SOME DECOMPOSITIONS THEOREMS ON ABELIAN GROUPS AND THEIR GENERALISATIONS-II

SURJEET SINGH

(Received December 1, 1977)

In [7] study of those modules M_R which satisfy the following two conditions was initiated:

(1) Every finitely generated submodule of every homomorphic image of M is a direct sum of uniserial modules.

(II) Given two uniserial submodules U and V of a homomorphic image of M, for any submodule W of U any non-zero homomorphism, $f: W \to V$ can be extended to a homomorphism $g: U \to V$ provided the composition length $d(U/W) \leq d(V/f(W))$.

It was shown that some of the well known decomposition theorems for torsion abelian groups, can be generalized to modules satisfying (I) and (II). Here we introduce another condition:

(III) For any finitely generated submodules N of M, R/ann(N) is right artinian.

It can be easily seen that any torsion module over a bounded (hnp)-ring satisfies (I), (II) and (III). Let M be a module satisfying (I) and (II). The concept of h-pure submodules of M was introduced in [7]; if in addition Msatisfies (III) it is shown in section one, that any submodule N of M is h-pure if and only if it is pure (Theorem (1.3)). Theorem (1.4) shows that any complement of $H_k(M)$ in M is a summand of M. In section 2, the concept of basic submodule is introduced. It is shown that any module M satisfying (I), (II) and (III) has a basic submodule and any two basic submodules of M are isomorphic (Theorem (2.7)). This result generalizes the corresponding well known result on basic subgroups of torsion abelian groups. In section 3, a decomposition theorem is proved; which states that given any module M satisfying (I) and (II), such that M/socle (M) is decomposable then M is decomposable.

Preliminaries: Let M be a module satisfying (I) and (II). Let us recall some definitions from [6, 7]. An element x in M is said to be uniform if xRis a non-zero uniform (hence uniserial) submodule. For any uniform element x of M, its exponent e(x) is defined to be equal to the composition length d(xR);

This research was supported by UGC Research Grant No. 30-5(6562)/76(SR-II).

S. Singh

the height of x is the supremum of all d(T/xR) where T is a uniserial submodule of M containing x. The height of x is denoted by $H_M(x)$ (or simply by H(x)). For any $k \ge 0$, $H_k(M)$ denotes the submodule of M generated by all those uniform elements x of M for which $H(x) \ge k$. A submodule N of M is said to be an hpure submodule if $N \cap H_k(M) = H_k(N)$ for all k. M is said to be bounded if there exists a positive integer k such that $H(x) \le k$ for all uniform elements x in M. M is said to be decomposable if it is a direct sum of uniserial modules. For definition and elementary properties of pure submodules we refer to Stenstrom [8]. For any ring R, J(R) denotes the Jacobson radical of R.

Lemma 1.1. Let M_R be a module satisfying (I), (II) and (III) and X be a uniserial submodule of M having

$$X = X_0 > X_1 > X_2 \cdots > X_t = 0$$

as its unique composition series. If for $0 \le i \le t-1$, $P_i = \operatorname{ann}(X_i|X_{i+1})$ then $X_iP_i = X_{i+1}$.

Proof. Let A=ann(X). Since S=R/A is right artinian, $X_i J(S)=X_{i+1}$ and $J(S) \subset P_i/A$, we have $X_i P_i = X_{i+1}$.

Lemma 1.2. Let a module M_R satisfy (I) and (II). If for any finitely many uniform elements x_1, x_2, \dots, x_n in M

$$\sum_{i=1}^n x_i R = \bigoplus \sum_{j=1}^m y_j R$$

where $y_i R$ are uniserial, then $m \leq n$.

Proof. The result follows by induction on n.

The result that any submodule N of a torsion module over a bounded (hnp)-ring is pure if and only if it is *h*-pure was proved by M. Khan in [2]. The proof of the following is adapted from [2].

Theorem 1.3. Let M_R be a module satisfying (I), (II) and (III) and N a submodule of M. Then N is h-pure if and only if it is a pure submodule.

Proof. Let N be h-pure. Consider any finite system of linear equations

$$\sum_{i} x_i \gamma_{ij} = s_j \in N$$

which admits a solution $\{x_i\}$ in M. Let $K = \sum x_i R + N$. Then K/N is a finitely generated module. So by condition (I).

$$K/N = \bigoplus \sum T_{a}/N$$

where each T_{α}/N is uniserial. Then by [7, Lemma 2(i)], $T_{\alpha} = y_{\alpha}R \oplus N$. Hence

$$K = K_1 \oplus N$$

This gives that the above given system of equations are also solvable in N. Hence N is a pure submodule of M.

