
Morita, S.
Osaka J. Math.
16 (1979), 161-172

ON CHARACTERISTIC CLASSES OF RIEMANNIAN
FOLIATIONS

SHIGEYUKI MORITA1)

(Received February 17, 1978)

0. Introduction

In [6], Lazarov and Pasternack defined characteristic classes for Riemannian
foliations and investigated their properties very closely. Their theory is a spe-
cial case of the theory of characteristic classes for foliated bundles due to Kamber
and Tondeur [4]. From this point of view, the characteristic classes are de-
fined by looking at the unique Riemannian connection on the orthonormal
frame bundle of the foliation, whose structure group is the orthogonal group
O(n) (n is the codimension of the foliation). However if we enlarge the struc-
ture group to Έ(ri), the group of Euclidean motions on Rn, and if we look at
a system of differential forms defined by considering the Cartan connection,
then we obtain more charateristic classes than those defined by Lazarov and
Pasternack. The purpose of this note is to clarify this point. Thus this note
could be considered as an addendum to [6].

In § 1 we give the main construction of the characteristic classes and in
§ 2, the concept of "p-th scalar curvature" is defined for every Riemannian mani-
fold. In § 3 the cohomology of a truncated Weil algebra of e(«), the Lie algebra
of E(ή), is determined and §4 is devoted to the study of continuous variation
of the new characteristic classes.

1. Construction of the characteristic classes

Let F be a Riemannian foliation on a smooth manifold M defined by a
maximal family of submersions

from open sets Ua in M to a Riemannian manifold (/?£, gΛ) (g<& is a Riemannian
metric on Rn) such that for every x^UaΓ\ Uβ there exists a local isometry 7/^:
neighborhood of fa(x) -» neighborhood of fβ(x) with fβ=

fγβΛfΛ near x. Now-
let O(Rl) be the orthonormal frame bundle of Rn

Λ. Since O{Rl)\rγβcύ(U)=-
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)̂ I U) where U is a small neighborhood of fa(x), we can define a princi-
pal bundle O(F) over M such that O(F) \ UΛ=f*(O(RΪ)\fΛ(UΛ)). We call O(F)
the orthonormal frame bundle of the foliation F. New since the canonical
form and the Riemannian connection form of Rkmannian manifolds are pre-
served by isometries, we can define Rn and §o(ή) valued one forms θ0 and θx on
O(F) such that θo\UΛ=f*(θ<i) and θx\ t/β=/*(0?), where 0Jf and 0? are the
canonical form and the Riemannian connection form of R%, respectively. We
call ΘQ and θλ the canonical form and the Riemannian connection form of F.
We may also consider the pair (θ0, 02) as an e(/z)-valued one form on O(F)
whose restriction to Ua is the pull back under / * of the e(n)-valued one form
(θ%, θΐ) on 0{Rl), which may be considered as the unique torsionfree Cartan
connection form of Rn

a. With respect to the usual basis of e(τz)=j?w©§o(w),
we can represent θ0 and θλ by n forms θ\ Θ2> ••-, θn and a skew symmetric matrix
of differential forms θ\. Now if we denote W(z(ή)) for the Weil algebra of
e(w), then θ0 and θλ define a d.g.a. map

φ: W(t(ή)) -> Ά*(O(F))

where Ω* (0(F)) is the de Rham complex of O(F). Let ω\ ωj , Ωι, Ω)i
be the universal connection and curvature forms corresponding to the usual
basis of c(w). Then φ satisfies φ(ωi)=θi and φ(ωt

J)=θ). Now we know the
following conditions (cf. [5]).

(i) dθι — — 2 J θi

J/\θj (torsionfree-ness),
i

(ϋ)
(1.1)

where θ) = 4 - Σ R)kiθkΛθι,
2 *»/

(iii) 2 θj Λ ^' = 0 (the first Bianchi's identity).

In view of these conditions, we define an ideal / of W{t{ri)) as the one generated
by the following elements.

(i)' Ω ,
(ii)/ elements whose ^length" / is greater than n, where / is

(1.2) defined by the conditions: l(ω)) = /(ίl1') = 0, /(ω£)=l and
/(Ω})=2.

(iii)7 Σ Λ J ΛωΛ

Then it is easy to see that / is a subcomplex of W(e(n)). The condition (1.1)
shows that φ(I)=0. Therefore, if we denote W{z(n)) = W{t{ri))jl, then φ
induces a d.g.a. map

φ: H (̂e(n)) ~
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Now suppose that the normal bundle of F is trivialized by a cross section
s: M->O(F)y then we obtain

H*{W{t({n))) - HUO(F)) -i-* HUM).

