ON HYPERSURFACES OF A COMPLEX GRASSMANN MANIFOLD $\boldsymbol{G}_{\boldsymbol{m}+\boldsymbol{n}, \boldsymbol{n}}(\mathbf{C})$

Yusuke SAKANE

(Received September 22, 1977)

On Kähler submanifolds of a complex projective space, J-I Hano [5] has studied complete intersections of hypersurfaces in a complex projective space and proved that if a complete intersection M of hypersurfaces is an Einstein manifold with respect to the induced metric then M is a complex projective space or a complex quadric. The purpose of this note is to investigate hypersurfaces of a comp!ex Grassmann manifold by using Hano's method. Let $G_{m+n}(\boldsymbol{C})$ denote the complex Grassmann manifold of n-planes in \boldsymbol{C}^{m+n}. Let X be a compact complex hypersurface of $G_{m+n, n}(\boldsymbol{C})$. Then X defines a positive divisor on $G_{m+n}(\boldsymbol{C})$ and hence a holomorphic line bundle $\{X\}$ on $G_{m+n, n}(\boldsymbol{C})$. We denote by $c(X)$ the Chern class of the line bundle $\{X\}$. Since the second cohomology group $H^{2}\left(G_{m+n}(\boldsymbol{C}), \boldsymbol{Z}\right)$ is isomorphic to \boldsymbol{Z}, we can write $c(X)=$ $a(X) \cdot \sigma$, where $a(X) \in \boldsymbol{N}$ and σ is a generator of $H^{2}\left(G_{m+n, n}(\boldsymbol{C}), \boldsymbol{Z}\right)$. We call $a(X)$ the degree of X. We equip an hermitian inner product on \boldsymbol{C}^{m+n}. The complex Grassmann manifold $G_{m+n, n}(\boldsymbol{C})$ has a Kähler metric invariant under the action of the unitary group $U(m+n)$. Moreover we may assume that $m \geqq n$. Under these notations, we have a following Theorem.

Theorem. Let X be a compact complex hypersurface of a complex Grassmann manifold $G_{m+n, n}(\boldsymbol{C})$ and $a(X)$ the degree of X. If $a(X) \geqq r+2$, where $r=\binom{m+n}{n}$ $m n-1$ and $n \geqq 2, X$ is not an Einstein manifold with respect to the induced metric.

1. Preliminaries

Let $G_{m+n, n}(\boldsymbol{C})$ be the complex Grassmann manifold of n-planes in \boldsymbol{C}^{m+n}. An element of $G_{m+n, n}(\boldsymbol{C})$ can be given by a non-zero decomposable n-vector $\Lambda=X_{1} \wedge \cdots \wedge X_{n} \neq 0$ defined up to a constant factor. If (e_{1}, \cdots, e_{m+n}) denotes a fixed frame in \boldsymbol{C}^{m+n}, we can write

$$
\begin{equation*}
\Lambda=\sum_{c} p_{i_{1} \cdots i_{n}} e_{i_{1}} \wedge \cdots \wedge e_{i_{n}} \quad\left(1 \leqq i_{1}, \cdots, i_{n} \leqq m+n\right) \tag{1.1}
\end{equation*}
$$

where the $p_{i_{1} \cdots i_{n}}$'s are skew-symmetric in their indices. The $p_{i_{1} \cdots t_{k}}$ are called the

Plücker coordinates in $G_{m+n, n}(\boldsymbol{C})$. By considering $p_{i_{1} \cdots i_{n}}$ as the homogeneous coordinates of the complex projective space $P^{\mu}(\boldsymbol{C})$ of dimension $\mu=\binom{m+n}{n}-1$, we get an imbedding $j: G_{m+n, n}(\boldsymbol{C}) \rightarrow P^{\mu}(\boldsymbol{C})$.

We equip an hermitian inner product in \boldsymbol{C}^{m+n}. Then we can define a Kahler metric on $G_{m+n, n}(\boldsymbol{C})$ which is invariant under the action of the unitary group $U(m+n)$. We also have the Fubini-Study metric on the complex projective spaec $P^{\mu}(\boldsymbol{C})$ induced from the hermitian inner product in the n-th exterior product $\Lambda^{n} \boldsymbol{C}^{m+n}$ of \boldsymbol{C}^{m+n}. Then the imbedding j is isometric with respect to these Kähler metrics (cf. for example [3] §8).

From now on we identify $G_{m+n, n}(\boldsymbol{C})$ with the image of the imbedding j. Let $I(V)$ denote the ideal associated to a subvariety V of $P^{\mu}(\boldsymbol{C})$. We recall the generators of the ideal $I\left(G_{m+n, n}(\boldsymbol{C})\right)$. Let i_{1}, \cdots, i_{n-1} be $n-1$ distinct numbers which are chosen from a set $\{1, \cdots, m+n\}$ and let j_{0}, \cdots, j_{n} be $n+1$ distinct numbers chosen from the same set. We define homogeneous polynomials $Q\left(i_{1} \cdots i_{n-1} j_{0} \cdots j_{n}\right)$ of degree 2 on $\boldsymbol{C}^{\mu+1}$ by

$$
\begin{equation*}
Q\left(i_{1} \cdots i_{n-1} j_{0} \cdots j_{n}\right)=\sum_{\lambda=0}^{n}(-1)^{\lambda} p_{i_{1} \cdot i_{n-1} \jmath_{\lambda}} p_{j_{0} \cdots \hat{j}_{\lambda} \cdots j_{n}} . \tag{1.2}
\end{equation*}
$$

Then it is known that $Q\left(i_{1} \cdots i_{n-1} \cdots j_{0} \cdots j_{n}\right)=0$ are the generators of the ideal $I\left(G_{m \uplus n, n}(\boldsymbol{C})\right)$ (Sce [7] Chapter 7 §6 Theorem 2 and $\S 7$ Theorem 1). The relations $Q\left(i_{1} \cdots i_{n-1} j_{0} \cdots j_{n}\right)=0$ are called the quadratic p-relations.

Let π denote the canonical projection of $\boldsymbol{C}^{\varphi+1}-(0)$ onto the complex projective space $P^{\mu}(\boldsymbol{C})$. The triple $\left(\boldsymbol{C}^{\mu+1}-(0), \pi, P^{\mu}(\boldsymbol{C})\right)$ is a principal \boldsymbol{C}^{*}-bundle over $\boldsymbol{P}^{\mu}(\boldsymbol{C})$. Let E be the standard line bundle over $P^{\mu}(\boldsymbol{C})$ associated to the above principal bundle. We denote by $H^{1}\left(M, \theta^{*}\right)$ the group of all equivalent classes of holomorphic line bundles over a compact complex manifold M. On the line bundles over a Grassmann manifold $G_{m+n}(\boldsymbol{C})$, the following propositions are known.

Proposition 1.1. Let H denote the dual bundle of E over $P^{\mu}(\boldsymbol{C})$. Then, for any integer $k>0$, the inclusion map $j: G_{m+n}(\boldsymbol{C}) \rightarrow P^{\mu}(\boldsymbol{C})$ induces the surjective map $j^{*}: H^{0}\left(P^{\mu}(\boldsymbol{C}), H^{k}\right) \rightarrow H^{0}\left(G_{m+n, n}(\boldsymbol{C}), j^{*} H^{k}\right)$, that is, every holomorphic section of the line bundle $j^{*} H^{k}$ is given by the restriction of a section of the line bundle H^{k} on $P^{\mu}(\boldsymbol{C})$.

Proposition 1.2. The inclusion map $j: G_{m+n, n}(\boldsymbol{C}) \rightarrow P^{\mu}(\boldsymbol{C})$ induces the canonical iscmorphism $j^{*}: H^{1}\left(P^{\mu}(\boldsymbol{C}), \theta^{*}\right) \rightarrow H^{1}\left(G_{m+n, n}(\boldsymbol{C}), \theta^{*}\right)$. Moreover each positive divisor X of $G_{m+n, n}(\boldsymbol{C})$ is the complete intersection of $G_{m+n, n}(\boldsymbol{C})$ and a subvariety Y of codimension 1 of $P^{\mu}(\boldsymbol{C})$. Furthermore, for an irreducible subvariety X of codimension 1 in $G_{m+n, n}(\boldsymbol{C}), I(X)=I\left(G_{m+n, n}(\boldsymbol{C})\right)+(F)$ where F is an irreducible homogeneous polynomial on $\boldsymbol{C}^{\mu+1}$.

Proof. See [7] chapter $14 \S 8$ Theorem 1 and [8] Theorem 3.

For a compact connected complex submanifold X of codimension 1 in $G_{m+n, n}(\boldsymbol{C})$, let $[X]$ denote the positive divisor defintd by X ard $c(X)$ the Chern class of the line bundle $\{X\}$ defined by $[X]$. Since $H^{2}\left(G_{m+n}(\boldsymbol{C}), \boldsymbol{Z}\right) \cong \boldsymbol{Z}$, $c(X)=a(X) \sigma$ where $a(X) \in \boldsymbol{N}$ and σ is a generator of $H^{2}\left(G_{m+n, n}(\boldsymbol{C}), \boldsymbol{Z}\right)$. We call $a(X)$ the degree of X. Note that the degree of an irreducible subvariety Y of codimension 1 of $P^{\mu}(\boldsymbol{C})$ corresponding to X is given by $a(X)$.

2. The canonical line bundle

With respect to the hermitian inner product on $\boldsymbol{C}^{\mu+1}$ induced from the hermitian inner product on C^{m+n}, the square of the norm $\|z\|$ is given by $\sum_{i_{1}<\cdots<i_{n}}\left|p_{i_{1} \cdots i_{n}}(z)\right|^{2}$ for an orthonormal frame $\left(e_{1}, \cdots, e_{m+n}\right)$ of \boldsymbol{C}^{m+n}. The function $\|z\|^{2}$ can be regarded as a hermitian fiber metric on the standard line bundle E on $P^{\mu}(\boldsymbol{C})$. A unique connection of type (1, 0) on E is determined by the fiber metric $\|z\|^{2}$ on E and gives rise to the curvature form $-\Omega$ on $P^{\mu}(\boldsymbol{C})$. The form Ω is the associated (1, 1)-form of the Fubini-Study metric on $P^{\mu}(\boldsymbol{C}) ; \pi^{*} \Omega=$ $\frac{\sqrt{-1}}{2 \pi} d^{\prime} d^{\prime \prime} \log \|z\|^{2}$.

Let $K, K\left(G_{m+n}(\boldsymbol{C})\right)$ and $K(X)$ be the canonical line bundle of $P^{\mu}(\boldsymbol{C})$, $G_{m+n, n}(\boldsymbol{C})$ and X respectively. The normal bundle of X in $P^{\mu}(\boldsymbol{C})$ is a holomorphic vector bundle over X whose fiber dimension is $r+1=\mu-m n+1$. We denote by N the $(r+1)$-th exterior product of the dual bundle of the normal bundle of X in $P^{\mu}(C)$. Denoting by ι the inclusion $X \subseteq P^{\mu}(C)$, we have

$$
\begin{equation*}
\iota^{*} K=K(X) \cdot N \tag{2.1}
\end{equation*}
$$

Let $U_{i_{1} \cdots i_{n}}$ denote an open subset of $P^{\mu}(\boldsymbol{C})$ given by $\left\{\pi(z) \in P^{\mu}(\boldsymbol{C}) \mid p_{i_{1} \cdots i_{n}}(z) \neq\right.$ $0\}$. The functions $u_{i_{1} \cdot i_{n}, \beta_{1} \cdots \beta_{n}}=p_{\beta_{1} \cdots \beta_{n}} / p_{i_{1} \cdot i_{n}}\left(\left(\beta_{1}, \cdots, \beta_{n}\right) \neq\left(i_{1}, \cdots, i_{n}\right), \beta_{1}<\cdots<\beta_{n}\right)$ form a holomorphic coordinates system on $U_{i_{1} \cdot i_{n}}$. We arrange the Plücker coordinates in the lexicographical order. Let $p_{j_{1} . \jmath_{n}}$ be the $\sigma\left(j_{1}, \cdots, j_{n}\right)$-th component of the Plücker coordinates in above order. The map $s_{i_{1} \cdots i_{n}}: U_{i_{1} \cdots i_{n}} \rightarrow \boldsymbol{C}^{\mu+1}-(0)$ defined by

$$
\begin{gathered}
\sigma\left(i_{1} \cdots i_{n}\right) \\
s_{i_{1} \cdots i_{n}}(y)=\left(u_{i_{1} \cdots i_{n}, 12 \cdots n}(y), \cdots, 1, \cdots, u_{i_{1} \cdots i_{n}, m+1 \cdots m+n}(y)\right) \quad\left(y \in U_{i_{1} \cdots i_{n}}\right)
\end{gathered}
$$

is a holomorphic section on $U_{i_{1} \ldots i_{n}}$ of the principal \boldsymbol{C}^{*}-bundle $\left(\boldsymbol{C}^{\mu+1}-(0), \pi, P^{\mu}(\boldsymbol{C})\right)$. We put

$$
g_{i_{1} \cdots i_{n}, j_{1} \cdots j_{n}}=p_{i_{1} \cdots i_{n}} / p_{j_{1} \ldots j_{n}}
$$

on $U_{i_{1} \ldots i_{n}} \cap U_{j_{1} \ldots j_{n}}$. Then $\left(g_{i_{1} \ldots i_{n}, j_{1} \ldots j_{n}}\right)$ is the system of transition functions of the principal bundle associated to the holomorphic local trivialization ($U_{i_{1} \ldots i_{n}}, s_{t_{1} \ldots i_{n}}$) of the bundle. Let $V_{i_{1} \cdots i_{n}}$ denote the connected open set of $G_{m+n, n}(\boldsymbol{C})$ given by

$$
V_{i_{1} \cdots i_{n}}=U_{i_{1} \cdots i_{n}} \cap G_{m+n, n}(\boldsymbol{C})
$$

and $W_{i_{1} \ldots i_{n}}$ the open set of X given by

$$
W_{i_{1} \cdots i_{n}}=U_{i_{1} \cdots i_{n}} \cap X
$$

Now we shall consider the structure of the holomorphic line bundle N on X. Let $Q\left(\beta_{1} \cdots \beta_{n} i_{1} \cdots i_{n}\right)$ be a homogeneous polynomial of degree 2 on $\boldsymbol{C}^{\mu+1}$ defined by (1.2). It is obvious that $Q\left(\beta_{1} \cdots \beta_{n} i_{1} \cdots i_{n}\right)$ has following properties:
$\left\{\begin{array}{l}\text { 1) } \\ \text { 2) } \\ \text { 2) } \\ \text { 3) } \\ \text { 3) } \\ \text { if }\end{array}\left\{\beta_{1} \cdots \beta_{n} i_{1} \cdots \beta_{n} i_{1} \cdots, i_{n}\right)\right.$ is alternating with respect to $\beta_{1}, \cdots, \beta_{n-1}$.
Furthermore we have a following lemma which gives the relations between these polynomials.