Let now N be a pure submodule. This immediately gives $MA \cap N = NA$ for all ideals A of R. Suppose for some k, $H_k(M) \cap N \neq H_k(N)$. We choose k smallest with $H_k(M) \cap N \neq H_k(N)$. We can find a uniform element x of smallest exponent such that $x \in H_k(M) \cap N$ but $x \notin H_k(N)$. Then $x \in H_{k-1}(N)$. By definition there exists a uniform element y in M such that $x \in yR$ and d(yR/xR) = k.

 $x \in H_{k-1}(N)$ shows that there exist a uniform element $u \in N$ such that $x \in uR$ and d(uR/xR) = k-1. Let $zR = \operatorname{socle}(xR)$ and m = e(x). Then d(uR/zR) = m + k-2, gives $H_N(z) \ge m + k - 2$. Suppose $H_N(z) \ge m + k - 1$. We can then find a uniform element $v \in N$ such that $z \in vR$ and d(vR/zR) = m + k - 1. By condition (II), we get an isomorphism $\sigma: yR \to vR$ which is identity on zR. Then $x - \sigma(x)$ is a uniform element with $e(x - \sigma(x)) < e(x), x - \sigma(x) \in N \cap H_k(M)$, but $x - \sigma(x) \notin H_k(N)$, since $\sigma(x) \in H_k(N)$. This contradicts the choice of x. Hence $H_N(z) = k + m - 2 = d(uR/zR)$. So by [7, Lemma 1]

$$N = uR \oplus N_1$$

uR is also a pure submodule. Now d(uR/zR) = d(yR/zR) - 1. By (1.1) we can find prime ideals $P_1, P_2, \dots, P_{m+k-1}$ such that R/P_i is simple artinian for all *i* and $yR > yP_1 > yP_1P_2 > \dots > yP_1P_2 \dots P_{m+k-1} = 0$ with $zR = yP_1P_2 \dots P_{m+k-2}$. By condition (II) $uR = yP_1$ and hence $uP_2P_3 \dots P_{m+k-1} = 0$. However $yP_2P_3 \dots P_{m+k-1} \neq 0$. Thus $z \in MP_2P_3 \dots P_{m+k-1} \cap uR = uP_2P_3 \dots P_{m+k-1} = 0$. This is a contradiction. Hence N is an h-pure submodule of M.

The following theorem generalizes Erdelyi's theorem [1, Theorem (24.8)].

Theorem 1.4. Let M be a module satisfying (I), (II) and (III) then for any $k \ge 1$, any complement of $H_k(M)$ is a summand of M.

Proof. Let N be a complement of $H_k(M)$. Then N is bounded. If we show that N is a pure submodule, the result follows from [7, Theorem 3]. In view of (1.2) it is equivalent to showing $H_n(M) \cap N = H_n(N)$ for every n. Since $H_k(M) \cap N = 0 = H_k(N)$, the result holds for $n \ge k$. To apply induction we suppose that for some n with $0 \le n < k$, $H_n(M) \cap N = H_n(N)$, we prove that same for n+1. Let the contrary hold. Then there exists a uniform element $x \in H_{n+1}(M) \cap N$ such that $x \notin H_{n+1}(N)$. Then $H_N(x) = n$. Now there exists a uniform element y in M such that d(yR/xR) = n+1. Let socle $(yR/xR) = x_1R/xR$. If $x_1 \in N$, we get $x_1 \in N \cap H_n(M) = H_n(N)$ and hence $x \in H_{n+1}(N)$. This is a contradiction. Consequently $x_1 \notin N$ and $(N+x_1R) \cap H_k(M) \neq 0$. Thus there exists a uniform element $z \in H_k(M)$ such that $z = u + x_1s$ for some $u \in N$ and $s \in R$. If $x_1 s R \neq x_1 R$, then $x_1 s R \subset xR$ and $z \in N$; this is a contradiction to the fact that

S. SINGH

 $N \cap H_k(M) = 0$. So $x_1 s R = x_1 R$ and $x_1 = x_1 s s'$, $s' \in R$. Then $zs' = us' + x_1 \in (N + x_1 R) \cap H_k(M)$ and $zs' \neq 0$. So we can suppose that $x_1 s = x_1$. Thus $z = u + x_1$.

