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Introduction. Let G be a connected linear algebraic group defined over a
finite field k=F, of characteristic p with Frobenius . For any set X on which
o acts, X, is the set of o-fixed points. T. Shintani [8] constructed an intrinsic
bijection of (G,)" onto (G,»)2 in the case of G=GL,, where G/ is the set of
irreducible characters of G. In the case of G=U,, an analogous result is ob-
tained by N. Kawanaka [4]. Let us give the construction of the above mentioned
bijection due to Shintani in a slightly modified manner. Let m be a fixed natural
number, put G=G,» and let 4 be a cyclic group of order m with generator o’.
We suppose that 4 acts on G by x”=x"(x€G). In the following we write o
for ¢’. Define the semidirect product AG by o 'xo=x" (x&G). For any
integer 7, we construct a norm map N; from the subset oG of AG to the group
G,i(=G,m») which induces a bijection from the set of G-conjugacy classes of
oG onto the set of conjugacy classes of G,i. Moreover this bijection is com-
patible with the o-action. (See 3.2.) Denote the set of complex valued class
functions on G by C(G). For any integer i, we define the i-restriction map of
C(AG) to C(G,i), as follows:

(t-res f)oN; = fl ,ig, fEC(AG) .
These i-restrictions define an isomorphism
(*) C(AG) : EB:‘”:OIC(GG';)O' .

Let v &(G,)" and X&(G"),. The character X is called the lifting of yr(‘lift ")
if there exists an irreducible character X~ of AG such that O-res X~=X and
I-res X"=--+y. Shintani and Kawanaka have proved that the lifting map is a
bijection from (G,)" onto (G/), when G=GL, or U, respectively. (In section
9, we show that the defining domain of the lifting map is not necessarily the
whole (G,)" for general reductive G.

Let G be reductive and T be a maximal torus of G defined over k. For
0 (TN, let R, be the virtual character of G, corresponding to (T, 0). (See
P. Deligne, G. Lusztig [1] and D. Kazhdan [5].) Let N! be the norm map of
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T, onto T,. For =(T,)", the class function on AG corresponding to
(RGN Yocicm-1 Via the above isomorphism (%) is denoted by ARY. Our main
theorem is:

Assume that m is not divisible by p or a power of p and p, q are sufficiently
large. Then ARY is a virtual character of AG.

This theorem implies that lift (£ R%.,)=+£R%)," for §<(T,)" in general
position.

This paper consists of 9 sections. Section 1 is a preliminary. In section 2,
we modify the lifting theory of modular characters given by Kawanaka. In
section 3, the notion of i-restriction is introduced, which is fundamental in our
theory. In section 4, the lifting theory of cxponential unipotent groups is
studied. In section 5, we prove that any R% can be lifted to some virtual charac-
ter of G, when p, g are not too small. In section 6, it is shown that the lifting of
regular character (resp. semisimple character) is regular (resp. semisimple) if it
exists. In sections 7 and 8§, the main theorem is proved.

The author would like to express his hearty thanks to Dr. N. Kawanaka
who leaded the author to this field and encouraged him constantly. The author
would also like to express his thanks to Professor R. Hotta and Professor G.
Lusztig for their advices.

NotaTioN. Let X be a set. If o is a transformation of X, X, denotes the
set of o-fixed points of X. If X is a finite set, | X | means the number of its
elements. For complex valued functions f and g on X, define {f, g>y=|X|™*
Sex f)2).

Let G be a finite group. C(G) denote the set of class functions on G. R(G)
denotes the Grothendieck group of G. Since we are mainly concerned with
complex representations, ‘representation’ means ‘complex representation’ unless
otherwise stated. R (G) is the set of proper characters. G’ means the set of
irreducible characters of G. Let H be a subgroup of G. For an element x of
G, Zy(x) denotes {yeH |xy=yx}. and ¥ denotes the H-orbit of x. When a
prime number p is fixed, an element x of G is called semisimple (resp. unipotent)
if the order of x is prime to p (resp. a power of p). An arbitrary element x of G
can be represented as x=su=us where s is semisimple and # is unipotent. This
decomposition is called the Jordan decomposition.

We denote by G, H, --- a connected linear algebraic group defined over the
finite field k=F, of characteristic p. The Lie algebras of G, H, --+ are denoted
by the corresponding German letter &, O, ---. We use the same letter o for the
Frobenius endomorphisms of G, ®, :--. A natural number m is fixed through

out the paper. We put {=-exp 2z\/ —1/m. For an algebraic group G (resp. a
Lie algebra @), G (resp. g) means G,» (resp. &,»). We denote the induced
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character of X from H to G by ind%X or ind(X|H—G).

1. Preliminaries

1.1. We consider R(A)CR(AG) via the projection AG—A. In the
following A (resp. A4,) is a cyclic group with generator o (resp. ¢*), where the
order of ¢ is m. Define a character £ of 4 by

Eo)=1¢" (& = exp 22V —1m).

1.2.  When o acts on a set X, denote the cardinality of the orbit of x&X
by d(x, o, X). 1If there is no fear of confusion we omit o or X.

Let R be an irreducible representation of a finite group G and +r be its
character. Let

T = RPB(Roa) P+ D(Roc*"")
where d=d(\r, o, R(G)). Fix a matrix L=Ly such that
R(x™) = L'R(x)L and L"? =1,
Put

L
I =

Then

I"'T(x)] = T(x") and I"=1(x€G).
Hence by putting 7'~ (c'x)=1I‘T(x) (=0, 1, -+, m—1) we obtain a representation
T~ of AG whose restriction to G is T. It is easy to see the irreducibility of 7"~.
Denote the character of T(resp. T~) by X=X, (resp. X"=XJ). Putting R~ (c%x)

=L/R(x), we obtain a representation of 4,G which is an extension of R. Denote
the character of R~ by y»~. Then by a direct computation we obtain the equality

(1.2.1) X~ = ind (v~ | 4,G — AG).
Since
I RE) (1) (X ®F) (o%x) = 0 (0<i<m—1)
and
S ®F) (1) (X~ RF) () = m24=iw (1) ¥7(x),

where e=m/d, we obtain
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2irect 10> 235=0(Xi ®E) (1) (X§ ®F) (%)

|AG| if x =1
=m2yeer ¥y (Dwl) =170 0 Ly

Thus we obtain the irreducible decomposition of regular representation of AG.

Lemma 1.3. Al the irreducible characters of AG are obtained as Xj QE’
with &GN and 0< j <m[d(\r) without repetition. If d(\) X'i, then X;=
on o'G.

Lemma 14.
(L4.1) X, XiDsic =d(y)  if d(¥)li.
If X7, X; €(AG)" and X7 |;+X5 |, then
(1.4.2) XT, X3 Do =0 (0<i<m—1).

Proof. These can be easily obtained by [8, Lemmas 1.1 and 1.2] or [4,
Lemma 1.4], and by 1.2.1,

Lemma 1.4.3. If X<(4,G)" and X(o*)*0, then
dX|g, o) =d(X| 6 o) = d(X, a).

Proof. Put s=d(X|;) and t=d(X|,). Then <X, XDis=<X, XDsic+0.
Hence (X|;)"'=X|;. Thus we get s|t. We get the equality X~ =XQ®§&’ for
some j, but £/(s')=1 since X(c*)*0. Hence £&=1on 4,. Hence X" =X and
d(X)|s. Since t|d(X) and s|d(X), we complete the proof.