Lemma 2.1. $O n \pi^{-1}\left(U_{i_{1} \cdots i_{n}}\right)$,
(a) $Q\left(\beta_{1} \cdots \beta_{n-1} k i_{1} \cdots i_{n}\right)=-Q\left(\beta_{1} \cdots \beta_{n-2} k \beta_{n-1} i_{1} \cdots i_{n}\right)$

$$
\begin{aligned}
& +\sum_{a=1}^{n}(-1)^{a+n-1} \frac{p_{\beta_{n-1} i_{1} \cdots \hat{i}_{a} \cdots i_{n}}}{p_{i_{1} \cdots i_{n}}} Q\left(i_{a} \beta_{1} \cdots \beta_{n-2} k i_{1} \cdots i_{n}\right) \\
& +\sum_{b=1}^{n}(-1)^{b+n-1} \frac{p_{k i_{1} \cdots \hat{i}_{b} \cdots i_{n}}}{p_{i_{1} \cdots i_{n}}} Q\left(i_{b} \beta_{1} \cdots \beta_{n-1} i_{1} \cdots i_{n}\right)
\end{aligned}
$$

(b) $Q\left(\beta_{1} \cdots \beta_{n} i_{1} \cdots i_{j-1} i_{j+1} \cdots i_{n} k\right)$

$$
\begin{aligned}
= & \frac{p_{i_{1} \cdots \hat{i}_{j} \cdots i_{n} k}}{p_{i_{1} \cdots i_{n}}} Q\left(\beta_{1} \cdots \beta_{n} i_{1} \cdots i_{n}\right) \\
& +\sum_{a_{\neq j}}(-1)^{a} \frac{p_{\beta_{1} \cdots \beta_{n-1} i_{a}}}{p_{i_{1} \cdots i_{n}}} Q\left(\beta_{n} i_{1} \cdots \hat{i}_{j} \cdots \hat{i}_{a^{\prime}} \cdots i_{n} k i_{1} \cdots i_{n}\right) \\
& +(-1)^{n} \frac{p_{\beta_{n} i_{1} \cdots i_{j} \cdots i_{n}}}{p_{i_{1} \cdots i_{n}}} Q\left(\beta_{1} \cdots \beta_{n-1} k i_{1} \cdots i_{n}\right) .
\end{aligned}
$$

Proof. Straightforward computation.
Let $\left(i_{1}, \cdots, i_{n}\right)$ be an n-tuples such that

$$
1 \leqq i_{1}<i_{2}<\cdots<i_{n} \leqq m+n
$$

and let $\left(i_{1}, \cdots, i_{n}, s_{1}, \cdots, s_{m}\right)$ be the permutation of $(1, \cdots, m+n)$ such that

$$
1 \leqq s_{1}<\cdots<s_{m} \leqq m+n .
$$

For a permutation $\left(l_{1}, \cdots, l_{m}\right)$ of $(1, \cdots, m)$, we introduce a linear order β on $\{1, \cdots, m+n\}$ by $i_{1}-勺 i_{2}-\beta-3 i_{n}-8 s_{l_{1}}-\cdots-勺 s_{l_{m}}$. We denote $\left\{\beta=\left(\beta_{1}, \cdots, \beta_{n}\right) \mid \beta_{1}-\beta\right.$
$\left.\cdots-\beta \beta_{n}\right\}$ by $C\left(i_{1} \cdots i_{n},-8\right)$. The associated lexicographical order on $C\left(i_{1} \cdots i_{n},-3\right)$ is called an admissible order with respect to $\left(i_{1}, \cdots, i_{n}\right)$. If the linear order β on $\{1, \cdots, m+n\}$ is given by $i_{1}-\beta \cdots-3 i_{n}-3 s_{1}-\beta \cdots-3 s_{m}$, the admissible order is called principal with respect to $\left\{i_{1}, \cdots, i_{n}\right\}$. For an admissible order with respect to $\left(i_{1}, \cdots, i_{n}\right)$, we define a subset $I\left(i_{1} \cdots i_{n}, 8\right)$ of $C\left(i_{1} \cdots i_{n}, \beta\right)$ by

$$
\left\{\beta=\left.\left(\beta_{1}, \cdots, \beta_{n}\right)\right|_{\begin{array}{l}
\beta=\left(i_{1}, \cdots, \hat{i}_{i}\right. \\
\left.t=1, \cdots, i_{n}, s_{t}\right), \quad l=1, \cdots, n ;
\end{array}} ^{t, \text { or } \beta=\left(i_{1}, \cdots, i_{n}\right)} .\right\}
$$

Note that $I\left(i_{1} \cdots, i_{n}, \zeta\right)=I\left(i_{1}, \cdots, i_{n}, \bigotimes^{\prime}\right)$ for β, \bigotimes^{\prime} admissible orders, with respect to $\left(i_{1}, \cdots, i_{n}\right)$ and the number of elements in $I\left(i_{1} \cdots i_{n},-3\right)$ is $m n+1$. Moreover $Q\left(\beta i_{1} \cdots i_{n}\right) \equiv 0$ for $\beta \in I\left(i_{1} \cdots i_{n}\right.$, -) by (2.2) 3).

For an admissible order - with respect to $\left(i_{1}, \cdots, i_{n}\right)$, we define a holomorphic r-form $\tilde{\boldsymbol{q}}_{1_{1} \cdots i_{n}}^{8}$ on $\boldsymbol{C}^{\mu+1}$ by

$$
\begin{equation*}
\tilde{q}_{i_{1} \cdots i_{n}}^{\beta}=\bigwedge_{\beta \in C\left(i_{1} \cdots i_{n}, \delta\right)-I\left(i_{1} \ldots i_{n}, \beta\right)} d Q\left(\beta i_{1} \cdots i_{n}\right) \tag{2.3}
\end{equation*}
$$

where we take the exterior product of $d Q\left(\beta i_{1} \cdots i_{n}\right)$ according to the admissible order \bigcirc on $C\left(i_{1} \cdots i_{n},-3\right)-I\left(i_{1} \cdots i_{n}\right.$, $\left.\bigcirc\right)$. If the admissible order \bigcirc is principal, we denote $\widetilde{q}_{i_{1} \ldots i_{n}}^{\ominus}$ by $\widetilde{q}_{i_{1} \ldots i_{n}}$.

Lemma 2.2. Let $-\bigotimes^{\prime}$ be admissible orders with respect to $\left(i_{1}, \cdots, i_{n}\right)$. Then we have

$$
\begin{equation*}
\tilde{q}_{i_{1} \cdots i_{n}}^{-}(z)=\varepsilon\left(-, \bigotimes^{\prime}\right) \tilde{q}_{i_{1} \ldots i_{n}}^{8^{\prime}}(z) \tag{2.4}
\end{equation*}
$$

for $z \in \pi^{-1}\left(V_{i_{1} \cdots i_{n}}\right)$, where $\varepsilon\left(-3,-^{\prime}\right) \in\{ \pm 1\}$.
Proof. Let -3 be a linear order on $\{1, \cdots, m+n\}$ given by $i_{1}-\beta \cdots-3 i_{n}-勺 s_{l_{1}} \cdots$ $-8 s_{l_{m}}$. Since the symmetric group of m elements is generatcd by transpositions $\{(k, k+1) \mid k=1, \cdots, m-1\}$, we may assume that the admissible order ζ^{\prime} is given by a linear order

Let β be an element of $C\left(i_{1} \cdots i_{n}, 8^{\prime}\right)-I\left(i_{1} \cdots i_{n}, 8^{\prime}\right)$. Then β is of the form either

1) $\beta=\left(\beta_{1}, \cdots, \beta_{n}\right), \beta_{t} \neq s_{l_{k}}, s_{l_{k+1}}$ for any $t=1, \cdots, n$,
2) $\beta=\left(\beta_{1}, \cdots, \beta_{n}\right), \beta_{t}=s_{l_{k}}$ for some t and $\beta_{a} \neq s_{l_{k+1}}$ for $a \neq t$,
3) $\beta=\left(\beta_{1}, \cdots, \beta_{n}\right), \beta_{t}=s_{l_{k}+1}$ for some t and $\beta_{a} \neq s_{l_{k}}$ for $a \neq t$,
4) $\beta=\left(\beta_{1}, \cdots, \beta_{n}\right), \beta_{t}=s_{l_{k+1}}, \beta_{t+1}=s_{l_{k}}$ for some $t+1<n$, or

$$
\text { 5) } \beta=\left(\beta_{1}, \cdots \beta_{n-2}, s_{l_{k+1}}, s_{l_{k}}\right) \text {. }
$$

In the cases of 1$), 2$) and 3$), \beta \in C\left(i_{1} \cdots i_{n},-8\right)-I\left(i_{1} \cdots i_{n},-8\right)$. In the case of 4), $Q\left(\beta i_{1} \cdots i_{n}\right)=Q\left(\beta_{1} \cdots \beta_{t-1} s_{l_{k+}} . s_{l_{k}} \beta_{t+2} \cdots \beta_{n} i_{1} \cdots i_{n}\right)=-Q\left(\beta_{1} \cdots \beta_{t-1} s_{l_{k}} s_{l_{k+1}} \beta_{t+2} \cdots \beta_{n} i_{1} \cdots\right.$
$\left.i_{n}\right)$ by (2.2) 1). Note that $\left(\beta_{1} \cdots \beta_{t-1} s_{l_{k}} s_{l_{k+1}}, \beta_{t+2} \cdots \beta_{n}\right) \in C\left(i_{1} \cdots i_{n},-3\right)-I\left(i_{1} \cdots i_{n},-3\right)$. In the case of 5), we have

$$
\begin{aligned}
& Q\left(\beta_{1} \cdots \beta_{n-2} s_{l_{k+1}} s_{l_{k}} i_{1} \cdots i_{n}\right)=-Q\left(\beta_{1} \cdots \beta_{n-2} s_{l_{k}} s_{l_{k, 1}} i_{1} \cdots i_{n}\right) \\
& \quad+\sum_{a=1}^{n}(-1)^{a+n-1} \frac{p_{s(l(k+1)) i_{1} \cdots i_{a} \cdots i_{n}}^{p_{i_{1} \cdots i_{n}}}}{p_{2}\left(i_{a} \beta_{1} \cdots \beta_{n-2} s_{l_{k}} i_{1} \cdots i_{n}\right)} \\
& \quad+\sum_{b=1}^{n}(-1)^{b+n-1} \frac{p_{s(l(k)) i_{1} \cdots \hat{i}_{b} \cdots i_{n}}^{p_{i_{1} \cdots i_{n}}}}{} Q\left(i_{b} \beta_{1} \cdots \beta_{n-2} s_{l_{n+1}} i_{1} \cdots i_{n}\right)
\end{aligned}
$$

by Lemma 2.1 (a). Note that $\left(\beta_{1}, \cdots, \beta_{n-2}, s_{l_{k}}, s_{l_{k+1}}\right) \in C\left(i_{1} \cdots, i_{n}, \cdots\right)-I\left(i_{1} \cdots i_{n},-४\right)$, $i_{a}-\theta s_{l_{k}}$ and $i_{b}-8 s_{l_{k+1}}$. By (2.2) 1), $Q\left(i_{a} \beta_{1} \cdots \beta_{n-2} s_{l_{k}} i_{1} \cdots i_{n}\right)=Q\left(\beta_{1}^{\prime} \cdots \beta_{n-1}^{\prime} s_{l_{k}} i_{1} \cdots i_{n}\right)$ where $\beta_{1}^{\prime}, \cdots, \beta_{n-1}^{\prime}$ is a permutation of $i_{a}, \beta_{1}, \cdots, \beta_{n-2}$ such that $\beta_{1}^{\prime}-\cdots-3 \beta_{n-1}^{\prime}-3$ $s_{l_{k}}$. If $Q\left(i_{a} \beta_{1} \cdots \beta_{n-2} s_{l_{k}} i_{1} \cdots i_{n}\right) \equiv 0$, then $\left(\beta_{1}^{\prime}, \cdots, \beta_{n-1}^{\prime} s_{l_{k}}\right) \in C\left(i_{1}, \cdots, i_{n}, \cdots\right)-I\left(i_{1} \cdots\right.$ $\left.i_{n},-8\right)$ and $\beta=\left(\beta_{1}^{\prime}, \cdots, \beta_{n-1}^{\prime}, s_{l_{k}}\right)$ is of the form of the case 2). Similarly, $Q\left(i_{b} \beta_{1}\right.$ $\left.\cdots \beta_{n-2} s_{l_{k+1}} i_{1} \cdots i_{n}\right)= \pm Q\left(\beta_{1}^{\prime} \cdots \beta_{n-1}^{\prime} s_{l_{k+1}} i_{1} \cdots i_{n}\right)$ where $\beta_{1}^{\prime}, \cdots, \beta_{n-1}^{\prime}$ is a permutation of $i_{b}, \beta_{1}, \cdots, \beta_{n-2}$ such that $\beta_{1}^{\prime}-\beta-8 \beta_{n-1}^{\prime}-8 s_{l_{k+1}}$. If $Q\left(i_{b} \beta_{1} \cdots \beta_{n-2} s_{l_{k+1}} i_{1} \cdots i_{n}\right) \equiv 0$, then $\left(\beta_{1}^{\prime}, \cdots, \beta_{n-1}^{\prime}, s_{l_{k+1}}\right) \in C\left(i_{1} \cdots i_{n},-3\right)-I\left(i_{1} \cdots i_{n},-3\right)$ and $\beta=\left(\beta_{1}^{\prime}, \cdots, \beta_{n-1}^{\prime}, s_{l_{k+1}}\right)$ is of the form of the case 3). Now we get our claim by taking differential.

q.e.d.

Let $\left(i_{1} \cdots \hat{i}_{j} \cdots i_{n} i_{j} s_{1} \cdots s_{m}\right)$ be a permutation of $(1 \cdots m+n)$. We define a linear order \triangleleft on $\{1, \cdots, m+n\} \quad$ by $i_{1} \triangleleft \cdots \triangleleft \hat{i}_{j} \triangleleft \cdots \triangleleft i_{n} \triangleleft i_{j} \triangleleft s_{1} \triangleleft \cdots \triangleleft s_{m}$. We define a set $C\left(i_{1} \cdots \hat{i}_{j} \cdots i_{n} i_{j}, \triangleleft\right)$ by $\left\{\beta=\left(\beta_{1} \cdots \beta_{n}\right) \mid \beta_{1} \triangleleft \cdots \triangleleft \beta_{n}\right\}$ and a subset $I\left(i_{1} \cdots \hat{i}_{j} \cdots i_{n} i_{j}\right.$, $\triangleleft)$ of $C\left(i_{1} \cdots i_{k} \cdots i_{n} i_{j}, ~ \triangleleft\right)$ by

$$
\left\{\begin{array}{l|l}
\beta \in C\left(i_{1} \cdots \hat{i}_{j} \cdots i_{n} i_{j}, \triangleleft\right) & \begin{array}{l}
\beta=\left(i_{1} \cdots \hat{i}_{j} \cdots i_{l} \cdots i_{n} i_{j} s_{t}\right) \\
\text { or } \beta=\left(i_{1} \cdots \hat{i}_{j} \cdots i_{n} s_{t}\right) \\
\\
\\
\\
\text { or } \beta=1, \cdots, m ; l=1, \cdots, \hat{j}, \cdots, n
\end{array}
\end{array}\right\} .
$$

Lemma 2.3. $\quad \underset{\beta \in C\left(i_{1} \cdots i_{n}, \Delta\right)-I\left(i_{1} \cdots i_{n}, \triangleleft\right)}{ } d Q\left(\beta i_{1} \cdots i_{n}\right)=\varepsilon\left(i_{1} \cdots i_{n}, i_{1} \cdots \hat{i}_{j} \cdots i_{n} i_{j}\right)$ $\underset{\gamma \in C\left(i_{1} \cdots \hat{i}_{j} \cdots \cdots_{n i}, \triangleleft\right),-I\left(t_{1} \cdots \hat{i}_{j}, \cdots i_{n j}, \triangleleft\right)}{ } d Q\left(\gamma i_{1} \cdots \hat{i}_{j} \cdots i_{n} i_{j}\right)$ on $\pi^{-1}\left(V_{i_{1} \cdots i_{n}}\right)$, where $\varepsilon\left(i_{1} \cdots i_{n}, i_{1} \cdots\right.$ $\left.\hat{i}_{j} \cdots i_{n} i_{j}\right) \in\{ \pm 1\}$ and the exterior product is taken according to the lexicographical order induced from the linear order \triangleleft.

Proof. Note that there is a natural bijection between $C\left(i_{1} \cdots i_{n},-3\right)-I\left(i_{1} \cdots\right.$ $\left.i_{n}, 3\right)$ and $C\left(i_{1} \cdots \hat{i}_{j} \cdots i_{n} i_{j}, \triangleleft\right)-I\left(i_{1} \cdots \hat{i}_{j} \cdots i_{n} i_{j}, \triangleleft\right)$. We denote this map by

$$
f: C\left(i_{1} \cdots i_{n}, ß\right)-I\left(i_{1} \cdots i_{n}, ३\right) \rightarrow C\left(i_{1} \cdots \hat{i}_{j} \cdots i_{n} i_{j}, \triangleleft\right)-I\left(i_{1} \cdots \hat{i}_{j} \cdots i_{n} i_{j}, \triangleleft\right) .
$$

Then, for $\beta \in C\left(i_{1} \cdots i_{n},-8\right)-I\left(i_{1} \cdots i_{n},-3\right), Q\left(\beta i_{1} \cdots i_{n}\right)$ and $Q\left(f(\beta) i_{1} \cdots \hat{i}_{j} \cdots i_{n} i_{j}\right)$ coincide up to sign by (2.2) 1) and 2).

