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Introduction. Let G be a connected linear algebraic group defined over a

finite field k=Fq of characteristic p with Frobenius σ. For any set X on which

σ acts, Xσ is the set of cr-fixed points. T. Shintani [8] constructed an intrinsic

bijection of (6rσ)
Λ onto (Gv*)* in the case of G=GLn, where G Λ is the set of

irreducible characters of G. In the case of G=Un, an analogous result is ob-

tained by N. Kawanaka [4]. Let us give the construction of the above mentioned

bijection due to Shintani in a slightly modified manner. Let mbea fixed natural

number, put G=GITm and let A be a cyclic group of order m with generator σ'.

We suppose that A acts on G by / = / ( x G G ) . In the following we write σ

for σf. Define the semidirect product AG by σ~1xσ—χcr(x^G). For any

integer z, we construct a norm map N{ from the subset σιG of A G to the group

G<Γί(=£rσc«,o) which induces a bijection from the set of G-conjugacy classes of

σιG onto the set of conjugacy classes of Gσ«. Moreover this bijection is com-

patible with the cr-action. (See 3.2.) Denote the set of complex valued class

functions on G by C(G). For any integer /, we define the /-restriction map of

C(AG) to C(Gσ.)σ as follows:

These /-restrictions define an isomorphism

(*) C(AG) 2ί ΘΓ

Let ψ G ί G / and % e ( G Λ ) σ . The character X is called the lifting of ^(4lift ψ ')

if there exists an irreducible character %~ of AG such that 0-res X~—X and

1-res X~ = ±ψ. Shintani and Kawanaka have proved that the lifting map is a

bijection from (G σ ) Λ onto (G Λ ) σ when G=GLn or Un respectively. (In section

9, we show that the defining domain of the lifting map is not necessarily the

whole (G(T)Λ for general reductive G.

Let G be reductive and T be a maximal torus of G defined over k. For

0<Ξ(7V)Λ, let Rθ

τi be the virtual character of Gσ« corresponding to (5P, θ). (See

P. Deligne, G. Lusztig [1] and D. Kazhdan [5].) Let iV* be the norm map of
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TV onto Tσ. For (9e(7V)Λ, the class function on ΛG corresponding to
(i?5'/f )o<z<w~i via the above isomorphism (*) is denoted by ARQ

T. Our main
theorem is:

Assume that m is not divisible by p or a power of p and p, q are sufficiently

large. Then ARΘ

T is a virtual character of AG.

This theorem implies that lift (± Rβ

TA)= ± &/%" for 0€Ξ(Tσ)
Λ in general

position.
This paper consists of 9 sections. Section 1 is a preliminary. In section 2,

we modify the lifting theory of modular characters given by Kawanaka. In
section 3, the notion of /-restriction is introduced, which is fundamental in our
theory. In section 4, the lifting theory of exponential unipotent groups is
studied. In section 5, we prove that any Rθ

τ can be lifted to some virtual charac-
ter of G, when^>, q are not too small. In section 6, it is shown that the lifting of
regular character (resp. semisimple character) is regular (resp. semisimple) if it
exists. In sections 7 and 8, the main theorem is proved.

The author would like to express his hearty thanks to Dr. N. Kawanaka
who leaded the author to this field and encouraged him constantly. The author
would also like to express his thanks to Professor R. Hotta and Professor G.
Lusztig for their advices.

NOTATION. Let X be a set. If σ is a transformation of X, Xσ denotes the
set of σ-fixed points of X. If X is a finite set, \X\ means the number of its
elements. For complex valued functions / and g on X, define </, gyx= \ X\ ~1

Σ,«/(*)iW
Let G be a finite group. C(G) denote the set of class functions on G. ίR(G)

denotes the Grothendieck group of G. Since we are mainly concerned with
complex representations, 'representation' means 'complex representation' unless
otherwise stated. 3i+(G) is the set of proper characters. G Λ means the set of
irreducible characters of G. Let H be a subgroup of G. For an element x of
G, ZH{x) denotes {y^H\xy=yx}. and xH denotes the //-orbit of x. When a
prime number p is fixed, an element x of G is called semisimple (resp. unipotent)
if the order of x is prime to p (resp. a power of p). An arbitrary element x of G
can be represented as x=su=us where s is semisimple and u is unipotent. This
decomposition is called the Jordan decomposition.

We denote by (?, H> ••• a connected linear algebraic group defined over the
finite field k=Fq of characteristic^). The Lie algebras of G, H, ••• are denoted
by the corresponding German letter ©, ξ>, •••. We use the same letter σ for the
Frobenius endomorphisms of G, ©, •••. A natural number m is fixed through
out the paper. We put f=exp 2π\/ — \\m. For an algebraic group G (resp. a
Lie algebra ©), G (resp. g) means Gσm (resp. ©σ>»). We denote the induced



LIFTINGS OF CHARACTERS

character of X from H to G by indgX or ind(% \H->G).

1. Preliminaries

1.1. We consider 3l(A) C 3l(AG) via the projection AG-+A. In the

following A (resp. At) is a cyclic group with generator σ (resp. σ1'), where the

order of σ is τ/z. Define a character £ of A by

f(σ') - (ξ = exp 2τrv/-Γ/m) .

1.2. When σ acts on a set X, denote the cardinality of the orbit of
by J(#, cr, X). If there is no fear of confusion we omit <χ or X.

Let R be an irreducible representation of a finite group G and Λ/Γ
character. Let

be its

where d=d{ψ, σ, 3i(G)). Fix a matrix L=Lψ such that

J R ^ ) = L-ιR{x)L and Lw/ί/ - 1 .