Lemma 1.5. Fix a divisor d of m and X& R(A,G). Suppose that integers
a, (1<1<m) satisfy the conditions:

(1.5.1) if (m, 0)=(m,j), a,=a;
(1.5.2) i dfyi , a;=0
(1.5.3) i delm el 2 am(deft)a,,

where w is the usual Mobius function. Define a class function  on AG by =
a,(X4+X"++X" ") on 'G. Then & R(AG).

Proof. Define a class function ' on A,G by putting '=a,X on o*G.
Then yr=ind (/| 4,G—AG) by 1.5.2. Hence we may suppose that d=1. For
a divisor e of m, put ec,=>.u(efi)a,. Then ¢/'s are integers by 1.5.3, and
a,=a0, =2 ne¢,. Hence, on ¢’G we have
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Eefmce lndﬁeGG(X { APG) = Eel(m,t)ecex = a;X = .
Therefore y=33,,,.¢c, ind4%(X| ,,c) € R(4G).

DEerFINITION 1.6. We define a Z-valued function p on a finite partially
ordered set J with the maximum element G as follows:

wG) =1
and

2ZHew s H) =0 for H*G.

This function p is called the Mobius function of 9{. Occasionally we write u(-,
) for p(-).

Lemma 1.7. Suppose that o acts on 9. Extend (-, H,) to all over I
by equating 0 outside of H,i. Put a,=u(H, Hs) for a fixed H& J. Then the
a;’s satisfy the conditions 1.5.1 to 1.5.3 for d=d(H).

Proof. The conditions 1.5.1 and 1.5.2 are easily verified. We prove 1.5.3
by induction on | 9|. If [H|=1, there is nothing to prove. Assume |4 |>1.
Put H,={H'€H|H'>H}. If H is not the minimum element of 4, | H,| <
| H|. o acts on H, and u(H, Hya)=a,. If de divides m, then by induction
hypothesis e divides the integer

Eilnu‘(e/i)adt = Zzlda/l’(de/i)az .

Hence we may suppose that 4 has the minimum clement H; and that H=H,,.
Note that d(H,)=1 in this case. Fix a divisor e of m. By definition

(1.7.1) 2DHe92 mef)u(H, Hqyi) = 0.
For H>H,
(1.7.2) SN n(eD)(H ™ Ho)

= S uleli)u(H, o) d(H) .

If d(H) /e, this equals 0. Suppose e=d(H)e'. 1.7.2 equals d(H)X, im0/
w(d(H)e [i)a,. Since d(H)e'=e divides m, this is divisible by d(H)e'=e. With
1.7.1, this implies 1.5.3.

Corollary 1.8. Let 9L be a family of subgroups of a group G with the order
defined by inclusion. Suppose that Y is invariant under o-action. Assume that for
each HE 9 a character Xy R(AH) with d=d(H) is given and satisfies (Xy) =
Xyo. Define a class function )y on AG by
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¥ = Spre e, agery o H, Ho) ind (Xl AH — A,G) on oG
0<i<m—1)
Then € R(AG). If we define a class function ' on AG by

'\I/‘/ = EHEL‘j[, d(H)ll, H*G#(H’ j{a.l') lnd (XHIAG'H’_) AdG) on O"G
0<i<m—1)

we also have ' € R(AG).

2. Liftings of modular characters of finite groups

2.1. Let ¢: k*—C*(k=F,) be an injective homomorphism. For R&
GL(n, k), put Bs[R]=3Vi-1¢(r,), where 7,’s are the eigenvalues of R.

2.2. Let G be a finite group on which A=<{s) acts, R a k-representation
of G and V its representation space. Define a representation R; of G by

Ri(x) = R*)QR(x")® - QR(x"") (»£G),
where d=(m, 7). Define an automorphism I of V®:--QV (m-times) by
I(2,@ @Vp-1) = 0y1Q0 Q)+ @Vp—z s
and a representation 4;R; of 4,G by

A;R(cix) = Idj-(R,(x)@Ri(x"i)®...®Ri(xcice-u))
(OS]SB—I, xEG) ’

where e=m/(m, 7). We write AR for A,R,. Define an element J of the sym-
metric group S,, acting on Z/(m) by

(0, 1, -, d—1,d, d+1, - 2d—1, 2d, 2d+1, )
J= 0,1, -,d—1,1,i+1, - i+d—1, 2, 2i+1, )’

and put J(2,Q** ®@Vp-1)=07)Q*** V(. Then we have JI'J=I and
(2.2.1) J'AR(c'x)] = A;R,(c'x) .
Theorem 2.3. If (m, p)=1, we have
23.1) B AR(x)] = B[R ((2)")],
where d=(m, 7).

Lemma 2.4. Let V=F" and Ay, -+, A,,..EE=End V. Then, there exist
polynomials f; (depending on Ay, -+, A,,-,) such that

(2.4.1) det (x—A4,,-10++-04y)7  det (x—Io(A, @+ RA4,,-1))
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= Hdlm,dzzfd(‘x’l) .

Proof. Let {e, -, ¢,} be a basis of " and D be the set of endomorphisms
of I which are represented by diagonal matrices with respect to {e,, -+, ¢,}. If
Ag +++y, A,1€D, 2.4.1 is proved in [4, Proof of Th. 3.6]. Let us consider the
following diagram.

E”l . q Pﬂ

(2.4.2) pl 5 I

P”m an
where

p(Ay, -+, Apoy) = det (x—10(A, Q- QRA,,-1))

qg(Ay, -+, Ayoy) = det (x— A, 10020 4,)

P52 (ap—2n,) = TI5oi(afa—2))

V(I a(bix—p,)) = Ti<i,<a(bigrbi, o X — iy ms, ) -
Here we identify ay+a;x-+-+-+a,x" with (a,, -+, a,)€P". Since

(To(AyR++ R A,-1))"
= (A0 0A4,04))R(Ayo A, 10 0A4,))
o @(Apgor0Ayo i),
2.4.2 is commutative. Put (P")=X. The morphisms r: P"—X and ¢:

¢ Y(X)—X are both quasi finite, hence finite. (See [EGA. IV Th. 8.11.1].) In
the following we assume the knowledge of the materials in [6, Chapter 1]. Put

HE")=Y and p(D")=V". Then §(¥)= Gp(D")=g(D")=(A"). Here 4"
={(ay, ***, a,)EP"|a,+0}. Hence dim Y’=n. On the other hand, dim ¢~*(X)
=dim X=n, YCYC¢}(X). Hence

(2.4.3) V—7.

Let us consider the following mappings.

m A m p X q am n T nm
E"— E"<XE"—SP" XP"— P

x = (x, x) (2, y) > .
Put Z=(pxq)eA(E™). Then n(Z)=Y. Let Y, (resp. Z;) be a subset of ¥

(resp. Z) which is open and dense in Y (resp. Z). Then each fibre of z:
7 (YN Z— Y, is 0O-dimensional. Hence

dimY=dimZ.
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By the commutativity of 2.4.2, the following commutative diagram can be com-
pleted with some 7.

X X
ey p Yy x

4

E" - X

Then we have
dim 7(E™) = dim Aor(E™)
= dim (¢ X )o(p X g)o A(E™)
= dim (p X ) (Z)
=dimZ=dimY.

