ON COMPLEX PROJECTIVE BUNDLES OVER A KÄHLER C-SPACE

Kunio ISHIKAWA and Yusuke SAKANE

(Received October 26, 1977)
(Revised May 16, 1978)

Introduction

Let M be a compact Einstein Kähler manifold. Then the first Chern class $c_{1}(M)$ of M is positive, negative or zero. We can ask whether the converse is true or not, that is, does a compact Kähler manifold M with the first Chern class $c_{1}(M)>0\left(\right.$ resp. $\left.c_{1}(M)<0, c_{1}(M)=0\right)$ admit an Einstcin Kähler metric? In the case when $c_{1}(M)<0, \mathrm{~T}$. Aubin [2] has proved that a compact Kahler manifold M with $c_{1}(M)<0$ admits a unique Einstein Kählcr metric. As is well-known, in the case when $c_{1}(M)=0$, our question is yes if the Calabi conjecture is true. The purpose of this note is to give some examples of a compact Kähler manifold with $c_{1}(M)>0$ which does not admit any Einstein Kähler metric. Let X be a compact connected complex manifold. By a theorem of Bochner-Montogomery, the group $\operatorname{Aut}(X)$ of all holomorphic transformations of X is a complex Lie group and the map $\operatorname{Aut}(X) \times X \rightarrow X$ defined by $(f, x) \mapsto f(x)$ is holomorphic. For a holomorphic vector bundle E over a compact complex manifold M let $P(E)$ denote the associated complex projective bundle. Let $\operatorname{Aut}_{0}(X)$ denote the identity component of $\operatorname{Aut}(X)$. By a theorem of Blanchard, we can define a homomorphism $\Pi: \operatorname{Aut}_{0}(P(E)) \rightarrow \operatorname{Aut}_{0}(M)$. In section 1 we shall show that the Lie algebra of the Ker Π is isomorphic with the Lie algebra $H^{0}(M, \operatorname{End}(E)) / \boldsymbol{C} \cdot 1$ where $H^{0}(M, \operatorname{End}(E))$ denotes all holomorphic sections of the vector bundle $\operatorname{End}(E)$ over M and 1 denotes the element of $H^{0}(M, \operatorname{End}(E))$ defined by the identity map of $\operatorname{End}(E)_{x}(x \in M)$. In section 2 we consider Kahler C-spaces with the second Betti number $b_{2}=1$ as M. In this case we know that the group of all holomorphic line bundles $H^{1}\left(M, \boldsymbol{C}^{*}\right)$ over M is generated by a homogeneous line bundle. From now on we shall exclusively consider holomorphic vector bundles E generated by bolomorphic line bundles. Then the homomorphism $\Pi: \operatorname{Aut}_{0}(P(E)) \rightarrow \operatorname{Aut}_{0}(M)$ is surjective and we can determine the structure of the Lie algebra of the Ker Π. In particular, we can compute the dimension of Aut $_{0}(P(E))$ in these cases. In section 3 we shall compute the Chern class of $P(E)$. The result in section 2 has been obtained by Brieskorn [6], Röhrl [13]

[^0]for the case of the complex projective space $P^{1}(\boldsymbol{C})$ of dimension 1 and by Ise [9] for the case of the complex projective space $P^{n}(\boldsymbol{C})$. The result in section 3 has been obtained by Brieskorn [6] for the case of the complex projective space $P^{1}(\boldsymbol{C})$. In section 4 we shall show that some of complex projective bundles over M are examples of a compact Kähler manifold with $c_{1}(M)>0$ which does not admit any Einstein Kähler metric. We remark that nothing is mentioned on Einstein Kähler metric in [6] [9] [13].

1. The automorphism group of a complex projective bundle

Let M be a compact connected complex manifold and E a holomorphic vector bundle over M. Let $P(E)$ denote the complex projective bundle over M induced by E. Since $P(E)$ is a compact complex manifold, it is known that the group $\operatorname{Aut}(P(E))$ of all holomorphic automorphisms of $P(E)$ is a complex Lie group and the map $\operatorname{Aut}(P(E)) \times P(E) \rightarrow P(E)$ defined by $(f, x) \mapsto f(x)$ is holomorphic. Let $F(P(E))$ denote the subgroup of all fiber preserving automorphisms of $P(E)$.

Proposition 1.1 (Blanchard [3]). Let Aut ${ }_{0}(P(E))\left(r e s p . F_{0}(P(E))\right)$ denote the identity component of $\operatorname{Aut}(P(E))($ resp. $F(P(E)))$. Then $\operatorname{Aut}_{0}(P(E))=F_{0}(P(E))$.

Note that an element of $F_{0}(P(E))$ is a fiber preserving automorphism in the sense of Steenrod [14].

Let $P(M G, \pi)$ denote a principal holomorphic fiber bundle over M with the structure group G. Let $F(P(M, G, \pi))$ be the group of all fiber preserving holomorphic automorphisms of the principal bundle $P(M, G, \pi)$, that is, a biholomorphic map \tilde{f} of $P(M, G, \pi)$ is an element of $F(P(M, G, \pi))$ if and only if $\tilde{f}(x \cdot g)=\tilde{f}(x) \cdot g$ for all $x \in M$ and $g \in G$.

Theorem 1.2 (Morimoto [11]). The group $F(P(M, G, \pi))$ equipped with the compact open topclogy can be given the structure of a complex Lie group which acts holomorphically on $P(M, G, \pi)$. Its Lie algebra is isomorphic to the Lie algebra of all holomorphic vector fields X over $P(M, G, \pi)$ for which $R_{g}{ }^{\prime} X=X$ for every $g \in G$, where $R_{g}{ }^{\prime}$ denotes the differential mapping induced by the action R_{g} of an element g of G.