Since this construction is functorial, we finally obtain

(1.3) H*(W(e(n))) - H*(BRΓn; R)

where BRTn is the classifying space for codimension n Riemannian Haefliger

structures with trivial normal bundles (cf. [6]). In the general case we have

α „ H*(W(z(ή))0(n)) - H*(RRΓn R)

H*(W(e(n))S0(n)) -> H*{BRTt, R),

where the left hand sides are the cohomology of subcomplexes W{z(n))0^n)

(resp. W{z(n))SOin)) of O(n) (resp. SO(n)) basic elements of W{z(n)) and BRTn

(resp. BRTn) are the classifying space for the Riemannian (resp. oriented

Riemannian) Haefliger structures. This is our construction of the characteri-

istic classes for Riemannian foliations. Now if we ignore the canonical form

ΘQ, then we obtain

where W{%o{rij)==W(%o{n)) modulo the ideal / Π W(8o(n)). This is nothing but

the characteristic classes defined by Kamber and Tondeur [4] and is the same

as those defined by Lazarov and Pasternack [6].

2. Scalar curvatures

In this section, we define the notion of "p-th scalar curvature" for every

Riemannian manifold M of dimension n, where p is an even integer ^ n . First

of all we recall the concept of p-th sectional curvature yp defined by Allendoer-

fer and studied by Thorpe [8]. Let Gp(M) be the Grassman bundle of tangent

^-planes of M. For every p-plane (x, P)^Gp(M), 7p(xf P) is defined to be the

Lipschitz-Killing curvature at x^M of the ^-dimensional submanifold of M

geodesic at x and tangent to P at x. Thus Jp is a smooth function on Gp(M).

In terms of the curvature tensor R of M, yp is expressed by

/ 1 W2

(2.1) yp(xy P) = y

2p/2> } Σ sgn(σ)sgn(τ)£(/?( t tσ(1), uσ(2))uτ(lh uτ(2))

(p_l)f Uσ(p))ur(p-lh Ur(p))

where g is the metric tensor of M, «!,•••, up is an orthonormal basis for P and

σ, T range over the p-th symmetric group Sp. Now if we average this Jp over
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each fibre of Gp(M)-*M, then we obtain a real valued smooth function Rp on M.

Let us call this function the "p-th scalar curvature" of M. In terms of the cur-

vature tensor R, Rp is expressed by the formula,

(2.2) Rp(x) = - £ = ^ r Σ Ύp(x, Pi) •

(;)'

Here the sum ranges over all ^-tuples /== (*(1), , i(p)) with 1 ̂  i( 1) < < i(p) ^ n

and P{ is the ^-plane at Λ G M spanned by w,-̂ , •••, ut(p), where uu •••, un is any

orthonormal frame at x. R2 is the usual scalar curvature of M (up to a non-zero

constant) and Rn is the Lipschitz-Killing curvature if n is even. Now as in

§ 1, let 01', / = 1 , •••, n and #} be the canonical form and the Riemannian con-

nection form of M. Thus they are one forms defined on O(M), the orthonormal

frame bundle of M. Let us define a smooth function ft)kι on O(M) by

(2.3)

For every even integer p^n, we define a smooth function Rp on O(M) as follows.

We consider the w-form:

det((n-p)θ9 («) >

where σ ranges over the /z-ίA symmetric group Sn. Then J?̂  is defined to be a

function satisfying the equality.

(2.4) det((n-/>)0, (/>/2)θ) - Λf^Λ - Λ^".

Then it is easy to see that the function Rp is constant on each fibre of the bundle

π: 0{M) -» M. In fact we have

Proposition 2.1. Rp=(-\)mn\π*Rp.

Proof. Let x G M and let z/j, •••, wn be an orthonormal frame at x. We

choose a coordinate around x such that =Wj for i=l, •••, z. If i?jΛ/ is the

component of R with respect to this coordinate, then from (2,2) we have

(2.5) Rp{x) = - ( - 1 ) > ^

where i = ( i ( l ) , •••, *(^)) ranges over all />-tuples with 1^/(1) <••• <i(p)^n. On

the other hand we have
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(2.6) * , (* , „) = 1 Σ sgn (σ) sgn (\ "' n~P "'« )
2p/i '., W(l) ••• σ(n-p)j(\) -j(p)/

where _/=(_/( 1 ),•••,_/(/>)) ranges over every permutation of (»—/>-)-1, •••,»).