By the same reason, we get
dim 7(D™) = dim Y’ .
Hence by 2.4.3, we get

(2.4.4) (D" = 1(E™).

Further more dim (p X q)oA(E™)=dim (¢ X y)o(p X g)o A(E™)=dim Aor(E™)=

dim r(£™).

By the same reason, we get

dim (p X q)oA(D™) = dim r(D™)
Hence by 2.4.4,

(pXg)°A(E™) = (px g)°A(D") .

Take a subset U of (px q)A(D™) which is open and dense in (p X q)oA(D™), and
put U'=((pxq)eA) " (U). For any element (A4,, -+, 4,-,) of U’, there exists an
element (D,, +++, D,,_;) of D™ such that

P(Am "ty Am—l) = P(Do’ Tt Dm—])
‘I(Ao, "ty Am—l) = Q(Do, ) Dm-l) .

Since 2.4.1 holds for (D, -+, D,,-,), we get 2.4.1 for such an (A4, -, 4,,-,).
Since U’ is open and dense in E”, 2.4.1 holds in general.

2.5. Proof of 2.3. By 2.2.1. we get

Bs[AR(c'x)] = Bs[A,Ri(c'x)] .
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Hence it suffices to prove that
Bi[AR(53)] = BolR((ox)")]
Put R(x")=A;. Then this can be rewritten as
(25.1) BolIo(As@ -+ @ Ay )] = Bal Ay rorr-ody] .

By lemma 2.4 the left hand side of 2.5.1 is equal to 2)¢(at)+ Bs[Am-10°++0A4,),
where « runs over the roots of f,(x%). If « is a root of f,(x), then 7« is also a
root of f,(x%) for any d’th root of unity %. Since (d, p)=1, the first summand is
zero. 'Thus we obtain 2.5.1.

3. Preliminaries for lifting theory of finite algebraic groups

In the following, G is a connected linear algebraic group defined over a
finite field k&= F, of characteristic p and o is the Frobenius endomorphism. Let
G be G » and write o for o .

3.1. We define the norm map N; of the subset ¢'G of AG to the group G
as follows:

Ni(o'x) = a(x)™}(o"%)" a(x) ,
where a(x) is an element of G such that
() a(x) " = o (ox)
and d, t are integers given as follows:
d=(m,7) ti=d (modm).

Lemma 3.2. (1) The norm map N; induces a bijection from the set of G-
conjugacy classes of o'G onto the set of conjugacy classes of G,i. This bijection is
independent of the choice of c.

(2) The norm map N; is compatible with the o-action. Here o acts on ¢'G
by (o'x)’=0'x’.

3) |Zy(o'x)| =|Zs,i(Ni(ax))].

Proof. Denote the free cyclic group generated by the symbol ¢ by <{o).
This group <{o) acts on G by o 'xc=x’. By this action we define the semidirect
product <c>G. Then

N(o'%) = al@) (™o e(x)
oc(;vc)"doz(x)’1 = o~ #(o'x)" .

For x€G,
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Nyoix)™ = a(x)™" "o} (o "4 (o"x)" )0 o)™
— a(x) "o (o (o X))o )™
= a(x)(o'x) (o™ (o)) (o) ()
= N,'(O'ix) .
Therefore Ny(o'x)EGi=G,i.

If ar(x) (%) = B(x)"* B(x) ™%, then a(x) ™' B(x) € G,a. Hence a(x) (o /(g x)"?)
a(x) is conjugate to B(x) (o ™/ (a'x)"*)B(x) in G .

For yegG,
(3.2.1) aly~"xy) ey "xy) " = oKy (o))
=y~ a(x) a(x)y
=y () a( My .
Hence

Ny a'xy) = a(y™"xy) a1y s xy)" ey "xy)
= a(y Y)Yy N e o xy yal v )
which is conjugate to N,(ox} in G, by 3.2.1.
Hence we obtain a mapping from the set of G-conjugacy classes of o'G to the

set of conjugacy classes of G,i which does not depend on the choice of a. If
g€ Zy(a'x), then

gEZ (o™ (o'x)"?) and a(x)'ga(x)EZ(N (0'x)) .

Since
() "ga(®))” = a(@) "o go a(x)™
= a(x)" "o gt a(x)™
= a(x)™(c"x)"'g(o"x) a(ix)
= a(¥)"'ga(x),
we have

a(x)'ga(x)EZg,i(Ni(o'x)) .
Conversely, let g be an element of G such that

a(¥)7ga(x) € Zg,i(Ni(o'x)) .

Then
(322) geZG(o.—mi/d(o.ix)m/d)
(3:2.3) (e(%) "ga(@))™" = alx)ga(x) .

By 3.2.3
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£ = a(x)"a(x) " ga(x)a(x) """
—_ O_—it(o_ix)tg(o.ix)—lo.it
gfr“ _ (O_—da_—xt(o.xx)ta.d)gud(a.—d(a.ix)—to_ito_.i)
— (a_—zto.—it(a.ix)ta.zt) (o.—it(a.ix)tg(o_ix)—to_it)
X (o.—it(a.ix)—to.ita.it)
— a_—ZiI(O.ix)ng(o.ix)—Zta.Zit .
Repeating this, we get
(3.24) &7 = o aix)g(ax) ot

Substituting m/d for j in 3.2.4, we get
gd"” — o_—mi:/d(a.ix)mt/dg(a.ix)—mt/da.mit/d
_ (o_—mi/d(a.ix)m/d)tg((o.ix)—m/do_mi/d)t
= g .

Since t{/d=1 (mod m/d), there exists an integer p such that ti/d+mu/d=1.
Substituting #/d for j in 3.2.4, we get

gfr" — o.—izt/d(a.ix)it/dg(o_ix)—if/do.;zt/d
— " i"’t/d( oix)itl o.—mm/d( otx)mlig
(o)~ mHEGmild(gix)=itld it

= xgx!.
Hence geZy(o'x). Thus we obtain
(3.2.5) a(x) ' Z(o'x)a(x) = Z;,{(N(o'x)) .

This proves the part (3). The bijectivity of N, can be proved as in [4]. Since
o\ad o\ — —itf i
a(x")" a(x”) '=c""(c'x")}, we get also the part (2).

Corollary 3.3. For any f, g€C(G,),
<f> g>G¢i = {foN;, goNDsic .
Corollary 3.4. |(G,)\<oD>| = [(GN)yi[KaD] .

Proof. By 1.3 and 1.4, the right hand side is equal to dim {f | ,i¢; f €C(AG)}.
Since the left hand side is equal to dim C(G,),, we obtain the equality from
lemma 3.2 (1).

DerinITION 3.5. We define a map

i-res
C(AG) —> C(G4i)g —> 0
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by

(t-resf)oN; = fl,c.  fE€C(AG).
The map is called the i-restriction.

RemMARK 3.5.1. The equality 2.3.1 can be rewritten as follows. Let R be
a rational representation of G. If (m, p)=1, then

i-res Bo[AR] = B4[R)],
where we consider R as a representation of G.

Lemma 3.6. Let H be a connected closed subgroup of G defined over k. Then
the following diagrams are commutative:

ind
(3.6.1) C(AH) —5 C(AG)
i-res . i-res

d
C(H ) —> C(Co)s

res
(3.6.2) C(AH) — C(4G)
i-res i-res
res
C(HO"')G D C(Ga')cr
where ind and res means the usual induction map and restriction map respectively.

