) six(b) = x(s;4.8)  (1>0)

1o = f(sob) ’ € = x(s,0)

Since f(b)=£(0,0,-+-0,b), b€ B, and f(b)=f(¥’) if b, b’ are homotopic 1-simplexes,
f factors as f=¢F, where F: B—mB is the twisting function defined by
F(b)=[0,0;---0,b], beB,. It is easily seen that ¢: =,B— AutG, ¢([b])=f(b) is
a group homomorphism.

Lemma4.1. For a Kan fibration p: KX B— B 7 B-action on #,K=G is ¢.
Proof. Consider the following commutative diagram
Kx(0)—> KxB

/7
b

N |?
kxal] 2B, beB,.

The filler 2 defines a homotopy equivalence A( , (1)): K— K, and =,(h( , (1)))
€AutG is the automorphism given by [b]€=,B. Since K(=K(G, n), n>2)
is one vertexed, x(b)=0 for b= B, and therefore 7(b(y))=f(b(y)). Put a priori
h(z, v)=(f(5(0, »))(2), b(»)), s€K,, yEA[1], then & is simplicial. We find
h(z, (1))=(f(b)z, *). This completes the proof.

If we give m,Bx K a similar multiplication as AutG X K, then we have
the twisting function 7: B—#zBXK, 7/(b)= (F(b)) and the group homo-
morphism ¢ X 1: m,BX K— AutGx K. x(b)

Lemma 4.2. The group of the bundle p: KX B— B can always be reduced
to 1, Bx K.
Lemma 43. K x W(#xBxK)—>W(@xBxK) is isomorphic to

T(T B X K)

WK X Wr,B— WK x Wr,B (=Ly(G, n)).

Proof. Consider the commutative diagram
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H
K X WmBxK)—> WK x Wz B WK X WmB

T B XKD TCy 8)

J

) ;
WxBxK) ——> WK x WnB~ WK X W3

T B

where

H(x, (

(&)

()= (7, o B, ).
X

= ((x, F7'x,, FT'F3'%y, -, FT'F7%-F7'x,), F) x€K,,

I

)
( -,Fq>qu(7le><K),

These H, h are simplicial isomorphisms. This completes the proof.
By making use of the above Lemmas we have the next

Theorem 4.4. p: K>< B—B is classified by the element o(p)sHg''(B; F)
corresponding to hO(7’): B—>L¢(G, n+1).
Theorem 4.5. If p,: K >< B—B, p,: K >< B — B are fibre homotopy equiva-

lent, then there is a -equwarzant automorphzsm g, i.e. dp(1Xg)=ge,, such that
gx0(p1)=0(p2)-

Proof. Put Tl(b):( fl(b)>, ’rz(b):<f2(b)>. Since K is a minimal Kan com-
x,(b xy(b

plex, p, and p, are minimal fibrations. Therefore they are strongly A(K)-
equivalent. By Lemma 20.2 of [6] there is a map @: KX B—~K x B, 6(y, b)=

((g(b))y, b), g: B— Aut G, 2: B— K, such that
2(b)

fb)g(b) = g(0:6)1(0) ,
%(0)+12(0)052(b) = 2(0:0)+£(0:0)x:(5) ,

8(b) = £(0.5) (#>0),
0,2(b) = %(0,d) #>0),
8(6) = g(s:d) ,
5,2(b) = =2(s;b) .
Since g(b)=g(0,b6)="--=g(0,0,"*9,b)=g(*), bEB,, g is contstant.
If we put 73(b):<fz(b) ) (gfl (b)g™*\, then we have the TCP p,: KXB—>
g6(8))  \gx(b)

B. Itis easily seen that p, and p, are strongly z,Bx K-equivalent by the map
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of TCP’s ®: KxXB—KXxB, 0(y, b)z((l )y, b). Therefore we find
v —2(b)

o(p,)=0(ps). We have the map of TCP’s 8”’: KxB—>KXxB, 8"(y, b)=
1 T3
(gy, b) which is induced by the commutative diagram

_ W 1
WK x WS wKk x W

‘7’17(”1”) ¢27(nln)
- _ Wegx1 _ l _
WK x W-—="- WK x W.
b, 7(7, B $T(7yB)

This completes Theorem 4.5.

Let (X, x,) be a connected minimal Kan complex, and let (x;, X, X @, -+,
X®, ... denote the natural Postnikov system of X. Then X® — X1 js
isomorphic to p,: K(=,X, n)>T<X @D X =D A sequence of cocycles of

o(p,)’s is called a set of k-invariants of X. As Corollaries of our results we
have Theorems 25.7 and 25.8 of [6] without any restriction on ,-action.

Osaka City UNIVERSITY
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