SOME NOTES ON THE RADICAL OF A FINITE GROUP RING II

Yukio TSUSHIMA

(Received October 31, 1977)

1. Introduction

Throughout this paper, p is a fixed prime number and G is a p-solvable group of order $|G|=p^{a} h,(p, h)=1$. Let k be a field of characteristic p and let \mathfrak{R} be the Jacobson radical of the group ring $k G$. We denote by $t(G)$ the smallest integer t such that $\mathfrak{R}^{t}=0$.

We know that $a(p-1)+1 \leqq t(G) \leqq p^{a}$. Let P be a Sylow p-subgroup of G. In the previous paper [9], we have shown that the second equality $t(G)=p^{a}$ holds (if and) only if P is cyclic. Here we shall show

Theorem 1. Assume that P is a regular p-group. Then if $t(G)=a(p-1)+1$, P is elementary.

A p-group P is called regular, if for any $x, y \in P$, it holds that $x^{p} y^{p}=(x y)^{p} \Pi_{i} z_{i}^{p}$ with some $z_{2} \in\langle x, y\rangle^{\prime}$. There are various examples of regular p-groups (see e.g. Huppert [7], III Satz 10.2).

To prove Theorem 1, it is sufficient to show that G has p-length one. Indeed if this were shown, then we have that $t(G)=t(P)$ (Clarke [2]). However, for a p-group, our assertion is clear by Jennings [5] (without the assumption of regularity).

Of course Theorem 1 does not hold in general. A counter example is known for $p=2$. However, since a regular 2-group is necessarily abelian (hence $t(G)=t(P)$), Theorem 1 tells nothing new for $p=2$. Our proof is almost group theoretical. We owe heavily to a recent result of Gagola [3], a special case of which is quoted in Lemma 2 of the next section.

2. Perliminary results

For convenience of later arguments, we shall here provide a proof of the following result.

Theorem 2 (Wallace [10]). $\quad t(G) \geqq a(p-1)+1$.
Proof. First of all, we remark that if \Re_{0} is the radical of the group ring $k P$
and $t=t(P)$, then $\mathfrak{R}_{0}^{t-1}=k \sigma=\left(0: \mathfrak{R}_{0}\right)$, where $\sigma=\sum_{x \in p} x$. This follows easily from the fact that $k P$ is completely primary.

We shall prove the Theorem by the induction on the order of G. We may assume that $O_{p^{\prime}}(G)=1$. Let V be a (non-trivial) normal p-subgroup of G. For a p-group, our assertion is clear by Jennings [5], so that if $|V|=p^{b}$, then $t(V) \geqq b(p-1)+1$. By the induction hypothesis, we bave $t(G / V) \geqq(a-b)(p-1)$ +1 .

We recall that $\mathfrak{R}_{1}=\left\{\sum_{x} a_{x}(x-1) \mid x \in V, a_{x} \in k\right\}$ is the radical of $k V$. Furthermore, since $G \triangleright V, k G \Re_{1}$ is a nilpotent two sided ideal of $k G$, which coincides with the kernel of the natural map $k G \rightarrow k \bar{G}$, where $\bar{G}=G / V$. In particular, we have that $\Re^{(a-b)(p-1)} ₫ k G \Re_{1}$. Hence, if we put $\sigma=\sum_{x \in V} x$, then $\Re^{(a-b)(p-1)} \sigma \neq 0$. Since we have $\sigma \in \mathfrak{N}_{1}^{b(p-1)} \subset \mathfrak{R}^{b(p-1)}$ as remarked above, we conclude that $\bigcap_{\Re^{a(p-1)}} \neq 0$. This completes the proof of Theorem 2.

Lemma 1. Assume that $O_{p^{\prime}}(G)=1$ and $U=O_{p}(G)$ is abeliar. Let V be a minimal normal p-subgroup of G.

If $O_{p^{\prime}}(G / V) \neq 1$, then there is a normal p-subgroup W of G such that $U=V \times W$.
Proof. Let $O_{p^{\prime}}(G / V)=T V / V$, where T is a p^{\prime}-subgroup of G. Then $[T V, U]=[T, U]$ is a normal subgroup of G, which is contained in V. If $[T, U]=1$, then $T \subset C_{G}(U)$, a contradiction, since $C_{G}(U) \subset U$ by Hall and Higman [6]. Therefore we have $V=[T, U]$.