Let H be normal, and n: G—G|H the canonical homomorphism. Then the following
diagrams are commutative:

(3.6.3) C(A(G/H)) AR C(AG)
i-res N i-res

CUGIH))e—— C(A(Gy)s »

(3.6.4) CAG)Q - QRC(AG,) —> C(A(G, X +- X G,))
i-res® -+ Ri-res i-res

C(G1e) @+ RL(Gei)e —> C((Gy X -+ X G,)s) -
Here the map w: AG—A(G/H) is defined by n(c'x)=0c'n(x) (i=0, 1, -+, m—1).

Proof. The commutativity of 3.6.2-3.6.4 are easy to verify. We shall prove
only 3.6.1. Letx,€H (r=1, :-+ ¢) be so chosen that

(%)°No'H = Ujy(o'x,)

is a disjoint union. Then by 3.2,
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Ni(ox)o! N Hoyt = UfoiNi(o's, o
Hence for f eC(AH),
ind (f|AH — AG) (o'x)

= |AH| 72750, f((a7y) H(o'x) (a7y))

= m7  H| 7275 e f(y (o))

= ELIIZG(OJxr)l * IZH(OJxr){ _lf(a'ixr)

= 201l Ze, i(N(o'x,))| + | Zy i(Ni('x,)) | 7

-(i-res f) (Ni(c'x,))
= ind (i-res f | H,i — G,i) (Ny(co'x)) .

Here we considered f =0 outside AH.

Lemma 3.7. Let \v=(G,i), be given. Suppose that there exists a virtual
character X~ of AG such that i-res X~=vr. Then there exists an irreducible
character X of AG such that i-res Xy = £+

Proof. Let
X~ = (coXy +aEQXy+ )+ .

We may suppose that the right hand side does not contain any irreducible charac-
ter which vanish identically on ¢'G. Since

(3.7.1) i-res X~ = (co+e, &) i-res Xg +
we get the inequality
(3.7.2) [(coteli+-) <1

for each T&Gal (Q/Q). (See 1.4.1 and 1.4.2.) If at least two terms appeared
in 3.7.1, the strict inequality would hold in 3.7.2. Hence | Ng)sq(cot+ci8'+ )|
<1 and ¢;+c¢'+--=0. Hence only one term appears in 3.7.1, and |cy+c,&*
+-++|=1. The following lemma shows that ¢,+¢,{'+ = %{" (j€Z). Thus
£71QX, satisfies our condition.

Lemma 3.8. If ce Z[{] has the absolute value one, then c is a root of unity.

Proof. Put K=Q(}) and K,=@Q({+¢™"'). Denote the unit group of K
(resp. K,) by E (resp. E,). Since ¢ is a unit of K and the rank of E and E| are
the same, some power ¢¥ of ¢ is contained in E,. Let &y, -+,&,>0 be fundamental
units of E,. Let c¥=wé&%---&,", where w is a root of unity. Since |c¢|¥=2§E 0.

Cyp . N__
& 7=1, we get ¢V=w.
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4. Lifting theory of exponential unipotent groups

4.1. Let U be a nilpotent Lie algebra over £ defined over k. For x, yE U,
let

(4.1.1)  H(x, y) = x+y-+alx, y]+b[x, [x, y]]+cly, [x, y]]+ -,

where a, b, ¢, --- are elements of & which is independent of x and y. Suppose
that U is a group under the multiplication rule x-y=H(x, y) and denote this
group by U. Such U is called an exponential unipotent group. Denote an
element x&U by exp x when x is considered as an element of U. The inverse
map of exp: U—U is denoted by log. Occasionally exp and log are omitted.

4.2. Let W be the dual space of . Fix a A€W and put B(x, y)=»x[x, y].
Then B is an alternating bilinear form on . Let $* be a subalgebra of 1 such
that

(4.2.1) B(x,y)=0  for x,ys9*,
(4.2.2) dim § — % (dim U4dim 113)

where U is the null space of B. Put H*=exp 9.

4.3. Let , be an additive character of k such that |, is o-invariant
and non-trivial. Then (s)F1 for some s€ky. Let y(x)=1r(sx). Since
Y(1)=1, the restriction of yr to an arbitrary subfield of &, is non-trivial. Since
\p(s'lx)zxp(s‘lx”i) for xek,,,

(4.3.1) W) = P57 x)
We define the o-action on W by
M) == for AW,

For A€W we define a linear character ¢, of H* by ¢r=1rjoNclog. (See 4.1.1
and 4.2.1.) Let A€/ and choose H? to be o-invariant. Since the restriction
of ¢, to H* is o-invariant, we can define a linear character A¢, of AH by
Apy(oix)=a(x). Define Tr;: k,—k, (d=(m, 7)) by Tra=3X"d"x"" (xEk,,
1=0, 1, -=-,m—1). If Tr;s=0, then s can be represented as s———t—t"d, d=(m, 1)
with some ¢€k,. Hence

Yro(5) = ‘[’o(t"tgd) =(t—2t)=1.

This contradicts the choice of s. Hence we can define an element A, Euli by
A=(Tr;s)\,. Note that we can take $=*. For an element x=H*, by 4.1.1
and 4.2.1,
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POMN('s)) = Pory (D4 )

= '\l/(El‘xi(x)'o.'_‘J)

= Y2577 N())

— (s N) ©
On the other hand,

Ady(o'x) = pa(x) = Wyor(x) = W(sA(x)) .

Hence we obtain
(4.3.2) i-res Agy = dns

where ¢, ; is a linear character of Hji defined by

$n,i(x) = Y ((Tr;8)"M(x)) .

Let
Xa; = ind (¢px ;| Hyi = U,i)
AX,— ind (Ady | AH* — AU).

Then by 3.6 and 4.3.2,
(4’.3.3) i-res AX)\ = X)\i .

In general, if A€WV satisfies d=d(\)|m, then we can define a character 4,X, of
A;U in the same manner. It is known (Kazhdan [5]) that every irreducible
character of U can be obtained as X, , with some A€w’//U. Let

AX, = ind (4, X\ | 4,U — AU).

Then every irreducible character of AU can be obtained as AX,®&’ with some
AeEW /AU and 0<j <m/d(\) without repetition. Thus by 3.6, we obtain

Proposition 4.4.  Suppose that U is an exponential unipotent group. Then
for any X € R(G,), there exists a virtual character X~ such that i-res X~ =X.

5. Existence of lifting of R

Lemma5.1. Let G be a finite group, Z a central subgroup of G and 0 Z".
Let p be aprime such that |G|=p"l, (p, )=(p, |Z1)=1. Let U be a p-Sylow
subgroup of G. Suppose that a virtual character X = R(G) satisfies the following
conditions:

(5.1.1) X(x) =0 if x&Z,
(5.1.2) X(x) = 0(x,)X(x,) if x,EZ,
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(5.1.3) | Z ]« | Zg(x)| " X(x)€0[p7"],

where O is the ring of algebraic integers.
Then there exists a virtual character \r&€ R(U) such that

X =ind (0Q@|ZxU—-G).
Proof. For an integer 7, define a class function z* on G by

n it x,eZ

5.1.4 *(x) —
(>-14) =10 i mez

Then lemma 5.1.7 below shows that *€O®ind% <y, R(Z x U). By 5.1.1, we obtain
(5.1.5) IXeind§yR(ZxU).