Let \widetilde{P} (resp. P) denote the principal bundle associated to a complex projective bundle $P(E)$ (resp. a holomorphic vector bundle E) over M. Then $F(P)$ and $F(P(E))$ are naturally isomorphic. In fact, $P(E)$ is the quotient of $\tilde{P} \times P^{m}(\boldsymbol{C})$ by the equivalence relation $(y, \xi) \sim\left(y a, a^{-1} \xi\right)\left(y \in P, \xi \in P^{m}(\boldsymbol{C}), a \in P G L(m+1, \boldsymbol{C})\right)$. Let ρ be the projection of $\widetilde{P} \times P^{m}(\boldsymbol{C})$ onto $P(E)$. For an element $f \in F(\widetilde{P})$, we can define a mapping $f^{\prime}: P(E) \rightarrow P(E)$ by $f^{\prime}(\rho(y, \xi))=\rho(f(y), \xi)\left(y \in \widetilde{P}, \xi \in P^{m}(\boldsymbol{C})\right)$. Then $f^{\prime} \in F(P(E))$ and f, f^{\prime} induce the same automorphism \bar{f} of M. Moreover the mapping $\theta: F(\widetilde{P}) \rightarrow F(P(E))$ defined by $\theta(f)=f^{\prime}$ is an isomorphism of the
group $F(\widetilde{P})$ into the group $F(P(E))$. Conversely, let f^{\prime} be an element of $F(P(E))$. For every element $y \in \widetilde{P}$, there is an element $w \in \widetilde{P}$ such that $f^{\prime}(\rho(y, \xi))=\rho(w, \xi)$ for all $\xi \in P_{m}(\boldsymbol{C})$. Put $f(y)=w$. Then $f \in F(\widetilde{P})$ and $\theta(f)=f^{\prime}$.

Let $P G L(m+1, C)$ denote the projective transformation group corresponding to $G L(m+1, \boldsymbol{C})$. Then we have an exact sequence
(1) $0 \rightarrow \boldsymbol{C}^{*} \rightarrow G L(m+1, \boldsymbol{C}) \rightarrow P G L(m+1, \boldsymbol{C}) \rightarrow 0$.

Since P (resp. \tilde{P}) is the principal bundle associated to the vector bundle $E($ resp. $P(E)$), we have an exact sequence of complex Lie groups
(2) $0 \rightarrow \boldsymbol{C}^{*} \rightarrow F_{0}(P) \rightarrow F_{0}(\widetilde{P})$.

Since each element $g \in F(P)$ induces an element \bar{g} of $\operatorname{Aut}(M)$, there is a canonical homomorphism $\Pi_{P}: F_{0}(P) \rightarrow \operatorname{Aut}_{0}(M)$ for each principal fiber bundle P over M.

Proposition 1.3. If M is simply connected, we have an exact sequence

$$
0 \rightarrow \boldsymbol{C}^{*} \rightarrow \operatorname{Ker} \Pi_{P} \rightarrow \operatorname{Ker} \Pi_{\tilde{P}} \rightarrow 0
$$

Proof. Take a simple open covering $\left\{U_{\alpha}\right\}_{\alpha}$ of M such that, for each $\alpha, \pi^{-1}{ }_{P}\left(U_{\alpha}\right) \simeq U_{\alpha} \times G L(m+1, \boldsymbol{C})$ and $\pi^{-1}{ }_{\tilde{P}}\left(U_{\alpha}\right) \simeq U_{\alpha} \times P G L(m+1, C)$. Moreover let $\left(g_{\alpha \beta}\right)$ be the system of transition functions of the principal bundle P associated to the open covering $\left\{U_{\alpha}\right\}_{\alpha}$. Then $\left(g_{\alpha, \beta}\right)$ induces the system of transition functions ($\tilde{g}_{\alpha \beta}$) of the principal bundle \widetilde{P}. Let $\widetilde{\mathcal{P}}$ be an element of $\operatorname{Ker} \Pi_{\tilde{P}}$. Then there is a system of functions $\left\{\widetilde{\mathscr{P}}_{\alpha}\right\}$ such that $\widetilde{\mathcal{P}}_{\alpha}: U_{\alpha} \rightarrow P G L(m+1, \boldsymbol{C})$ and $\tilde{g}_{\alpha \beta} \cdot \widetilde{\mathcal{P}}_{\beta}=\widetilde{\mathcal{P}}_{\alpha} \cdot \widetilde{g}_{\alpha \beta}$ on $U_{\alpha} \cap U_{\beta}$. Since U_{α} is simply connected, there is a holomorphic map $\varphi_{\alpha}: U_{\alpha} \rightarrow S L(m+1, \boldsymbol{C})$ such that $\widetilde{\mathscr{P}}_{\alpha}=p \cdot \widetilde{\mathscr{P}}_{\alpha}$ where $p: S L(m+1, \boldsymbol{C}) \rightarrow$ $\operatorname{PGL}(m+1, \boldsymbol{C})$ is the canonical map. Then

$$
g_{\alpha \beta} \cdot \varphi_{\alpha}=c_{\alpha \beta} \varphi_{\alpha} \cdot g_{\alpha \beta} \quad \text { on } \quad U_{\alpha} \cap U_{\beta} .
$$

and $c_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow \boldsymbol{C}^{*}$ is holomorphic. By taking the determinant, we get ${c_{\alpha \beta}^{n+1}=1}^{n+1}$ on $U_{\alpha} \cap U_{\beta}$. Since $U_{\alpha} \cap U_{\beta}$ is connected, $c_{\alpha \beta}$ is constant on $U_{\alpha} \cap U_{\beta}$ and $c_{\alpha \beta} \in$ $\boldsymbol{Z} /(m+1) \boldsymbol{Z}$. Moreover note that $c_{\alpha \beta} c_{\beta \gamma} c_{\gamma_{\alpha}}=1$ on $U_{\boldsymbol{\omega}} \cap U_{\beta} \cap U_{\gamma}$.

