REMARKS ON MULTIPLY TRANSITIVE PERMUTATION GROUPS

Mitsuo YOSHIZAWA

(Received October 6, 1977)

1. Introduction

In [5], T. Oyama determined all 4-fold transitive permutation groups in which the stabilizer of four points has an orbit of length two. On the other hand, in Yoshizawa [8], 5 -fold transitive permutation groups in which the stabilizer of five points has a normal Sylow 2-subgroup have been determined. In this note we give some analogous version of these results for any odd prime p on $2 p$ (or $2 p+1$)-fold transitive permutation groups.

Theorem 1. Let p be an odd prime $\geqslant 5$. Let G be a $2 p$-fold transitive permutation group on $\Omega=\{1,2, \cdots, n\}$. If $G_{1,2, \cdots, 2 p}$ has an orbit on $\Omega-\{1,2, \cdots, 2 p\}$ whose length is less than p, then G is one of $S_{n}(2 p+1 \leqslant n \leqslant 3 p-1)$ and $A_{n}(2 p+2 \leqslant n \leqslant 3 p-1)$.

Corollary. Let p be an odd prime $\geqslant 5$. Let D be a $2 p-(v, k, 1)$ design with $2 p<k<3 p$. If an automorphism group G of D is $2 p$-fold transitive on the set of points of D,then D is a $2 p-(k, k, 1)$ design.

Theorem 2. Let p be an odd primt $\geqslant 5$. Let G be a $2 p$-fold transitive permutation group on $\Omega=\{1,2, \cdots, n\}$. Let P be a Sylow p-subgroup of $G_{1,2, \cdots, 2 p}$. If P is a normal subgroup of $G_{1,2} \ldots, 2 p$, then G is one of $S_{n}(2 p \leqslant n \leqslant 3 p-1)$ and $A_{n}(2 p+2 \leqslant n \leqslant 3 p-1)$.

Theorem 3. Let G be a 7 -fold transitive permutation group on $\Omega=\{1,2, \cdots, n\}$. Let P be a Sylow 3-subgroup of $G_{12, \ldots, 7}$. If P is a normal subgroup of $G_{1,2, \ldots, 7}$, then G is $S_{7}, S_{8}, S_{9}, S_{10}, A_{9}$ or A_{10}.

We shall use the same notation as in [4].

2. Proof of Theorem 1

Let G be a group satisfying the assumption of Theorem 1. By [4] and [5], if $G_{1,2, \cdots 2 p}$ has an orbit on $\Omega-\{1,2, \cdots, 2 p\}$ whose length is one or two, then G is $S_{2 p+1}, S_{2 p+2}$ or $A_{2 p+2}$. Hence we may assume that $G_{1,2, \cdots 2 p}$ has an orbit Δ
such that $3 \leqslant|\Delta| \leqslant p-1$.
Let P be a Sylow p-subgroup of $G_{1,2, \cdots, 2 p}$. If $P=1$, then G is one of S_{n} $(2 p+3 \leqslant n \leqslant 3 p-1)$ and $A_{n}(2 p+3 \leqslant n \leqslant 3 p-1)$ by [1]. From now on we assume that $P \neq 1$, and prove that this case does not occur. Since $3 \leqslant|\Delta| \leqslant p-1$, we have $I(P) \supseteq \Delta \cup\{1,2, \cdots, 2 p\}$ and $N_{G}(P)^{I(P)}=S_{2 p+3}, \cdots, S_{3 p-1}, A_{2 p+3}, \cdots$ or $A_{3 p-1}$ by [1]. Therefore $N_{G}(P)_{1,2,-, 2 p}^{I(P), 2,}{ }^{2 p]}=S_{3}, \cdots, S_{p-1}, A_{3}, \cdots$ or A_{p-1}, and $I(P)=$ $\Delta \cup\{1,2, \cdots, 2 p\}$. This shows that $I(P)$ is independent of the choice of Sylow p-subgroup P of $G_{12, \cdots, 2 p}$ and is uniquely determined by $G_{12 \ldots, 2 p}$.