Put

Then

I~ιT(x)I = and f =

Hence by putting T^(σιx)=ItT(x) (i=0, 1, •••, /w—1) we obtain a representation

Γ~ of AG whose restriction to G is T. It is easy to see the irreducibility of T~.

Denote the character of Γ(resp. T~) by %=%ψ(resp. X~=Xψ). Putting R~{σdix)

—LiR(x)y we obtain a representation of ^4rfG which is an extension of R. Denote

the character of R~ by ψ~. Then by a direct computation we obtain the equality

(1.2.1)

Since

and

~ = ind

O (1)

ί,G -> AG)

(σ jc) = 0

W = ^Σy»J^σ/ (i)

where e—tnld, we obtain
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) (1)

(\AG\ if * = 1

j
( 0 if Λ? =4= 1

Thus we obtain the irreducible decomposition of regular representation of AG.

L e m m a 1.3. All the irreducible characters of AG are obtained as XZ®ξj

with Λ/Γ <=GΛ/<σ-> and 0<j<mld(ψ) without repetition. If d{$)/ίy then %ψ = 0

on σιG.

Lemma 1.4.

(1.4.1) <Xψ, XZ\iG = d(ψ) if

//%Γ, Xϊ(Ξ(AG)A andXΐ\GΦXϊ\c, then

(1.4.2) <%Γ, X^X'G - 0

Proof. These can be easily obtained by [8, Lemmas 1.1 and 1.2] or [4,

Lemma 1.4], and by 1.2.1,

Lemma 1.4.3. IfX(Ξ(AtG)A and %(σI)Φ0, then

Proof. Put *=</(%IG) and t=d(x\^G). Then <%", X>ff/c=<X, X > Λ Φ 0 .

Hence (X| <;)''=% | c . Thus we get ί |ί. We get the equality X°s=X®ξi for

some;, but f V ' ) = 1 s i n c e Xi^φO. Hence ^ = 1 on At. Hence %σS=:X and

I s. Since £ | d(X) and ^ | t/(X), we complete the proof.

Lemma 1.5. Fix a divisor d of m and X^3l(AdG). Suppose that integers

at (ί<i<m) satisfy the conditions:

(1.5.1) if (m9i)=(m,j), at^aj

(1.5.2) if dXi , * f .=0

(1.5.3) if de\m , e\^ιldeμ(deli)an

where μ is the usual Mό'bius function. Define a class function ψ on AG by y]r=

hX0"'"1) on σιG. Then ψ£Ξ$l(AG).

Proof. Define a class function ψ' on AdG by putting \\rf=adtX on σdiG.

Then o/r=:ind (\|r71 AdG—>AG) by 1.5.2. Hence we may suppose that d=l. For

a divisor e of w, put ece—'sζ^i\eμ(e\ι)aι. Then r/s are integers by 1.5.3, and
flΊ=flr(ωir)=Σ3ci(»ι.ι)ί'^ Hence, on σ'G we have
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Σ.!«c, ind^G

G(X I AeG) - Σ.ιc. .>«# = a,X = ψ .

Therefore ψ = Σ . ι . A ind^G

G(X|Λ e G)e^(^G).

DEFINITION 1.6. We define a Z-valued function μ on a finite partially

ordered set Si with the maximum element G as follows:

μ(G) = 1

and

This function μ, is called ί/z£ Mϋbίus function of Si. Occasionally we write μ( ,

Si)ϊθX μ(-).

Lemma 1.7. Suppose that σ acts on Si. Extend μ( , Sίσt) to all over Si

by equating 0 outside of Mσ*. Put at = μ(H, M^) for a fixed H^M. Then the

a/s satisfy the conditions 1.5.1 to 1.5.3 for d=d(H).

Proof. The conditions 1.5.1 and 1.5.2 are easily verified. We prove 1.5.3

by induction on | Si \. If | Si \ = 1, there is nothing to prove. Assume \M\>\.

Put Sίo= {H'^Si\H'>H}. If H is not the minimum element of J , \Sio\ <

\Sί\. σd acts on Si0 and μ(H> SίOσ.d*)=adι. If de divides m, then by induction

hypothesis e divides the integer

Hence we may suppose that Si has the minimum element Ho and that H=H0.

Note that d(H0)=l in this case. Fix a divisor e of m. By definition

(1.7.1) Σffe^Σ.ι«M«Λ>(#, XO = 0

F o r #

(1.7.2)

If d(H)/ey this equals 0. Suppose e=d(H)e''. 1.7.2 equals

μ{d{H)e/ji)aι. Since d(H)e'=e divides m, this is divisible by d(H)e/—e. With

1.7.1, this implies 1.5.3.

Corollary 1.8. Let Si be a family of subgroups of a group G with the order

defined by inclusion. Suppose that Si is invariant under σ-action. Assume that for

each H(=Si a character XH^9l{AdH) with d=-d(H) is given and satisfies (XHY=

Xuσ- Define a class function ψ on AG by
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iμ(H> M ^ i n d i^π\ΛdH^AdG) on σ'G

Then Λ]T^!R(AG). If we define a class function ψ' on AG by

Ψ' = ?lH^d(H)\i,H±GKH, M9i) ind (XH\AdH-*AdG) on σ'G

we also have ψ'<=$l(AG).

2. Liftings of modular characters of finite groups

2.1. Let φ: kx->Cx(k=Fq) be an injective homomorphism. For

GL(n, k)y put βφ[R]=^Σl=ιφ(rt), where r/s are the eigenvalues of R.