Let $P=\operatorname{ann}(x_1R/xR)$. By (1.1) $xR=x_1P$. So for any $r\in P$, zr=0 and $ur=-x_1r$. Now $H(z)\geq k>n$, $H(x_1)\geq n$, gives $u\in H_n(M)\cap N=H_n(N)$. For some $r_0\in P$, $x=x_1r_0=-ur_0$ If uR is uniform and $ur_0R< uR$, then $H_N(ur_0)\geq H_N(u)+1\geq n+1$ and hence $H_N(x)\geq n+1$; this is a contradiction. Hence the following two cases arise.

Case I: uR is uniform and $ur_0R = uR$. In this case $u = x_1b_0 = xrb$ for some $b \in R$ and $z = x_1r_0b + x_1 = x_1c$, $c \in R$. Thus $zR = x_1R$ and $x_1 \in H_k(M)$. This shows that $H(x_1) \ge k$ and hence $H(x) \ge k+1$. This contradicts the fact that $N \cap H_{k+1}(N) = 0$.

Case II: uR is not uniform. The fact that $u \in zR + x_1R$ and that zR, x_1R are uniform together with (1.2) yields $uR = u_1R \oplus u_2R$ with u_1 , u_2 both uniform. Further we can take $u = u_1 + u_2$. Then $xR = uP = u_1P \oplus u_2P$. So $u_1P = 0$ or $u_2P = 0$. To be definite let $u_2P = 0$. Then u_2R is a simple *R*-module and $x_1R = u_1P$. Let $u_1P < u_1R$ then $xR = u_1P = v_1R$ for some $v_1 \in u_1R$. Now $H(u_1) \ge \min(H(x_1), H(x)) \ge n$. So by induction hypothesis $u_1 \in H_n(N)$ and hence $H_N(v_1) \ge n+1$. Consequently $xR = v_1R$ gives $H_N(x) \ge n+1$. This is a contradiction. Thus $u_1R = u_1P = xR$. Hence $u_1 = xa$, $a \in R$. Consequently $z = u_2 + xa + x_1 = u_2 + x_1s$, $s \in R$. This reduces to case I and hence again gives a contradiction. Hence N is a pure submodule. This proves the theorem.

2. Basic submodules

DEFINITION 2.1. Let M be a module satisfying (I) and (II). A subset $\{x_{\lambda}: \lambda \in \Lambda\}$ of uniform elements of M is called *h*-pure independent if it is independent in the sense that $\sum x_{\lambda}R$ is direct, and $\sum x_{\lambda}R$ is an *h*-pure submodule of M.

The following Lemma generalizes [1, Lemma (29.1)].

Lemma 2.2. Let a module M_R satisfy (I) and (II). An h-pure independent subset $\{x_{\lambda}: \lambda \in \Lambda\}$ is maximal if and only if M/L, where $L = \sum x_{\lambda}R$, is a direct sum of infinite length uniform submodules.

Proof. The result follows from [7, Lemma 2 and Theorem 5].

This motivates the following:

DEFINITION 2.3. Let M be a module satisfying (I) and (II). A submodule B of M is called a basic submodule of M if it satisfies the following:

(i) B is an h-pure submodule.

(ii) B is a direct sum of uniserial modules.

(iii) M/B is a direct sum of uniform modules of infinite lengths.

[7, Lemma 2 and Theorem 5] and the fact that union of any chain of h-pure submodules is an h-pure submodule gives the following:

Lemma 2.4. Any module satisfying (I) and (II) has a basic submodule.

The main purpose of this section is to prove that any two basic submodules of a module M satisfying (I), (II) and (III) are isomorphic. The following theorem generalizes [1, Theorem (29.3)]. Since the proof is on similar lines it is omitted.

Theorem 2.5. Let M be a module satisfying (I), (II) and (III) and B be a submodule of M such that $B = \bigoplus \sum_{n=1}^{\infty} B_n$, where each B_n is a direct sum of uniserial modules each of length n. Then B is a basic submodule of M, if and only if

$$M = (B_1 + \dots + B_n) \oplus (B_n^* + H_n(M)) \quad \text{where} \quad B_n^* = \sum_{i > n} B_i$$

The following theorem generalizes Szele's theorem [1, Theorem (29.4)].