Let $\left(i_{1} \cdots \hat{i}_{j} \cdots i_{n} s_{k} i_{j} s_{1} \cdots \hat{s}_{k} \cdots s_{m}\right)$ be a permutation of $(1, \cdots, m+n)$. We define a linear order $<$ on $\{1, \cdots, m+n\}$ by

$$
i_{1} \prec \cdots \prec i_{j} \cdots \prec i_{n} \prec s_{k} \prec i_{j} \prec s_{1} \prec \cdots \prec \hat{s}_{k} \prec \cdots \prec s_{m} .
$$

We define a set $C\left(i_{1} \cdots \hat{i}_{j} \cdots i_{n} s_{k}, \prec\right)$ by $\left\{\beta=\left(\beta_{1} \cdots \beta_{n}\right) \mid \beta_{1} \prec \cdots \prec \beta_{n}\right\}$ and a subset $I\left(i_{1} \cdots \hat{i}_{j} \cdots i_{n} s_{k}, \prec\right)$ by

$$
\left\{\begin{array}{l|l}
\beta \in C\left(i_{1} \cdots \hat{i}_{j} \cdots i_{n} s_{k}, \prec\right)= & \begin{array}{l}
\beta=\left(i_{1} \cdots \hat{i}_{j} \cdots \hat{i}_{i} \cdots i_{n} s_{k} s_{t}\right), \\
\left.\beta=i_{1} \cdots i_{j} \cdots i_{i} \cdots i_{n} s_{k} i_{j}\right), \\
\beta=\left(i_{1} \cdots i_{j} \cdots i_{n} s_{i}\right), \\
\beta=\left(i_{1} \cdots i_{j} \cdots i_{n} i_{j}\right) \quad \text { or } \\
\beta=\left(i_{1} \cdots \hat{i}_{j} \cdots i_{i} s_{k}\right) \\
t=1, \cdots, \hat{k}_{n}, \cdots m, \\
l=1, \cdots, \hat{j}_{,} \cdots, m,
\end{array}
\end{array}\right\} .
$$

Lemma 2.4. For $l=1, \cdots, \hat{j}, \cdots, n, t=1, \cdots, \hat{k}, \cdots, m, Q\left(i_{1} \cdots \hat{i}_{j} \cdots \hat{i}_{l} \cdots\right.$ $\left.i_{n} i_{j} s_{t} i_{1} \cdots \hat{i}_{j} \cdots i_{n} s_{k}\right)=(-1)^{j+n} Q\left(i_{1} \cdots \hat{i}_{j} \cdots \hat{i}_{l} \cdots i_{n} s_{t} s_{k} i_{1} \cdots i_{n}\right)=(-1)^{j+n+1} Q\left(i_{1} \cdots \hat{i}_{j} \cdots \hat{i}_{l} \cdots\right.$ $i_{n} s_{k} s_{t} i_{1} \cdots i_{n}$.

Proof. The first part is nothing but Lemmas 2.1 (b). Noting that only three terms of Q are non trivial in our case, we get the second part by the definition.

Now we define a linear order ∇^{\prime} on $\{1, \cdots, m+n\}$ by $i_{1} \nabla^{\prime} \cdots \nabla^{\prime} \hat{i}_{j} \nabla^{\prime} \cdots$ $\nabla^{\prime} i_{n} \nabla^{\prime} i_{j} \nabla^{\prime} s_{k} \nabla^{\prime} s_{1} \nabla^{\prime} \cdots \nabla^{\prime} \hat{s}_{k} \nabla^{\prime} \cdots \nabla^{\prime} s_{m}$.

We define a set $C\left(i_{1} \cdots \hat{i}_{j} \cdots i_{n} i_{j}, \nabla^{\prime}\right)$ by $\left\{\beta=\left(\beta_{1} \cdots \beta_{n}\right) \mid \beta_{1} \nabla^{\prime} \cdots \nabla^{\prime} \beta_{n}\right\}$ and a subset $I\left(i_{1} \cdots \hat{i}_{j} \cdots i_{n} i_{j}, \nabla^{\prime}\right)$ of $C\left(i_{1} \cdots \hat{i}_{j} \cdots i_{n} i_{j}, \nabla^{\prime}\right)$ by $I\left(i_{1} \cdots \hat{i}_{j} \cdots i_{n} i_{j}, \triangleleft\right)$. We put

$$
V\left(i_{1} \cdots \hat{i}_{j} \cdots i_{n} i_{j}, \prec\right)=C\left(i_{1} \cdots \hat{i}_{j} \cdots i_{n} s_{k}, \prec\right)-I\left(i_{1} \cdots \hat{i}_{j} \cdots i_{n} s_{k}, \nprec\right)
$$

and

$$
V\left(i_{1} \cdots \hat{i}_{j} \cdots i_{n} i_{j}, \nabla^{\prime}\right)=C\left(i_{1} \cdots \hat{i}_{j} \cdots i_{n} i_{j}, \nabla^{\prime}\right)-I\left(i_{1} \cdots \hat{i}_{j} \cdots i_{n} i_{j}, \nabla^{\prime}\right) .
$$

Let $\tilde{h}=\{(1, \cdots, m+n\}, \prec) \rightarrow\left\{(1, \cdots, m+n\}, \triangleleft^{\prime}\right)$ be an order preserving bijection defined by

$$
\left\{\begin{array}{l}
\widehat{h}(i)=i \text { for } \quad i \neq i_{j}, s_{k} \\
\widehat{h}\left(i_{j}\right)=s_{k} \\
\hat{h}\left(s_{k}\right)=i_{j} .
\end{array}\right.
$$

Then \hat{h} induces order preserving bijections

$$
h: C\left(i_{1} \cdots \hat{i}_{j} \cdots i_{n} s_{k}, \prec\right) \rightarrow C\left(i_{1} \cdots \hat{i}_{j} \cdots i_{n} i_{j}, \nabla^{\prime}\right)
$$

and

$$
h: I\left(i_{1} \cdots \hat{i}_{j} \cdots i_{n} s_{k}, \nprec\right) \rightarrow I\left(i_{1} \cdots \hat{i}_{j} \cdots i_{n} i_{j}, \nabla^{\prime}\right) .
$$

Hence, we have an order preserving bijection

$$
h: V\left(i_{1} \cdots \hat{i}_{j} \cdots i_{n} s_{k}, \prec\right) \rightarrow V\left(i_{1} \cdots \hat{i}_{j} \cdots i_{n} i_{j}, \nabla^{\prime}\right)
$$

Proposition 2.5. On $\pi^{-1}\left(V_{i_{1} \cdots i_{n}}\right)$,

$$
\begin{gathered}
\bigwedge_{\gamma \in V\left(i_{1} \cdots \hat{i}_{j} \cdots i_{n} s_{k}, \prec\right)} d Q\left(\beta i_{1} \cdots \hat{i}_{j} \cdots i_{n} s_{k}\right) \\
=\varepsilon\left(i_{1} \cdots \hat{i}_{j} \cdots i_{n} s_{k}, i_{1} \cdots \hat{i}_{j} \cdots i_{n} i_{j}\right)\left(\frac{p_{i_{1} \cdots \hat{i}_{j} \cdots i_{n} s_{k}}}{p_{i_{1} \cdots i_{n}}}\right)_{\gamma \in V\left(i_{1} \cdots \hat{i}, \cdots i_{n} i_{j}, \triangleleft^{\prime}\right)}^{t} d Q\left(\gamma i_{1} \cdots \hat{i}_{j} \cdots i_{n} i_{j}\right)
\end{gathered}
$$

where $\varepsilon\left(i_{1} \cdots \hat{i}_{j} \cdots i_{n} s_{k}, i_{1} \cdots \hat{i}_{j} \cdots i_{n} i_{j}\right)$ is constant and valued in $\{ \pm 1\}$, and $t=r-(n-1)(m-1)$.

Proof. By Lemma 2.4, we have

$$
Q\left(i_{1} \cdots \hat{i}_{j} \cdots \hat{i}_{l} \cdots i_{n} i_{,} s_{t} i_{1} \cdots \hat{i}_{j} \cdots i_{n} s_{k}\right)= \pm Q\left(i_{1} \cdots \hat{i}, \cdots \hat{i_{l}} \cdots i_{n} s_{k} s_{t} i_{1} \cdots \hat{i}_{j} \cdots i_{n} i_{j}\right)
$$

for $l=1, \cdots, \hat{j}, \cdots, n, t=1, \cdots, \hat{k}, \cdots, m$. In other words, for

$$
\begin{aligned}
& \beta=\left(i_{1} \cdots \hat{i}_{j} \cdots i_{l} \cdots i_{n} i_{j} s_{t}\right)(l=1, \cdots, \hat{j}, \cdots, n ; t=1, \cdots, \hat{k}, \cdots, m) \\
& \underset{\sim}{\left(\beta i_{1} \cdots \hat{i}_{j} \cdots i_{n} s_{k}\right)= \pm Q\left(h(\beta) i_{1} \cdots \hat{i}_{j} \cdots i_{n} i_{j}\right)}
\end{aligned}
$$

We put

$$
\begin{aligned}
& S\left(i_{1} \cdots \hat{i}_{j} \cdots i_{n} s_{k}\right) \\
& \quad=\left\{\beta \in V\left(i_{1} \cdots \hat{i}_{j} \cdots i_{n} s_{k}, \prec\right) \left\lvert\, \begin{array}{l}
\beta=\left(i_{1} \cdots \hat{i}_{j} \cdots i_{l} \cdots i_{n} i_{j} s_{t}\right) \\
l=1, \cdots, \hat{j}, \cdots, n ; t=1, \cdots, \hat{k}, \cdots, m
\end{array}\right.\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& S\left(i_{1} \cdots \hat{i}_{j} \cdots i_{n} i_{j}\right) \\
& \quad=\left\{\beta \in V\left(i_{1} \cdots \hat{i}_{j} \cdots i_{n} s_{k}, \nabla^{\prime}\right) \left\lvert\, \begin{array}{l}
\beta=\left(i_{1} \cdots \hat{i}_{j} \cdots \hat{i}_{l} \cdots i_{n} s_{k} s_{t}\right) \\
l=1, \cdots, j, \cdots, n ; t=1, \cdots, \hat{k}, \cdots, m
\end{array}\right.\right\} .
\end{aligned}
$$

Obviously $h\left(S\left(i_{1} \cdots \hat{i}_{j} \cdots i_{n} s_{k}\right)\right)=S\left(i_{1} \cdots \hat{i}_{j} \cdots i_{n} i_{j}\right)$. Now we claim that on $\pi^{-1}\left(U_{i_{1} \cdots i_{n}}\right)$

$$
\begin{align*}
& Q\left(\beta i_{1} \cdots \hat{i}_{j} \cdots i_{n} s_{k}\right)= \pm \frac{p_{2_{1} \cdots \cdots} \hat{i}_{j} \cdots i_{n} s_{k}}{p_{i_{1} \cdots i_{n}}} Q\left(h(\beta) i_{1} \cdots \hat{i}_{j} \cdots i_{n} i_{j}\right) \tag{2.5}\\
& \quad+\sum_{\gamma, \underset{\sim}{\sim}(\beta)} P_{\gamma}\left(\cdots \frac{p_{\lambda_{1} \cdots \lambda_{n}}}{p_{i_{1} \cdots i_{n}}}\right) Q\left(\gamma i_{1} \cdots \hat{i}_{j} \cdots i_{n} i_{j}\right)
\end{align*}
$$

where $P_{\gamma}\left(\cdots \frac{p_{\lambda_{1} \cdot \lambda_{n}}}{p_{i_{1} \cdots i_{n}}} \ldots\right)$ denotes a polynomial of $\frac{p_{\lambda_{1} \ldots \lambda_{n}}}{p_{i_{1} \cdots i_{n}}}$, for each
$\beta \in V\left(i_{1} \cdots \hat{i}_{j} \cdots i_{n} s_{k}, \prec\right)-S\left(i_{1} \cdots \hat{i}_{j} \cdots i_{n} s_{k}\right)$.
Case 1. $\beta=\left(i_{1} \cdots \hat{i}_{j} \cdots i_{l-1}^{\prime} \hat{i_{l}} i_{\alpha_{1}} \cdots i_{\mu_{t}} s_{k} i_{j} s_{\mu_{1}} \cdots s_{\mu_{q}}\right) \quad$ where $l=1, \cdots, \hat{j}, \cdots, n-1$, $l<\alpha_{a}(a=1, \cdots, t), \mu_{b} \neq k(b=1, \cdots, q)$.

By Lemma 2.1 (b) and (2.2) 1) 2),

$$
\begin{align*}
& Q\left(i_{1} \cdots \hat{i}_{j} \cdots i_{l-1} \hat{i}_{l} i_{\alpha_{1}} \cdots i_{\alpha_{t}} s_{k} i_{j} s_{\mu_{1}} \cdots s_{\mu_{q}} i_{1} \cdots \hat{i}_{j} \cdots i_{n} s_{k}\right) \tag{2.6}\\
&=(-1)^{n-\jmath+1} \frac{p_{c_{1} \cdots \hat{j}_{j} \cdots i_{n} s_{k}}}{p_{i_{1} \cdots i_{n}}} Q\left(i_{1} \cdots \hat{i}_{j} \cdots \hat{i}_{l} i_{\alpha_{1}} \cdots i_{\alpha_{t}} i_{j} s_{k} s_{\mu_{1}} \cdots s_{\mu_{q}} i_{1} \cdots \hat{i}_{j} \cdots i_{n} i_{j}\right) \\
&+ \sum_{a_{\neq j}}(-1)^{a+n-j} \frac{p_{i_{1} \cdots i_{j} \cdots \hat{i}_{l} i_{\alpha_{1}} \cdots i_{\alpha t} s_{k} i_{j} s_{\mu_{1}} \cdots s_{\mu_{q-1}} i_{a}}^{p_{l_{1} \cdots i_{1}}} Q\left(s_{\mu_{q}} i_{1} \cdots \hat{i}_{j} \cdots \hat{i}_{a} \cdots i_{n} s_{k} i_{1} \cdots \hat{i}_{j} \cdots i_{n} i_{j}\right)}{} \\
&+(-1)^{j} \frac{p_{s_{\mu} i_{1}} \cdots \hat{i}_{j} \cdots i_{n}}{p_{i_{1} \cdots i_{n}}} Q\left(i_{1} \cdots \hat{i}_{j} \cdots \hat{i}_{l} i_{\alpha_{1}} \cdots i_{\alpha_{t}} s_{k} i_{j} s_{\mu_{1}} \cdots s_{\left.\mu_{q-1}-s_{k} i_{1} \cdots \hat{i}_{j} \cdots i_{n} i_{j}\right) .}\right.
\end{align*}
$$

Note that $p_{i_{1} \cdots \hat{i}_{j} \cdots i_{l} \cdots i_{\alpha_{-}} \cdots i_{\alpha t} s_{k} i_{j} s_{\mu_{1}} \cdots s_{\mu_{q}-1} i_{a}} \neq 0$ if and only if $a \geqq l$ and $a \neq \alpha_{1}, \cdots$, α_{t}. By (2.2) 1) and Lemma 2.4, we also have

$$
Q\left(s_{\mu_{q}} i_{1} \cdots \hat{i}_{j} \cdots \hat{i}_{a} \cdots i_{n} s_{k} i_{1} \cdots \hat{i}_{j} \cdots i_{n} i_{j}\right)= \pm Q\left(i_{1} \cdots \hat{i_{j}} \cdots \hat{i}_{a} \cdots i_{n} s_{k} s_{\mu} i_{q} \cdots \hat{i}_{j} \cdots i_{n} i_{j}\right) .
$$

Put

$$
\gamma=\left(i_{1} \cdots \hat{i}_{j} \cdots \hat{i}_{a} \cdots i_{n} s_{k} s_{\mu_{q}}\right) .
$$