2.2. Let G be a finite group on which ^4=<σ> acts, R Ά ̂ -representation

of G and V its representation space. Define a representation l?f of G by

where d=(m, ί). Define an automorphism I of V® ®V (m-times) by

I(vo® — ®vm-1) = ^

and a representation A{R{ oϊ A{G by

where e=ml(m, ί). We write 4̂JR for ^ 4 ^ . Define an element / of the sym-

metric group Sm acting on Z\(m) by

/0, 1, - ,

J ~ VO, 1, - , rf-1, ί, i + 1 , - i+d-l, 2ι, 2 ί+l ,

and put/(ϋ o® ®ϋΛI-.i)=ί;/(o)®' ®^/(»f-i). Then we have/"1/1/— 7rf and

(2.2.1) J-iAR{σ*x)J = iίΛ(σ^).

Theorem 2.3. // (w, _/>)= 1,

(2.3.1)

where d=(m> i).

Lemma 2.4. Let V=kn and AOy •••, ^ _ ! < = £ = End F.

polynomials fd {depending on Ao> •••, Am^) such that

(2.4.1) det(x-Am_1o.~oAQ)-1άet(x-Io(A0®
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Proof. Let {eu •••, en} be a basis of V and Z) be the set of endomorphisms

of V which are represented by diagonal matrices with respect to {eu •••,£„}. If

AOi •••, ^ W _ ! ^ Z ) , 2.4.1 is proved in [4, Proof of Th. 3.6]. Let us consider the

following diagram.

E p

(2.4.2) p\ L
j^i,- » > fin™

where

Here we identify αo+α^-j \-anx
n with («0, •••, an)^Pn. Since

2.4.2 is commutative. Put y]r(Pn)=X. The morphisms ψ: Pn->X and φ:

φ'1(X)-^X are both quasi finite, hence finite. (See [EGA. IV Th. 8.11.1].) In

the following we assume the knowledge of the materials in [6, Chapter 1]. Put

p(Em)= Y and p(D")= Y''. Then φ(Ϋ')=_ ^p{Dlh)=^(D^)=^(An). Here A*

= {K> —i fljGP" kMΦ0}. Hence dim Ϋ'=n. On the other hand, dim φ~\X)

=dim X=n, Ϋ'C Ϋdφ-\X). Hence

(2.4

Let

.3)

US consider the

1

following

g* > E

v ι-» (x, x)

Y = 1

mappings.

7

lp*
(x,

""x

x .

Put Z=(pχq)oA(Em). Then τr(Z)= K Let F o (resp. Zo) be a subset of Y

(resp. Z) which is open and dense in Ϋ (resp. Z). Then each fibre of π:

π~ι{ Yo) Π Zo-> Yo is O-dimensional. Hence

dim Y — dim Z .
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By the commutativity of 2.4.2, the following commutative diagram can be com-

pleted with some r.

x

Then we have

dim r(Em) = ά\m&or(Em)

= dim(φXψ)o(pχq)oA(EM)

= dim Z = dim Y.

By the same reason, we get

dim r(Dm) = dim Yf.

Hence by 2.4.3, wτe get

(2.4.4) r{Dm) = r(Em).

Further more dim (p X q)oA(Em)=dim (φ X ψ)o(p x q)oA(Em)=dim Aor(Em)=

dim r(Eη.

By the same reason, we get

dim (p x q)oA(Dm) = dim r(Dm)

Hence by 2.4.4,

Take a subset U of (pχq)A(Dm) which is open and dense in (pxq)oA(Dm), and

put U'=((pXq)oA)~1(U). For any element (AOy •••, Am^) of U\ there exists an

element (Z)o, •••, Dm^ of Dm such that

p(A0, '"9AM^)=p(DO9 - D^)

q(A0, •••, Am^) = q(D0, —, Dm,λ).

Since 2.4.1 holds for (Z>0, '~,Dm_γ), we get 2.4.1 for such an (Ao, •• ,^4,w_1).

Since U' is open and dense in Em, 2.4.1 holds in general.

2.5. Proof of 2.3. By 2.2.1. we get
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Hence it suffices to prove that

βΦ[AR(σx)] = βΦ[R((σx)m)] .

Put R{xτt)—Ai. Then this can be rewritten as

(2.5.1)

By lemma 2.4 the left hand side of 2.5.1 is equal to

where a runs over the roots of fd(xd). If a is a root of fd(xd), then ηa is also a

root oίfd(xd) for any J'th root of unity y. Since (d, p)=ί, the first summand is

zero. Thus we obtain 2.5.1.

3. Preliminaries for lifting theory of finite algebraic groups

In the following, G is a connected linear algebraic group defined over a

finite field k=Fq of characteristic p and σ is the Frobenius endomorphism. Let

G be Gσm and write σ for σ\G.

3.1. We define the norm map JV, of the subset σ'G of AG to the group G

as follows:

where α(#) is an element of G such that

a{xfa(x)-1 - σ-'V*)'

and d, t are integers given as follows:

d = (m, i) ti = d (mod m) .

L e m m a 3.2. (1) The norm map N{ induces a bijectίon from the set of G-

conjugacy classes of σ*G onto the set of conjugacy classes of Gσi. This bijectίon is

independent of the choice of a,

(2) The norm map N{ is compatible with the σ-action. Here σ acts on σ*G

by (σix)σ=σiχσ.

(3) \ZJίσ*x)\ = \Z

Proof. Denote the free cyclic group generated by the symbol σ by <σ>.

