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Introduction. Let D be a generalized Siegel domain in CV with exponent
1/2 and g(9) the Lie algebra consisting of all complete holomorphic vector
fields on ®. In [3], Kaup, Matsushima and Ochiai studied the structure of
a(®) and applied the results to the equivalence problem for Siegel domain of
the second kind. They showed that every biholomorphic isomorphism of
a Siegel domain of the second kind onto another one is biraticnal. Moreover,
using this fact they showed also that two Siegel domains of the second kind are
holomorphically equivalent only if they are linearly equivalent. Motivated
by these results, in [5] we studied the equivalence problem for a certain class
of generalized Siegel domains.

The purpose of this note is to gencralize our previous results in [5].  After
some preparations in scction 1, we show the following theorcms in section 2.

Theorem 1. FEvery biholomorphic isomorphism between two generalized
Siegel domains in Cx C" with exponent 1/2 is birational.

By means of this theorem and our result in [5], we obtain

Theorem 2. Let 9) and ' be generalized Siegel domains in C < C" with
exponent 1/2. Then 9) and ' are holomorphically equivalent only if they are
linearly equivalent, that is, there exists a non-singular linear mapping L": C X C"—

CxC" such that L(D)=9".

Throughout this note we usec the same notations as in [4], unless otherwise

stated.
The author would like to express his thanks to professer S. Murakami for
his useful advices.

1. Preliminaries

According to Kaup, Matsushima and Ochiai [3], we say that a domain D
in C*x C" is a generalized Siegel domain with exponent 1/2if it satisfies the follow-
ing conditions:
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(1) 9 is holomorphically equivalent to a bounded domain in C"*" and
4 contains a point of the form (2, 0) where 2z&C” and 0 denotes the origin of C™.
(2) Disinvariant by the holomorphic transformations of C* " of the follow-

ing types:

@) (2, o) (3+a,w) for all ae R";
(b) (s, w) — (=, e’ V) for all tER ;
(€) (3, w) — (e'z, eMDig) for all tER.

Let Aut(9) be the group of all holomorphic transformations of ®. Then it
is known that Aut(®) is a real Lie group and its Lie algebra is canonically iden-
tified with the Lie algebra g(®) consisting of all complete holomorphic vector
fields on 9). We know that the following holomorphic vector fields on &9 are
contained in g(9):

(a) for k=1,2, -, n;
3
B I=v—TXw, > ;
a=1  Qw,

” 8 1 m 8
=32+ 1%y, 0
(c) kglzk azk"l' 20‘2:120 .

m

where (2,2, *,2,, Wy, ***,w,,) is the natural coordinate system in C" X C". Now,
we have the following theorems on generalized Siegel domains with exponent

1/2.

Theorem A (Kaup, Matsushima and Ochiai [3]). Let D be a generalized
Stegel domain in C" X C" with exponent 1/2. Then we have

(1.1) g(9D) = g1+ 817280+ 812t 81
[ar, 8] COain, where gy = {Xeg(9)|[E, X] = A X} .

(1.2) dimg §_1p = 2k for some 0<k=m.

Theorem B (Kodama [4]). Let 9 be a generalized Siegel domain in C X C"
with exponent 1/2 and dimg §_ =2k, 0Sk<m. Let Auty (D) denote the identity
component of Aut(D). Then there exists a non-singular linear mapping ¢: C X C"—
CXC" such that the image D=q@(D) is also a generalized Siegel domain with
exponent 1|2 and, by choosing a suitable coordinate system (z,w,, -+, w,,) tn CxC",

(1.3) the orbit D, of Auty(D) containing the point (n/ —1,0,--+,0)€ D is the
elementary Siegel domain

Do = {(z w3, -+, wy, 0, -, 0)ECK C" | Im. 5—3) |2, |2>0} .
@=1
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(1.4)  if we put
-CD\/:I == {(wk+1v EE) win)EC"l_kl(V’/jy 0) ) Oy Wet1y °* " wm)e—CD} )

then 9y is a circular domain in C™~* containing the origin o of C"~*.

(1.5)  Let g(D)=3" g be the decomposition of o(D) as in Theorem A. Then
we have

R k

gon = 2V =1F@, €) 2 4+31¢* O |0 = ()ech
0z =1 Ow,

where w'=(w,, -+, w;) and F: C* X C*~C is a hermitian form given by

F(u,v) = Zk} u*®  for u= (u%), v = (v*)EC*.

Let (2y,+:+,2y) be a coordinate system in C¥ and D a domainin C¥. For a
holomorphic mapping f=(f,, -, fy): D — C", we denote by J,(p) the Jacobi
matrix (0f,/0%,) of f at a point pED.