Then

$$
\gamma \not \nabla^{\prime}\left(i_{1} \cdots \hat{i}_{j} \cdots \hat{i}_{l^{\prime}} i_{\alpha_{1}} \cdots i_{\alpha_{t}} i_{j} s_{k} s_{\mu_{1}} \cdots s_{\mu_{q}}\right)
$$

for $a \geqq l$.
By Lemma 2.1 (a) and (2.2) 2),

$$
\begin{align*}
& Q\left(i_{1} \cdots \hat{i}_{j} \cdots \hat{i}_{l} i_{\alpha_{1}} \cdots i_{\alpha_{t} s_{k}} i_{j} s_{\mu_{1}} \cdots s_{\mu_{q-1}} s_{k} i_{1} \cdots \hat{i}_{j} \cdots i_{n} i_{j}\right) \tag{2.7}\\
= & -Q\left(i_{1} \cdots \hat{i}_{j} \cdots \hat{i}_{l} i_{\alpha_{1}} \cdots i_{\alpha_{t}} s_{k} i_{j} s_{\mu_{1}} \cdots s_{\mu_{q-2}} s_{k} s_{\mu_{q-1}} i_{1} \cdots i_{j} \cdots i_{n} i_{j}\right) \\
+ & \sum_{a}(-1)^{a+n-1} \frac{p_{s_{\mu_{q}-1} i_{1} \cdots i_{a} \cdots i_{n}}^{p_{1} \cdots i_{n}}}{p_{i}} Q\left(i_{a} i_{1} \cdots \hat{i}_{j} \cdots \hat{i}_{l} i_{a_{1}} \cdots i_{\alpha_{t}} s_{k} i_{j} s_{\mu_{1}} \cdots s_{\mu_{q-2}} s_{k} i_{1} \cdots i_{j} \cdots i_{n} i_{j}\right) \\
+ & \sum_{b}(-1)^{b+n-1} \frac{p_{s_{k} i_{1} \cdots \hat{i}_{b} \cdots i_{n}}^{p_{i_{1} \cdots i_{n}}} Q\left(i_{b} i_{1} \cdots \hat{i}_{j} \cdots \hat{i}_{l} i_{a_{1}} \cdots i_{\alpha t} s_{k} i_{j} s_{\mu_{1}} \cdots s_{\mu_{q-1}} i_{1} \cdots \hat{i}_{j} \cdots i_{n} i_{j}\right)}{}
\end{align*}
$$

Note that

$$
\begin{array}{ll}
Q\left(i_{1} \cdots \hat{i}_{j} \cdots \hat{i}_{l} i_{\alpha_{1}} \cdots i_{\alpha t} s_{k} \hat{i}_{j} s_{k} i_{1} \cdots i_{j} \cdots i_{n} i_{j}\right) \equiv 0 & (t+l=n-1), \\
Q\left(i_{b} i_{1} \cdots \hat{i}_{j} \cdots \hat{i}_{l} i_{\alpha_{1}} \cdots i_{\alpha_{t}} s_{k} i_{j} i_{1} \cdots \hat{i}_{j} \cdots i_{n} i_{j}\right) \equiv 0 & (t+l=n-1)
\end{array}
$$

and

$$
Q\left(i_{1} \cdots \hat{i}_{j} \cdots \hat{i}_{l} i_{\alpha_{1}} \cdots i_{\alpha_{i}} s_{k} i_{j} s_{\mu_{1}} \cdots s_{\mu_{q-2}} s_{k} s_{\mu_{q-1}} i_{1} \cdots \hat{i}_{j} \cdots i_{n} i_{j}\right) \equiv 0
$$

if $q \geqq 2$. Thus the first term in the right hand side of (2.7) is identically zero. Obviously

$$
\begin{aligned}
& Q\left(i_{b} i_{1} \cdots \hat{i}_{j} \cdots \hat{i}_{l} i_{\alpha_{1}} \cdots i_{\alpha_{t} s_{k}} i_{j} s_{\mu_{1}} \cdots s_{\mu_{q-1}} i_{1} \cdots \hat{i}_{j} \cdots i_{n} i_{j}\right) \\
& \quad=-Q\left(i_{b} i_{1} \cdots \hat{i}_{j} \cdots \hat{i}_{l} i_{a_{1}} \cdots i_{\alpha_{t}} i_{j} s_{k} s_{s_{1}} \cdots s_{\mu_{q-1}} i_{1} \cdots \hat{i}_{j} \cdots i_{n} i_{j}\right)
\end{aligned}
$$

by (2.2) 1). Inductively we get

$$
\begin{align*}
& Q\left(i_{1} \cdots \hat{i}_{j} \cdots \hat{i}_{l} i_{\alpha_{1}} \cdots i_{\alpha_{t}} s_{k} i_{j} s_{\mu_{1}} \cdots s_{\mu_{q-1}} s_{k} i_{1} \cdots \hat{i}_{j} \cdots i_{n} i_{j}\right) \tag{2.8}\\
& ={\underset{\gamma}{\gamma} \neq \sum_{n k}(\beta)} P_{\gamma}\left(\cdots, \frac{p_{\lambda_{1} \cdots \lambda_{n}}}{p_{i_{1} \cdots i_{n}}}, \cdots\right) Q\left(\gamma i_{1} \cdots \hat{i}_{j} \cdots i_{n} i_{j}\right)
\end{align*}
$$

for some polynomial functions P_{γ}. Hence we get our claim (2.5) in this case. By the same way, we can show our claim in the following cases:

Case 2. $\beta=\left(i_{1} \cdots \hat{i}_{j} \cdots \hat{i}_{l} i_{\alpha_{1}} \cdots i_{a_{t} s_{k} s_{\mu_{1}}} \cdots s_{\mu_{q}}\right)$

$$
\begin{aligned}
& l=1, \cdots, \hat{j}, \cdots, n-1, t \geqq 0, q \geqq 2, l<\alpha_{a} \neq j \\
& (a=1, \cdots, t) \mu_{b} \neq k(b=1, \cdots, q) .
\end{aligned}
$$

Case 3. $\beta=\left(i_{1} \cdots \hat{i}_{j} \cdots \hat{i}_{l} i_{\alpha_{1}} \cdots i_{\alpha_{t}} i_{j} s_{\mu_{1}} \cdots s_{\mu_{q}}\right)$

$$
l=1, \cdots, \hat{j}, \cdots, n-1, t \geqq 0, q \geqq 2, l<\alpha_{a} \neq j \quad(a=1, \cdots, t)
$$

$$
\mu_{b} \neq k(b=1, \cdots, q) .
$$

Case 4. $\beta=\left(i_{1} \cdots \hat{i}_{j} \cdots \hat{i}_{l} i_{a_{1}} \cdots i_{a_{t}} s_{\mu_{1}} \cdots s_{\mu_{q}}\right)$

$$
\begin{aligned}
& l=1, \cdots, \hat{j}, \cdots, n, t \geqq 0, q \geqq 2, l<\alpha_{a} \neq j \quad(a=1, \cdots, t) \\
& \mu_{b} \neq k(b=1, \cdots, q) .
\end{aligned}
$$

Hence, on $\pi^{-1}\left(V_{i_{1} \cdots i_{n}}\right)$, we have

$$
d Q\left(\beta i_{1} \cdots \hat{i}_{j} \cdots i_{n} s_{k}\right)= \pm d Q\left(h(\beta) i_{1} \cdots \hat{i}_{j} \cdots i_{n} i_{j}\right)
$$

for $\beta \in S\left(i_{1} \cdots \hat{i}_{,} \cdots i_{n} s_{k}\right)$ and

$$
\begin{gathered}
d Q\left(\beta i_{1} \cdots \hat{i_{j}} \cdots i_{n} s_{k}\right)= \pm \frac{p_{i_{1} \cdots \hat{i}_{j} \cdots i_{n} s_{k}}}{p_{i_{1} \cdots i_{n}}} d Q\left(h(\beta) i_{1} \cdots \hat{i}_{j} \cdots i_{n} i_{j}\right) \\
\quad+\underset{\gamma_{\mp} \neq k_{\beta}}{ } P_{\gamma}\left(\cdots, \frac{p_{\lambda_{1} \cdots \lambda_{n}}}{p_{i_{1} \cdots i_{n}}}, \cdots\right) d Q\left(\gamma i_{1} \cdots \hat{i}_{j} \cdots i_{n} i_{j}\right)
\end{gathered}
$$

for $\beta \in V\left(i_{1} \cdots \hat{i}_{j} \cdots i_{n} s_{k}, \prec\right)-S\left(i_{1} \cdots \hat{i}_{j} \cdots i_{n} s_{k}\right)$.
Since h is order preserving and the number of elements in $S\left(i_{1} \cdots \hat{i}_{j} \cdots i_{n} s_{k}\right)$ is $(n-1)(m-1)$, we get Proposition 2.5.

Proposition 2.6. For n-tuples $\left(i_{1}, \cdots, i_{n}\right),\left(j_{1}, \cdots, j_{n}\right)\left(1 \leqq i_{1}<\cdots<i_{n} \leqq m+n\right.$,
$\left.1 \leqq j_{1}<\cdots<j_{n} \leqq m+n\right)$,

$$
\widetilde{q}_{j_{1} \cdots j_{n}}=\varepsilon\left(j_{1} \cdots j_{n}, i_{1} \cdots i_{n}\right)\left(\frac{p_{\rho_{1} \cdots j_{n}}}{p_{i_{1} \cdots i_{n}}}\right)^{t} \tilde{q}_{i_{1} \cdots i_{n}}
$$

on $\pi^{-1}\left(V_{i_{1} \cdot i_{n}}\right)$, where $\varepsilon\left(j_{1} \cdots j_{n}, i_{1} \cdots i_{n}\right)$ is constant and valued in $\{ \pm 1\}$.
Proof. It is enough to see that for n-tuples $\left(i_{1}, \cdots, i_{n}\right)$ and $\left(i_{1} \cdots \hat{i}_{j} \cdots i_{l} s_{k} i_{l+1} \cdots i_{n}\right)$ $\left(1 \leqq i_{1}<\cdots<\hat{i}_{j}<i_{l}<s_{k}<i_{l+1}<\cdots<i_{n} \leqq m+n\right)$

$$
\begin{equation*}
\widetilde{q}_{i_{1} \cdots \imath_{j} \cdots i_{l} s_{k} i_{l+1} \cdot{ }_{n}}=\varepsilon\left(i_{1} \cdots \hat{i}_{j} \cdots i_{l} s_{k} i_{l+1} \cdots i_{n}, i_{1} \cdots i_{n}\right)\left(\frac{p_{i_{1} \cdots \hat{\imath}_{j} \cdots i_{l} s_{k} i_{l+1} \cdots i_{n}}}{p_{i_{1} \cdots i_{n}}}\right)^{t} \tilde{q}_{i_{1} \cdot t_{n}} \tag{2.9}
\end{equation*}
$$

on $\pi^{-1}\left(V_{i_{1} \cdots i_{n}}\right)$.
By Lemma 2.2, 2.3 and Proposition 2.5, the equality (2.9) holds on

$$
\pi^{-1}\left(V_{i_{1} \cdots i_{n}}\right) \cap \pi^{-1}\left(V_{i_{1} \cdot \hat{\iota}_{j} \cdot l_{l} s_{k^{l} l+1} \cdots \imath_{n}}\right)
$$

Since $\widetilde{q}_{i_{1} . \hat{i}_{j} i_{l} s_{k} i_{l+1} . i_{n}}$ and $\widetilde{\boldsymbol{q}}_{i_{1} \cdots i_{n}}$ are holomorphic forms on $\boldsymbol{C}^{\mu+1}$, the equality (2.9) holds on $\pi^{-1}\left(V_{i_{1} \cdots i_{n}}\right)$. q.e.d.

Lemma 2.7. For n-tuples $\left(i_{1} \cdots i_{n}\right),\left(j_{1} \cdots j_{n}\right),\left(k_{1} \cdots k_{n}\right), \varepsilon\left(i_{1} \cdots i_{n}, j_{1} \cdots j_{n}\right) \varepsilon\left(j_{1} \cdots j_{n}\right.$, $\left.k_{1} \cdots k_{n}\right) \varepsilon\left(k_{1} \cdots k_{n}, i_{1} \cdots i_{n}\right)=1$ on $V_{i_{1} \cdot i_{n}} \cap V_{\rho_{1} \cdots j_{n}} \cap V_{k_{1} \cdots k_{n}}$.

Proof. Since

$$
\begin{aligned}
& \tilde{q}_{i_{1} \cdot i_{n}}(z)=\left(p_{i_{1} \cdot i_{n}}(z)\right)_{\beta \in O\left(i_{1} \cdots i_{n},-8\right)-I\left(i_{1} \cdots i_{n},-8\right)}\left(d p_{\beta}\right)_{z}+\text { other terms, } \\
& \widetilde{q}_{i_{1} \cdots i_{n}}(z) \neq 0 \quad \text { for } \quad z \in \pi^{-1}\left(V_{i_{1} \cdots i_{n}}\right)
\end{aligned}
$$

By Proposition 2.6, we get

$$
\varepsilon\left(i_{1} \cdots i_{n}, j_{1} \cdots j_{n}\right) \varepsilon\left(j_{1} \cdots j_{n}, k_{1} \cdots k_{n}\right) \varepsilon\left(k_{1} \cdots k_{n}, i_{1} \cdots i_{n}\right)=1
$$

on $\pi^{-1}\left(V_{i_{1} \cdots i_{n}}\right) \cap \pi^{-1}\left(V_{j_{1} \cdots j_{n}}\right) \cap \pi^{-1}\left(V_{k_{1} \cdots k_{n}}\right)$. Since $\varepsilon\left(i_{1} \cdots i_{n}, j_{1} \cdots j_{n}\right)$ is constant, we get our claim.
q.e.d.

Lemma 2.8 (Principle of monodromy). Let G be an abelian group and $M a$ simply connected manifold. Let $\mathfrak{U}=\left\{U_{\infty}\right\}_{\infty}$ be an open covering of M such that each U_{a} is connected. Then $H^{1}(\mathfrak{U}, G)=(0)$.

Proof. See Weil [12] Chap. 5 Lemma 1.

Applying Lemma 2.8, for the complex Grassmann manifold $G_{m+n, n}(\boldsymbol{C})$ and the system of transition functions $\left\{\varepsilon\left(i_{1} \cdots i_{n}, j_{1} \cdots j_{n}\right)\right\}$, we get a system of constant functions $\left\{\delta\left(i_{1} \cdots i_{n}\right)\right\}\left(\delta\left(i_{1} \cdots i_{n}\right): V_{i_{1} \cdots i_{n}} \rightarrow\{ \pm 1\}\right)$ such that $\varepsilon\left(i_{1} \cdots i_{n}, j_{1} \cdots j_{n}\right)=$ $\delta\left(j_{1} \cdots j_{n}\right)^{-1} \delta\left(i_{1} \cdots i_{n}\right)$. We put $q_{i_{1} \cdots i_{n}}=\delta\left(i_{1} \cdots i_{n}\right) \widetilde{q}_{i_{1} \cdot i_{n}}$. Then, by Proposition 2.6, we have

$$
\begin{equation*}
q_{\nu_{1} \cdots \jmath_{n}}=\left(\frac{p_{\jmath_{1} \cdots \jmath_{n}}}{p_{t_{1} \cdots i_{n}}}\right)^{t} q_{t_{1} \cdots t_{n}} \quad \text { on } \quad \pi^{-1}\left(V_{t_{1} \cdots t_{n}}\right) . \tag{2.10}
\end{equation*}
$$

By Proposition 1.2, a compact complex hypersurface X of $G_{m+n, n}(\boldsymbol{C})$ is the complete intersection of $G_{m+n, n}(\boldsymbol{C})$ and an irreducible subvariety Y of codimension 1 in $P^{\mu}(\boldsymbol{C})$. Let (F) denote the homogeneous ideal associated to Y. Note that the degree of homogeneous polynomial F on $C^{\mu+1}$ is the degree of X and $W_{i_{1} \cdots i_{n}}=\left\{\pi(z) \in V_{i_{1} \cdots{ }_{n}} \mid F(z)=0\right\}$.