This group <σ> acts on G by σ~ιxσ—xσ. By this action we define the semidirect

product <σ->6r. Then

Ni(σ<x) = a(x)-\σ-mi'<(σix)m")a(x)

a{xYda(xYl = ̂ ( Λ ) '

For.τeG,
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= a(x)-ι{σix)-t(σ-mi/d{σix)m/d) (σ'x)'a(x)

Therefore Λ î(σ
ix)

If φ)aΛa(x)-ι=β
a{x) is conjugate to β(x)-\σ-mi/d(σix)m/d)β(x) in

)

If φ)aΛa(x)-ι=β(x)σ'β{x)-1, then a(x)-^(x)eG>. Hence α(*)-1(σ-"''V*Γw)

(3.2.1) α(y-'r'xy)<7'iQ;(j'-σ'Λ;>)-1 = σ-it{y-\σ'x)y)t

Hence

-Vf'icy) - a(y-σiχyYισ-mi/d(y-ισixy)m/da{y-σ%xy)

which is conjugate to Nfo'x) in Gσrf by 3.2.1.
Hence we obtain a mapping from the set of G-conjugacy classes of σ'G to the
set of conjugacy classes of Gσ« which does not depend on the choice of a. If

σ - ^ V * ) ^ ) and a(x)-1ga(x)^ZG(Nt(σtx))

Since

(a{x)'ιga{x))σd = a(x)-*d<τ-dgσda(x)σd

- a(x)-σd<r-itgσtta(*)σd

= a{x)-\σix)-tg(σix)ta{x)

we have

Conversely, let £ be an element of G such that

Then

(3.2.2)

(3.2.3) (α(*)-1ία(*))'' = a(x)~ιga(x)

By 3.2.3
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= a(xγda(x)~1ga(x)a(x)~σd

= σ~i\σix)tg{σix)-tσit

gσ2d = {σ'dσ-ι\σtx)tσd)gσ\σ-d{σix)-tσitσd)

= σ-2i\σix)2tg{σixγ2tσ2it .

Repeating this, we get

(3.2.4) g"" = σ^i\σixytg{σixγit^it.

Substituting m/d for j in 3.2.4, we get

gσm = σ~mit/d(σix)mt/dg(σixγmt/dσmit/d

= (σ-mi/d{σix)m/d)tg{{σixγm/dσmi'd)t

— σ

Since ttjd~\ (mod mid), there exists an integer μ such that tijd-{-mμjd=\.

Substituting ijd (or j in 3.2.4, we get

g*' = σ-i2t/^σiχγt/dg^σiχyit/dσt2t/d

= σ~i2t/d(σix)it/dσ~miμ/d(σtx)mμ/dg

(σixγmμ/dσmιμ'/d{σixγit/dσi2t/d

= xgx'1.

Hence g e ZG(σix). Thus we obtain

(3.2.5) φ W # ) = Ẑ W.̂ )).

This proves the part (3). The bijectivity of Nt can be proved as in [4]. Since

a(x'τγda(x<Γγ1=σ -it(σixσ)t

y we get also the part (2).

Corollary 3.3. For any f,g(= C(Gσ*),

Corollary 3.4. | (Gσ0Λ/O> | = | (GΛ)W<σ> I .

Proof. By 1.3 and 1.4, the right hand side is equal to dim {/1 σiG;f&C(AG)}.

Since the left hand side is equal to dim C(Gσi)σ, we obtain the equality from

lemma 3.2 (1).

DEFINITION 3.5. We define a map
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by

(i-res/JoiV,. - /1 Λ f^C{AG).

The map is called the i-restriction.

REMARK 3.5.1. The equality 2.3.1 can be rewritten as follows. Let R be

a rational representation of G. If (m} p)=l, then

/-res βΦ[AR] = βφ[R{] ,

where we consider Λasa representation of G.

L e m m a 3.6. Let H be a connected closed subgroup of G defined over k. Then

the following diagrams are commutative:

ind
(3.6.1) C(AH) >C(AG)

/-res /-res
I ind I

C{Hσi)σ >C(Gσήσ

(3.6.2) C(AH) ^-C\AG)

/-res /-res
* res 4-

where ind and res means the usual induction map and restriction map respectively.

Let H be normal, and π: G->GjH the canonical homomorphism. Then the following

diagrams are commutative:

(3.6.3) C(A{G/H)) ~ C(AG)

/-res r"" r e s

(3.6.4) C{AG,)®-®C(AGn) > C(A(GXx - x Gn))

|/-res® (g)*'-res r ' " r e s

C{Glσi)®'-®C{Gnaήσ

7τ: AG^A(G/H) is defined by πr(<rίΛ?)=σl7r(Λ?) ( ί = 0 , 1, •••, m—1).

Proof. The commutativity of 3.6.2-3.6.4 are easy to verify. We shall prove

only 3.6.1. Let xr^H (r— 1, ••• c) be so chosen that

is a disjoint union. Then by 3.2,
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Nfa'x)0*' Π Hσi = U UNitfxrY**

Hence for f^C(AH)y

ind (/| AH ->AG)(σix)

'Xr) I * I ^ X ) I '

- ind ( f - r e s / l ^ — G^) (JV,(er'*)).

Here we considered/ = 0 outside

Lemma 3.7. Let ^^(G^)^ be given. Suppose that there exists a virtual
character X~ of AG such that i-res X~=ψ. Then there exists an irreducible
character Xφ of AG such that /-res Xψ =

Proof. Let

We may suppose that the right hand side does not contain any irreducible charac-
ter which vanish identically on σιG. Since

(3.7.1) /-res%~ = (co+c1ζ
i+—)i-resXψ + —

we get the inequality

(3.7.2) | ( C o + ^ + . . . ) η < i

for each τeGal(Q/Q). (See 1.4.1 and 1.4.2.) If at least two terms appeared

in 3.7.1, the strict inequality would hold in 3.7.2. Hence I AΓQ(^/Q(ΓO+^IS'IΉ )l
<1 and co~\-c^l-\ —0. Hence only one term appears in 3.7.1, and ko+^i?1

+ — | ^ = 1 . The following lemma shows that co+cιζ
i+ — = ±ζii {j^z) T h u s

satisfies our condition.