Theorem 2.6. Let M and B be as in (2.5). B is a basic submodule if and only if $B_1 + \cdots + B_n$ is a summand of M and is maximal with respect to the property $(B_1 + \cdots + B_n) \cap H_n(M) = 0$.

Proof. Let B be a basic submodule of M. From (2.5) $(B_1+\dots+B_n)\cap H_n(M)=0$. Let N be a complement of $H_n(M)$ containing $B_1+\dots+B_n$. N is a summand of M by (1.4). By [7, Corollary 1], N is a direct sum of uniserial modules. Suppose $N \neq B_1+\dots+B_n$. Then we can find a uniform element $y \in N$ such that $B_1 \oplus \dots \oplus B_n \oplus yR$ is a summand of M. By using (2.5), we can suppose that $yR \subset B_n^* + H_n(M)$. Let zR = socle(yR). Since $yR \cap H_n(M) = 0$, and yR is a pure submodule, we get $H(z) \leq n-1$. Let

$$M' = B_n^* + H_n(M) \tag{i}$$

If for every $i \ge n+1$,

$$C_i = \sum_{j=n+1}^{i} B_j \tag{ii}$$

each C_i being pure and bounded, is a summand of M'. Further

$$M' = U_i(C_i + H_n(M)).$$

Consequently for some i,

 $z \in C_i + H_n(M)$

Again

S. Singh

$$C_{\iota} = \bigoplus \sum_{\alpha} y_{\alpha} R \tag{iii}$$

where $y_{\alpha}R$ are uniserial. Also

$$M' = C_i \oplus D \tag{iv}$$

Now z=c+x, $c \in C_i$, $x \in H_n(M)$. Using (iii) and (iv) we get

$$\begin{split} c &= \sum_{\alpha} u_{\alpha} \,, \quad u_{\alpha} \in y_{\alpha} R \\ x &= \sum_{\alpha} v_{\alpha} + d \,, \quad v_{\alpha} \in y_{\alpha} R \,, \quad d \in D \,. \end{split}$$

Each $u_{\alpha} + v_{\alpha}$ being a homomorphic image of z must be either zero or be such that $(u_{\alpha} + v_{\alpha})R$ is the minimal submodule of $y_{\alpha}R$. However as

$$C_i = \sum_{j=n+1}^i B_j,$$

 C_i is a direct sum of uniserial modules of lengths at least n+1. Consequently $H(u_{\alpha}+v_{\alpha}) \ge n$. Hence, as also $d \in H_n(M)$, we get $z \in H_n(M)$, by [6, Lemma 4]. This contradicts the fact that $H(z) \le n-1$. This proves the necessity.

Conversely let B satisfy the given conditions. Then $B_1 + \dots + B_n$ is a pure submodule of M, gives B is a pure submodule of M. If B is not a basic submodule in M, we can find a uniform element $u \in M$ such that $B \cap uR = 0$ and $B \oplus uR$ is a pure submodule (use [7, Lemma 2 and Theorem 5]). Let d(uR) = n. Then $(B_1 \oplus \dots \oplus B_n \oplus uR) \cap H_n(M) = 0$. This contradicts the hypothesis. Hence the result follows.

Theorem 2.7. Let a module M satisfy (I), (II) and (III). Then M has a basic submodule. Any two basic submodules of M are isomorphic.

Proof. Existence follows from (2.4). Let B' and B be two basic submodules of M. We have

$$B = B_1 \oplus B_2 \oplus \dots \oplus B_n \oplus \dots \tag{i}$$

$$B' = B'_1 \oplus B'_2 \oplus \dots \oplus B'_n \oplus \dots$$
 (ii)

where B_n , B'_n are direct sums of uniserial modules, each of length *n*. By (2.6)

$$M = (B_1 + \dots + B_n) \oplus N_1 \tag{iii}$$

$$M = (B'_1 + \dots + B'_n) \oplus N'_1 \tag{iv}$$

for some submodules N_1 , N'_1 of M, containing $H_n(M)$ such that $H_n(M)$ is an essential submodule of each of them. Let $p: M \to B_1 + \cdots + B_n$ be projection given by (iii). By (2.6), $B'_n \cap N_1 = 0$ and hence $B'_n \simeq p(B'_n)$. For each i=1,