Let {u, -**, u,} be a complete set of representatives of unipotent classes of G,
and, for each 7, {v;(j=1, -, ¢;)} be a complete set of representatives ot U-
conjugacy classes of u° N U. Define a class function ¢ on U by

d(va) = | Zy(va)| X | Z]| < | Zg(u;)| 7 X(u;)
and

$(@,;)=0  for j*1.

Then X=ind$§.,(0®¢). Since ¢ is an O[p~']-valued class function on a p-group
U, p"p€OQR(U) for a large integer N. Hence

(5.1.6) PYXE(OQind§ y R(Zx U))N R(G) = indZ .y R(Zx V).
By 5.1.2, 5.1.5 and 5.1.6, there exists Y€ R(U) such that
X - lndngo®‘\ll‘ .

Lemma 5.1.7. Under the same assumptions as in 5.1, we get I*&
OQindfxy R(Zx U).

Proof. For a cyclic subgroup 4 of G, put

4] if x>=4
0‘(x)={0 if > A,
Then

(ind§0,,) (x) = X,cc 1
s

y~lzyy=A

and
16
EAczxcunipomdAeA = g*,

where Gunipo is the set of unipotent elements of G. (See [7, proof of Proposition
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27).) Hence for every Z-valued class function f, fg*€0O®ind$ <, R(Z x U).
(See [7, proof of lemma 6].) For each element x=Z, there exists a Z-valued
function yr, € ORindf xy R(<x> x U) such that

Yro(x) = O mod p

and
Yoly)=0 mod p

if == yeZ. (See [7, lemma 8].) Put y=>,c,V,. Then ) is Z-valued, V&
ORind% «y R(Zx U) and Y(x)%£0 mod p for xEZ X Gunipo. Hence, for some
integer N, I*(»"—1) can be written as fg* with some Z-valued class function f
and *(Y¥—1*)€e0®ind5«; R(Zx U). Since FY"=h¥eORind§ ., R(Z x
U), we obtain *€0O®ind§ ;. R(Zx U).

DerFINITION 5.2 ([5]). Let T be a maximal torus defined over k. A
reductive subgroup H of G defined over k is called a distinguished subgroup
if it can be represented as H=Zy( T,) with some subgroup T;of T. Denote the
set of distinguished subgroups by H=4{,. We define a partial order in 4, by
the inclusion and the Mobius function g, on it, where we put H=H,». (See
1.6.) For (T )", let

] I
RT,:' = RT,G,,' )

where R ;i is the virtual character of G, corresponding to (7, 6) constructed
by Deligne and Lusztig [1]. Let

o _ K9
T, T,Go
- EHEJ{},-"IJ’l(H) ind (R%,HU'|H0‘ — Gyi) .

Let N': T,i—T, be the norm map. For d&(T,)", we define a class functions
AR% and AKY§ on AG by

. N
i-res ARy = R%Y
. i
i-res AKy =K%Y

Lemma 5.3 ([5; Propositions 4 and 5]). Let Z be the center of G. If the
Jordan decomposition of x=G,i is x=x.x, where x (resp. x,) is semisimple (resp.
unipotent), then

(5.3.1) Kb (x) =0 if %62y
(532) KoT,t(x) = a(xs)Kg‘,i(xu) lf xsEZa-"

Moreover there exist constants p(l) and q(l) which depend only on the semisimple
rank [ of G such that if p> p(l) and q¢> q(I), then
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(5.3.3) | Z |1 Zsp(x)| KT (x)€0[p7] .
By 5.1 and 5.3, we get

Corollary 5.4. Let Z be the center of G. If p> p(Iy and q>q(l), then there
exists a character \» € R(U,+) such that

Kb =ind (0Qv|Zx Uy — G,).

Theorem 5.5. Let T be a maximal torus defined over k and 6 (T ,:),. If
p>p(l) and g> (1), then there exist virtual characters Ap, Ap’ € R(AG) such that

i-res Ap = R,
i-res Ap’= K7 ;.

If {RY.,, RY ,>=1, then we can choose Ap so that {Ap, Ap)s=1.

Proof. We prove by induction on dim DG, where DG is the derived group
of G. If dim DG=0), the statement is clear. Let dim DG>0. Since the state-
ment about R ; follows from that about K% ; by an induction argument and by
3.7, it suffices to prove the statement about K% ,. By imbedding the group &
into a group with a connected center and the same derived gioup as G, we may
suppose that the center of G is connected. Hence we must prove the existence
of a character 4pe R(A(Z x U)) such that i-res Ap=0Q+r. (See 3.6 and 5.4.)
Such an A4p exists by 4.4.

6. Liftings of regular and semisimple characters

6.1. Let G be a reductive group with a connected center Z. Let Band T
be a Borel subgroup and a maximal torus both defined over k. Let I be the set
of o-orbits of the simple roots with respect to TC B. In the following we use
the notations of [1; Chapter 10]. Let X be a linear character of U in general
position.  Then

(6.1.1) Ty = indgX
is independent of the choice of X. Put
(6.1.2) Ag =2 (—1)indE )Ty

where L(J) is the Levi subgroup of a parabolic subgroup P(J). An irreducible
component of I'; (resp. A) is called a regular character (resp. a semisimple charac-
ter). Then the followings are known. (See [1], [3], [10].) For an arbitrary
irreducible character p of G,

(6.13) (T py =0 or 1
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(6.1.4) (D p>=0 or =£1.
Let x be a geometric conjugacy class of G. Put
Py = ZEOT],f)mod(;(—l)f(G)"r(T)<Rg" R%>_1R2~

and
P( = (—1)r(G)_5xZ(T,0)modG<Rg'y g‘>-1R19' “

[0]=x«

Then p, and p} are irreducible characters of G and one has

(6.1.5) Ty =0,
and
(6.1.6) Ay = (1)@ %p

where 7(G) is the split rank of G. Note that an irreducible character is regular
and semisimple if and only if it is equal to some irreducible +R%. Let ! be the
semisimple rank of G, then

(6.1.7) (g, Top = <A, As> = | Z]q".
Denote T'g « (resp. Ag,+, Sts,#) by T; (resp. A;, St,).

7

Lemma 6.2. (1) Define a class function AT =AT'; on AG by i-res AT=T,.
Then AT € R, (AG).
(2) Define a class function AN=AA; on AG by i-res AA=A,. Then AAER
(4G6).
(3) Define a class function ASt=ASt; on AG by i-res ASt=_St;. Then ASte
(AN,
(4) Denote the k, ,-split rank of G by r(G, i) and put E(i)=(—1)@D" D,
Define a class function A&, on AG by i-res A&;=E4(i). Then As;€ R(AG).

Proof. (1) Choose the character X in 6.1.1 to be o-invariant and extend X
to a linear character AX of AU by AX(s'x)=X(x). It suffices to prove that the
linear character 7-res AX of U, is in general position. 'This can be proved by
3.6.3 and 3.6.4.

(2) We prove (2) by using lemma 1.5. Fix a subset JC/ and put d=min{j>

0| J7=]}. Let

a, =

{(_1)|f/<c">1 if d|i
0 if dyi.
If de|m, then it is easy to verify that e|> Y, n(defi)a,. Hence AAE R(AG).