Lemma 3.8. If c^Z[ζ] has the absolute value one, then c is a root of unity.

Proof. Put K=Q(ζ) and K0=Q(ζ+ζ'1). Denote the unit group of K

(resp. Ko) by E (resp. Eo). Since c is a unit of K and the rank of E and Eo are

the same, some power cN of c is contained in Eo. Let £0, « , f r >0 be fundamental

units of Eo. Let cN=wSo

eo---£/>•, where w is a root of unity. Since \c\N=€0Ό

f / r = l , we get cN=w.



14 A. GYOJA

4. Lifting theory of exponential unipotent groups

4.1. Let U be a nilpotent Lie algebra over £ defined over k. For x,y& U,
let

(4.1.1) H(xy y) = x+y+a[xy y]+b[xy [xy y]]+c[yy [xy y]] + -.. ,

where aybycy ••• are elements of k which is independent of x and y. Suppose
that U is a group under the multiplication rule x*y=H(xyy) and denote this
group by U. Such U is called an exponential unipotent group. Denote an
element x E=U by exp x when x is considered as an element of U. The inverse
map of exp: tt—>{7 is denoted by log. Occasionally exp and log are omitted.

4.2. Let U' be the dual space of U. Fix a λ e l Γ and put B(xy y)=\[x, y].
Then B is an alternating bilinear form on U. Let £>λ be a subalgebra of U such
that

(4.2.1) B(x,y) = 0 for x j G § λ ,

(4.2.2) dim φ λ = - ί (dim U+dim Πi),

where U^ is the null space of B. Put £Γλ=exp φ \

4.3. Let Λ/Γ0 be an additive character of k such that ψo\km is σ-invariant
and non-trivial. Then ψo(ί)Φl for some ί G i ί . Let Λ/Λ(Λ:)=Λ/ΛO(̂ T). Since

1, the restriction of ψ to an arbitrary subfield of km is non-trivial. Since
Λίr(j""1Λ?σ') for

(4.3.1) -Ψ K"') - ψis'V'x

We define the σ-action on XX' by

λσ(*) = (λK" 1))* f o r

For λ e l l ' we define a linear character φ λ of Hλ by φλ=/Ψ1o°λ.olog. (See 4.1.1
and 4.2.1.) Let λeΐt£ and choose Hλ to be σ-invariant. Since the restriction
of φ λ to Hλ is σ-invariant, we can define a linear character Aφλ of ^4i/ by
i4φ λ(σ^)=φ λ(Λ). Define Trr. km-^kd (d=(my i)) by Γ r . ^ Σ ^ " 1 ^ ' ( ^ e ^ ,
/—0, 1, •••, m—l). If TriS=0y then ί can be represented as s=t—f , d—(my ΐ)
with some t^km. Hence

This contradicts the choice of s. Hence we can define an element λ; £ u£« by
λ=(Γr f f)λ,. Note that we can take φ \ =ξ>\ For an element Λ?eξ)λ, by 4.1.1
and 4.2.1,
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On the other hand,

Aφλ(σ*x) = φλ(*) = ^Ooλ(*) = ψ ^ M * ) ) .

Hence we obtain

(4.3.2) i-resAφk = φλJ

where φ λ ί is a linear character of H^ defined by

φk/x) = ψdTr^Xix)).

Let

XKi = md(φλi\Hϊi^Uvi)

AXλ== ind (^φλI AHλ -

Then by 3.6 and 4.3.2,

(4.3.3) /-res AXλ = %λ

In general, if λ e t t 7 satisfies J~J(λ) |m, then we can define a character ^4rf%λ of
-4rf?7 in the same manner. It is known (Kazhdan [5]) that every irreducible
character of U can be obtained as %λ 0 with some X^WjU. Let

AXλ = ind (AdXλ\AdU->AU).

Then every irreducible character of AU can be obtained as AXλ®ξs with some
X&x'jAU and 0<j<m/d(\) without repetition. Thus by 3.6, we obtain

Proposition 4.4. Suppose that U is an exponential unipotent group. Then
for any X^3l(Gσ.t)y there exists a virtual character X~ such that /-res X~=X.

5. Existence of lifting of RΘ

Ί

L e m m a 5.1. Let G be a finite group, Z a central subgroup of G and Θ&ZA.
Let p be aprime such that \G\=pnly (p, l)=(p, | Z | ) = 1 . Let U be a p-Sylow
subgroup of G. Suppose that a virtual character X£Ξ!R{G) satisfies the following
conditions:

(5.1.1) X(*) = 0 if

(5.1.2) X(x) = θ(xs)X(xu) if x,(=Z,
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(5.1.3) \Z\.\ZG{x)\^X{x)ϊ

where 0 is the ring of algebraic integers.

Then there exists a virtual character ψ^§ί(U) such that

X = ind (θ®ψ\Zx U-> G).

Proof. For an integer ny define a class function n* on G by

n if xs(5.1.4) * * ( * ) = ,
' V ; (0 if

Then lemma 5.1.7 below shows that /* e 0 ® i n d | xu3i(Zx U). By 5.1.1, we obtain

(5.1.5) IXfΞindξxσSi(ZxU).

Let {ulf •••, un} be a complete set of representatives of unipotent classes of G,

and, for each z, {t>f //==l, ••*,£,-)} be a complete set of representatives o r U-

conjugacy classes of u? Π U. Define a class function φ on U by

Φ(^ i) - I ^ ( O I X | Z | |ZG(W,)I -ιX{μi)

and

φ(vιy) = 0 for j Φ l .