On the other hand, from the well-known Theorem on relatively prime automorphisms, we get $U=[T, U] \times C_{U}(T)=V_{U} \times C_{U}(T)$ (see e.g. Gorenstein [4] Chap. 5). Since $C_{U}(T)=C_{U}(T V)$ is normal in G, we have the desired conclusion by letting $W=C_{U}(T)$.

The following lemma is a special case of a result of Gagola [3].
Lemma 2. Assume that $O_{p^{\prime}}(G)=1$ and that $U=O_{p}(G)$ is minimal. Then U has a complement in G.

Proof. Let F be the prime field of characteristic p and let $\bar{G}=G / U$. If the irreducible $F \bar{G}$-module U belongs to the principal p-block of \bar{G}, then $O_{p^{\prime}}(G)$ acts trivially on U by Theorem 1 of Brauer [1]. But this is impossible, since $C_{G}(U) \subset U$. Therefore U has a complement by a theorem. of Gagola [3].

3. Proof of Theorem 1

We proceed by the induction on the order of G. We may assume that $O_{p^{\prime}}(G)=1$. Let V be any non-trivial normal p-subgroup of G and let $|V|=p^{b}$. From the proof of Theorem 2, we see that $t(V)=b(p-1)+1$ and $t(G / V)=$ $(a-b)(p-1)+1$. This implies that V is elementary by Jennings [5]. Also P / V
is elementary by the induction hypothesis.
If G has distinct minimal normal subgroups V and W, then G can be embedded in $G / V \times G / W$ and the result is clear by induction hypothesis. Hence we may assume that G has a unique minimal normal p-subgroup, say V.

Assume that $O_{p}(G)>V$. If $O_{p^{\prime}}(G / V) \neq 1$, we have a contradiction by Lemma 1. If $O_{p^{\prime}}(G / V)=1$, then using that P / V is abelian, we conclude that $G / V \triangleright P / V$, namely $G \triangleright P$. Then the assertion is clear. Thus we may assume that $U=O_{p}(G)$ is minimal. Then by Lemma 2, there is a subgroup H of G such that $G=H U$ and $H \cap U=1$. If Q is a Sylow p-subgroup of H, then Q is elementary and $P=Q U$. Using now that P is regular, we have easily that P has exponent p. Then G has p-length one by Hall and Higman [6]. As is remarked in the introduction, this completes the proof of Theorem 1.

Acknowledgement

1. Soon after the earlier work [9] was completed, the author was informed from S. Koshitani that the assertion " $(3) \Rightarrow(1)$ " of Theorem 4 [9] as well as the result of Clarke [2] (mentioned in the introduction) is direct from a result of Morita [8]. The author expresses his thanks to S. Koshitani.
2. The author expresses his thanks also to H. Matsuyama, who gives a direct proof of Lemma 2 as the following.

By the Schur and Zassenhaus Theorem, we may put $O_{p, p^{\prime}}(G)=H U$, where H is a p^{\prime}-subgroup and it is uniquely determined up to U-conjugates. Hence by the Frattini argument, it is easily shown that $N_{G}(H)$ is a desired complement of U.

Osaka City University

References

[1] R. Brauer: Some applications of the theory of blocks of characters of finite groups I, J. Algebra 1 (1964), 152-167.
[2] R.J. Clarke: On the radical of the group ring of a p-nilpotent group, J. Austrailian Math. Soc. 13 (1972), 119-123.
[3] S.M. Gagola: A splitting condition using block theory, Michigan Math. J. 23 (1976), 203-206.
[4] D. Gorenstein: Finite groups, Harper and Row, New York, 1968.
[5] S.A. Jennings: The structure of the group ring of a p-group over a modular field, Trans. Amer. Math. Soc. 50 (1941), 175-185.
[6] P. Hall and G. Higman: On the p-length of p-soluble groups and reduction theorems for Burnside's problem, Proc. London Math. Soc. 6 (1956), 1-42.
[7] B. Huppert: Endliche Gruppen I, Springer-Verlag, Berlin-Heiderberg, 1967.
[8] K. Morita: On group rings over modular field zchich possess radicals expressible as
principal ideals, Sci. Report of T.B.D. 4 (1951), 177-194.
[9] Y. Tsushima: Some notes on the radical of a finite group ring I, Osaka J. Math, 15 (1978), 647-653.
[10] D.A. Wallace: Lower bounds for the radical of the group algebra of a finite p-soluble group, Proc. Edinburgh Math. Soc. 16 (1968/69), 127-134.