We have

(2.7) RJX, u) = ••-1 M
2"/2

Λvhere i=( ί ( l ) , " ,i(p)) ranges over all ^-tuples with l^z(/e)^«, t(k)^i(l) for

^ Φ / andy=(y(l), - ,j(p)) ranges over all permutations of z. Now by the choice

of the coordinate x,, •••, Λ:Λ, clearly

R)uι{χ) -

for all i,j, k, 1. Therefore by comparing (2.5) and (2.7) we obtain

Rp(x, u) = (-lyfinlRpix).

Since it is easy to see that Rp(x, u) does not depend on the choice of the frame

Uy this completes the proof. q.e.d.

Now let/: M—>/V be an isometry of Riemannian manifolds M, N. Then

from the definition of Rp, it is clear that Rp(M)=f*Rp(N). Next we investigate

how the p-th scalar curvature behaves under the scale change g~^k2g. Let Rp

be the p-th scalar curvature of the Riemannian manifold (M, k2g). Then we

have

Proposition 2.2. Rp = k~pRp .

Proof. This follows from an elementary calculation.

3. Cohomology of W{t{n))

In this section we compute the cohomology of the truncated Weil algebra

W(t(ri)). For each even integer p^n, let rp be an element of W(<ι(n)) defined by

rt =-- det((n-p)ω, (pβ)Ω)

Then it is easy to see that rp is closed so that it defines a cohomology class in

H*(W(z{n))). Next we define ht^W(z(n)) (z=2, 4, .- ,w-l) for n odd and

hiy hx^W{z(n)) (i=2, 4, •••, n—2) for n even by
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where P f , X are the i-th Pontrjagin form and the Eυler form respectively, T
denotes Chern-Simons' transgression form [2] (at the Weil algebra level)
is the projection modulo the ideal I. Let

h^- h^) Tzodd,

= E(h2, h4ί—, hn_2ί hy) n even ,

be the exterior algebra generated by h2y •••, and let rpEn be the vector space over
R with basis {rpxι} where {xt} is a basis of En. Then by the truncation,
every element rpx{ is closed. We have the following.

Theorem 3.1. H*(W(e(n))) = H*(W(8o(n)))® Σ rJEn.

Here H*(W(§o(n))) has been determined by Kamber and Tondeur and is
isomorphic to H*(RWn), where RWn is the differential complex defined by
Lazarov and Pasternack [6]. Before proving the Theorem we describe the
geometric meaning of the second term of Theorem 3.1. Thus let F be a codi-
mension n Riemannian foliation on a smooth manifold M defined by sumbersions
f*'* Ua-^Rl (see § 1). We define a smooth function Rp on M, for every even
integer p with 0^p<n, as follows. Ro is the identity function of M and for
p^2, Rp\UΛ=f*(Rp), where R* is thzp-th scalar curvature of Rn

a defined in § 2.

This is well-defined because Rp is invariant under isometries. Also we have an
w-form v on M such that v\ Ua=f*(volume form of jβ£). With these under-
stood, rp of the foliation F is represented by the w-form (—l)p/2n\Rpv (cf. (2.4)
and Proposition 2.1.). Now assume that we have a cross section s: M->O(F)
and let TP^F), TX(F) be the Chern-Simons' transgression forms corresponding
to the Riemannian connection on O(F). Then ht (resp. hy) of the foliation is
represented by the form s*TPi(F) (resp. s*TX(F)). Now we prove our Theorem
3.1.

Proof of Theorem 3.1. Let us define the "weight" function w on the
elements of W{z{n)) by w(ω ' ) = l , w{ω)) = w{ίl)) = 0, and define JQ= {#<=
W{z(ή))\ w(x)=0}, J+ = {x<=W{<t(n))\ w(x)>ϋ\. Then it is easy to see that
both JQ and J+ are subcomplexes of W(z(n)). Moreover we have W(z(n))~
J0®J+. Therefore

(3.1) H*{W{z(n))) = H*Uo)®H*(J+)

Now let us define a decreasing filtration FponJ+ by

F*= {xeEj+;l(x)^p}

where / is the "length" on W{z(n)) induced from that on W{z(ri)). Let
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{Epq, dr} be the spectral sequence associated with this filtration. Define Mp=
sub-vector space of/+ spanned by ω 1^ — ω 1 "^" 2 *^^ •••Ωj(%~1) for alii,;,*.
Then 3o(/z) acts on Mp by the Lie derivation. Thus Mp is an §o(w)-module.
Let Cr($o(n); Mp) be the set of r-cochains on §o(n) with coefficient in Mp. Then
it is easy to see that

(3.2)

Moreover the following diagram is commutative up to sign.