Then %=indf xc/(0®φ). Since φ is an O[p~l]-valued class function on a^-group

C7, pNφG:O®Sl(U) for a large integer iV. Hence

(5.1.6) pNX<Ξ{O®'mάG

ZxuSl(Zx U))Π3i(G) = indG

Zxu3i{Zx U).

By 5.1.2, 5.1.5 and 5.1.6, there exists ψ<=3l(U) such that

X = i

Lemma 5.1.7. Under the same assumptions as in 5.1, we get

0®mάG

zxu2ί(ZxU).

Proof. For a cyclic subgroup A of G, put

Then

and

where GuniPo is the set of unipotent elements of G. (See [7, proof of Proposition
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27].) Hence for every Z-valued class function fy fg*<^Q®mά(Zxlj<R(Zx U).
(See [7, proof of lemma 6].) For each element x&Z> there exists a Z-valued
function ψ*e0<g>ind&>Xtf .&(<*> X U) such that

and

ψx(x) ί 0

ψx(y) = 0 mod/)

if #Φj/(ΞZ. (See [7, lemma 8].) Put - ^ = 2 * e z ^ - Ί h e n ^ i s ^-valued, ψ e
0 ® i n d z x ^ ( Z x Ϊ7) and ψ(x)^βθ mod p for xGZxGUniPo. Hence, for some
integer TV, l*(ψN— 1) can be written as fg* with some Z-valued class function /
and l*(yJrN-l*)t=0®ind<ίxu3i(ZxU). Since Z * ^ = ^ e O ® i n d g x ^ ( Z x
£/), we obtain /*GΞ0<g)md£ xuίR(Zx U).

DEFINITION 5.2 ([5]). Let f be a maximal torus defined over k. A
reductive subgroup H of G defined over k is called a distinguished subgroup
if it can be represented as H=ZQ( TQ) with some subgroup TQ of T. Denote the
set of distinguished subgroups by Ά=Jfίτ We define a partial order in Mσi by
the inclusion and the Mϋbius function μt on it, where we put Jί=Jί(Γm. (See
1.6.) For0e(7V) Λ , let

Rτ i =

where i^.cV is the virtual character of
by Deligne and Lusztig [1], Let

Kθ

τ t -— Kθ

TG(Ti

corresponding to (T7, 0) constructed

Let iV1: Tσi-+Tσ be the norm map. For
and AK% on ̂ G by

/-res

( Γ)Λ, we define a class functions

Lemma 5.3 ([5; Propositions 4 and 5]). Let Z be the center of G. If the
Jordan decomposition of χξ=.Gσ* is x=xsxu where xs (resp. xu) is semisimple (resp.
unipotent), then

(5.3.1)

(5.3.2)

Kθ

TJ(x) = if xs

if x9

Moreover there exist constants p(l) and q(l) which depend only on the semisimple

rank I of G such that if ρ>p(l) and ?>(?(/)>



18 Λ. GVOJΛ

(5.3.3) \Z<r,\.\ZcAx)\~lKrλ

By 5.1 and 5.3, we get

Corollary 5.4. Let Z be the center of G. If p> p(I) and q>q(l), then there
exists a character ψξΞ<R(Uσ') such that

KΘ

TJ = ind (θ®ψ\Z(riX Uσι - G σ .).

Theorem 5.5. Let Tbe a maximal torus defined over k and θ^(Tσφ. If
p>p(l) and q>q(l)> then there exist virtual characters Ap, Ap'^!R(AG) such that

z'-res Ap == Rθ

τ t

/-res Ap;= Kθ

τi.

If CRr.n ^τv>=l> then- we can choose Ap so that (Ap, ApyAG=l.

Proof. We prove by induction on dim DG, where DG is the derived group
of G. If dim DG=Qy the statement is clear. Let dim DG>0. Since the state-
ment about Rθ

τ i follows from that about Kθ

τ { by an induction argument and by
3.7, it suffices to prove the statement about K% %. By imbedding the group G
into a group with a connected center and the same derived group as G, we may
suppose that the center of G is connected. Hence we must prove the existence
of a character Ap^Sί{A{Zx U)) such that /-res Ap=θ®ψ. (See 3.6 and 5.4.)
Such an Ap exists by 4.4.

6. Liftings of regular and semisimple characters

6.1. Let G be a reductive group with a connected center Z. Let B and T
be a Borel subgroup and a maximal torus both denned over k. Let / be the set
of or-orbits of the simple roots with respect to Γ c B. In the following wτe use
the notations of f 1 Chapter 10]. Let % be a linear character of U in general
position. Then

(6.1.1) ΓG = indg%

is independent of the choice of X. Put

(6.1.2) ΔG

where L(J) is the Levi subgroup of a parabolic subgroup P(J). An irreducible
component of ΓG (resp. ΔG) is called a regular character (resp. a semisimple charac-
ter). Then the followings are known. (See [1], [3], [10].) For an arbitrary
irreducible character p of G,

(6.1.3) <ΓG, p > - 0 or 1
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(6.1.4) <ΔG,p> = 0 or ± 1 .

Let x be a geometric conjugacy class of G. Put

[0]=*

and

Then px and pf

x are irreducible characters of G and one has

(6.1.5) ΓG = Σ Λ

and

(6.1.6) ΔG = 2JX(—l) r(^ h*p'x ,

where r(6r) is the split rank of G. Note that an irreducible character is regular
and semisimple if and only if it is equal to some irreducible ±RΘ

T. Let / be the
semisimple rank of G, then

(6.1.7) <ΓG, ΓG> = <ΔG, ΔG> = \Z\qι.