Lemma 2.9. On $\pi^{-1}\left(W_{i_{1} \imath_{n}}\right), q_{i_{1} \cdots i_{n}} \wedge d F \neq 0$.
Proof. Suppose that there is a point $z_{0} \in \pi^{-1}\left(W_{i_{1} \cdots i_{n}}\right)$ such that $\left(q_{i_{1} \cdots i_{n}} \wedge d F\right)_{z_{0}}$ $=0$. Since $\pi^{-1}(X)$ is a complex submanifold of $\boldsymbol{C}^{\mu+1}-(0)$, there are an open neighborhood U of z_{0} in $\boldsymbol{C}^{\mu+1}-(0)$ and holomorphic functions $f_{j}(j=1, \cdots, r+1)$ such that $U \cap \pi^{-1}(X)=\left\{z \in U \mid f_{j}(z)=0, j=1, \cdots, r+1\right\}$ and $\left(d f_{j}\right)_{2}(j=1, \cdots, r+1)$ are linearly independent for $z \in U \cap \pi^{-1}(X)$. By the Nullstellensatz for prime ideals ([4] chap. 2A Theorem 7),

$$
f_{j}=\sum_{\alpha} q_{j \omega} Q_{\alpha}+h_{j} F
$$

where $q_{j \alpha}, h_{j}$ are holomorphic functions on U and Q_{α} are generators of the ideal $I\left(G_{m+n, n}(\boldsymbol{C})\right)$. Thus we have

$$
\left(d f_{j}\right)_{z_{0}}=\sum_{\alpha} q_{j \alpha}\left(z_{0}\right)\left(d Q_{\sim}\right)_{z_{0}}+h_{j}\left(z_{0}\right)(d F)_{z_{0}} .
$$

By Lemma 2.1 a) and b) and (2.2), we see that for each Q_{\sim}

$$
\left(d Q_{\alpha}\right)_{z_{0}}=\sum_{\gamma \in V\left(i_{1} \cdots i_{n}, 8\right)} C_{\alpha}(\gamma)\left(d O\left(\gamma i_{1} \cdots i_{n}\right)\right)_{z_{0}}
$$

for some $C_{\alpha}(\gamma) \in \boldsymbol{C}$. Hence, $\bigwedge_{j=1}^{r+1}\left(d f_{j}\right)_{z_{0}}=c\left(q_{i_{1} \cdot \imath_{n}} \wedge d F\right)_{z_{0}}$ for some $c \in \boldsymbol{C}$ and hence $\wedge_{j=1}^{+1}\left(d f_{j}\right)_{z_{0}}=0$. This is a contradiction.

We define a local holomorphic section $t_{t_{1} \cdots t_{n}}$ of the line bundle N on $W_{i_{1} \cdots t_{n}}$ by

$$
\begin{equation*}
t_{\imath} \cdots t_{n}(x)=\left(s_{t_{1} \cdots t_{n}} \cdot *\left(q_{t_{1} \cdots t_{n}} \wedge d F\right)\right)_{x} \tag{2.11}
\end{equation*}
$$

for $x \in W_{\iota_{1} \cdot t_{n}}$.
Lemma 2.10. The system of transition functions associated to the local trivialization $\left(W_{t_{1} \cdot \iota_{n}}, t_{t_{1} \cdot \imath_{n}}\right)$ of the line bundle N is $\left(\iota^{*} g_{t_{1} \cdot \iota_{n}, s_{1} \cdots ._{n}}^{2 r+a-t}\right)$, where a is the degree of X. In particular, $N=\iota^{*} E^{2 r+a-t}$.

Proof. By Lemma 2.9, we have $t_{i_{1} \cdots i_{n}}(x) \neq 0$ for any $x \in W_{i_{1} \cdots i_{n}}$. Since $Q\left(\beta i_{1} \cdots i_{n}\right)$ are of degree 2 and F is of degree a,

$$
\begin{aligned}
t_{j_{1} \ldots j_{n}}(x) & =\left(\frac{p_{i_{1} \cdots \iota_{n}}}{p_{j_{1} \cdots \jmath_{n}}}(x)\right)^{-t+2 r+a} t_{t_{1} \cdots t_{n}}(x) \\
& =\left(\iota^{*} g_{i_{1} \cdots \imath_{n}, \rho_{1} \cdots j_{n}}(x)\right)^{2 r+a-t} t_{i_{1} \cdots \iota_{n}}(x)
\end{aligned}
$$

on $W_{t_{1} \cdot i_{n}} \cap W_{j_{1} \cdots j_{n}}$, by (2.10).
q.e.d.

The canonical line bundle K of $P^{\mu}(\boldsymbol{C})$, the holomorphic line bundle of covectors of bi-degree $(\mu, 0)$ on $P^{\mu}(\boldsymbol{C})$, is isomorphic to $E^{\mu+1}$. By (2.1) and Lemma 2.10,

$$
\begin{equation*}
K(X)=\iota^{*} E^{m+n-a}, \tag{2.12}
\end{equation*}
$$

since $t=r-(n-1)(m-1)$.
Remark. Let $j: G_{m \prime \prime}{ }_{n}(\boldsymbol{C}) \rightarrow P^{\mu}(\boldsymbol{C})$ be the inclusion. Then $K\left(G_{m+n}{ }_{n}(\boldsymbol{C})\right)=$ $i^{*} E^{m+n}([1] \S 16)$. Let X be a compact complex submanifold of codimension 1 in $G_{m+n}(\boldsymbol{C})$ and $\iota_{0}: X \rightarrow G_{m+n, n}(\boldsymbol{C})$ the inclusion. Then $K(X)=\left(j \circ \iota_{0}\right) * E^{m+n-a}$, by considering the normal bundle $N\left(X, G_{m+n, n}(\boldsymbol{C})\right)$ of X in $G_{m+n, n}(\boldsymbol{C})$ and by Proposition 1.2.

The first Chern class of X, which is the Chern class of the dual bundle $K(X)^{*}$ of $K(X)$, is the cohomology class containing the form $(m+n-a) \omega$, where $\omega=\iota^{*} \Omega$ is the Kahler form on X associated to the induced Kahler metric on X. We shall determine a local section $k_{t_{1} \cdots i_{n}}$ of $K(X)^{*}$ on each $W_{i_{1} . * i_{n}}$ so that the system of transition functions associated to the local trivialization ($W_{t_{1} \cdots i_{n}}, k_{t_{1} \cdots \tau_{n}}$) is $\left(\iota^{*} g_{i_{1} \cdots \eta_{n}, j_{1} . j_{n}}{ }^{a-(m+n)}\right)$. We put

$$
\begin{equation*}
l_{t_{1} \cdots t_{n}}=(-1)^{\sigma_{\left(t_{1} \cdots t_{n}\right)-1}} \bigwedge_{\left(\alpha_{1} \cdots \alpha_{n}\right) \neq\left(t_{1} \cdots t_{n}\right)} \partial / \partial u_{\tau_{1} \cdots i_{n}, \alpha_{1} \cdots \alpha_{n}} \tag{2.13}
\end{equation*}
$$

on $U_{t_{1} \cdots i_{n}}$, where we take the exterior product of $\partial / \partial u_{t_{1} \cdots \tau_{n}, \alpha_{1} \alpha_{n}}$ according to the natural lexicographical order. Then $\left(U_{i \cdot l_{1}, l_{n}}, l_{l_{1} \cdot \iota_{n}}\right)$ is the local trivialization of the holomorphic line bundle K on $P^{\mu}(\boldsymbol{C})$ and the system of transition functions is $\left(g_{i_{1} \cdots \imath_{n}, l_{1} \cdots l_{n}}{ }^{\mu+1}\right)$.

Lemma 2.11. Let $k_{i_{1} \cdot \imath_{n}}$ be a local holomorphic section of $K(X)^{*}$ on $W_{i_{1} \cdots i_{n}}$ defined by

$$
\begin{equation*}
k_{t_{1} \cdots i_{n}}(x)=l_{t_{1} \cdots i_{n}}(x)\left\llcorner t_{t_{1} \cdots i_{n}}(x)\right. \tag{2.14}
\end{equation*}
$$

for $x \in W_{t_{1} \cdot t_{n}}$, where L denotes the right interior multiplication. Then the system of transition functions associated to the local trivialization $\left(W_{t_{1} \cdot \imath_{n}}, k_{i_{1}}{ }_{\imath_{n}}\right)$ of $K(X)^{*}$ is $\left(\iota^{*} g_{i_{1} \cdots i_{n}, J_{1} \cdot \jmath_{n}}{ }^{a-(m-n)}\right)$.

Proof. By (2.1) and Lemma 2.10, $\left(k_{i_{1} \cdots i_{n}}, W_{i_{1} \cdots i_{n}}\right)$ is a local trivialization of $K(X)^{*}$ and the system of transition functions is $\left(\iota^{*} g_{i_{1} \cdots i_{n}, j_{1} \cdots \jmath_{n}}\right)^{-(\mu+1)+2 r+a-t}$. Since $-(\mu+1)+2 r+a-t=a-(m+n)$, we get our claim. q.e.d.

3. The relation between volumes

Let C_{n} denote the set $\left\{\left(i_{1}, \cdots, i_{n}\right) \mid 1 \leqq i_{1}<\cdots<i_{n} \leqq m+n\right\}$. For an element $i=\left(i_{1}, \cdots, i_{n}\right) \in C_{n}$, we put

$$
\begin{equation*}
q_{i}=\sum H_{\lambda_{1} \cdots \lambda_{r}}^{i} d p_{\lambda_{1}} \wedge \cdots \wedge d p_{\lambda_{r}} \tag{3.1}
\end{equation*}
$$

where the summation runs over all $\left(\lambda_{1}, \cdots, \lambda_{r}\right) \in \underbrace{C_{n} \times \cdots \times C_{n}}_{r}$ such that $\lambda_{1}<\cdots<\lambda_{r}$ with respect to the lexicographical order $<$ on C_{n}. Note that $H_{\lambda_{1} \cdot \lambda_{r}}^{i}$ are homogeneous polynomials of degree r.

Proposition 3.1. There exist homogeneous polynomials $H_{\lambda_{1} \cdots \lambda_{r}}$ of degree $(n-1)(m-1)$ on $\boldsymbol{C}^{\mu+1}$ such that

$$
\begin{equation*}
H_{\lambda_{1} \cdot \lambda_{r}}^{t}=p_{i}^{t} H_{\lambda_{1} \cdots \lambda_{r}} \quad \text { on } \quad \pi^{-1}\left(V_{i}\right) \text { for each } \quad i \in C_{n} \tag{3.2}
\end{equation*}
$$

Proof. By (2.10), we have

$$
\begin{equation*}
H_{\lambda_{1} \cdots \lambda_{r}}^{i}=\left(\frac{p_{i}}{p_{j}}\right)^{t} H_{\lambda_{1} \cdots \lambda_{r}}^{j} \tag{3.3}
\end{equation*}
$$

on $\pi^{-1}\left(V_{i} \cap V_{j}\right)$ for each $\left(\lambda_{1}, \cdots, \lambda_{r}\right)$. Thus we get

$$
\begin{equation*}
\frac{H_{\lambda_{1} \cdots \lambda_{r}}^{i}}{p_{i}^{r}}=\left(\frac{p_{j}}{p_{i}}\right)^{(n-1)(n-1)} \frac{H_{\lambda_{1} \ldots \lambda_{r}}^{j}}{p_{j}^{r}} \tag{3.4}
\end{equation*}
$$

On $V_{i} \cap V_{j}$. Hence, $\left\{H_{\lambda_{1} \ldots \lambda_{r}}^{i} / p_{i}^{r}\right\}_{i \in C_{n}}$ define a holomorphic section of the line bundle $j^{*} H^{(n-1)(m-1)}$. Note that a holomorphic section of line bundle $H^{(n-1)(m-1)}$ on $P^{\mu}(\boldsymbol{C})$ is nothing but a homogeneous polynomial of degree $(n-1)(m-1)$ on $\boldsymbol{C}^{\mu+1}$. By Proposition 1.1, there is a homogeneous polynomial $H_{\lambda_{1} \cdot \lambda_{r}}$ of degree $(n-1)(m-1)$ on $C^{\mu+1}$ such that

$$
\frac{H_{\lambda_{1} \ldots \lambda_{r}}}{p_{i}^{(n-1)(m-1)}}=\frac{H_{\lambda_{1}, \lambda_{r}}^{i}}{p_{i}^{r}} \quad \text { on } \quad V_{i}
$$

Thus we get (3.2).
q.e.d.

Now we have

$$
\begin{equation*}
q_{t}=p_{t}^{t} \sum H_{\lambda_{1} \cdots \lambda}, d p_{\lambda_{1}} \wedge \cdots \wedge d p_{\lambda_{\eta}} \tag{3.5}
\end{equation*}
$$

on $\pi^{-1}\left(V_{i}\right)$ for each $i \in C_{n}$, and hence

$$
\begin{equation*}
q_{\imath} \wedge d F=p_{i}^{t} \sum G_{\lambda_{1} \cdots \lambda_{r+1}} d p_{\lambda_{1}} \wedge \cdots \wedge d p_{\lambda_{r+1}} \tag{3.6}
\end{equation*}
$$

on $\pi^{-1}\left(W_{i}\right)$, where $G_{\lambda_{1} \cdots \lambda_{r+1}}\left(\lambda_{1}<\cdots<\lambda_{r+1}\right)$ are homogeneous polynomials of degree $(n-1)(m-1)+(a-1)$.

For homogeneous polynomials P_{1}, \cdots, P_{s} on $\boldsymbol{C}^{\mu+1}$, we put

$$
d P_{1} \wedge \cdots \wedge d P_{s}=\sum P_{\lambda_{1} \cdots \lambda_{s}} d p_{\lambda_{1}} \wedge \cdots \wedge d p_{\lambda_{s}}
$$

where the summation runs over all $\left(\lambda_{1}, \cdots, \lambda_{s}\right) \in \underbrace{C_{n} \times \cdots \times C_{n}}_{s}$ such that $\lambda_{1}<\cdots<\lambda_{s}$ with respect to the lexicographical order $<$ on C_{n}, and we define

$$
\begin{equation*}
\left\|d P_{1} \wedge \cdots \wedge d P_{s}\right\|^{2}(z)=\sum\left|P_{\lambda_{1} \cdots \lambda_{s}}(z)\right|^{2} \tag{3.7}
\end{equation*}
$$

for $\boldsymbol{z} \in \boldsymbol{C}^{\mu+1}$. Then we have

$$
\begin{equation*}
\left\|q_{\imath} \wedge d F\right\|^{2}(z)=\left|p_{i}(z)\right|^{2 t} \sum\left|G_{\lambda_{1} \cdot \lambda_{r+1}}(z)\right|^{2} \tag{3.8}
\end{equation*}
$$

for $z \in \pi^{-1}\left(W_{i}\right)$.
Now we can define a C^{∞}-function $\varphi: X \rightarrow \boldsymbol{R}$ by

$$
\begin{equation*}
\varphi(x)=\frac{\left\|q_{i} \wedge d F\right\|^{2}(z)}{\left|p_{i}(z)\right|^{2 t}\|z\|^{2(n-1)(m-1)+(a-1))}} \tag{3.9}
\end{equation*}
$$

where $z \in \pi^{-1}(x)$.
Note that $\varphi(x)=\left(\sum\left|G_{\lambda_{1} \cdot \lambda_{r+1}}(z)\right|^{2}\right) /\|z\|^{2(n-1)(m-1)+(a-1))}$ for $z \in \pi^{-1}(x), x \in X$.
Since the dual bundle $K(X)^{*}$ of the canonical line bundle $K(X)$ is the line bundle of ($m n-1$) vectors of bi-degree ($m n-1,0$), the set of hermitian fiber metrics on $K(X)^{*}$ and the set of positive volume elements on X are canonically in one to one correspondence. Let \mathfrak{b} denote the volume element on X corresponding to the fiber metric $\iota^{*}\|z\|^{2(a-(m \cdot n))}$ on $K(X)^{*}$. Then the curvature form of the connection determined by the fiber metric $\iota^{*}\|z\|^{2(a-(n+n))}$ is $(m+n-a) \omega$, where $\omega=\iota^{*} \Omega$ is the Kähler form of the induced metric on X.

Now the relation between two volume elements $\omega^{m n-1}$ and \mathfrak{v} is given by the following Proposition.

Proposition 3.2. Let φ be a C^{∞}-function on X defined by (3.9). Then

$$
\begin{equation*}
\omega^{m n-1}=\frac{(m n-1)!}{(2 \pi)^{m n-1}} \varphi \mathfrak{v} \quad o n \quad X \tag{3.10}
\end{equation*}
$$

We need several lemmas to prove Proposition 3.2. Note that the norm defined by (3.7) does not depend on the choice of unitary cartesian coordinates on $\boldsymbol{C}^{\mu+1}$. That is, for a unitary matrix $A \in U(\mu+1)$ and homogeneous polynomials P_{j}, we put $P_{\jmath}^{\prime}(w)=P_{j}\left(A^{-1} w\right)$ for $w \in \boldsymbol{C}^{\mu+1}$. Then

$$
\begin{equation*}
\left\|d p_{1} \wedge \cdots \wedge d p_{s}\right\|^{2}(z)=\left\|d p_{1}^{\prime} \wedge \cdots \wedge d p_{s}^{\prime}\right\|^{2}(u) \tag{3.11}
\end{equation*}
$$

for $w=A z, z \in C^{\mu_{i+1}}$.
In order to prove Proposition 3.2, it suffices to verify (3.10) at an arbitrary point $x_{0} \in X$. Fix a point $x_{0} \in X$ and let z_{0} denote an element of $\boldsymbol{C}^{\mu+1}$ such that
$\left\|z_{0}\right\|=1$ and $\pi\left(z_{0}\right)=x_{0}$. For an element $A \in U(\mu+1)$, let p_{\imath}^{\prime} denote $p_{\imath}^{\prime}=\sum_{j} A_{\imath}^{\prime} p_{j}$, where $A=\left(A_{i}^{\prime}\right)$, and put $w=\left(\cdots, p_{i}^{\prime}, \cdots\right)$. For a homogeneous polynomial P of degree k on $\boldsymbol{C}^{\mu+1}$, put $P^{\prime}(w)=P\left(A^{-1} w\right), P_{i_{0}}^{\prime}(w)=P^{\prime}(w) /\left(p_{i_{0}}^{\prime}\right)^{k}$, where $i_{0}=(1, \cdots, n) \in$ C_{n} and put $u_{i_{0}, \lambda}^{\prime}(x)=p_{\lambda}^{\prime}(z) / p_{i_{0}}^{\prime}(z)\left(z \in \pi^{-1}(x)\right) . \quad \lambda \in C_{n},\left(\lambda \neq i_{0}\right)$.