50

 $2, \cdots, n$, let

$$p_i: B_1 + \cdots + B_n \to B_i$$

be natural projections. We claim that q, the restriction of $p_n p$ to B'_n is a monomorphism. Suppose ker $q \pm 0$. As p restricted to B'_n is a monomorphism, we can find a minimal submodule xR of B'_n such that $p_n p(xR)=0$; clearly $p(xR)\pm 0$. Now H(x)=n-1. So there exists a uniform element $z \in B'_n$, such that $x \in zR$ and d(zR)=n. For some i < n, $p_i p(x) \pm 0$, since $p_n p(x)=0$. Then from socle $(zR)=xR \cong p_i p(xR)$, we get $zR \cong p_i p(zR) \subset B_1 + \cdots + B_{n-1}$. But d(zR)=n, and $B_1 + \cdots + B_{n-1}$ has no uniserial submodule of length exceeding n-1. Thus we get, a contradiction. Hence $q: B'_n \to B_n$ is a monomorphism. In particular we get a monomorphism;

$$\lambda$$
: socle $(B'_n) \rightarrow$ socle (B_n)

Similarly we get a monomorphism:

$$\mu \colon \text{socle} (B_n) \to \text{socle} (B'_n)$$

Consequently socle $(B_n) \cong$ socle (B'_n)

Now $B_n = \bigoplus \sum_{i \in \Lambda} A_i$ and $B'_n = \oplus \sum_{i \in \Gamma} A_i$

where A_i and A'_j are uniserial modules, each of length n. Then

socle
$$(B_n) = \bigoplus \sum_i \text{ socle } (A_i)$$

socle $(B'_n) = \bigoplus \sum_i \text{ socle } (A'_j)$,

we get a one-to-one mapping σ of Λ onto Γ such that socle (A_i) =socle $(A'_{\sigma(i)})$. By condition (II), $A_i \cong A'_{\sigma(i)}$. Hence $B_n \cong B'_n$. This in turn gives $B \cong B'$. This proves the theorem.

3. A decomposition theorem

Main purpose of this section is to prove the following:

Theorem 3.1. If a module M satisfying (I) and (II), is such that for its socle S, M/S is decomposable, then M is also decomposable.

We state the following without proof, since its proof is verbatim same as of Corollary 1 in [6].

Theorem 3.2. Let M be a module satisfying (I) and (II), and P be its socle. M is a direct sum of uniserial modules if and only if P is a union of ascending sequence $P_n(n=1, 2, 3, \cdots)$ of submodules such that for each n, there exists a positive integer k_n with the property that $H(x) \leq k_n$ for every uniform element x of P_n .

Lemma 3.3. If a module M satisfying (1), (11) is such that for some $k \ge 0$, $H_k(M)$ is decomposable then M is decomposable.

Proof. Let N be an *h*-pure submodule of M, maximal with respect to the property that $N \cap H_k(M) = 0$. N is bounded and decomposable. Further by [7, Theorem 3].

$$M=N\oplus K.$$

Let T be a complement of $H_k(M)$ containing N. If $T \neq N$, we can find a uniform element $z \in \text{socle}(T)$ such that $z \in K$. Now $H(z) = t \leq k-1$. If u is a uniform element in K with $z \in uR$ and d(uR/zR) = t-1, we get from [7, Lemma 1], that $K = uR \oplus K_1$. Then

$$M = N \oplus u R \oplus K_1$$

and N+uR is an *h*-pure submodule of M containing N properly, having zero intersection with $H_k(M)$. This contradicts the choice of N. Hence N is a complement of $H_k(M)$. Further

$$H_k(M) = H_k(N) + H_k(K) = H_k(K)$$

Thus $H_k(M) \subset K$. Hence to prove that M is decomposable we only need to show that K is decomposable. So without loss of generality we may suppose that $H_k(M) \subset M$. So $S = \text{socle}(M) = \text{socle}(H_k(M))$. By hypothesis $H_k(M)$ is decomposable. So by (3.1), $S = \bigcup S_n$, where S_n $(n=1, 2, \cdots)$ is an ascending sequence

of submodules, such that for each n, we have a positive integer l_n such that the height of any uniform element x of S_n taken in $H_k(M)$ does not exceed l_n . Then the height of any uniform element x in S_n taken in M does not exceed l_n+k . So by (3.2) M is decomposable.

Proof of (3.1). In view of (3.3) it is enough to prove that $H_1(M)$ is decomposable. Now by hypothesis

$$ar{M} = M/S = \oplus \sum_{m{lpha}} ar{y}_{m{lpha}} R$$

where $\bar{y}_{\alpha}R$ are uniserial.