Denote ΓG<τ* (resp. ΔCσ., StGσή by Γf (resp. Δ,, Stt).

Lemma 6.2. (1) Define a class function AT=AΓG on AG by /-res AT=Tt.

ThenAΓςΞ&+(AG).
(2) Define a class function AA=AAG on AG by /-res -4Δ=Δ f. Then AA^Sl
(AG).
(3) Define a class function ASt=AStG on AG by /-res ASt=St{. Then ASt(Ξ
(AG)A.
(4) Denote the k(m ιTsplit rank of G by r(G, ΐ) and put 6τ(ί)=(-l)riGli)-r(τJ).
Define a class function A8T on AG by /-res Aετ=Sτ(i). Then Aετ(=3l(AG).

Proof. (1) Choose the character X in 6.1.1 to be σ-invariant and extend X
to a linear character AX of AU by AX(σιx)=X(x). It suffices to prove that the
linear character /-res AX of U^ is in general position. This can be proved by
3.6.3 and 3.6.4.
(2) We prove (2) by using lemma 1.5. Fix a subset Jdl and put d=ι
0 | / " = y } . Let

_l)i//θ''>ι i f d\ι

) if άX%.

If de\my then it is easy to verify that e\^Σιi\deμ(deli)aι. Hence
(3) The proof is similar to (2).
(4) If the Frobenius endomorphism of T is given by qrw, then £Γ(/)=det w(m>t\
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Here we assume that the Frobenius endomorphism of a maximally split torus is
given by qτ. (See [1 1.1].) Hence AεTe&(AG).

Lemma 6.3. Let G be a reductive group with a connected center. Suppose
that an irreducible character pie((?<r«)^ is regular and represented as /-res Ap=Spi
with S— ± 1 and some Aρ^(AG)A. Then by modifying Apy if needed, we can
suppose that ε=l and

<;-res Ap, Γ ; > = 1

In particular Ap | G=0-res Ap is regular. Moreover

(6.3.1) I {irreducible components of Γ} jζcry \

= ζAΓ, AΓ>.

Proof. Let

AT = (c0Ap+c1ξ®Ap+-+cm.1ξ
m-1®Ap)+

Then Cι are non-negative and

where Ap \ G = p . Hence there is at most one non-zero cι and, if exists, such a ct

equals one. Put Ap'=ξ~ι®Ap and c/=cJ+h Here we identify {0, •••, m—l\
with Zj(m) naturally. Then ζl7<t-res Ap, Tty=c0'. Hence if we take such Aρf

instead of Ap, wτe have £ = 1 , c o =l and c1~- '~cm.1—0. Since

es Ap, Γ•> - mζξ'QAp, AΓ>AG - mct,

we obtain

<j-res Ap, Γ > = 1 0<j<m—\ .

Since, for each irreducible component X of Γ,

is the restriction of some irreducible component 4̂% of ^4Γ and the converse is
also true, 6.3.1 holds.

Lemma 6.4. Let G be a reductive group with a connected center. Suppose
that an irreducible character p, e(Gσ*)^ is semisimple and represented as i-res Ap=
£pf with £= ± 1 β//rf some Ap^(AG)A. Then Ap|G=p is semisimple.

Proof. Let
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If we can prove that there exists at most one non-zero cjy then we can prove the
semisimplicity of p by the same argument as in 6.3. Since, for each irreducible
component X of Δ, %+%σH W*'1 (d=d(X)) is the restriction of some
irreducible component AX of AA, we obtain

(6.4.1) <,4Δ, AA>> I {irreducible components of Δ}/<σ>| .

Let

AA = (d0AX+d1ξ®AX+-)+- .

Then

the left hand side of 6.4.1

> Σ<χ,Δ>Φo(^o+ί/i+ ) ^ Λe right hand side of 6.4.1.

Since

the left hand side of 6.4.1 = m^ΣfΓoXΔ,, Δ,.)^,

and

the right hand side of 6.4.1

= I {irreducible components of Γ}/<σ)>| (by 6.1.5 and 6.1.6)

= <AT, AT}AG

these two terms are equal by 6.1.7. Hence for each irreducible component
X of Δ, we have dl-\-dι-\ = 1. Hence there exists at most one non-zero cβ.

6.5. If ζRΘ

T9 2?JO>=1, a virtual character of the form R% is called a regular
semisimple character. Denote the set of regular semisimple characters of G by
RS(G). Further, put RS+(G)= {RS(G) U {-RS(G))\ Π G Λ .

Lemma 6.6. // Rγ^RS(G)σy then there exists a σ-invariant pair (Tly 02)

such that Rθ

τ=Rτ\

Proof. By Deligne and Lusztig [1, Chapter 5], a conjugacy class of (T, θ)
corresponds to some regular semisimple conjugacy class of the dual group G*.
Since a σ-invariant regular semisimple class contains a cr-invariant element, the
lemma is clear.

Lemma 6.7. Let G be a reductive group. If p>p(l) and q>q(l),for each
pt^RS+(Gσt)σf there exists an Ap^(AG)A such that z'-res Aρ=pt and Ap\G=p&
RS+(G)σ.

Proof. By the same reason as in the proof of 5.5, we may suppose that the
center of G is connected. By 6.6 and 5.5, there exist an irreducible character
Ap of AG and £ = ± 1 such that /-res Aρ=Spt. Since ρ{ is regular, we may
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suppose that 8=1. By 6.3 and 6.4, Aρ\G is regular and semisimple. Hence

6.8. Denote the mapping RS+(Ga.t)σ^pt\-^p^RS+(G)σ by ι-lift+. Denote

the mapping RS(Gσ*)σ-*RS(G)σ induced by i-lift+ by /-lift.