Lemma 3.3. If $x_{0} \in W_{i}\left(i \in C_{n}\right)$, there is an element $A \in U(\mu+1)$ such that $p_{i_{0}}^{\prime}\left(z_{0}\right)=1, p^{\prime}\left(z_{0}\right)=0$ for $j \in C_{n}, j \neq i_{0}$ and $\left(d Q^{\prime}(\beta, i)_{t_{0}}\right)_{x_{0}}(\beta \in C(i,-)-I(i,-))$ (where the order is principal with respect to $i),\left(d F_{t_{0}}^{\prime}\right)_{x_{0}}$ are linear combination of

$$
\left(d u_{i_{0}, \lambda}^{\prime}\right)_{x_{0}} \quad\left(\lambda \in C\left(i_{0},<\right)-I\left(i_{0},<\right), \quad\left(d u_{i_{0}, 12 \cdots n-1 n+1}^{\prime}\right)_{x_{0}} .\right.
$$

Proof. By a routine computation of linear algebra.
Now we put $p_{j}=\sum_{j} B_{\jmath}^{k} p_{k}^{\prime}$ and $C_{\nu}^{\lambda}=\left(\partial u_{i, \lambda} \mid \partial u_{\imath_{0}, \nu}^{\prime}\right)\left(x_{0}\right)$.

Lemma 3.4.

$$
\begin{equation*}
C_{\nu}^{\lambda}=\left(B_{\imath}^{i}\right)^{-2}\left(B_{\nu}^{\lambda} B_{\imath}^{i}{ }^{i}-B_{i}^{\imath} B_{\lambda}^{{ }^{i}} 0\right) \tag{3.12}
\end{equation*}
$$

for $\lambda \neq i, \nu \neq i_{0}, \lambda, \nu \in C_{n}$
Proof. Straightforward computation.
Let $J\left(i_{0},<\right)$ denote $I\left(i_{0},<\right)-\left\{i_{0},(12 \cdots n-1 n+1)\right\}$. We put $J\left(i_{0},<\right)=$ $\left\{\nu_{1}, \cdots, \nu_{m n-1}\right\}$ with $\nu_{k}<\nu_{k+1}(k=1, \cdots, m n-2),!C(i,-)-I(i,-)=\left\{\beta_{1}, \cdots, \beta_{r}\right\}$ with $\beta_{l}-\beta \beta_{l+1}(l=1, \cdots, r-1)$ and $C\left(i_{0},<\right)-I\left(i_{0},<\right)=\left\{\lambda_{1}, \cdots, \lambda_{r}\right\}$ with $\lambda_{s}<\lambda_{s+1}$ $(s=1, \cdots, r-1)$.

Lemma 3.5. Let k_{t} be the holomorphic section of $K(X)^{*}$ on W_{t} defined in Lemma 2.12. Then, at $x_{0} \in W_{i}$,

$$
\begin{align*}
k_{t}\left(x_{0}\right)= & (-1)^{\tau_{(2)-1}} \cdot \delta(i) \cdot\left[\operatorname{det}\left(C_{\imath}^{\lambda}\right)\right]^{-1} \tag{3.13}\\
& \times\left(\frac{p_{i_{0}}^{\prime}}{p_{t}}\left(x_{0}\right)\right)^{2 r+a} \cdot \frac{\partial\left(Q^{\prime}\left(\beta_{1}, i\right)_{i_{0}}, \cdots, Q^{\prime}\left(\beta_{r}, i\right)_{t_{0}}, F_{i_{0}}^{\prime}\right)}{\partial\left(u_{i_{0}, 12 \cdot n-1 n+1}^{\prime}, u_{\imath_{0} \lambda_{1}}^{\prime}, \cdots, u_{\imath_{0}, \lambda_{r}}^{\prime}\right)}\left(x_{0}\right) \\
& \times\left(\partial / \partial u_{i_{0}, \nu_{1}}^{\prime} \wedge \cdots \wedge \partial / \partial u_{i_{0}, \nu_{m n-1}}^{\prime}\right)_{x_{0}} .
\end{align*}
$$

Proof. For a homogeneous polynomial P of degree k on $\boldsymbol{C}^{\mu-1}$, put $P_{\imath}=P /\left(p_{i}\right)^{k}$ on U_{i}. By the definition,

$$
t_{i}\left(x_{0}\right)=\delta(i) s_{1}^{*}\left(d Q\left(\beta_{1}, i\right) \wedge \cdots \wedge d Q\left(\beta_{r}, i\right) \wedge d F\right)_{x_{0}}
$$

Thus

$$
\begin{aligned}
t_{i}\left(x_{0}\right) & =\delta(i)\left(d Q\left(\beta_{1}, i\right)_{t} \wedge \cdots \wedge d Q\left(\beta_{r}, i\right)_{t} \wedge d F_{i}\right)_{x_{0}} \\
& =\delta(i)\left(p_{i_{0}}^{\prime} \mid p_{i}\right)\left(x_{0}\right)^{2 r+a}\left(d Q^{\prime}\left(\beta_{1}, i\right)_{i_{0}} \wedge \cdots \wedge d Q^{\prime}\left(\beta_{r}, i\right)_{t_{0}} \wedge d F_{i_{0}}^{\prime}\right)_{x_{0}}
\end{aligned}
$$

On the other hand, we have

$$
\operatorname{det}\left(C_{\nu}^{\lambda}\right)(\overbrace{\alpha \in G(i, \delta)-(i)}^{-\beta} \partial / \partial u_{\imath, \alpha})_{x_{0}}=\left({ }_{\beta \in G\left(t_{0},<\right)-\left(t_{0}\right)}^{\prime} \partial / \partial u_{v_{0}, \beta}^{\prime}\right)_{x_{0}}
$$

By the definition of k_{t},

$$
\begin{aligned}
k_{i}\left(x_{0}\right)= & (-1)^{\sigma_{(i)-1}} \delta(i) \cdot\left[\operatorname{det}\left(C_{\nu}^{\lambda}\right)\right]^{-1}\left(p_{i_{0}}^{\prime} \mid p_{i}\right)\left(x_{0}\right)^{2 r+a} \\
& \times\left(\bigwedge_{\beta \in C\left(c_{0}, \ll-\left(i_{0}\right)\right.}^{\ll} \partial / \partial u_{i_{0}, \beta}^{\prime}\right)_{x_{0}} L\left(d Q^{\prime}\left(\beta_{1}, i\right)_{t_{0}} \wedge \cdots \wedge d Q^{\prime}\left(\beta_{r}, i\right)_{t_{0}} \wedge d F_{i_{0}}^{\prime}\right)_{x_{0}}
\end{aligned}
$$

By Lemma 3.3, we get (3.13).
q.e.d.

Now the local expression of the volume element \mathfrak{b} at x_{0} is given by the following Lemma.

Lemma 3.6.

$$
\begin{align*}
\mathfrak{v}_{x_{0}}= & (\sqrt{-1})^{(m n-1)^{2}}\left|\operatorname{det}\left(C_{\hat{y}}^{\lambda}\right)\right|^{2} \cdot\left|\left(p_{2_{0}}^{\prime} \mid p_{2}\right)\left(x_{0}\right)\right|^{-2(m+n+2 r)} \tag{3.14}\\
& \times\left.\frac{\partial\left(Q^{\prime}\left(\beta_{1}, i\right)_{i_{0}}, \cdots, Q^{\prime}\left(\beta_{r}, i\right)_{i_{0}}, F_{i_{0}}^{\prime}\right)}{\partial\left(u_{i_{0}}^{\prime}!1_{12 \cdot n-1 n+1}, u_{i_{0}, \lambda_{1}}^{\prime}, \cdots, u_{i_{0}, \lambda_{r}}^{\prime}\right)}\right|^{-2}\left(d \eta^{\prime} \wedge d \bar{\eta}^{\prime}\right)_{x_{0}}
\end{align*}
$$

where $\left(d \eta^{\prime}\right)_{x_{0}}=\left(d u_{i_{0}, \nu_{1}}^{\prime} \wedge \cdots \wedge d u_{i_{0}, \nu_{m n-1}}\right)_{x_{0}}$
Proof. By the definition, \mathfrak{v} is the volume element on X corresponding to the fiber metric $\iota^{*}\|z\|^{2(a-(m+n))}$ on $K(X)^{*}$. Note that

$$
1+\sum_{\substack{\alpha_{\mp=1} \\ \alpha \in C_{n}}}\left|\left(p_{\alpha} \mid p_{i}\right)\left(x_{0}\right)\right|^{2}=\left|\left(p_{\imath_{0}}^{\prime} \mid p_{i}\right)\left(x_{0}\right)\right|^{2} .
$$

Put

$$
\begin{aligned}
T_{\imath}\left(x_{0}\right)= & (-1)^{\sigma}{ }_{(t)-1} \delta(i) \cdot\left[\operatorname{det}\left(C_{\imath}^{\lambda}\right)\right]^{-1} \\
& \times\left(p_{i_{0}}^{\prime} / p_{i}\right)\left(x_{0}\right)^{2 r+a} \cdot \frac{\partial\left(Q^{\prime}\left(\beta_{1}, i\right)_{t_{0}}, \cdots, Q^{\prime}\left(\beta_{r}, i\right)_{t_{0}}, F_{t_{0}}^{\prime}\right)}{\partial\left(u_{i_{0}, 12 \cdots n-1 n+1}^{\prime}, u_{t_{0}, \lambda_{1}}^{\prime}, \cdots, u_{t_{0} \lambda_{r}}^{\prime}\right)}\left(x_{0}\right)
\end{aligned}
$$

Then $\mathfrak{b}_{x_{0}}$ is given by

$$
\frac{1}{\left|T_{i}\left(x_{0}\right)\right|^{2}}\left|\left(p_{i_{0}}^{\prime} \mid p_{i}\right)\left(x_{0}\right)\right|^{2(a-(m+n))}\left(d \eta^{\prime} \wedge d \bar{\eta}^{\prime}\right)_{x_{0}} .
$$

Hence

$$
\begin{aligned}
\mathfrak{v}_{x_{0}}= & (\sqrt{-1})^{(m n-1)^{2}}\left|\operatorname{det}\left(C_{\grave{\nu}}^{\lambda}\right)\right|^{2} \cdot\left|\left(p_{i_{0}}^{\prime} \mid p_{\imath}\right)\left(x_{0}\right)\right|^{2(-(m+n)-2 r)} \\
& \times\left|\frac{\partial\left(Q^{\prime}\left(\beta_{t}, i\right)_{2_{0}}, \cdots, Q^{\prime}\left(\beta_{r}, i\right)_{t_{0}}, F_{i_{0}}^{\prime}\right)}{\partial\left(u_{i_{0}, 12 \cdots n-1 n+1}^{\prime}, u_{i_{0}, \lambda_{1}}^{\prime}, \cdots, u_{1_{0}, \lambda_{r}}^{\prime}\right)}\left(x_{0}\right)\right|^{-2}\left(d \eta^{\prime} \wedge d \bar{\eta}^{\prime}\right)_{x_{0}}
\end{aligned}
$$

q.e.d.

Lemma 3.7. At $x_{0} \in W_{i}$,

$$
\begin{equation*}
\varphi\left(x_{0}\right)=\left.\left|\left(p_{i_{0}}^{\prime} \mid p_{i}\right)\left(x_{0}\right)\right|^{2 t} \cdot \frac{\partial\left(Q^{\prime}\left(\beta_{1}, i\right)_{t_{0}}, \cdots, Q^{\prime}\left(\beta_{r}, i\right)_{t_{0}}, F_{i_{0}}^{\prime}\right)}{\partial\left(u_{i_{0}, 12 \cdot n-1 n+1}^{\prime}, u_{t_{0}, \lambda_{1}}^{\prime}, \cdots, u_{i_{0}, \lambda_{r}}^{\prime}\right)}\left(x_{0}\right)\right|^{\mid 2} . \tag{3.15}
\end{equation*}
$$

Proof. Fix $c \in \boldsymbol{C}^{*}$ so that $\left\|c s_{i}\left(x_{0}\right)\right\|^{2}=1$. Then $|c|^{2} \cdot\left(1+\underset{\substack{\alpha \in \mathcal{C}_{n} \\ \alpha \neq \imath}}{ }\left|\left(p_{\alpha} / p_{i}\right)\left(x_{0}\right)\right|^{2}\right)=1$ and $|c|^{2}=\left|\left(p_{t_{0}}^{\prime} \mid p_{i}\right)\left(x_{0}\right)\right|^{-2}$. Note that

$$
\varphi\left(x_{0}\right)=\frac{\left\|q_{\imath} \wedge d F\right\|^{2}\left(c s_{i}\left(x_{0}\right)\right)}{|c|^{2 t}\left\|c s_{i}\left(x_{0}\right)\right\|^{2((n-1)(m-1)+(a-1))}}=\frac{\left.\left\|q_{i}^{\prime} \wedge d F^{\prime}\right\|^{2}(1, \underline{0}, \cdots, 0) \quad \text { by } \quad|c| 11\right) . ~}{|c|^{2 t}} \quad \text {. }
$$

Since

$$
\frac{\partial Q^{\prime}\left(\beta_{k}, i\right)}{\partial p_{i_{0}}^{\prime}}(1,0, \cdots, 0)=0 \quad \text { for } \quad k=1, \cdots, r, \frac{\partial F^{\prime}}{\partial p_{i_{0}}^{\prime}}(1,0, \cdots, 0)=0
$$

and

$$
\begin{aligned}
& \quad \frac{\partial Q^{\prime}\left(\beta_{k}, i\right)}{\partial p_{j}^{\prime}}(1,0, \cdots, 0)=\frac{\partial Q^{\prime}\left(\beta_{k}, i\right)_{i_{0}}}{\partial u_{i_{0}, j}^{\prime}}\left(x_{0}\right), \\
& \frac{\partial F^{\prime}}{\partial p_{j}^{\prime}}(1,0, \cdots, 0)=\frac{\partial F_{i_{0}}^{\prime}}{\partial u_{i_{0}, j}^{\prime}}\left(x_{0}\right) \text { for } j \in C_{n}, j \neq i_{0}, \\
& \left\|q_{i}^{\prime} \wedge d F\right\|^{2}(1,0, \cdots, 0) \\
& \quad=\left\|d Q^{\prime}\left(\beta_{1}, i\right) \wedge \cdots \wedge d Q^{\prime}\left(\beta_{r}, i\right) \wedge d F^{\prime}\right\|^{2}(1,0, \cdots, 0) \\
& \quad=\left.\frac{\partial\left(Q^{\prime}\left(\beta_{1}, i\right)_{i_{0}}, \cdots, Q^{\prime}\left(\beta_{r}, i\right)_{t_{0}}, F_{i_{0}}^{\prime}\right)}{\partial\left(u_{i_{0}, 12 \cdots n-1 n+1}^{\prime}, u_{i_{0}}^{\prime}, \cdots, u_{i_{0}, \lambda_{r}}^{\prime}\right)}\left(x_{0}\right)\right|^{2}
\end{aligned}
$$

by Lemma 3.3.
q.e.d.