Epo>q « C«(So(n); Mp)

(3.3) \d0 jrf

£ l ί + 1 ^ C9+1(So(/z); M,)

where d is the differential of the complex C*(§o(#); M^). Therefore we obtain

(3.4) E{-qsχHχ&>(n)\Mp).

Now since $o(ή) is simple, by a theorem in [3], we have

(3.5) Hq($o(n), Mp) = Hq($o(n)) ® M^{n)

where M^' is the §o(w)-invariant subspace of Mp. Now by the form of the

action of $o(ή) on Mp, we can apply a theorem of Weyl [9] on the %o(ri)-invariants

to obtain

(3.6)

= vector space with basis rk\ k even, 0^k<Cn p=n .

Now since rk is closed and has length n, it is easy to see that d1=d2= "=0.
Hence we have Ep

1'
q=--=Ep

o:
q and this implies

(3.7)

On the other hand, clearly we have Jo — W(%o(n)) and a similar argument as

above shows that

(3.8) H*(Jo) « ^

where ΛH^ is now considered as a subcomplex of W(%o{n)). (3.7) and (3.8)
prove our Theorem. q.e.d.

Let I(SO(n)) (I(O(n))) be the ring of invariant polynomials of SO(n)
(O(ri)). Then we can consider that I(SO(n)) and I(O(ή)) are subcomplexes
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of W{z{n)). Let 2(S0(n))=I(S0(n))II r\I(SO(n)) and 2(O(Λ))=/(O(Λ))/7 Π

I(O(n)). Then, by similar arguments we obtain

p

P- even

Theorem 3.2. H*(W(e(n))soUt)) = I(SO(n))@ Σ τpR .

//*(PF(e(«))oω) =

REMARK 3.3. One may hope that one can obtain more characteristic clas-

ses for smooth foliations than those defined by Bott and Haefliger [1] by consi-

dering the Cartan connection. However this is false because we have an iso-

morphism H*(W(Ql(n\ R)))=H*(W(a(n; R))) where α(n; R) is the Lie algebra

of the n-th affine group and W denotes Weil algebras modulo certain ideals

which are constructed by a similar argument as in the Ritmannian case.

4. Continuous variation

In this section we prove that the new characteristic classes J ] rpEn defined
P

in § 3 vary continuously and independently under deformations of Riemannian

foliations. Precisely we prove

Theorem 4.1. Let d'ιmHk(SO(n)) = d. Then there is a surjective homo-

morphism

As bofore, let M be an oriented Riemannian manifold and let π:SO(M)->

M be the oriented orthonormal frame bundle of M. We consider the codimen-

sion n Riemannian foliation F on SO(M) induced from the given Riemannian

structure on M by the projection π. The oriented orthonormal frame bundle

of this foliation, SO(F), is the pull back of the principal bundle π: SO(M)-*M

by the map π. Thus we have SO(F)= {(x] u, v); x<=M, u, v<^π~\x)} and

there is a commutative diagram

SO(F) -ί-+SO(M)

(4.1) \π \π

SO(M)-?-> M

where f(x; uy v)=(x, v) and τt(x; u, v)=(x, u). Now we define a cross section

s: SO(M)~>SO(F) of the bundle π by s(x, u) = (x\ u, u). Then clearly the

composition map fos: SO(M)-> SO(F)-* SO(M) is the identity. Henceforth

we denote F(M) for the foliation on SO(M) described above with the trivializa-

tion s of the normal bundle. Now assume that M satisfies the following con-

ditions.
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(i) Pt(M), X(M) = 0 where Pt(M) and X(M) are the Pontrjagin and the
,. - Euler forms of M, respectively.

(ii) M is parallelizable so that there is given a bundle isomorphism
i: MxSO(n)~SO(M).

Let τ(P,), τ(%)ei/*(£O(rc); Λ) be the transgression images of the Pontrjagin
class Pt and the Euler class X,and let TPt(M), TX(M)eiΩ*(SO(M)) be the
Chern-Simons' transgression forms of M corresponding to the Riemannian con-
nection on SO{M). Then h{ and hx of the foliation F{M) are represented by
s*f*TPt(M) and s*f*TX(M). But since fos=id., we obtain

ht(F(M))=TPi(M)

hx(F(M))=TX(M).