Lemma (Principle of monodromy). Let M be a simply connected manifold and $\mathfrak{U}=\left\{U_{\alpha}\right\}$ be a simple open covering. Then $H^{1}(\mathfrak{U}, \boldsymbol{Z} /(m+1) \boldsymbol{Z})=(0)$.

Proof. See Weil [17].
Applying the lemma in our case, we get a system of constant functions $\left\{a_{\alpha}\right\}$ such that $c_{\alpha \beta}=a_{\alpha} \cdot a_{\beta}^{-1}, a_{\alpha}: U_{\alpha} \rightarrow \boldsymbol{Z} /(m+1) \boldsymbol{Z}$. Hence, we have $g_{\alpha \beta} a_{\beta} \varphi_{\beta}=a_{\alpha} \varphi_{\alpha} g_{\alpha \beta}$ on $U_{\alpha} \cap U_{\beta}$ and we completes our proof.
q.e.d.

Corollary. If M is simply connected and $\Pi_{P}: F_{0}(P) \rightarrow \operatorname{Aut}_{0}(M)$ is onto, then the following sequences is exact.

$$
\begin{equation*}
0 \rightarrow \boldsymbol{C}^{*} \rightarrow F_{0}(P) \rightarrow F_{0}(\widetilde{P}) \rightarrow 0 \tag{3}
\end{equation*}
$$

Proof. Obvious from the following diagram.

Now we recall the exact sequence of holomorphic vector bundle over M associated to the holomorphic principal fiber bundle P on M with the structure group G, due to Atiyah [1]. Let $T(P)$ be the holomorphic tangent bundle of P. Since G operates on P, it also operates on $T(P)$. We put $Q=T(P) / G$, so that a point of Q is a field of tangent vectors to P, defined along one of its fibers, and invariant under G. Then we can show that Q has a natural vector bundle structure over M. Let $L(P)$ denote the vectcr bundle associated to P by the adjoint representation of G. Note that $L(P)$ is a bundle of Lie algebra, each fiber $L(P)_{x}=L(P)_{\text {, }}$ being a Lie algebra isomcrphic with $L(G)$. Under these notations, there exists an exact sequence of holomorphic vector bundles over M :
(4) $0 \rightarrow L(P) \rightarrow Q \rightarrow T(M) \rightarrow 0$
where $T(M)$ is the holomorphic tangent bundle over M.
Then we have the exact sequence of cohomology
(5) $\quad 0 \rightarrow H^{0}(M, L(P)) \rightarrow H^{0}(M, Q) \rightarrow H^{0}(M, T(M)) \rightarrow H^{1}(M, L(P)) \rightarrow \cdots$

Now we can identify the Lie algebra of $F_{0}(P)$ (resp. $\operatorname{Ker}_{P} \Pi_{P}, \operatorname{Aut}_{0}(M)$) with $H^{0}(M, Q)$ (resp. $\left.H^{0}(M, L(P)), H^{0}(M, T(M))\right)$ (cf. Morimoto [11]). Note that the structure of the Lie algebra $H^{0}(M, L(P))$ is given by the following way. For $X, Y \in H^{0}(M, L(P)), X_{x}, Y_{x} \in L(P)_{x}(x \in M)$. Since $L(P)_{x}$ has the Lie algebra structure, we have $\left[X_{x}, Y_{x}\right] \in L(P)_{x}$. On the other hand, $[X, Y] \in H^{0}(M, L(P))$ as holomorphic vector, fields. Then it is easy to see that $[X, Y]_{x}=\left[X_{x}, Y_{x}\right]$ for every $x \in M$. That is, the Lie algebra structure of $H^{0}(M, L(P))$ as the subalgebra of $H^{\circ}(M, Q)$ coincides with the one induced by the Lie algebra $L(G)$ of G.

In the case of vector bundles, we have the following proposition due to Ativah.

Proposition 1.4. Let E be a holomorphic vector bundle over M and P the
associated principal bundle. Then $L(P) \cong \operatorname{End}(E)$.
Proof. See Atiyah [1] Proposition 9.
Note that $H^{0}(M, \operatorname{End}(E))$ contains \boldsymbol{C} in the center and the Lie algebra of $\operatorname{Ker} \Pi\left(\Pi: F_{0}(P(E)) \rightarrow \operatorname{Aut}_{0}(M)\right)$ is isomorphic with $H^{0}(M, \operatorname{End}(E)) / \boldsymbol{C}$. We now summarize our result as follows:

Theorem 1.5. Let M be a simply connected compact complex manifold, E a holomorphic vector bundle over M and $P(E)$ the projective bundle induced by E. If $\Pi: \operatorname{Aut}_{0}(P(E)) \rightarrow \operatorname{Aut}_{0}(M)$ is surjective,

$$
\operatorname{dim}_{C} \operatorname{Aut}_{0}(P(E))=\operatorname{dim}_{C} \operatorname{Aut}_{0}(M)+\operatorname{dim}_{C} H^{0}(M, \text { End }(E))-1
$$

Moreover the Lie algebra of $\operatorname{Ker} \Pi$ is isomor phic with $H^{0}(M, \operatorname{End}(E)) / \boldsymbol{C}$.
Remark 1. Let f, g be elements of $H^{0}(M, \operatorname{End}(E))$. Then the Lie algebra structure of $H^{0}(M$, End $(E))$ is given by

$$
[f, g](x)=[f(x), g(x)]=f(x) \circ g(x)-g(x) \circ f(x)
$$

$\left(f(x), g(x) \in \operatorname{End}\left(E_{x}\right)\right)$ for every $x \in M$.