By Lemma 3.3, the Kähler form ω of the induced metric on X is given by

$$
\omega_{x_{0}}=\frac{\sqrt{-1}}{2 \pi}\left(\sum_{\nu \in J\left(i_{0},<\right)} d u_{i_{0}, \nu}^{\prime} \wedge d \bar{u}_{i_{0}, \nu}^{\prime}\right)_{0} \quad \text { at } \quad x_{0} \in X .
$$

Hence,

$$
\begin{equation*}
\omega_{x_{0}}^{m n-1}=\frac{\left(\sqrt{\left.-1^{(m n-1)^{2}}\right)(m n-1)!}\right.}{(2 \pi)^{m n-1}}\left(d \eta^{\prime} \wedge \bar{d} \eta^{\prime}\right)_{x_{0}} . \tag{3.16}
\end{equation*}
$$

Lemma 3.8.

$$
\begin{equation*}
\left|\operatorname{det}\left(C_{\nu}^{\lambda}\right)\right|^{2}=\left|\left(p_{i_{0}}^{\prime} \mid p_{t}\right)\left(x_{0}\right)\right|^{2(\mu+1)} \tag{3.17}
\end{equation*}
$$

Proof. Put $D_{\nu}^{\lambda}=B_{\lambda}^{\nu} B_{i}^{i}{ }^{i}-B_{i}^{\mu} B_{\lambda}^{i}{ }^{i}$ for $\lambda \neq i, \nu \neq i_{0}, \lambda, \nu \in C_{n}$. Note that

$$
\left|\operatorname{det}\left(D_{\nu}^{\lambda}\right)\right|^{2}=\operatorname{det}\left(D_{\nu}^{\lambda}\right) \cdot \operatorname{det}^{t}\left(\bar{D}_{v}^{\lambda}\right)=\operatorname{det}\left(\left(\sum_{\alpha \neq i_{0}} D_{\alpha}^{\lambda} \bar{D}_{\alpha}^{\tau}\right)_{\lambda, \tau \neq i}\right),
$$

and that

$$
\begin{aligned}
& \sum_{\alpha \neq \imath_{0}} D_{\alpha}^{\lambda} \bar{D}_{\alpha}^{\tau}=\sum_{\alpha \neq i_{0}}\left(B_{\lambda}^{\alpha} B_{\imath}^{i_{0}}-B_{i}^{\alpha} B_{\lambda}^{{ }^{2}}\right) \overline{\left(B_{\tau}^{\alpha} B_{\imath}^{i}-B_{\imath}^{\alpha} \overline{B_{\tau}{ }^{\top}}\right)} \\
& =\sum_{\alpha \in C_{n}}\left(B_{\lambda}^{\alpha} B_{i}^{i} 0-B_{i}^{\alpha} B_{\lambda}^{i} 0\right) \overline{\left(B_{\tau}^{\alpha} B_{i}^{t_{0}}-B_{i}^{\alpha} B_{\tau}^{{ }^{2}}\right)} \\
& =\delta_{\lambda \tau}\left|B_{i}^{i o}\right|^{2}+B_{\lambda}^{i} \overline{{ }^{i}} \overline{D_{\tau}^{i 0}},
\end{aligned}
$$

since $\sum_{\alpha \in C_{n}} B_{\lambda}^{\alpha} \bar{B}_{\tau}^{\alpha}=\delta_{\lambda \cdot}$.
Thus

$$
\begin{aligned}
& \left|\operatorname{det}\left(D_{i}^{\lambda}\right)\right|^{2}=\operatorname{det}\left(\delta_{\lambda_{i}}\left|B_{i}{ }^{i}\right|^{2}+B_{\lambda}{ }^{\circ}{ }^{\circ} \bar{B}_{\tau}^{i}{ }^{i}\right) \\
& =\left|B_{i}^{i}{ }^{i}\right|^{2 \mu} \operatorname{det}\left(\delta_{\lambda \tau}+\left(B_{\lambda}{ }^{i}{ }^{0} \bar{B}_{\tau}^{i} 0 /\left|B_{\tau}^{2}\right|^{2}\right)\right) \\
& =\left|B_{i}^{i}\right|^{2 \mu}\left(1+\sum_{\lambda \neq i_{0}}\left|B_{\lambda}^{i} 0 / B_{i}^{i}\right|^{2}\right) \\
& =\left|B_{i}^{2}\right|^{2(\mu-1)} \text {. }
\end{aligned}
$$

Now

$$
\begin{aligned}
\left|\operatorname{det}\left(C_{v}^{\lambda}\right)\right|^{2} & =\left|B_{i}^{i} 0\right|^{-2 \times 2 \mu}\left|\operatorname{det}\left(D_{v}^{\lambda}\right)\right|^{2} \\
& =\left|B_{i}^{i}\right|^{-2 \times 2 \mu} \times\left|B_{i}^{i}\right|^{2(\mu-1)}=\left|B_{i}^{i} 0\right|^{-2(\mu+1)}
\end{aligned}
$$

Since $B_{i}^{i}{ }_{0}=\left(p_{i} / p_{i_{0}}^{\prime}\right)\left(x_{0}\right)$, we get our claim.
q.e.d.

Proof of Proposition 3.2.
By Lemma 3.6, Lemma 3.7 and Lemma 3.8, we have

$$
\varphi\left(x_{0}\right) \mathfrak{v}_{x_{0}}=(\sqrt{-1})^{(m n-1)^{2}}\left|\left(p_{i_{0}}^{\prime} \mid p_{i}\right)\left(x_{0}\right)\right|^{2(-m-n-2 r+\mu+1 ; t)}\left(d \eta^{\prime} \wedge d \bar{\eta}^{\prime}\right)_{x_{0}}
$$

Since

$$
\begin{aligned}
r-t=(m-1)(n-1) & =m n-(m+n)+1, \\
\mu+1+t-2 r-m-n & =\mu+1-r-(m+n)-m n+m+n-1 \\
& =\mu+1-r-m n-1=0 .
\end{aligned}
$$

Hence

$$
\varphi\left(x_{0}\right) \mathfrak{b}_{x_{0}}=(\sqrt{-1})^{(m n-1)^{2}}\left(d \eta^{\prime} \wedge d \bar{\eta}^{\prime}\right)_{x_{0}}
$$

Now our claim follows from (3.16).
Corollary of Proposition 3.2 (cf. Hano [5] Corollary of Proposition 2).
Let g_{0} denote the Kähler metric on X induced from the Fubini-Study metric on $P^{\mu}(\boldsymbol{C})$. Then $\left(X, g_{0}\right)$ is an Einstein manifold if and only if φ is a constant function on X.

Proof. The Ricci form of the Kahler metric g_{0} on X is the curvature form of the connection of type (1.0) on the holomorphic line bundle $K(X)^{*}$ determined by the volume element $\omega^{m n-1}$. Suppose that g_{0} is Einstein, that is, the Ricci form is a constant multiple of the Kähler form ω. Then the Ricci form is harmonic. On the other hand, the volume element \mathfrak{v} determints the curvature form $(m+n-a) \omega$, which is also harmonic. Since the Ricci form and $(m+n-a) \omega$ are both curvature form of the bundle $K(X)^{*}$, they are cohomologous. Thus the Ricci form must be $(m+n-a) \omega$. Since $\omega^{m n-1}$ and \mathfrak{v} define the same curvature form, $d^{\prime} d^{\prime \prime} \log \varphi=0$, and hence $\log \varphi$ is a harmonic function on X. This implies that φ is a constant function. Conversely, if φ is a constant function, then the
metric g_{0} is Einstein.
q.e.d.

4. The dual map and Veronese map

In this section we recall the dual map and Veronese map due to Hano [5].
Let $\bigwedge^{r+1}\left(\boldsymbol{C}^{\mu+1}\right)^{*}$ denote the $(r+1)$-th exterior product of the dual space of the vector space $\boldsymbol{C}^{\mu+1}$. We identify the tangent space of $\boldsymbol{C}^{\mu+1}$ at a point with $\boldsymbol{C}^{\mu+1}$ itself. We regard $\left(q_{\imath} \wedge d F\right)_{z}$ as an element in $\wedge^{r+1}\left(\boldsymbol{C}^{\mu+1}\right)^{*}$. Let $\left(\zeta_{\lambda_{1} \cdots \lambda_{r+1}}\right)$ be the standard base of $\bigwedge^{r+1}\left(\boldsymbol{C}^{\mu+1}\right)^{*}$. Then

$$
\left(q_{i} \wedge d F\right)_{z}=\left(p_{i}(z)\right)^{t} \sum G_{\lambda_{1} \cdots \lambda_{r+1}}(z) \zeta_{\lambda_{1} \cdots \lambda_{i+1}} \quad \text { for } \quad z \in \pi^{-1}\left(W_{i}\right) .
$$

Now we define a map $G: \boldsymbol{C}^{\mu+1} \rightarrow \bigwedge^{r+1}\left(\boldsymbol{C}^{\mu+1}\right)^{*}$ by

$$
\begin{equation*}
G(z)=\sum G_{\lambda_{1} \ldots \lambda_{r+1}}(z) \zeta_{\lambda_{1} \cdot \lambda_{r+1}} . \tag{4.1}
\end{equation*}
$$

We denote by $P^{c}(\boldsymbol{C})$ the complex projective space associated to the complex vector space $\bigwedge^{r+1}\left(\boldsymbol{C}^{\mu+1}\right)^{*}$, where $e+1=\binom{\mu+1}{r+1}$. Since the map $G: \boldsymbol{C}^{\mu+1} \rightarrow$ $\wedge^{r+1}\left(\boldsymbol{C}^{\mu+1}\right)^{*}$ is a polynomial map of degree $(n-1)(m-1)+(a-1)$ and $G(z) \neq 0$ for $z \in \pi^{-1}(X)$, it induces a holomorphic map $g: X \rightarrow P^{e}(\boldsymbol{C})$. We call g the dual map of X in $P^{\mu}(\boldsymbol{C})$. Let $\|w\|$ be the norm of an element w in $\bigwedge^{r+1}\left(\boldsymbol{C}^{\mu+1}\right)^{*}$ induced from the hermitian inner product on $\boldsymbol{C}^{\ell+1}$. Let Ω^{\prime} be the Fubini-Study form on $P^{e}(\boldsymbol{C})$ determined from $\|w\|^{2}$.

Proposition 4.1 (cf. [5] Proposition 3). The induced metric g_{0} on X is Einstein if and only if the reciprocal image of the Fubin-Study metric on $P^{e}(\boldsymbol{C})$ under the dual map g is $(n-1)(m-1)+(a-1)$ times of the induced metric; $g^{*} \Omega^{\prime}=$ $((n-1)(m-1)+(a-1)) \omega$.

Proof. Since the degree of G is $(n-1)(m-1)+(a-1)$, the reciprocal image of the standard line bundle E^{\prime} over $P^{c}(\boldsymbol{C})$ under the map g is $\iota^{*} E^{(n-1)(m-1)+(a-1)}$ where E denotes the standard line bundle over $P^{\mu}(\boldsymbol{C})$. We regard $\|w\|^{2}$ as the fiber metric on E^{\prime} over $P^{e}(\boldsymbol{C})$. Its reciprocal image under g is the restriction of $\sum\left|G_{\lambda_{1} \ldots \lambda_{r+1}}(z)\right|^{2}$ to $\pi^{-1}(X)$ and is a fiber metric on $\iota^{*} E^{(n-1)(m-1)+(a-1)}$. Then

$$
\pi^{*} g^{*} \Omega^{\prime}=\frac{\sqrt{-1}}{2 \pi} d^{\prime} d^{\prime \prime} \log \left(\sum\left|G_{\lambda_{1} \ldots \lambda_{r+1}}(z)\right|^{2}\right)
$$

Now our claim follows from Corollary of Proposition 3.2.
q.e.d.

Let S_{k} be the vector space of homogeneous polynomials on $\boldsymbol{C}^{\mu+1}$ of degree k and S_{k}^{*} the dual space of S_{k}. We denote by $P^{d}(\boldsymbol{C})$ the complex projective space associated to S_{k}^{*}, where $d+1=\operatorname{dim} S_{k}$. Each point $z \in C^{\mu+1}$ defines a linear function $\Psi(z)$ on S_{k} given by $\Psi(z)(P)=P(z)$ for $P \in S_{k}$. We denote by ψ the map $z \mapsto \Psi(z)$. The polynomial map Ψ induces an injective holomorphic map

$$
\begin{equation*}
\psi: P^{\mu}(\boldsymbol{C}) \rightarrow P^{d}(\boldsymbol{C}) \tag{4.2}
\end{equation*}
$$

if $k \geqq 1$. The map ψ is called the Veronese map of degree k.
For simplicity we denote the Plücker coordinate $\left(\cdots, p_{v}, \cdots\right)$ by $\left(z_{0}, \cdots, z_{\mu}\right)$. With respect to the hermitian inner product on S_{k} induced from the one on $\boldsymbol{C}^{\mu+1}$, the set of all monomials

$$
\begin{equation*}
z_{0}^{\nu} \cdots z_{\mu}^{\nu} \mu /\left(\nu_{0}!\cdots \nu_{\mu}!\right)^{1 / 2}, \nu_{0}+\cdots+\nu_{\mu}=k \tag{4.3}
\end{equation*}
$$

is a unitary base of S_{k}. Moreover

$$
\begin{equation*}
\left|z_{0}^{\nu} \cdots z_{\mu}^{\nu \mu} /\left(\nu_{0}!\cdots \nu_{\mu}!\right)^{1 / 2}\right|^{2}=\|z\|^{2 k} / k!. \tag{4.4}
\end{equation*}
$$

Obviously the reciprocal image of the standard line bundle over $P^{d}(\boldsymbol{C})$ under the map ψ is E^{k}. By (4.4), if $\Omega^{\prime \prime}$ denotes the Fubini-Study form on $P^{d}(\boldsymbol{C})$, then $\psi^{*} \Omega^{\prime \prime}=k \Omega$. That is, the Veronese map ψ is homothetic and the ratio of the metrics is the degree k of the map ψ.

Now we specify k to be $(n-1)(m-1)+(a-1)$, and define a linear map $L: S_{(n-1)(m-1)+(a-1)}^{*} \rightarrow \bigwedge^{r+1}\left(\boldsymbol{C}^{\mu+1}\right)^{*}$ so that $L \circ \psi=G$ on the cone $\pi^{-1}(X)$. Let ($\xi_{\nu_{0} \cdot \nu_{\mu}}$) be the dual base of the unitary base of $S_{(n-1)(m-1)+(a-1)}$ chosen above. Since $G_{\lambda_{1} \cdots \lambda_{r+1}}$ is of degree $(n-1)(m-1)+(a-1)$,

$$
\begin{equation*}
G_{\lambda_{1} \cdot \lambda_{r+1}}=\sum_{\nu_{0} \cdots \nu_{\mu}} a\left(\lambda_{1} \cdots \lambda_{r-1} ; \nu_{0} \cdots \nu_{\mu}\right)\left(z_{0}^{\nu} \cdots z_{\mu}^{\nu} /\left(\nu_{0}!\cdots \nu_{\mu}!\right)^{1 / 2}\right) . \tag{4.5}
\end{equation*}
$$

Using these coefficients, a linear map L is defined by

$$
\begin{equation*}
L\left(\xi_{\nu_{0} \cdots \nu_{\mu}}\right)=\sum a\left(\lambda_{1} \cdots \lambda_{r+1} ; \nu_{0} \cdots \nu_{\mu}\right) \zeta_{\lambda_{1} \cdots \lambda_{r+1}} . \tag{4.6}
\end{equation*}
$$

By the way L is defined, it is clear that

$$
(L \circ \psi)(z)=G(z) \quad \text { for } \quad z \in \pi^{-1}(X)
$$

Consider the rational map $l: P^{d}(\boldsymbol{C}) \rightarrow P^{e}(\boldsymbol{C})$ induced from the linear map $L: S_{(n-1)(m-1)+(a-1) \rightarrow \bigwedge^{r+1}\left(\boldsymbol{C}^{\mu+1}\right)^{*} \text {. The map } l \text { is holomorphic at a point } x \in P^{d}(\boldsymbol{C}), ~(n)}$ if the image under L at a point of $S_{(n-1)(m-1)+(a-1)}^{*}$ lying over x is not zero. Since $\left\|q_{\imath} \wedge d F\right\|^{2}$ vanishes nowhere on $\pi^{-1}\left(W_{\imath}\right), L$ does not vanishes at each point on the image of $\pi^{-1}(X)$ under ψ. Therefore l is holomorphic on $\psi(X)$.