As seen in the proof of (3.3), without loss of generality we can suppose that $H_1(M) \subset M$. In view of the condition (I) we take each y_{α} to be uniform in M. Now $d(y_{\alpha}R) \ge 2$. Let $x_{\alpha}R < y_{\alpha}R$ with $d(y_{\alpha}R/x_{\alpha}R) = 1$. Then $x_{\alpha} \in H_1(M)$. We claim,

$$H_1(M) = \bigoplus \sum_{\alpha} x_{\alpha} R$$

and this will prove the result. Suppose

52

$$x_{\alpha}R\cap(\sum_{i=1}^n x_iR)\neq 0$$

with $x_{\alpha}R \neq x_iR$ for $1 \leq i \leq n$. Then

$$z_{\alpha}R = x_{\alpha}R \cap (\sum_{i=1}^{n} x_{i}R) = \text{socle} (x_{\alpha}R) = y_{\alpha}R \cap (\sum_{i=1}^{n} y_{i}R)$$

Now $\sum_{i=1}^{n} y_i R = -\sum_{j=1}^{m} u_j R$

where $u_j R$ are uniserial and by (1.2) $m \le n$. If for some j, $d(u_j R) = 1$, we have

$$\oplus \sum_{i=1}^{n} \bar{y}_{i}R = \oplus \sum_{j=1}^{m} \bar{u}_{j}R \pmod{S}$$

and the right hand side has less than *n* terms. This is a contradiction. Therefore $d(u_iR) \ge 2$ for every *j* and m=n. We write

$$z_{\alpha} = v_1 + v_2 + \cdots + v_n$$
, $v_i \in u_i R$

We can find $t_a \in y_a R$ such that $d(t_a R/z_a R) = 1$. By condition (II), we get homomorphisms

$$\sigma_{i}: t_{\omega}R \to u_{i}R$$

such that $\sigma_j(z_{\alpha}) = v_j$. Define

$$\sigma\colon t_{\alpha}R \to \bigoplus \sum_{j=1}^n u_jR$$

by $\sigma(y) = \sum_{j} \sigma_{j}(y), y \in t_{\alpha}R$

Then σ is identity on $z_{\alpha}R$. Let

$$A = \{ r \in R \colon t_{\alpha} r \in z_{\alpha} R \}$$

Then A is a maximal right ideal of R with $z_{\alpha}R = t_{\alpha}A$. So for $r \in A$, $t_{\alpha}r = \sigma(t_{\alpha}r) = \sum_{j=1}^{n} \sigma_j(t_{\alpha})r$. Consequently $t_{\alpha} - \sigma(t_{\alpha})$ is a uniform element such that

$$(t_{\alpha} - \sigma(t_{\alpha}))R \simeq R/A$$

This gives $t_{\alpha} - \sigma(t_{\alpha}) \in S$. Hence,

$$t_{\alpha} \equiv \sigma(t_{\alpha}) \pmod{S}$$

Consequently $\bar{t}_{\alpha} \in \bar{y}_{\alpha} R \cap (\sum_{j=1}^{n} \bar{y}_{j} R) = \bar{0}$. Hence $t_{\alpha} \in S$. This is a contradiction. Therefore

$$\sum_{\alpha} x_{\alpha} R = + \sum_{\alpha} x_{\alpha} R$$

This also yields $\sum_{\alpha} y_{\alpha} R = \bigoplus_{\alpha} y_{\alpha} R$, since each $y_{\alpha} R$ is an essential extension

S. Singh

of $x_{\alpha}R$. Consider any uniform element $x \in H_1(M)$ such that $x \notin S$. We can find a uniform element $y \in M$ such that, $x \in yR$ and d(yR/xR) = 1. If

$$A = \{r \in R; yr \in xR\}$$

then A is a maximal right ideal of R and xR = yA. Now

$$\bar{y} = y + S = \bar{\xi}_1 + \bar{\xi}_2 + \dots + \bar{\xi}_n$$
, $\bar{\xi}_i \in \bar{y}_i R$