2. Complex projective bundles over a Kähler \boldsymbol{C}-space

We shall recall the following facts on Kahler C-spaces and holomorphic line bundles over these manifolds. A simply connected compact Kähler homogeneous manifold is called a Kähler C-space. Kabler C-spaces have been classified by H. C. Wang [16]. From now on we assume that the second Betti number $b_{2}(M)$ of a Kähler C-space M is 1 . Note that such a class contains the class of irreducible hermitian symmetric spaces. We shall use the following known results on holomorphic line bundles over Kähler C-spaces with $b_{9}=1$ (cf. [4] [8]).
2.1. The group of all holomorphic line bundles $H^{1}\left(M, C^{*}\right)$ over a Kähler C space M is isomorphic to \boldsymbol{Z}.
2.2. There is a homogeneous holomorphic line bundle L over M such that L is very ample. Moreover L is a generator of $H^{1}\left(M, C^{*}\right)$. In particular, every holomorphic line bundle is homogeneous.
2.3. Let $f: M \rightarrow P^{N}(\boldsymbol{C})$ be the associated imbedding for L and H the holomorphic line bundle over $P^{N}(\boldsymbol{C})$ corresponding to a hyperplane of $P^{N}(\boldsymbol{C})$. Then L is the induced bundle $f^{*} H$ over M and the homomorphism

$$
\gamma_{k}: H^{0}\left(P^{N}(\boldsymbol{C}), H^{k}\right) \rightarrow H^{0}\left(M, L^{k}\right) \quad(k \geqq 0)
$$

induced by the imbedding $f: M \rightarrow P^{N}(\boldsymbol{C})$ is surjective.

We shall consider a holomorphic vector bundle $E=L^{\left.b_{0} \oplus \cdots \oplus L^{b_{m}}\left(b_{0} \leqq \cdots \leqq b_{m}\right), ~\right) ~}$ over a Kähler C-space M. We consider the structure of the automorphism group $\mathrm{Aut}_{0}(P(E))$ of the projective bundle $P(E)$ over M. Note that, for a holomorphic line bundle F and a holomorphic vector bundle E, the projective bundles $P(E)$ and $P(F \otimes E)$ are isomorphic. Thus we may assume that

$$
E=1 \oplus L^{a_{1}} \oplus \cdots \oplus L^{a_{m}} \quad \text { where }
$$

$a_{k}(k=0,1, \cdots, m)$ are integers such that $0=a_{0} \leqq a_{1} \leqq \cdots \leqq a_{m}$.
Lemma 2.1. Let $E=1 \oplus L^{a_{1}(\mathcal{J})} \cdots \oplus L^{a_{m}}$ be a holomorphic vector bundle over $M=G / U$ and $P(E)$ the associated projective bundle. Then $\Pi: \operatorname{Aut}_{0}(P(E)) \rightarrow$ Aut $_{0}(M)$ is surjective.

Proof. Let \tilde{G} denote $\operatorname{Aut}_{0}(M)$. Then we can write M as a homogeneous manifold $\tilde{G} / \widetilde{U}$ for some closed connected complex Lie subgroup \widetilde{U} of \tilde{G}. Since the holomorphic line bundle L over M can be written as a homogeneous line bundle $\widetilde{G} \times \tilde{\rho} \boldsymbol{C}$ over $\tilde{G} / \widetilde{U}$, where $\tilde{\rho}: \widetilde{U} \rightarrow \boldsymbol{C}^{*}$ is a holomorphic representation, and $E=1 \oplus L^{a_{1}} \mathcal{\mathcal { D }} \cdots \oplus L^{a_{m}}$, it is easy to see that $\Pi: \operatorname{Aut}_{0}(P(E)) \rightarrow \operatorname{Aut}_{0}(M)$ is surjective. q.e.d.

Note that $H^{0}\left(P^{N}(\boldsymbol{C}), H^{k}\right)$ can be identified with the vector space S_{k} of all homogeneous polynomials of degree k on \boldsymbol{C}^{N+1}. We shall identify M with the image of f in $P^{N}(\boldsymbol{C})$. Let S be the vector space of all polynomials on \boldsymbol{C}^{N+1}, let $I(M)$ denote the ideal $\left\{p \in S \mid p_{\mid M}=0\right\}$ and put $I_{k}=I(M) \cap S_{k}$. By 2.3, we see S_{k} / I_{k} is isomorphic with $H^{0}\left(M, L^{k}\right)$. Note that, if $k=0, H^{0}\left(P^{N}(\boldsymbol{C}), H^{k}\right) \cong \boldsymbol{C}$.