(3) The proof is similar to (2).
(4) If the Frobenius endomorphism of T is given by g7w, then &x({)=det w™?.
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Here we assume that the Frobenius endomorphism of a maximally split torus is
given by g7. (See [1; 1.1].) Hence 4&, € R(AG).

Lemma 6.3. Let G be a reductive group with a connected center. Suppose
that an irreducible character p, & (G, is regular and represented as i-res Ap==Ep;
with E=+1 and some Aps(AG)". Then by modifying Ap, if needed, we can
suppose that E=1 and

{j-res Ap, T';> =1 0<j<m—1.
In particular Ap|;=0-res Ap is regular. Moreover

(6.3.1) | {irreducible components of T} [<a)|
= {AT, AT).

Proof. Let
AT = (cAp+aERAp+ -+ E" ' QAp)++-- .
Then ¢, are non-negative and
T = (cotertFep-)pt-o )

where Ap|;=p. Hence there is at most one non-zero ¢, and, if exists, such a ¢,
equals one. Put Ap’=E'®Ap and ¢/=c,,,;. Here we identify {0, ---, m—1}
with Z/(m) naturally. Then {"{i-res Ap, T,>=c,’. Hence if we take such 4p’
instead of Ap, we have é=1, ¢;=1 and ¢;=++-=¢,,_,=0. Since

7ot j-res Ap, T';p = mCE'QAp, AT 4 = mc,
we obtain
{j-res Ap, T';> =1 0<j<m—1.
Since, for each irreducible component X of T,
XAXT X" (d = d(X))

is the restriction of some irreducible component AX of AT and the converse is
also true, 6.3.1 holds.

Lemma 6.4. Let G be a reductive group with a connected center. Suppose
that an irreducible character p,&(G ), is semisimple and represented as i-res Ap=
&p, with E==+1 and some Aps(AG) . Then Ap|;=p is semisimple.

Proof. Let

AA- (CO/],) ] (15®44P i ...,l (in»lét.m*l@‘/lp) ' e
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If we can prove that there exists at most one non-zero ¢;, then we can prove the
semisimplicity of p by the same argument as in 6.3. Since, for each irreducible
component X of A, X-4+X"4 - +X"" (d=d(X)) is the restriction of some
irreducible component 4X of AA, we obtain

(6.4.1) CAA, AAY> | {irreducible components of A} (o> .

Let
AA = (d AX+-dERQAXA-++)+ -+ .

Then
the left hand side of 6.4.1
> SV arso(di-+di+ )= the right hand side of 6.4.1.
Since
the left hand side of 6.4.1 = m™'23r2(<A,, ADc,,
and

the right hand side of 6.4.1
= | {irreducible components of I'} /<o»| (by 6.1.5 and 6.1.6)
= <AF: AF>AG
=m 25T, T e

ot )

these two terms are equal by 6.1.7. Hence for each irreducible component
X of A, we have di+d?+---=1. Hence there exists at most one non-zero c;.

6.5. If {R%, RY>=1, a virtual character of the form RY% is called a regular
semisimple character. Denote the set of regular semisimple characters of G by

RS(G). Further, put RS.(G)={RS(G)U(—RS(G))} NG

Lemma 6.6. If R} =RS(G),, then there exists a o-invariant pair (T, 0,)
such that Ry=Ry".

Proof. By Deligne and Lusztig [1, Chapter 5], a conjugacy class of (7, 6)
corresponds to some regular semisimple conjugacy class of the dual group G*.
Since a o-invariant regular semisimple class contains a o-invariant element, the
lemma is clear.

Lemma 6.7. Let G be a reductive group. If p> p(l) and q>q(l), for each
p.ERS (G,),, there exists an Ap<(AG)" such that i-res Ap=p, and Ap|,=pE
RS (G),.

Proof. By the same reason as in the proof of 5.5, we may suppose that the
center of G is connected. By 6.6 and 5.5, therc exist an irreducible character
Ap of AG and &==1 such that i-res Ap=Ep,. Since p; is regular, we may
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suppose that €é=1. By 6.3 and 6.4, 4Ap|, is regular and semisimple. Hence
Aplc=RS.(G).

6.8. Denote the mapping RS.(G,:), 2 p,—~pERS(G), by i-lift,. Denote
the mapping RS(G,:),—RS(G), induced by ¢-lift, by 7-lift.

Lemma 6.9. If R} ,=RS(G,), then R%:5" € RS(G),, where N": T—T, is
the norm map. Denote the mapping RS(G,)2 Ry —REn" €RS(G), by =-lft.
This induces the mapping RS . (G,)—>RS.(G),, which is denoted by *-lift.. Then
*-lift is well defined and bijective.

The proof is clear from [1; 5.21.5].
Corollary 6.10  The mapping
i-lift,: RS(Gyi)r = RS (G),
1s bijective.
Proof. By 1.4, ¢-lift, is injective. By 6.9
|RS.(Gyi),| = |RS4(G,)| = |RS.(G)sl .
Hence -lift, is bijective.

Lemma 6.11. Let G be a reductive group and p> p(l), g>q(l). For each
p, ERS (Gyi),, there exists an ApE(AG)" such that

i-res Ap = p;

and
j-res ApERS (G,))s 0<j<m—1.

Proof. Fix an integer j. Let i-lift,p,=p and j-lift,p,=p (See 6.10.).
Then, by 6.3 and 6.7, there exist Ap, Ap’&(AG)" such that

i-res Ap = p, Aple=rp,
{-res Ap, Tp=1 0<ZI<m—1,
Jres Ap’ = p; Ap'le=r,

and
L-res Ap, T =1 0<I<m—1,

Then Ap’=§'®Ap for some t. Since
{l-res Ap’, T'p = {'{l-res Ap, T' >,

g=1. Hence Ap’=Ap. This proves the lemma.
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7. Main theorem (The case: (m, P)=1)

7.1.  Let G be a reductive group defined over k and / be its semisimple rank.
Let T be a maximal torus defined over &, let W be the Weyl group with respect
to 1" and suppose that the Frobenius endomorphism of T is given by o=qrw,
with some w,& W (See the proof of 6.2 (4).). Let X=X(T) be the lattice of
characters of 7. Then X is a W-module.

Theorem 7.2. There exist constants p(l) and q,, where p(l) is the same con-
stant as in 5.3, and q, depends only on (W, o)-module X and m, such that if p> p(l),
and q>q, and (m, p)=1, then AR is a virtual character of AG for any 0 =(T,)".

Corollary 7.2.1. Under the same condition as in 7.2, the map 1-lift coincides
with *-lift.

In the remaining of this section, we prove theorem 7.2, and g¢,, ¢, (=1, 2, -+-)
are some positive constants depending only on (W, o)-module X and m. The
set of X n-matrices 1s denoted by M ,(Z).

Lemma 7.3. If f(x), g(x)€M (Z)[x] and g(x) is monic, then one and only
one of the followings holds.

(1) [f(9Z2": f(9PZ"Ng9Z"]>eq  for 4>,
where ¢, and q, are some positive constants depending only on f and g.
(2) f(x) = g(x)r(x)  for some r(x)EM,(Z) [] .

Proof.