Proposition 4.2. Let be ψ the Veronese map of degree $(n-1)(m-1)+(a-1)$ of $P^{\mu}(\boldsymbol{C})$ into $P^{d}(\boldsymbol{C})$ and let g be the dual map of X into $P^{e}(\boldsymbol{C})$. Then there is a projective transformation l of $P^{d}(\boldsymbol{C})$ into $P^{e}(\boldsymbol{C})$ which is holomorphic on $\psi(X)$ and satisfies the equality $(l \circ \psi)(x)=g(x)$ for $x \in X$. Moreover the induced metric on X is Einstein if and only if the restriction of l to $\psi(X)$ is everywhere locally isometric with respect to the induced metric on $\psi(X)$ and the Fubini-Study metric on $P^{e}(\boldsymbol{C})$.

Proof. By Proposition 4.1 and the above observation (cf. [5] Proposition 4).

Now we have the following Lemma due to Hano ([5] Lemma 7).
Lemma 4.3. Let Φ be a linear map of \boldsymbol{C}^{s+1} into \boldsymbol{C}^{t+1} and ϕ the induced proiective transformaticn of $P^{s}(\boldsymbol{C})$ into $P^{t}(\boldsymbol{C})$. Let U be a connected algebraic submanifold in $P^{s}(\boldsymbol{C})$ which is not contained in any hyperplane in $P^{s}(\boldsymbol{C})$. We equip on U the metric induced from a Funibi-Siudy metric on $P^{s}(\boldsymbol{C})$, and on $P^{t}(\boldsymbol{C})$ a FubiniStudy metric. Suppose that the restriction of ϕ to U is holomorphic and locally iscmetric everywhere, then Φ is a constant multiple of an isometry, and particularly Φ is injective.

Now we have the following necessary condition from Lemma 4.3.
Proposition 4.4 (cf. [5] Hano §8). Let X be a hypersurface of $G_{m+n, n}(\boldsymbol{C})$ of degree a. If the induced is metric on X Einstein, then

$$
\begin{equation*}
\operatorname{dim}\left(S_{(n-1)(m-1)+(a-1)} / I_{(n-1)(m-1)+(a-1)}\right) \leqq e+1=\binom{\mu+1}{r+1} \tag{4.8}
\end{equation*}
$$

where $I_{(n-1)(m-1)+(a-1)}=S_{(n-1)(m-1)+(a-1)} \cap I(X)$.
Proof. For $P \in S_{(n-1)(m-1)+(a-1)}$, the equation $\langle\xi, P\rangle=0, \xi \in S_{(n-1)(m-1)+(a-1)}^{*}$, defines a hyperplane in $P^{d}(\boldsymbol{C})$. By the definition of the Veronese map ψ, a homogeneous polynomial P in $S_{(n-1)(m-1)+(a-1)}$ defines a hyperplane containing $\psi(X)$ if and only if P belongs to $I_{(n-1)(m-1)+(a-1)}$. Thus, the minimal linear variety $P^{d^{\prime}}(\boldsymbol{C})$ containing $\psi(X)$ is the intersection of these hyperplanes each of which is associated to a polynomial in $I_{(n-1)(m-1)+(a-1)}$. Its dimension d^{\prime} is given by $\operatorname{dim}\left(S_{(n-1)(m-1)+(a-1)} / I_{(n-1)(m-1)+(a-1)}\right)-1$. Let $\boldsymbol{C}^{d^{\prime}+1}$ be the subspace in $S_{(n-1)(m-1)+(a-1)}^{*}$ perpendicular to the subspace $I_{(n-1)(m-1)+(a-1)}$. Let L^{\prime} be the restriction to $\boldsymbol{C}^{d^{\prime}+1}$ of the linear map $L: S_{(n-1)(m-1)+(a-1)}^{*} \bigwedge^{r+1}\left(\boldsymbol{C}^{\mu+1}\right)^{*}$, and let l^{\prime} be the restriction to $P^{d^{\prime}}(\boldsymbol{C})$ of projective transformation l. Now the connected algebraic submanifold $\psi(X)$ in $P^{d^{\prime}}(\boldsymbol{C})$ is not contained in any hypcrplane of $P^{d^{\prime}}(\boldsymbol{C})$. By Proposition 4.2, the restriction to $\psi(X)$ of l^{\prime} is everywhere locally isometric. Applying Lemma 4.3, to $\psi(X)$ in $P^{d^{\prime}}(\boldsymbol{C})$, we see that the linear map

$$
L^{\prime}: \boldsymbol{C}^{i^{\prime}+1} \rightarrow \wedge^{r+1}\left(\boldsymbol{C}^{\mu+1}\right)^{*}
$$

is injective, and hence we get (4.8).
q.e.d.

5. Proof of Theorem

Let J denote the ideal $I\left(G_{m: n, n}(\boldsymbol{C})\right)$ of homogencous polynomials S on $\boldsymbol{C}^{\mu_{+1}}$.
Lemma 5.1. Let J_{k} denote $J \cap S_{k}$. Then

$$
\operatorname{dim}\left(S_{k} / J_{k}\right)=\prod_{i=1}^{n} \prod_{j=n+1}^{m+n} \frac{k+j-i}{j-i}
$$

Proof. By Proposition 1.1, the inclusion ' $j: G_{m+n, n}(\boldsymbol{C}) \rightarrow P^{\mu}(\boldsymbol{C})$ induces a surjective linear map

$$
j^{*}: H^{0}\left(P^{\mu}(\boldsymbol{C}), H^{k}\right) \rightarrow H^{0}\left(G_{m+n, n}(\boldsymbol{C}), j^{*} H^{k}\right)
$$

Noting that $H^{0}\left(P^{\mu}(\boldsymbol{C}), H^{k}\right)$ is the space of homogeneous polynomials S_{k} of degree k,

$$
\begin{aligned}
\operatorname{Ker} j^{*} & =\left\{P \in S_{k} \mid P(z)=0 \quad \text { for any } \quad z \in \pi^{-1}\left(G_{m+n n}(\boldsymbol{C})\right)\right\} \\
& =J \cap S_{k} .
\end{aligned}
$$

Hence, $\operatorname{dim}\left(S_{k} / J_{k}\right)=\operatorname{dim} H^{0}\left(G_{m+n, n}(\boldsymbol{C}), j^{*} H^{k}\right)$.
On the other hand, by a Theorem of Borel-Weil [2] and the dimension formula of Weyl [10], we have

$$
\operatorname{dim} H^{0}\left(G_{m+n, n}(\boldsymbol{C}), j^{*} H^{k}\right)=\prod_{i=1}^{n} \prod_{j=n+1}^{m+n} \frac{k+j-i}{j-i}
$$

q.e.d.

Lemma 5.2. Let I_{k} denote $I(X) \cap S_{k}$. Then

$$
\operatorname{dim}\left(S_{k} / I_{k}\right)=\operatorname{dim}\left(S_{k} / J_{k}\right)-\operatorname{dim}\left(S_{k-a} / J_{k-a}\right)
$$

if $k \geqq a$, where a is the degree of X.
Proof. Let $[X]$ denote the non-singular divisor defined by X and $\{X\}$ the holomorphic line bundle on $G_{m+n, n}(\boldsymbol{C})$ defined by [X]. Then there is an exact sequence

$$
\begin{equation*}
0 \rightarrow j^{*} H^{k-a} \rightarrow j^{*} H^{k} \rightarrow \widehat{i^{*} H^{k}} \rightarrow 0 \tag{5.1}
\end{equation*}
$$

of holomorphic sheaves on $G_{m+n, n}(\boldsymbol{C})$. (cf. [6])
Then (5.1) induces the following exact sequence of cohomologies

$$
\begin{align*}
0 & \rightarrow H^{0}\left(G_{m+n, n}(\boldsymbol{C}), j^{*} H^{k-a}\right) \rightarrow H^{0}\left(G_{m+n, n}(\boldsymbol{C}), j^{*} H^{k}\right) \tag{5.2}\\
& \rightarrow H^{0}\left(X, \iota^{*} H^{k}\right) \rightarrow H^{1}\left(G_{m+n, n}(\boldsymbol{C}), j^{*} H^{k-a}\right) \rightarrow \cdots
\end{align*}
$$

Since $H^{1}\left(G_{m+n, n}(\boldsymbol{C}), j^{*} H^{k-a}\right)=0$ if $k \geqq a$, by a theorem of Bott [2],
$\operatorname{dim} H^{0}\left(X, \iota^{*} H^{k}\right)=\operatorname{dim} H^{0}\left(G_{m+n, n}(\boldsymbol{C}), j^{*} H^{k}\right)-\operatorname{dim} H^{0}\left(G_{m+n, n}(\boldsymbol{C}), j^{* *} H^{k-a}\right)$.
On the other hand, $j^{*}: H^{0}\left(P^{\mu}(\boldsymbol{C}), H^{k}\right) \rightarrow H^{0}\left(G_{m+n, n}(\boldsymbol{C}), j^{*} H^{k}\right)$ is surjective, and hence $\iota^{*}: H^{0}\left(P^{\mu}(\boldsymbol{C}), H^{k}\right) \rightarrow H^{0}\left(X, \iota^{*} H^{k}\right)$ is surjective if $k \geqq a$. Noting that $\operatorname{Ker} \iota^{*}=I(X) \cap S_{k}$, we have

$$
\begin{aligned}
\operatorname{dim}\left(S_{k} / I_{k}\right)= & \operatorname{dim} H^{0}\left(X, \iota^{*} H^{k}\right) \\
& =\operatorname{dim} H^{0}\left(G_{m+n, n}(\boldsymbol{C}), j^{*} H^{k}\right)-\operatorname{dim} H^{0}\left(G_{m+n, n}(\boldsymbol{C}), j^{*} H^{k-a}\right) \\
& =\operatorname{dim}\left(S_{k} \mid J_{k}\right)-\operatorname{dim}\left(S_{k-a} / J_{k-a}\right)
\end{aligned}
$$

Proof of Theorem. Put $k=(n-1)(m-1)+(a-1)$. If $n \geqq 2$ and $m \geqq n$, then $k \geqq a$. Thus, by Lemma 5.2,

$$
\begin{aligned}
\operatorname{dim}(& \left.S_{(n-1)(m-1)+(a-1)} / I_{(n-1)(m-1)+(a-1)}\right) \\
= & \operatorname{dim}\left(S_{(n-1)(m-1)+(a-1)} / J_{(n-1)(m-1)+(a-1)}\right) \\
& \quad-\operatorname{dim}\left(S_{(n-1)(m-1)-1} / J_{(n-1)(m-1)-1}\right) .
\end{aligned}
$$

By Lemma 5.1, we see that $\operatorname{dim}\left(S_{k} \mid I_{k}\right)$ is increasing in k. Hence, it is enough to prove the following inequality (5.3) by Proposition 4.4;

$$
\begin{equation*}
\operatorname{dim}\left(S_{\mu-(m+n)+2} / I_{\mu-(m+n)+2}\right)>\binom{\mu+1}{m n} \tag{5.3}
\end{equation*}
$$

By Lemma 5.1, we have

$$
\operatorname{dim}\left(S_{k} / J_{k}\right)=\frac{(k+1)(k+2)^{2} \cdots(k+n)^{n} \cdots(k+m)^{n}(k+m-1)^{n-1} \cdots(k+m+n-1)}{1 \cdot 2^{2} \cdots n^{n} \cdots m^{n} \cdot(m+1)^{n-1} \cdots(m+n-1)} .
$$

Thus

$$
\begin{aligned}
& \operatorname{dim}\left(S_{\mu-(m+n)+2} / I_{\mu-(m+n)+1}\right)-\binom{\mu+1}{m n} \\
&= \frac{(\mu+1) \mu^{2}(\mu-1)^{3} \cdots(\mu-n+2)^{n} \cdots(\mu-m+2)^{n}(\mu-m+1)^{n-1} \cdots(\mu-m-n+3)}{1 \cdot 2^{2} \cdot 3^{3} \cdots n^{n} \cdots m^{n} \cdot(m+1)^{n-1} \cdots(m+n-1)} \\
&- \frac{(m n-m-n+1)(m n-m-n+2)^{2} \cdots(m n-m-1)^{n-1}(m n-m)^{n} \cdots(m n-n)^{n}}{1 \cdot 2^{2} \cdots n^{n} \cdots m^{n}(m+1)^{n-1} \cdots(m+n-1)} \\
& \quad \times \frac{(m n-n+1)^{n-1} \cdots(m n-1)}{} \\
&- \frac{(\mu+1) \mu(\mu-1) \cdots(\mu+2-m n)}{1 \cdot 2 \cdot 3 \cdots(m n)} \\
& \quad \frac{1}{(m n)!}\left\{(\mu+1) \mu^{2}(\mu-1)^{3} \cdots(\mu-n+2)^{n} \cdots(\mu-n+2)^{n}(\mu-m+1)^{n-1} \cdots\right. \\
& \quad \times(\mu-m-n+3)-(\mu+1) \mu(\mu-1) \cdots(\mu+2-m n) \\
&\left.\quad-(m n-m-n+1)(m n-m-n)^{2} \cdots(m n-m)^{n} \cdots(m n-n)^{n}(m n-n+1)^{n-1} \cdots(m n-1)\right\}
\end{aligned}
$$

Now we have

$$
\begin{aligned}
& (\mu+1) \mu^{2}(\mu-1)^{3} \cdots(\mu-n+2)^{n} \cdots(\mu-m+2)^{n}(\mu-m+1)^{n-1} \cdots(\mu-m-n+3) \\
& \quad \quad-(\mu+1) \mu(\mu-1) \cdots(\mu+2-m n) \\
& =(\mu+1) \mu(\mu-1) \cdots(\mu-m-n+3)\left\{\mu(\mu-1)^{2} \cdots(\mu-n+2)^{n-1} \cdots(\mu-m+2)^{n-1} \cdots\right. \\
& \left.\quad \times(\mu-m+1)^{n-2} \cdots(\mu-m-n+4)-(\mu-m-n+2) \cdots(\mu-m n+2)\right\} \\
& > \\
& \\
& (\mu+1) \mu(\mu-1) \cdots(\mu-m n+3)(m n-m-n+2) .
\end{aligned}
$$

On the other hand,

$$
(\mu-m n+3)-(m n-n-m+2)=\binom{m+n}{n}-2 m n+m+n>0 .
$$

Thus we have

$$
\begin{aligned}
& (\mu+1) \mu(\mu-1) \cdots(\mu-m n+3)(m n-m-n+2) \\
& \quad-(m n-1) \cdots(m n-m-n+1)^{n-1}(m n-n)^{n} \cdots(m n-m)^{n}(m n-m-1)^{n-1} \cdots \\
& \quad \times(m n-m-n+1)>(\mu+1) \mu \cdots(\mu-m n+3)(m n-m-n+2)-(2 m n-m-m) \cdots \\
& \quad \times(m n-m-n+2)(m n-m-n+1)>0 .
\end{aligned}
$$

Hence, we get (5.3).
q.e.d.

Remark. In the case of $G_{5,2}(\boldsymbol{C})$, we can see that if the degree $a(X)$ of X satisfies $a(X) \geqq 3$ a hypersurface X is not an Einstein manifold with respect to the induced metric by the same way. But we do not know the cases when $a(X)=1,2$.

Osaka University

References

[1] A. Borel, and F. Hirzebruch: Characteristic classes and homogeneous spaces I, Amer. J. Math. 80 (1958), 458-538.
[2] R. Bott: Homogeneous vector bundles, Ann. of Math. 66 (1957), 203-248.
[3] S.S. Chern: Complex manifolds without potential theory, Van Nostrand, Princeton, 1967.
[4] R. Gunning and H. Rossi: Analytic functions of several complex variables, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965.
[5] J. Hano: Finstein complete intersections in complex projectire space, Math. Ann. 216 (1975), 197-208.
[6] F. Hirzebruch: Topological methods in algebraic geometry, third enlarged edition, Grundlehren der Math. Wissenschaften, 131, Springer-Verlag, New York, 1966.
[7] W.V.D. Hodge and D. Pedoe: Methods of algebraic geometry, vol. 1 and 2, Cambridge Univ. Press, 1952.
[8] M. Ise: Some properties of complex analytic vector bundles over compact complex homogeneous spaces, Osaka Math. J. 12 (1960), 217-252.
[9] S. Kobayashi and K. Nomizu: Foundation of diffenetial geometry, vol. 2, Interscience, New York, 1969.
[10] J-P. Serre: Algèbres de Lie semi-simples complexes, Benjamin, Inc. New .York, 1966.
[11] B. Smyth: Differential geometry of complex hypersurfaces, Ann. of Math. 85 (1967), 246-266.
[12] A. Weil: Introduction à l'etude des variétés kählériennes, Hermann, Paris 1958.