for some $\bar{y}_1, \bar{y}_2, \dots, \bar{y}_n$ among \bar{y}_{α} 's, $\alpha \in \Lambda$. We take $\xi_i \in y_i R$. If for any $i, \bar{\xi}_i \neq 0$, then the natural homomorphism $\eta_i: \bar{y}R \to \bar{\xi}_i R$ is non-zero; since $\bar{y}R$ is uniserial, it follows that $\operatorname{Ker} \eta_i \subset \bar{x}R = \bar{y}A$ and so $\xi_i R/\xi_i A \cong \bar{y}R/\bar{x}R \neq 0$. Thus $\bar{\xi}_i \neq 0$ implies $\bar{\xi}_i A \subset x_i R$. Consequently $\bar{x} \in \sum \bar{x}_i R$ and hence

$$egin{aligned} &x \in \sum \limits _{oldsymbol{s}} x_{oldsymbol{s}} R + S \ . \ &H_{1}\!(M) = \sum x_{oldsymbol{s}} R + S \end{aligned}$$

This proves:

We claim: $S \subset \sum x_{\alpha} R$. If not we can find a uniform element $x \in S$ such that $x \notin \sum x_{\alpha} R$. Then $xR \cap \sum_{\alpha} x_{\alpha} R = 0$. We can find a uniform element $y \in M$ such that $x \in yR$ and d(yR/xR) = 1. Now let $N' = yR + \sum y_{\alpha}R = yR \oplus (\sum y_{\alpha}R)$. Then

$$M/S = (\sum y_{\alpha}R + S)/S = (N' + S)/S \approx N'/\text{socle}(N')$$
$$\approx yR/xR \oplus \sum (y_{\alpha}R)/\text{socle}(y_{\alpha}R)$$

Therefore

$$\oplus \sum_{\alpha} y_{\alpha} R / \text{socle} (y_{\alpha} R) \cong (y R / x R) \oplus \sum_{\alpha} y_{\alpha} R / \text{socle} (y_{\alpha} R)$$

This isomorphism is natural. Hence yR/xR=0. This is a contradiction. Hence $S \subset \sum x_{\alpha}R$. This yields

$$H_1(M) = \bigoplus \sum_{\alpha} x_{\alpha} R$$

Hence the result follows.

We end this paper with a few remarks.

(1) Any module M over a commutative ring R satisfying (I) and (II) must satisfy (III). However, a simple faithful module over a nonartinian primitive ring trivially satisfies (I) and (II), but not (III).

(2) If a module M satisfies (I) and (II), then (II) gives that any uniserial submodule xR of M is quasi-injective. The example on page 362 in [3] is of a uniserial module which is not quasi-injective. This shows that elthough a uniserial module always satisfies (I), but it need not satisfy (II).

(3) If a commutative ring R, admits a faithful finitely generated module satisfying (I) and (II), then R is a principal ideal ring with d.c.c. It will be interesting to investigate the structure of noncommutative rings admitting faithful, finitely

54

generated modules satisfying conditions (I), (II) and (III).

(4) Consider a local ring R, with maximal ideal W, such that $W^2=0$, Q=R/W, a field with the property that $\dim_Q W=1$, and $\dim W_Q=2$. R is not a right principal ideal ring. However for any $x \neq 0$ in W, R/xR is a uniserial, injective, faithful, right R-module of length two, so it satisfies (I), (II) and (III). (See V. Dlab, and C. M. Ringel, Math. Ann. 195, (1972) Proposition 2)

GURU NANAK DEV UNIVERSITY, INDIA

Bibliography

- [1] L. Fuchs: Abelian groups, Pergamon Press, New York, 1960.
- [2] Musharafuddin Khan: Ph. D. Thesis, Aligarh Muslim University, Aligarh, 1976.
- [3] S.K. Jain and S. Singh: Quasi-injective and pseudo-injective modules, Canad. Moth. Bull. 18 (1975), 359-365.
- [4] H. Marubayashi: Modules over bounded Dedekind prime rings, Osaka J. Math. 9 (1972), 95-110.
- [5] ———: Modules over bounded Dedekind prime rings II, Osaka J. Math. 9 (1972), 427–445.
- [6] S. Singh: Modules over hereditary noetherian prime rings, Canad. J. Math. 27 (1975), 867-883.
- [7] ———: Some decomposition theorems is abelian groups and their genesalizations, Ring Theory: Proceedings of Ohio University Conference, Lecture Notes in Mathematics, Vol. 25, pp. 183–189, Marcel Dekker Inc., N.Y. 1976.
- [8] B. Stenström: Rings of quotients, Die Grundlehren der mathematischen Wissenschaften, Band 217, Springer Verlag, N.Y., 1975.