Theorem 2.2. Let $E=L^{a_{0}} \oplus L^{a_{1}} \oplus \cdots \oplus L^{a m}$ be a holomorphic vector bundle over M where $0=a_{0} \leqq a_{1} \leqq \cdots \leqq a_{m}$ and $P(E)$ the projective bundle over M associated to the vector bundle E. We shall choose the integers q_{1}, \cdots, q_{s} with $q_{1}+\cdots+q_{s}=m$ in such a way that $a_{0}=\cdots=a_{q_{1}}$ and $a_{q_{1}+\cdots+q_{\sigma-1}+1}=\cdots=a_{q_{1}+\cdot+q_{\sigma}}(\sigma=2, \cdots, s)$. Let $M\left(q_{i}, q_{j}\right)$ be the set of $q_{i} \times q_{j}$ matrices given by

$$
\left\{B \mid B=\left(b_{k l}\right), b_{k l} \in S_{a_{q_{1}+\cdots+q},-a q_{1}+\cdots+q_{l}} / I_{a_{q_{1}+\cdots+q_{j}}-a_{q_{1}+\cdots+q_{l}}}\right\}
$$

In particular, $M\left(q_{i}, q_{2}\right)$ is the set of $q_{i} \times q_{i}$ matrices whose components are complex numbers. Then the Lie algebra of the kernel of $\Pi: \operatorname{Aut}_{0}(P(E)) \rightarrow \operatorname{Aut}_{0}(M)$ is given by

$$
\left\{\left(\begin{array}{cccc}
A_{11} & \cdots \cdots \cdots & A_{1 s} \\
\ddots & & \vdots \\
& \ddots & \vdots \\
0 & & \ddots & \vdots
\end{array}\right) \left\lvert\, \begin{array}{l}
A_{11} \in M\left(q_{1}+1, q_{1}+1\right) \\
A_{1 j} \in M\left(q_{1}+1, q_{j}\right) \\
A_{i j} \in M\left(q_{v}, q_{j}\right) \\
2 \leqq i \leqq j \leqq s
\end{array}\right.\right) / \boldsymbol{C} \cdot 1
$$

where 1 denotes the $(m+1) \times(m+1)$-identity matrix.

Proof. By Theorem 1.5, the Lie algebra of the kernel of Π : $\mathrm{Aut}_{0}(P(E)) \rightarrow$ $\operatorname{Aut}_{0}(M)$ is isomorphic to $H^{0}(M, \operatorname{End}(E)) / C \cdot 1$. Let $\left\{g_{\alpha \beta}\right\}$ be a system of transition functions of holomorphic line bundle L on M. Then

$$
\left\{h_{\alpha \beta}\right\}\left[h_{\alpha \beta}=\left(\begin{array}{ccc}
1 & & \\
& g_{\alpha \beta}^{a_{1}} & 0 \\
& & \ddots \\
& & g_{a \beta}^{a_{m}}
\end{array}\right)\right]
$$

is a system of transition functions of the holomorphic vector bundle $E=$ $1 \oplus L^{a_{1}} \uparrow \cdots \oplus L^{a_{m}}$. Now $f=\left\{\left(f_{k l}^{\alpha}\right)\right\}_{\alpha} \in H^{0}(M$, End $(E))$ if and only if $\left(f_{k l}^{\alpha}\right) \cdot h_{\alpha \beta}=$ $h_{\alpha \beta} \cdot\left(f_{k l}^{\beta}\right)$. Thus we get $f_{k l}^{\alpha}=g_{\alpha \beta}^{-\left(a_{l}-a_{k}\right)} f_{k l}^{\beta}$ for $k, l=1, \cdots, m+1$ and hence $f_{k l}=\left\{f_{k l}^{\alpha}\right\}_{\alpha}$ is an element of $H^{0}\left(M, L^{a_{l} l^{-a}}\right)$. Conversely if $f_{k l}$ is an element of
 Since $H^{0}\left(M, L^{k}\right)$ is isomorphic with $S_{k} / I_{k}, H^{0}(M$, End $(E))$ is isomorphic with

$$
\left\{\left(\begin{array}{cccc}
A_{11} \cdots \cdots \cdots \cdots & A_{1 s} \\
\ddots & & \vdots \\
& \ddots & & \vdots \\
& & \ddots & \vdots
\end{array}\right) \left\lvert\, \begin{array}{l}
A_{11} \in M\left(q_{1}+1, q_{1}+1\right) \\
A_{1 j} \in M\left(q_{1}+1, q_{j}\right) \\
A_{\imath j} \in M\left(q_{\imath}, q_{j}\right) \\
2 \leqq i \leqq j \leqq s
\end{array}\right.\right\}
$$

as vector spaces. Now, by the Remark 1 in section 1, we see that the isomorphism above is a Lie algebra isomorphism.

Corollary 2.3. Let E be as in Theorem 2.2. Then

$$
\operatorname{dim}_{C} \operatorname{Aut}_{0}(P(E))=\operatorname{dim}_{C} \operatorname{Aut}_{0}(M)-1+\sum_{a_{k} \geq a_{l}} \operatorname{dim} H^{0}\left(M, L^{a_{k}-a_{l}}\right)
$$

Proof. By Theorem 1.5 and Lemma 2.1, $\operatorname{dim}_{C} \operatorname{Aut}_{0}(P(E))=\operatorname{dim}_{C} \operatorname{Aut}_{0}(M)-1+\operatorname{dim}_{C} H^{0}(M$, End $(E))$. Now $\operatorname{dim}_{C} H^{0}(M, \operatorname{End}(E))=\sum_{a_{k} \geq \geq_{l}} \operatorname{dim}_{C} H^{0}\left(M, L^{a_{k}-a_{l}}\right)$ by Theorem 2.2. q.e.d.