[f(@Zz": f(9Z2"Ng(9Z"]
= [/(9Z2"+5(9)Z": g(9)Z"] .
Choose r(x)eM,(Z)[x] and put s(x)=f(x)-+g(x)r(x) so that s(x)=0 or d=deg s
<degg. Suppose that s(x)=0. Then
[f(92": f(9Z" N g(9)Z"]
= [(9)2": s(9)Z" Ng(9)Z"]
= [g7's(92": ¢ *S(9Z"Nq'¢(9)Z"] -

Thus we obtain (1).

7.4. To prove 7.2, it suffices to prove that AK3& R(AG) by 1.8. Note
that AK% depends only on 8] ,,. For a divisor d of m, (w,, -+, w,))E W'—A
(A is the diagonal set) and we W, denote by Y, (w, w,, -+, w,-;) the set of p’s in
X which satis‘y the following condition:
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(7.4.1) 1i(grw)w,ue (i(grw)) X .

For (w,, w,)€ W?—A, we W, denote by Y (w, w,, w,) the set of u’s in X which
satisfy the following condition:

(7.4.2) (w,—w)p E(qro—1)X .

Put S=JY,U lJY, We claim that

(7.4.3) pt+2Dwew(1—w) X TS

for p€ X, if g>¢, for some ¢,. Put X;=2",cp (1—w)X. For every Y,
(7.4.4) [e+Xo: YN (p+Xo)] > for ¢>g¢q5,

for some ¢; or pu+X,C Y for some Y. Assume that u-+ X, is contained in S.
Note that in 7.4.4, constants ¢, and g; can be chosen independently of . Since
w—+ X, is contained in S, if ¢>>g,, for some ¢,, 7.4.4 can not hold. Hence, if ¢>
g5, for some gs, there exists an r(x)=End(X)[x] such that one of the followings
holds:

(7.4.5) 425wy w,(1—w) = 225(xTw)'r(x)

(7.4.6) (w,—w,) (1—w) = (xrow—1)r(x) .

Comparing the degree in x, one sees that 7.4.6 can not hold and that 7(x) in 7.4.5
is a constant. Put r(x)=a. Then for each i, w,(1—w)==a. This contradicts
(g, =+, wy—1)€EA. Hence our claim 7.4.3 is proved. Hence to prove 7.2, it

suffices to prove AK4"*e R(AG) for peX—S. Here ¢ is chosen as in 2.1.
In the following we fix a =X, put 0=d¢op and assume that p> p(I) and

4> ¢,

7.5. For A€ X, we define a rational representation R(\) of G by R(\)| r=
SHA/, where A\ runs all over the class of A mod W.

Lemma 7.6. If A& X—S, then
<REY, Bs[RO)D6,i =0 or 1.
This inner product equals 1, iff p=wn mod (qgrw;—1)X for some we W.

Proof. RGN, Bo[R(N):]Des
= {popolN’, Bs[R(N)] 14107,
== <¢°2§:(1)(qu7‘)1.#’7 wao,‘“,wd—1)¢027:é(q7wT)ij7\')>T°" :

If >3zi(grwryw A mod ((qrwr)'—1)X is grwp-invariant, >3i7i(grw,)w e
(X94(grwr))X. By 7.4.1, wy=-++=w,_,. Hence the above inner product equals



1L.1IFTINGS OF CHARACTERS 25

{po22io(gmwr) by 2upo(Z5=0(gTe0r)'wN )1,
— (powolh, Showno NSy,
= <¢°.‘L, 2!0¢0w>Tcr .

If wrx=w,x on T,, (w,—w,)AE(gmw;—1)X. By 7.4.2, w,=w,. Thus we obtain
the lemma.

Lemma 7.7. Assume that (m, p)=1 and p=X—S. Let p,=R%Y', po=p
=i-lift p, and define p, € RS(G,;), by p=j-lift p, for 0<j<m—1. Define a class
Sfunction Ap on AG by j-res Ap=p, (0<j<m—1). Then Apc R(AG).

Proof. Leté,p,ERS.(G,,), with &;==x1. Then there exists an irreducible
character Ap’ such that j-res Ap’=¢&,p;. (See 6.11.) Let

Bl AR(n)] = (coAp/+6ERAP + -+ EIQ Ap') -

and
a; = {By[AR(1)], AP Dsic -
Then
Tohalt =me, .
But by 7.6,

a; = {j-res Bo[AR(u)], j-res Ap’>¢, s
= {Bs[R(r),], &P
=0 or §.

Hence, unless 2,5 (0<j<m—1) are equal to each other
|me,| = IE‘Z,‘CUI <m,¢,=0.

Since a;#0, there exists an [ such that ¢,#0. Then {'=€==x1. Since atli=
a&/=¢66 (0<j<m—1) are equal to each other, &;=¢&,-&’. Hence Ap€ R(4G).

Lemma 7.8. Assume that (m, p)=1 and p, N\ & X—S. Then we have the
equality

<REY, BslRMN) ey
= G-lift REY, B[ROV =0 or 1.

Proof. Let p,=K%Y and define Ap asin 7.7. Let
Bs[ARMN)] = (coAp+c.EQAp+-+--+¢, "' QAp)+ -

and
a; = {B[AR(N)], ApPsic -
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Then
SWrdath = me,.
But a;=<{B4[R(\);], p,>=0or 1. Hence ¢,=++-=¢,,_,;=0 and gy=++-=a,,_,.

7.9. Proof of 7.2. Assume (m, p)=1 and u€X—S. Then, by 7.6 and
7.8, for an arbitrary A& X—S,

<RES, Bo[R(MDe
= <REY, B[R],
= (-lift REY, Bo[ROV)]De
=0 or 1.
By this and 7.6, there exists a w& W such that
(7.9.1) i-lift RGN = Ry .
Hence, it suffices to prove that the element w of W commutes with Tw;. (See

7.7)

If we take p—+(gqmwr—1)A instead of u, R%Y does not change. Hence
Ry%N" does not change also. Hence for an arbitrary A€ X, there exists an

element w(\) & W such that

(grwr—1)7'(grwr)" —Nwp=w()) (gmwr —1)7((grewr)"—1)
X w(p+(grwr;—1)X) mod ((qTw;)"—1)X .

Then, dividing by (g7w;)"—1, we obtain

(qror— 1) wop=w(\) (gree,— 1) w(u-+(grw,—1)\) mod X .
If we put 7w’ =w"(Tw;)w,
(7.9.2) (g’ —1)'p=(w 'w(\)w) (gre’—1) " (n+(grw,—1)A) mod X .
Put X,= (A eX|w 'w(\)w=2z} for z= W, then
(7.9.3) U,ewX, = X.
If A, ,€X,, then, by 7.9.2,

(g’ —1)"Hgrw,—1) (A\;—2,)=0 mod X .

Hence, if we put S’={AeX|(qgrw,—1)rE(grw’—1)X}, and if A€ X, then
A+S"DX,. Hence

(7.9.4) [X: S1< | W] .

But
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(7.9.5)  [X: 8] = [(grw,—1)X: (grw,—1)X N (gra/ —1)X] .

Hence, if ¢>¢,, for some ¢,, w;==" by 7.9.4 and 7.9.5. Hence w commutes with
Tws;. Thus we complete the proof of 7.2.