Theorem C. Let D be a domain in C¥ which is holomorphically equivalent
to a bounded domain in C" and f a holomorphic mapping of D into itself. Suppose
that there exists a point p € D such that f(p)=p and ] (p)=1y. Then fis the identity
transformation of D.

Proof. This is immediate from Théoréme VII, Chap. II in [1]. q.e.d.

Theorem D. Let D and D’ be two circular domains in CY with centers o, the
origin of C¥. We suppose that at least one of these domains is holomorphically
equivalent to a bounded domain in C~. Let f: D— D’ be a biholomorphic isomorphism
such that f(o)=o0. Then f is linear.

Proof. By using Theorem C we can prove this theorem in the same way
as in Théoréme VI, Chap. IT in [1]. q.e.d.

2. Proof of Theorems

To prove Theorem 1 we need few preparations. Let 9 and (2,wy, W,
be a generalized Siegel domain in Cx C" with exponent 1/2, dimgg_,,=2k and
a coordinate system in CxC"™ as in Theorem B. We consider a mapping
¢: {z€C|Im.2>0} X C"— C""* defined by

(2.1) 2= (—V 1) (s+V -1} & =2w _,(z+V —1)7"

for j=2,3,---,m+1. Then, as is shown in the proof of Theorem 2 in [4], )
defines a biholomorphic isomorphism of 9 onto the image domain B=d¢D)
in €"*', Under these notations we have the following
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Lemma 1. The domain B is a circular domain in C"* with center o which is
holomorphically equivalent to a bounded domain in C™**.

Proof. Since (v —1,0)€9 and $(n/—1,0)=0, it is clear that o= B.
Put

! 1 0 1, O

and

SU(k+1, 1) = Uk+1,1) N SL(k+2, C).

Then from Remark 3 of section 4, [4], we know that Auty(B)= {Jr x| vESU
(k+1,1), KeK%=}, where K= is the identity component of the isotropy
subgroup of Aut(J,_;) at the origin O 9 ,=,, and morcover Aut,(B) operates

on B as follows. For y= (A 3) eSU(k+1,1) and K€K} _iCGL(m—k, C),
c
Wy x acts on B by the holomorphic transformation

3 > (Ag+D) (e5+d)™!

2.2) Wy
( ) YK {5,‘—>K‘(C%+d)—l'5’

where 3=1(s?, .-+, 3**!) and 3'="(s**%, .-+, 3"*"). If we set now, for any 6= R
ev"1 ()
Vo = 0 ..e\/'—'lo 0 eSL(k+2,0)
0 ... ‘() e—¢fl(k+1)o
and
e¢—’i9 0
Ry = R ]eGL(m—k, C)
0 e’

then v,=SU(k+1, 1) and kK=, since 9 = is a circular domain in C”*
with center O by Theorem B. Thus, by (2.2) we see that

Y V=1(k+2
@ (3 > VU )9.5
I"yo’ko-

_ =R
3/}_) oV lk+2)8 _3/ ’

is a one-parameter subgroup of Aut,($). This implies that B is a circular
domain with center O. Since 9 is holomorphically equivalent to a bounded
domain in C"*! so is . q.e.d.

As in the case of bounded Reinhardt domains [6] [7], we can show the
following lemma.

Lemma 2. Let 9 be a generalized Siegel domain in Cx C" with exponent
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1/2 and put dimg §_,,—=2k as before. Then we have
dim (Aut(D)-(v —1, 0)) < dim (Aut(D)+(z, w))
for any (5, w)E 9) not belonging to the orbit Aut(D)-(v -1, 0).

Proof. First we remark that if k=m, Auty(9)-(v —1, 0)=9 by Theorem
B. So we assume in the following that #<m. By using the concrete expres-
sion of Wy xEAuty(D) as in scction 2 of [4], we can show that for any (3, w)eD
there exists a point (wg, 1, -+, w2,)6@¢:1 such that

AUto(@)'(z» w) = ‘AUtO(‘@)'(\/:I9 07 R O) ZUg.“, S} ng) .
On the other hand, we know from Theorem B that a point (v —1, 0, «++, 0, w,,,,