Remark 2. It is known that $\operatorname{dim} H^{0}\left(M, L^{a_{k}{ }^{-a}} l\right)$ can be computed by the dimension formula of Weyl. (cf. [5])

Remark 3. In the case when M is a complex projective space $P^{1}(\boldsymbol{C})$ of dimension 1, Theorem 2.2 and Corollary 2.3 are known (See [13] §2 and [6] §1). In the case when M is a complex projective space $P^{n}(\boldsymbol{C}), \operatorname{Aut}_{0}(P(E))$ has been studied by Ise [9].

Corollary 2.4. Let E be as in Theorem 2.2. If $0=a_{0}<a_{1}<\cdots<a_{m}$, then the Lie algebra of the kernel $\Pi: \operatorname{Aut}_{0}(P(E)) \rightarrow \operatorname{Aut}_{0}(M)$ is solvable, but is not abelian.

Proof. In this case the Lie algebra of the kernel Π is given by

$$
\left\{\left(\begin{array}{cc}
b_{00} \cdots b_{0 m} \\
\ddots & \vdots \\
0 & b_{m n}
\end{array}\right) \left\lvert\, \begin{array}{l}
b_{i i} \in \boldsymbol{C}(i=0, \cdots, m) \\
b_{i j} \in S_{a_{j}-a_{i}} / I_{a_{j}-a_{i}}
\end{array}\right.\right\} / \boldsymbol{C} \cdot 1
$$

Now it is easy to see our claim.
q.e.d.

3. Chern classes of certain complex projective bundles

Let π denote the canonical projection $\boldsymbol{C}^{n+1}-(0)$ onto the complex projective space $P^{n}(\boldsymbol{C})$. The triple $\left(\boldsymbol{C}^{n+1}-(0), \pi, P^{n}(\boldsymbol{C})\right)$ is a principal \boldsymbol{C}^{*}-bundle over $P^{n}(\boldsymbol{C})$. Let ζ be the standard line bundle over $P^{n}(\boldsymbol{C})$ associated to the above principal bundle. Note that the dual line bundle ζ^{*} is the holomorphic line bundle H corresponding to a hyperplane of $P^{n}(\boldsymbol{C})$. For an m-tuple $a=$ $\left(a_{1}, \cdots, a_{m}\right)$ of non-negative integers $a_{j}(j=1, \cdots, m)$ such that $a_{1} \leqq \cdots \leqq a_{m}$, we denote by ζ^{a} the holomorphic vector bundle $1 \oplus \zeta^{a_{1}} \cdots \cdots \zeta^{a_{m}}$ over $P^{n}(\boldsymbol{C})$. Let $P\left(\zeta^{a}\right)$ denote the associated complex projective bundle over $P^{\prime \prime}(\boldsymbol{C})$.

Now we shall recall that $P\left(\zeta^{a}\right)$ can be imbedded in $P^{n}(\boldsymbol{C}) \times P^{(n-1) m}(\boldsymbol{C})$ in a natural way (cf. [6] [8]). Let $y=\left(y_{0}, \cdots, y_{n}\right)$ be the homogeneous coordinates of $P^{n}(\boldsymbol{C})$ and $x=\left(x_{00}, \cdots, x_{t k}, \cdots\right)(0 \leqq i \leqq n ; 1 \leqq k \leqq m)$ the homogeneous coordinates of $P^{(n+1) m}(\boldsymbol{C})$. We define a projective algebraic manifold Σ_{a} by

$$
\Sigma_{a}=\left\{(\pi(y), \pi(x)) \in P^{n}(\boldsymbol{C}) \times P^{(n+1) m}(\boldsymbol{C}) \left\lvert\, \begin{array}{l}
y_{j}^{a_{k}} x_{t k}=y_{t}^{a_{k}} x_{j_{k}} \\
(1 \leqq k \leqq m ; 0 \leqq i, j \leqq n)
\end{array}\right.\right\}
$$

Let $\tilde{\pi}: \Sigma_{a} \rightarrow P^{n}(\boldsymbol{C})$ be the projection defined by $\tilde{\pi}(\pi(y), \pi(x))=\pi(y)$. Then we can see that the complex projective bundle ($\left.\Sigma_{a}, \widetilde{\pi}, P^{n}(\boldsymbol{C})\right)$ is equivalent to $\left(P\left(\zeta^{a}\right)\right.$, $\pi, P^{n}(\boldsymbol{C})$) (cf. Ise [8] p. 511). We shall identify $P\left(\zeta^{a}\right)$ with Σ_{a}. Thus we get an imbedding $j: P\left(\zeta^{a}\right) \rightarrow P^{n}(\boldsymbol{C}) \times P^{(n+1) m}(\boldsymbol{C})$.