Let Q be a subgroup of P such that the order of Q is maximal among all subgroups of P fixing more than $|I(P)|$ points. Set $N=N_{G}(Q)^{I(Q)}$, and $r=|\Delta|$. N has an element a of order p fixing $2 p+r$ points. We may assume that

$$
a=(1)(2) \cdots(2 p+r)(2 p+r+1, \cdots, 2 p+r+p) \cdots
$$

Set $T=C_{N}(a)_{2 p+r+1, \cdots, 2 p+r+p}^{I(a)}$ and $\Lambda=I(a)$. Then T satisfies the following two properties.
(i) T is a permutation group on $\Lambda . \quad|\Lambda|=2 p+r$ and $3 \leqslant r \leqslant p-1$.
(ii) For any p points $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{p}$ in Λ, a Sylow p-subgroup S of $T_{a_{1}, \cdots, \alpha_{p}}$ is a cyclic group of order p generated by a p-cycle, and $|I(S)|=p+r$. Moreover $I(S)$ is independent of the choice of Sylow p-subgroup S of $T_{w_{1}, \cdot, \alpha_{p}}$ and is uniquely determined by $T_{a_{1} \ldots a_{p}}$.

Suppose that T is primitive. Since $r \geqslant 3$ and T has a p-cycle, $T \geqslant A_{2 p+r}$ by Theorem 13.9 in [7]. This contradicts (ii).

Suppose that T is imprimitive, and let the set $\left\{\Delta_{1}, \cdots, \Delta_{s}\right\}$ be a nontrivial complete block system. Assume $\left|\Delta_{1}\right| \leqslant p$. For each $i \in\{1, \cdots, s\}$, let δ_{i} be a point of Δ_{i}. By considering $T_{\delta_{1}, \cdots, \delta_{p}}(s \geqslant p)$ or $T_{\delta_{1}, \cdots, \delta_{s}}(s<p)$, we have a contradiction by (ii). Assume $\left|\Delta_{1}\right|>p$. Then $s=2$ and $\Delta_{1} \cup \Delta_{2}=\Lambda$ by (i). Let Γ_{1} be a subset of Δ_{1} with $\left|\Delta_{1}-\Gamma_{1}\right|=p$, and let δ be a point of $\Delta_{1}-\Gamma_{1}$. Since $\left|\Delta_{1}-\left(\Gamma_{1} \cup\{\delta\}\right)\right|=p-1$, for every subset Γ_{2} of Δ_{2} with $\left|\Delta_{2}-\Gamma_{2}\right|==p, T_{\Gamma_{1} \cup(\delta) \cup \Gamma_{2}}$ has a p-cycle on $\Delta_{2}-\Gamma_{2}$, contrary to (ii).

Therefore T is intransitive on Λ. Moreover by (ii), T has an orbit whose length is not less than p. If T has two orbits Δ_{1} and Δ_{2} such that $\left|\Delta_{1}\right| \geqslant p$ and $\left|\Delta_{2}\right| \geqslant p$, then we have a contradiction by the similar argument to the above. Hence T has a unique orbit Σ with $|\Sigma| \geqslant p$. By (ii), we have $2 p \leqslant|\Sigma|<|\Lambda|$. Let Π be a subset of Σ with $|\Pi|+|\Lambda-\Sigma|=p$. Since $|\Lambda-\Sigma|<p$, for every subset Γ of $\Sigma-\Pi$ with $|\Gamma|=p-|\Pi|, T_{\Pi \cup \Gamma}$ has a p-cycle on $(\Sigma-\Pi)-\Gamma$, contrary to (ii).

Thus we complete the proof of Theorem 1.

3. Proof of Theorem 2

Let G be a group satisfying the assumption of Theorem 2. Let P be a

Sylow p-subgroup of $G_{1,2, \cdots, 2 p}$. If $P=1$, then G is one of $S_{n}(2 p \leqslant n \leqslant 3 p-1)$ and $A_{n}(2 p+2 \leqslant n \leqslant 3 p-1)$ by [1]. From now on we assume that $P \neq 1$, and prove that this case does not occur. By [1] and Theorem 1, we have $N_{G}(P)^{I(P)}$ $=S_{2 p}$. By [2], we may assume that P is not semiregular on $\Omega-I(P)$.

Let Q be a subgroup of P such that the order of Q is maximal among all subgroups of P fixing more than $2 p$ points. By [3, Lemma 6] and [2], $N_{G}(Q)^{I(Q)} \geqslant A^{I(Q)}=A_{3 p} . \quad$ Since A_{p} is a simple group, we have a contradiction.