.-, w,) of 9 does not belong to the orbit Aut,(D)-(v' —1, 0) only if (w,,,, -
w,)=*+(0, -+, 0). Thus, to prove Lemma 2 it is enough to show that

dim (Aut(D)-(v/ —1, 0)) <dim (Aut(D)-(V —1, 0, =+, 0, w1y, ++-, w,,))

b

for any (wy4q, *++, w,)=*(0, --+, 0). For thislet G be the one-parameter subgroup
(Y 1,0 E R} of Aut(9) defincd by the identity element 1 of SU(k+1, 1) and
ky& K %= as in the proof of lemma 1. For a given point (2, w)e4) we denote
by K, . the isotropy subgroup of Auty(9D) at (, w). Now, take a point (v —1,
0, -+, 0, w,.y, --~,w,,,)E.(D with (w4, +-, w,)=(0, ---,0). Then it is easy to
check by using Theorem 2 in [4] that K(,= 9 DK (v=i 4. 0.4;,,, ., a0d the one-
parameter subgroup G is contained in K¢,z but notin K=o .. 0w,
since (W41, =, W,)F (0, -+, 0).  This implies that dim K¢,z o>dim K=,

0054, wy» and hence we have as a result that

dim (Aut(D)-(v —1, 0)) = dim (Auty(D)/K (/= »)
= dim Auty(9)—dim K=
< dim Auto(@)~—dim K=o, 0w,
= dim (Auty(D)/K (v=i0. g1 )
= dim (Auty(D) (V' —1, 0, =+, 0, weyy, o, @,,)) . g.e.d.

)

W

Proof of Theorem 1. Let 9. (resp. 9’) be a gencralized Siegel domain in
in CxC" with exponent 1/2 and dimpgg.,,=2k (resp. dimgg’,,=2k). Let
&: P-4’ be a given biholomorphic iscmorphism. From Theorem B there
exists a non-singular linear mapping @: C X C"—C X C" (resp. @’: € X C"—>C X
C") such that 9 =@(9) (resp. 9'=¢'(9)). Therefore, in order to prove Theorem
1 it is sufficient to show that the biholomorphic isomorphism &:=¢’.®.p™! of
9 onto 9V is birational. First we suppose that k<m. We claim now that

O(Auty(D)- (v —1, 0))=Auty(9")+(V —1,0), and so it follows in particular that
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k=F. Indeed, by Lemma 2 the orbit ®(Auty(D)-(v/ —1, 0)) is of lowest di-
mension, it must coinside with the orbit Aut(9’).(v/—1,0). Thus we can

choose an element g€ Auty(9) in such a way that (®-g)-(v —1,0)=(v—1, 0).
Put ®=&.g. Once it is shown that ®: §— 9 is birational, our proof can be
completed, since g: 9—9 is birationaly by Theorem 2 in [4]. To show this we
consider again the biholomorphic isomorphism ¢: 9— B defined in (2.1). Let
¢': 9'—PB be the corresponding isomorphism of 9’ onto the image domain
#. Then, by Lemma 1 B and % are both circular domains in C”*! with the
origin O of C"** as their centers. Moreover, putting &: =¢ -®-p~!, we get a
biholomorphic isomorphism ¢: B— P’ satisfying the condition that &(0)=0.
Hence it follows from Theorem D that &: B—%’ is linear. Noting that ¢
and ¢’ are birational from (2.1), we conclude that ® is also birational. It remains
the case where k=m. But, in this case the domain ) (and so 9)) is necessarily
a Siegel domain of the second kind by Corollary 1 in [4]. Thus our theorem
follows from [3]. q.e.d.

The proof of Theorem 2 is now an immediate consequence of Theorem 1
and our previous result [5], but we give a proof here for completeness.

Proof of Theorem 2. Since it is trivial that &) and 9’ are holomorphically
equivalent if they are linearly equivalent, we have only to show the converse.
Let g(9)=>]gax (resp. g(9')=>1g{) be the decomposition of g(9D) (resp. of
a(92’)) due to Kaup, Matsushima and Ochiai as in Theorem A. Put dimgg_,,
=2k and dimg g7, ,,=2k’. Suppose that there exists a biholomorphic isomorphism
®: 9—9’. Then, by Theorem 1 @ is a birational holomorphic mapping, and
moreover k==K as we showed in the proof of Theorem 1. In the following,
for the domain 49" we employ the notation A4’ for denoting the object corre-
sponding to an object 4 for the domain 9). Let @: CXC"—CXC" be a non-
singular linear mapping as in Theorem B such that 9=¢(D). We claim:

(*) there exists a non-singular linear mapping £: Cx C"— CXC" of the
form
! a 0 O Z
w,

L =10 A4 =%

w), 00 B| |w,
such that [(9)=9", where ac R and A (resp. B) is a kxk (resp. (m—k)x
(m—F)) matrix.