Now let M be a Kahler C-space with the second Betti number $b_{2}(M)=1$ and let $f: M \rightarrow P^{N}(\boldsymbol{C})$ be the imbedding as in 2.3. For an m-tuple $a=\left(a_{1}, \cdots, a_{m}\right)$ of non-negative integers $a_{j}(j=1, \cdots, m)$ such that $a_{1} \leqq \cdots \leqq a_{m}$, let L^{-a} denote the holomorphic vector bundle $1 \oplus L^{-a_{1}} \oplus \cdots \oplus L^{-a_{m}}$ over M. Since the holomorphic line bundle L^{-1} over M is the induced bundle $f * \zeta$ of the standard line bundle ζ over $P^{N}(\boldsymbol{C})$, we see that $L^{-a}=f^{*} \zeta^{a}$ and $P\left(L^{-a}\right)$ is the induced bundle $f^{*} P\left(\zeta^{a}\right)$ of $P\left(\zeta^{a}\right)$ by the imbedding $f: M \rightarrow P^{N}(\boldsymbol{C})$. Thus we have an imbedding $f: P\left(L^{-a}\right) \rightarrow P\left(\zeta^{a}\right)$ such that the diagram is commutative:

Now we have an imbedding of $P\left(L^{-a}\right)$ into $P^{N}(C) \times P^{(N+1) m}(C)$ such that the diagram is commutative:

Let ξ be a holomorphic vector bundle with the fiber \boldsymbol{C}^{n+1} over $M, P(\xi)$ the complex projective bundle over M associated to ξ and $\pi: P(\xi) \rightarrow M$ the bundle projection. Then in a natural way $\pi^{*} \xi$ has a holomorphic line bundle η as subbundle such that η induces the standard line bundle over each fiber $P^{m}(\boldsymbol{C})$ of M. Let T_{f} denote the bundle along the fibers $P^{m}(\boldsymbol{C})$ of $P(\xi)$.

Now we have the following Lemma.
Lemma 3.1. Let $T(M)$ (resp. $T(P(\xi))$) denote the holomorphic tangent bundle over $M($ resp. $P(\xi))$. Then the following sequences are exact.

1) $0 \rightarrow T_{f} \rightarrow T(P(\xi)) \rightarrow \pi^{*} T(M) \rightarrow 0$
2) $0 \rightarrow \eta \rightarrow \pi^{*} \xi \rightarrow \eta \otimes T_{f} \rightarrow 0$

Proof. See [7] § 13 (cf. [6] §2).
Let $g \in H^{2}\left(P^{(N+1(m}(\boldsymbol{C}), \boldsymbol{Z}\right)$ (resp. $\left.h \in H^{2}\left(P^{N}(\boldsymbol{C}), \boldsymbol{Z}\right)\right)$ denote the Chern class $c\left(H_{2}\right)$ (resp. $\left.c_{1}\left(H_{1}\right)\right)$ of the holomorphic line bundle $H_{2}\left(\right.$ resp. $\left.H_{1}\right)$ corresponding to a hyperplane of $P^{(N+1) m}(\boldsymbol{C})\left(\right.$ resp. $\left.P^{N}(\boldsymbol{C})\right)$. We put $\varepsilon=(j \circ \tilde{f})^{*}(1 \times g)$ and $\nu=(j \circ \tilde{\tilde{f}})^{*}(\boldsymbol{h} \times 1)$. Then $H^{2}\left(\boldsymbol{P}\left(L^{-a}\right), \boldsymbol{Z}\right) \cong \boldsymbol{Z} \varepsilon+\boldsymbol{Z} \nu$.

Corollary 3.2. Let $c(M)$ denote the total Chern class of M. Then the total Chern class of $P\left(L^{-a}\right)$ is given by

$$
c\left(P\left(L^{-a}\right)\right)=\pi^{*} c(M) \prod_{i=0}^{m}\left(1+\varepsilon-a_{i} \nu\right)
$$

where $a_{0}=0$.
Proof. Let $1 \boxtimes H_{2}$ denote the holomorphic line bundle over $P^{N}(\boldsymbol{C}) \times$ $P^{(N+1) m}(\boldsymbol{C})$ defined by the line bundle H_{2} over $P^{(N+1)}(\boldsymbol{C})$. Then $\eta=(j \circ \widetilde{f})^{*}\left(1 \boxtimes H_{2}^{*}\right)$. Thus $c(\eta)=-\varepsilon$. Since $L^{-1}=f^{*}\left(H_{1}^{*}\right), c\left(\pi^{*} L^{-1}\right)=-\nu$. Applying Lemma 3.1 for $\xi=L^{-a}$, we see that the total Chern class of T_{f} is given by

$$
c\left(T_{f}\right)=c\left(\eta^{-1} \otimes \pi^{*} L^{-a}\right)=\prod_{i=0}^{m} c\left(\eta^{-1} \otimes \pi^{*} L^{-a_{i}}\right)=\prod_{i=0}^{m}\left(1+\varepsilon-a_{i} \nu\right)
$$

and hence the total Chern class of $P(\xi)$ is given by

$$
c(P(\xi))=\pi^{*} c(M) \prod_{t=0}^{m}\left(1+\varepsilon-a_{t} \nu\right)
$$

q.e.d.

Since $H^{2}(M, \boldsymbol{Z})$ is generated by the first Chern class $c_{1}(L)$, we can write $c_{1}(M)=k(M) c_{1}(L)$.

Corollary 3.3. The first Chern class $c_{1}\left(P\left(L^{-a}\right)\right)$ of $P\left(L^{-a}\right)$ is given by

$$
c_{1}\left(P\left(L^{-a}\right)\right)=\left\{k(M)-\sum_{i=1}^{m} a_{i}\right\} \nu+(m+1) \varepsilon .
$$

It is known that the integer $k(M)$ is positive (cf. [4]). In the case of compact irreducible hermitian symmetric spaces, the integer $k(M)$ is given as follows:

```
I \(\quad k(U(m+n) / U(m) \times U(n))=m+n\)
II \(\quad k(S O(2 n) / U(n))=2 n-2\)
III \(k(S p(n) / U(n))=n+1\)
IV \(k(S O(n+2) / S O(2) \times S O(n))=n \quad(n>2)\)
V \(k\left(E_{6} / \operatorname{Spin}(10) \times T^{1}\right)=12\)
VI \(k\left(E_{7} / E_{6} \times T^{1}\right)=18\).
```

4. A compact Kähler manifold which does not admit any Einstein Kähler metric

In this section we shall give example of a compact Kahler manifold with the positive first Chern class which does not admit any Einstein Kähler metric.