4. Proof of Theorem 3

Let G be a group satisfying the assumption of Theorem 3. Let P be a Sylow 3-subgroup of $G_{1,2} \ldots, 7$. If $P=1$, then G is S_{7}, S_{8}, S_{9}, or A_{9} by [1]. From now on we may assume that $P \neq 1$. Since $P \triangleleft G_{12 \ldots, 7}$, we have $N_{G}(P)^{I(P)}$ $=S_{7}$ by [1], [4] and [5]. If P is semiregular on $\Omega-I(P)$, then G is S_{10} or A_{10} by [2]. Hereafter we assume that P is not semiregular, and prove that this case does not occur.

Let Q be a subgroup of P such that the order of Q is maximal among all subgroups of P fixing more than ten points. Let $N=N_{G}(Q)^{I(Q)}$ and $\Gamma=I(Q)$. Then N is a permutation group on Γ, and $|\Gamma| \geqslant 13$ and $3||\Gamma|-7$. If N has no element of order three fixing ten points, then N is S_{10} or A_{10} by [3, Lemma 6] and [2], which is a contradiction. Hence from now on we may assume that N has an element a of order three fixing exactly ten points. We may assume that

$$
a=(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(111213) \cdots
$$

Set $T=C_{N}(a)_{11,12,13}^{I(a)}$.
Suppose that T has an orbit of length one. Then we may assume that $\{1\}$ is a T-orbit. T_{2345} has an element x_{1} of order three, and we may assume that $x_{1}=(1)(2)(3)(4)(5)(6)(7)(8910) . \quad T_{2345}$ has an element x_{2} of order three. Since a Sylow 3-subgroup of T_{1234} is normal in $T_{1234}, x_{1} x_{2}$ is a 3-element. Hence we may assume that $x_{2}=(1)(2)(3)(4)(8)(9)(10)(567) . \quad T_{2358}$ has an element x_{3} of order three. Since a Sylow 3-subgroup of T_{1235} is normal in $T_{1235}, x_{1} x_{3}$ is a 3element. Hence we may assume that $x_{3}=(1)(2)(3)(5)(8)(9)(10)(467)$, and so $x_{2} x_{3}=(1)(2)(3)(8)(9)(10)(46)(57)$. On the other hand, since x_{2} and x_{3} are 3elements of $T_{1238}, x_{2} x_{3}$ is a 3-element. So, we have a contradiction.

By the same argument as the above, we have that G has no orbit of length two or three.

Suppose that T has an orbit of length four. Then we may assume that $\{1,2,3,4\}$ is a T-orbii. Since T_{5678} has an element of order three, we may assume that T has an element of order three of the form (123)(4)(5)(6)(7)(8)(9) (10). Since $T^{(1234)}$ is transitive, we have $T_{5,6, \cdots, 10}^{[1,2,3]} \geqslant A_{4}$, which is a contradiction. By the similar argument to th. above, we have that T is neither an intransi-
tive group with an orbit of length five nor an imprimitive group with two blocks of length five.

Finally, it is easily seen that T is neither an imprimitive group with five blocks of length two nor a primitive group (cf. [6]), and we complete the proof.

Gakushuin University

References

[1] E. Bannai: On multiply transitive permutation groups II, Osaka J. Math. 11 (1974), 413-416.
[2] E. Bannai: On multiply transitive permutation groups IV, Osaka J. Math. 13 (1976), 123-129.
[3] D. Livingstone and A. Wagner: Transitivity of finite permutation groups on unordered sets, Math. Z. 90 (1965), 393-403.
[4] H. Nagao: On multiply transitive groups IV, Osaka J. Math. 2 (1965), 327-341.
[5] T. Oyama: On multiply transitive groups XIV, Osaka J. Math. 15 (1978), 351-358.
[6] C.C. Sims: Computational methods in the study of permutation groups, (in Computational problems in abstract algebra), Pergamon Press, London, 1970, 169-183.
[7] H. Wielandt: Finite permutation groups, Academic Press, New York and London, 1964.
[8] M. Yoshizwaa: 5-fold transitive permutation groups in which the stabilizer of five points has a normal Sylow 2-subgroup, Osaka J. Math. 15 (1978), 343-350.