By the assumption (4.2)-(i), both TP^M) and TX(M) are closed forms and
define cohomology classes in H*(SO(M)) which is isomorphic to H*(M)®
H*(SO(n)) under the homomorphism **. (Hereafter we identify H*(SO(M))
with H*(M)®H*{SO(n)) by **.) Since the forms ΓP, (M), TX(M) restricted to
each fibre are closed and represent the cohomology classes τ(Pt) and T(X) (cf.
[2]), we have

MF(M))] = 1 x τiP;) modulo / ,
( ' } [hx(F(M))]=Ξlχτ(X) modulo/,

where [ ] denotes the cohomology class and / is the ideal β*(M)(g)H*(SO(n))
of H*(M) ® H*(SO(n)) ~< H*(SO(M)). Now for each even integer p with
O^p<7Ίj we have the p-th scalar curvature Rp(M) of M. (Ro is defined to be the
identity function of M.) Then clearly Rp(F(M))=π*Rp(M) and the charac-
teristic class rp of F(M) is represented by

(4.5) rp[F(M)) = (-iγ/2n\[ Rp(M)v(M)-π*[M],

where υ(M) is the volume form of M and [M] is the fundamental cohomology
class. From (4.4) and (4.5) we obtain

Proposition 4.2. Let F(M) be as above and sawne that M satisfies the

condition (4.2). Moreover assume \ Rp(M)v(M)Φθ for an even integer p. Then
JM

the cohomology classes r ^ A ,̂ rphi^"hιhi% of F(M) are represented by

rphH-htι{F{M)) = (-1)»*»! [ Rf{M)v(M) [M] χτ(P, i)...τ(P, /),
J M
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Now we consider the special case when M is the Riemannian product
S1xSn~1 of unit spheres. For a unit sphere S\ clearly we have Rp(S*)=l for
every p (cf. [8]), and from the definition of Rpy it is easy to see that

P
n

n—p

Since S1xS*~1 satisfies the condition (4.2), from Proposition 4.2 we obtain

Proposition 4.3. The characteristic classes of F(S1xS"~1) are given by

n—p
x

n—p
X

where vt is the volume of the unit sphere S\

Next we consider the Riemannian manifold (^XAS*" 1 ^ which is obtained
from S1xSn"1 by the scale change g-*k2g. Since the Chern-Simons' TP form
is invariant under the scale change, from Proposition 2.2 and Proposition 4.3
we have

Proposition 4.4. The characteristic classes of F((SιxS*~1)k) are given by

( l ) n ! kv.v^SxS^x
n—p

τ(P(ι) . τ<Pf;),

= (-I f ^.-^-^-^.^..[ί'x5-']x
n—p

Now we are in a position to prove Theorem 4.1. In view of Proposition
4.4, it is enough to prove that the homomorphism

ψ: Hn(BRTH; Z) -*ΛK«+ι>*]

defined by the characteristic classes {^}o^<»^even ^s a surjection. Now the
foliation F{(SlxSn~l)k) on {SιxSn~ι)k defines a homology class ak^Ήn{BRTn\ Z)



CHARACTERISTIC CLASSES OF RIEMANNIAN FOLIATIONS 171

and by Proposition 4.4 its characteristic numbers are given by

rp(ak) = cpk»-P

for a non-zero cp (0^p<n, p even). We consider the homology class a(k)=

tf*ω+tf*(2)H r-α*([<»+i)/H) where k=:(k(l), •••, ^ | ^ X _ J j J is an i^M+1)/2J-valued

variable. The characteristic numbers of a(k) are given by

where the sum ranges over * = 1 , —, Γ ^ Π Now let /:

be the map defined by

. . ,*([^±i] ) ) = (ro(a(k)), -,ra(κ.im(a(k)))

= ( Σ Co*?, •», Σ < 2tG-i>/2:*Γ2c

Then /" is smooth and it is easy to see that the determinant of the Jacobian

matrix of / i s not constantly zero. Therefore we conclude that I m / contains

an inner point. Hence Im ψ contains also an inner point. Since Im ψ is a

subgroup of /gC(w+1)/23, it follows that ψ is surjective. This completes the

proof. q.e.d.

REMARK 4.5 Lazaiov and Pasternack [7] proved that certain characteristic

classes for Riemannian foliations defined by them vary continuously by using

the residue formula for zero-points of a Killing vector field.

If we use the sphere Sn instead of S1 xS"'1, then we can prove the following

Theorems, which are refinements of Theorem 4.1.

Theorem 4.6. The characteristic classes {rp}0^p<n peven define a surjective

homomorphίsm

πn{BRTt) -> Rί(«+1M -> 0 .

Theorem 4.7. If n is even, then the characteristic classes {rph%}0^p<npeven

define a surjective homomorphism
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