8. Main theorem (The case: m=a power of p)

8.1. Let G be reductive and T (resp. U) be a maximal torus (resp. a ma-
ximal unipotent subgroup) of G defined over k. Let / be the semisimple rank
of G and p(J), q(!) the same constants as in 5.3. If p> p(J), U is an exponential
unipotent group. Let Or, be the Green function of G, corresponding to T'
([11, [5]). Define a class function AQy on AU by i-res AQ7=0r,.

Theorem 8.2. If p> p(I), AQr< R(AU).

Proof. Since U is an exponential unipotent group, all the irreducible
characters of AU are known from 4.3. By 3.3 and 4.3.2, it suffices to prove

(8.2.1) m 2 KO r P EZ

for 0<j<m and A€U]. Take an element t&®, such that Zy(f)=7. Put
X*={yet®|B(+, y)=r on HY}. Note that | X*|=|X*| if ack). To prove
8.2.1, it suffices to prove

(8.2.2) mTPN X5 | Ui | 8 EeZ .

The proof of 8.2.2 can be reduced to the following lemma as in [5].

Lemma 8.3. Let Z be an algebraic variety defined over a finite field k and
Z~ be the variety ovr k corresponding to Z. Suppose that Z~ can be represented as
a finite disjoint union Z; and each Z7 is open in U >, Z7. Moreover suppose that
there exist a variety Y, and morphism f,: Z7—Y for each i such that each fibre
is empty or isomorphic to a fixed affine space A". Let K=k, and { be an m-th root
of unity. Then

m! :'n:OIIZo"I ° ]Ko'il—nciez-

(Note that Kgi=K  md=Rq, ,).)

Proof. Denote the eigenvalues of Frobenius ¢ on H¢**(Z, @)) (resp. H%?
(Z, Q) by |k|"a; (resp. |k|"B,). Then a;s and B,’s are algebraic integers.
(See [5].) Put

x(i) = Z asm-])_z 18-(7”1,1') .

By Lefschetz fixed point theorem, it suffices to prove that X is a character of
Z|(m). This follows from the following lemma.
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Lemma 8.3.1. Let a, B3, -+ be algebraic integers and m(ct), m(B), -+ be
rational integers. Put

V(i) = m(a)a’+m(B)B+ -+
X(i) = {(m, i)
If (i) Z for i=1, 2, ---, then X is a character of Z/(m).
Proof. Since (i)’=+() for 7€ Gal (Q/Q), we get m(a)—=m(a”). Hence

we may suppose that @, B, -+- are conjugate over @ and m(a)=m(B)=---=1.
In general fy(x,y, :-), (%, ¥, --+<€0), means the i-th fundamental symmetric

polynomial of {x, y", -:-| 7€ Gal (Q/Q)}, and

$i® g, ) = 2 () H2 )+
where &/, y’, --- run all over the conjugacy classes of ¥, y, -:- over @ respectively.
If there exist non-negative integers ¢;, d; such that

T =) T (142 = Ao+ fy (@~ +a e

then

(1£&")=r O T (1—x) TI(1-+5")"s

=LA@+ s (o
Hence there exist roots of unity &, &, ++- such that f,(a)=f.(&,, &5 ) for i<m.
Then
(i) = si(a) = s&1, Eo )

= s;(&)+s,(8)+ -+ for i<m.

Hence it suffices to prove that
X(i) = Sz

gives a character of Z/(m) if { is an r-th root of unity. If |m, then X is the

pullback of the regular character of Z/(r) by the projection Z/(m)—Z|(r). If
r /'m, then X=0.

Theorem 8.4. If p> p(l), 4> q(I) and m is a power of p, then ARG and AKY
are virtual characters of AG.

Proof. By 1.8, it suffices to prove that 4Kje R(AG). We may suppose
that the center of G is connected. By the Brauer’s characterization of characters,
it suffices to prove that AK%|; x¢, is a character. Here G, (resp. G,) is a sub-
group of AG which consists of p’-elements (resp. p-elements). If s&€G, and
cueG,, then by some a =G
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Ni(S'a”iu) — (a—lsm/da)_a—l(a.iu)m/da

with d=(m, 7). If s&Z, then two elements a™'(c'u)"?ac and N ,(c"u) are con-
Jugate in G,i. Since m is a power of p, a”'s"“a belongs to Z if and only if
s€Z. Hence AK%|¢, g, is supported by (G,NZ)x G,. Hence

AK%|6,x6, = ind(|G,| 7+ |G,NZ|-AK};(ZNG)X G, — G, X G,) .
If seG,NZ and o'usG,, then
(8.4.1) G, DZy(o'u) = Z;,{(N(c'u)) .
Since ouss=s-oc'u=c'u-s",
(8.4.2) GNZ=G,NZ,.
Moreover
AKS(s-o'u) = KGY ("N (c'u))

= O(NY(s7/4) K (N, (o*)

= O(N"(s))- AK7(c"u) ,
Hence

AKOTI (GsNZ2)XGy = (6°Nm l cmz)@(AKlTl G“) .

Hence it suffices to prove
(8.4.3) (G| |G,NZ|-AK}|6,ER(G,) .

By the same argument as in [5], it suffices to prove that 8.4.3 is Z-valued. If
cucsG,, we have

|G|+ |G,NZ| - AK (o"u)
= |G,| " |G,NZ,i| K7 (Nfo'u))  by5.3.2
= IGsZG’I-l° IZo"'lK;‘,i(N;(O'iu)) .

By this and 8.4.1, 8.4.3 is Z-valued. Thus we complete the proof.

Corollary 8.4.4. Under the some condition as in 8.4, the map 1-1ift coincides
with *-lift.

9. A counter example

Let G=Sp,, (x,;)"=(x;,"), m=2 and p, ¢ be sufficiently large. Le¢ us prove
that the liftings of the irreducible characters 8, 6,, 6, 8., of G,==Sp4(g) do not
exist. Here we follow the notations of [9]. (We denote by 6/(7=9, ---) the
irreducible character of G=Sp,(¢?) ‘corresponding’ to 8,&(G,)" (=9, -*+).) Let
p, be onc of the irreducible characters 0, (i=9, -++). Assume that the lifting of
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py exists and denote this by p,.

Then there exists an irreduciblc character p of

AG such that i-res p=p, (=0, 1). Since
XI(O) = 90_99‘1“010 +913
XZ(O) =4, +611—912*‘913
X3(0, O) = 90‘1“209 +911+‘912+913
X4(0, 0) = ‘90 _‘2010_611_012‘}“ 013
X5(0, 0) = 0, —0u+0,,—0,,

9>N0

and <AR7,, prse=27'(<

70 > PoeT<R% 1, Pc,) is an integer, we have lift 6,

Since

=0{ or 01,, lift §,,=04 or 6/, lift 6,,=01, or 01, and lift 6,,=61, or 07..

p is Z-valued, by [7, proposition 3] we get
p(ou) = p((ou)?) mod 2.

Let ¢ (resp. d) be a representative of the conjugacy class Aj (resp. 4y,) of G,.
Then by the above congruence relation, we get

pi(c) = poc)

pid) = po(d)
Since c is conjugate to d in G, we get

pi(c) = pi(d)

This contradicts the known values of 4,.

mod 2
mod 2.

mod 2.
The fact that the liftings of 8, and 6,

do not exist was first pointed by G. Lusztig.
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