Theorem 4.1. Let $P\left(L^{-a}\right)$ denote a complex projective bundle over M defined in section 3. Then the first Chern class $c_{1}(M)$ is positive if $k(M)-\sum_{i=1}^{m} a_{\imath}>0$. But the compact Kähler manifold $P\left(L^{-a}\right)$ does not admit any Einstein Kähler metric if $0<a_{1}<\cdots<a_{m}$.

Proof. By Corollary 3.3, the first Chern class $c_{1}\left(P\left(L^{-a}\right)\right)$ is given by

$$
c_{1}\left(P\left(L^{-a}\right)=\left(k(M)-\sum_{i=1}^{m} a_{i}\right) \nu+(m+1) \varepsilon .\right.
$$

Note that if $a, b \in \boldsymbol{Z}$ are positive the element $a \nu+b \varepsilon \in H^{2}\left(P\left(L^{-a}\right), \boldsymbol{Z}\right)$ is projectively induced (cf. [15] §2). Thus $c_{1}\left(P\left(L^{-a}\right)\right.$) is positive if $k(M)-\sum_{i=1}^{m} a_{\imath}>0$.

Now we have a following Theorem due to Matsushima on a compact Einstein Kahler manifold.

Theorem (Matsushima [10]). Let X be a compact Einstein Kähler manifold with nonzero Ricci tensor. Then the Lie algebra $\mathfrak{f}(X)$ of Killing vector fields on X is a real form of the Lie algebra $\mathfrak{a}(X)$ of holomorphic vector fields on X, that is,

$$
\mathfrak{a}(X)=\mathfrak{f}(X)+\sqrt{-1} \mathfrak{f}(X) .
$$

Note that the Lie algebra $\mathfrak{f}(X)$ is compact and hence $f(X)$ is reductive. By Corollary 2.4, the holomorphic vector fields $\mathfrak{a}\left(P\left(L^{-a}\right)\right)$ has a solvable ideal which is not abelian if $0<a_{1}<\cdots<a_{m}$. In particular, the Lie algebra $\left(P\left(L^{-a}\right)\right)$ is not reductive. Hence $P\left(L^{-a}\right)$ does not admit any Einstein Kähler metric. q.e.d.

Fujitsu
Osaka University

References

[1] M.F. Atiyah: Complex analytic conncetions in fibre bundles, Trans. Amer. Math. Soc. 85 (1957), 181-207.
[2] T. Aubin: Équations du type Monge-Ampère sur les variétés kählériennes compactes, C.R. Acad. Sc. Paris. 283 (1976), 119-121.
[3] A. Blanchard: Sur les variétés analytiques complex, Ann. Sci. Ecole Norm. Sup. (3) 73 (1956), 157-202.
[4] A. Borel and F. Hirzebruch: Characteristic classes and homogeneous spaces I, Amer. J. Math. 80 (1958), 458-538.
[5] R. Bott: Homogeneous vector bundles, Ann. of Math. 66 (1957), 203-248.
[6] E. Brieskorn: 首ber holomorphe P_{n}-Bündel über P_{1}. Math. Ann. 157 (1965), 343-357.
[7] F. Hirzebruch: Topological methods in algebraic geometry, third enlarged edition. Grundlehren der Math. Wissenschaften, 131, Springer-Verlag, New York, 1966.
[8] M. Ise: Some properties of complex analytic vector bundles over compact complex homogeneous spaces, Osaka Math. J. 12 (1960), 217-252.
[9] -: On Thullen domains and Hirzebruch manifolds I, J. Math. Soc. Japan 26 (1974), 508-522.
[10] Y. Matsushima: Sur la structure du groupe d'homéomorphisms analytiques d'une certaine variété kaehlérienne, Nagoya Math. J. 11 (1957), 145-150.
[11] A. Morimoto: Sur le groupe d'automorphismes d'un espace fibré principal analytique complexe, Nagoya Math. J. 13 (1958), 157-178.
[12] R. Palais: A global formulation of the Lie theory of transformation groups, Mem. Amer. Math. Soc. 22 (1957).
[13] H. Röhrl: Holomorphic fibre bundles over Riemann surfaces, Bull. Amer. Math. Soc. Soc. 68 (1960), 125-160
[14] N. Steenrod: The topology of fibre bundles, Princeton University Press, Princeton, 1951.
[15] M. Takeuchi: Homogeneous Kähler submanifolds in complex projective spaces, Japan J. Math. 4 (1978), 171-219.
[16] H.C. Wang: Closed manifolds zuith homogeneous complex structure, Amer. J. Math. 76 (1954), 1-32.
[17] A. Weil: Introduction à l'etude des varıétés kählerıennes, Hermann, Paris, 1958.

Added in proof.
After finishing this work, the authors learned that S. T. Yau proved that the complex projective bundle $P(1 \oplus \zeta)$ over a complex projective space $P^{1}(\boldsymbol{C})$ of dimension 1 admits a Kähler metric with positive Ricci curvature but does not admit a Kähler metric with constant scalar curvature in his paper "On the curvature of compact Hermitian manifolds" Invent. math. 25 (1974), 213-239.

[^0]: 1) The authors would like to express their thanks to the referee for his kind suggestion.