If (*) is valid, we obtain our proof by putting L=¢’ - L-@. We shall
show that (*) is really true. Let ® be a biholomorphic isomorphism of 9 onto
9’ defined by ®=¢'-®-p7'. Put ¥=&"'. Since §(J) (and also g(J))
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has the graded structure as in Theorem A and since @ is birational, it can be
shown in the same way as the proof of Theorem 11 in [3] that we may assume
the mappings ®: 9—9’ and ¥: 9’9 are both affine transformations of

the forms

o ®if@% ...... 3n+1 . C!
RN b T S P B R
wh |0 ere e |w,] |omn
and
o Al Abeeeees R D!
(2.4) . | -(_) % A wil D\ pier.
Wy 0 11&5"“ e AT | D’."+1
We consider now the vector field E=z—+ Z‘: Wy —— 6w of g(9). By direct
computations we see
G, = (Binie Dt 51 enintiiug )
B (et Bl ot +) Srexipit |
+ (81D 31080 ) 2
where ®y: g(9)—>g(D") is the differential of &. Since (A})-(0})=(6})-(A})=

1,.,, we have

j BlIAI =1
m 6 m 8
A+ 1 @+ J— ’
" FE)\ l®m+1Ay.+1wy- 820,( - m=lwmaw;
l O1ALy1+2] OhALi = 0

and hence ©!AL, 1+ L Srenan = é~@}AL+1.

0 1 m , a
. w},
w2 Z’"—l 0wy,

-+ %{(i}l@}/\}hnwfo 68 /

+3 (Fenin) ;2|

As a result we get
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+ (®iD1+% 5 @@D‘*H) % .

Put

. 1Nl _1 2 1 w+1> a
X = (01D 31e8,.0m) 2

and

N m At , 8 n m e )1) 6
Y = <§1®1Am 1‘wy.> “az, +)\2=1 (;l@';\m 1D 6*—* .

W]

Since ®4F and E’zz’—g—+ L 2 w;—a belong to g(9"), X—l—»-l»-Y belongs also
02’ 2431 Ow, 2

to g(9’). Then, from the concrete expression of holomorphic vector fields

belonging to g(9)’) (see[3], (3.1) and (3.2)), we have X =g/, and Y €g’,,,. Recall

that

25 gn= {2V TR, 0 43l ic = (et

0’ &1 Owl J
where w’=(w{, ---, w;). By comparing the components of ¥ with (2.5) we see

that
(2.6) SYEMID M =0 for k- ISAZm;
@=1

(2.7) BiAL, =0 for k+1=pusm;
(2.8) OlAL, =2V =13 OHID™  for 1=u=k.

On the other hand, since ®-¥ is the identity mapping, it follows from (2.3)
and (2.4) that

m

(2.9) M OID* 4 CM =0 for 1=A=m.

=1
Then, from (2.6) and (2.9) we get
CM'=0 for kA+1=A=m.

Thus we have shown that @ is of the form

2 = @}z—f—‘"j e, w,+C!
A1

D: < wh= DO lw,+ CH! for 1=sa=sk
Al
wh= D" 681w, for k1SR m.
\ A=1

Since the group Aut(9)’) contains the affine transformations



EqQuivaLeNer PROBLEM FOR GENERALIZED SIEGEL IDOMAINS 141

l: (&, v, w’)i> (2+a,w,w") (aER)
and
pe: (3, ', w”) = (342 —1F(w’, C)+\/ —1F(C, C),w'+C,w”) (CEC*)

where w'=(w{,-:+,w;) and w”’=(w},,*,wy), changing & by a suitable affine
transformation /,- p,-® if necessary, we may assume that ® is of the form

(z’ == @}z—l—ﬁ 0!, w,+C", BleR and C'ev —1R
o: A
] we= 21 O iw,  for 1Za=sm.

=1

N

Now, for I’:\/jl’Zi w,ﬁgzL, , we have

=1 ®
Tul' = V13 (B OAL Y, 0 v/ =1 3w, O
=1 = 0% =1 Ow,
= ”\/jﬁ Ai®)1\4 lwhva“'*"\/:iﬁ 'wmi »
A=1 0z =1 Ow,

because A}@in—{—glA,}“ 1©211=0 for A=1. Since ¥,l’ and I=\/—1 wztlwﬁ%

n

belong to g(9), so does Z: =—v/ —1 3} Al©}, ,w,\%aw. We have then vV —1Z
A=l z

=[I, Zleg(9). By H. Cartan’s principle for bounded domains, we see Z=0.
This shows that

(2.10) O, =0 for 1=r\=m,

since Aj=0. It remains to show that C'=0, but this can be proved with the
same arguments as in the proof of Theorem 11 in [3]. Finally we have shown
that & is a linear mapping. Moreover, as is shown in the proof of Theorem 1
we have

B(D,) = ®(Aut(D)-(V —1, 0)) = Auty(D)-(v —1,0) = Dj.

Obviously these facts imply that (*) is valid. We have thus completed the
proof of Theorem 2. q.e.d.
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