Lemma 6.9. If RB

TΛ^RS(GV), then RΘ

T:T^RS{G)σ, where Nm: T->Tσ is

the norm map. Denote the mapping RS(Gσ.)^Rθ

τ^R^Γ^RS(G)σ. by *-lift.

This induces the mapping ,RιSr

+(Gσ)->i?5'+(G)(r, which is denoted by *-lift+. Then

He-lift is well defined and bijective.

The proof is clear from [1 5.21.5].

Corollary 6.10 The mapping

is bijective.

Proof. By 1.4, z-lift+ is injective. By 6.9

\RS+(Gvi)σ\ - \RS+(Gσ)\ =

Hence z'-lift+ is bijective.

Lemma 6.11. Let G be a reductive group and p> p(l), q>q(l). For each

pt^RS+(G<ri)σy there exists an Ap<=(AG)A such that

z-res Ap = p{

and

Proof. Fix an integer j. Let ι'-lift+p, = p and j-liίt+p^p (See 6.10.).

Then, by 6.3 and 6.7, there exist Ap, Ap'(=(AG)A such that

z'-res Ap = ρt Ap\G = p ,

O-rtsAp, Γ f > = 1 0<l<m~l ,

j-ΐesAp' = Pj Ap'\G = p ,

and

</-res Ap\ Γ7> = 1 0<l<m-\ .

Then Aρf=ξι®Aρ for some ί. Since

</-res Ap', Γ7> = rz</-res ^ p , Γ,> ,

ξ*=\. Hence Apf=Aρ. This proves the lemma.
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7. Main theorem (The case: (m, P)=ί)

7.1. Let G be a reductive group defined over k and / be its semisimple rank.

Let T be a maximal torus defined over k, let TΓ be the Weyl group with respect

to T and suppose that the Frobenius endomorphism of T is given by σ~qτwτ

with some wτ<=W (See the proof of 6.2 (4).). Let X=X(T) be the lattice of

characters of T. Then X is a JF-module.

Theorem 7.2. Γtare £.mί constants p{l) and qly where p(l) is the same con-

stant as in 5.3, and qx depends only on (W, σ)-module X and m, such that ifp>p(l),

and q>qλ and (myp)—\, then ARΘ

T is a virtual character of AG for any

Corollary 7.2.1. Under the same condition as in 7.2, the map 1-lift coincides

with *-lift.

In the remaining of this section, we prove theorem 7.2, and qn ct ( ί = l , 2, •••)

are some positive constants depending only on (TΓ, σ)-module X and m. The

set of ft X 7z-matrices is denoted by Mn(Z).

Lemma 7.3. If f(x), g(x)^Mn(Z)[x] and g(x) is monίcy then one and only

one of the folhwings holds.

(1) [f{q)Z ':f(q)Z"f\g(q)Zn]>coq for q>q0,

where c0 and q0 are some positive constants depending only on f and g.

(2) f(χ) = g(χ)r(x) for some r(x)(EMn(Z)[x].

Proof.

[f(q)Zn:f(q)Z"Πg(q)Z' ]

= [f(q)Z"+g(q)Z":g(q)Z"].

Choose r(x)<=Mn(Z)[x] and put s(x)—f(x)+g(x)r(x) so that s(x)=0 or d=άeg s

< d e g £ . Suppose that s(x)φθ. Then

[f(q)Z":f(q)Z' Πg(q)Z"]

= [s(q)Z":s(q)Z"f}g(q)Z"]

= [q-"s(q)Z": q-"s(q)Z" f) q'"g(q)Z"] .

Thus we obtain (1).

7.4. To prove 7.2, it suffices to prove that AKθ

τtΞ$l(AG) by 1.8. Note

that AKe

τ depends only on θ \ z<τ. For a divisor d of m, (w0, •••, w d _i)e Wd—Δ

(Δ is the diagonal set) and w^W, denote by Yd(w, wOy •••, wd-λ) the set of μs in

X which satisΓy the following condition:
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(7.4.1) Σ^J(r^)

For («?!, m,)e W2—A, w<B W, denote by F0(w, ^ , w2) the set of μ's in X which
satisfy the following condition:

(7.4.2) (ϊΰ1-zϋ2)μ^(q

Put S = U ̂  U U *V We claim that

(7.4.3) j * + Σ . e i τ σ ( l -

for μ e X , if #>#, for some #2. Put ^0=Σwewv(l—«>)X For every

(7.4.4) [ μ + ^ 0 : F n ( ^ + ^ o ) ] > ^ for

for some q3 or / Λ + X 0 C Y for some Y. Assume that μ+X0 is contained in S.
Note that in 7.4.4, constants c1 and q3 can be chosen independently of μ. Since
μ-|-X0 is contained in S> if q7>q^ for some #4, 7.4.4 can not hold. Hence, if q>
q5y for some q5, there exists an r(#)£iEnd(X)[V] such that one of the followings
holds:

(7.4.5) ^ytz

(7.4.6) («>!—w2) (1—w) = (ΛTW—l)r(Λr).

Comparing the degree in x, one sees that 7.4.6 can not hold and that r(x) in 7.4.5
is a constant. Put r(x)=a. Then for each /, wt{\—w)~a. This contradicts
(wQ, •• , ^ _ 1 ) $ Δ . Hence our claim 7.4.3 is proved. Hence to prove 7.2, it
suffices to prove AK%μ&3l(AG) for μ^X—S. Here φ is chosen as in 2.1.

In the following we fix a / A E I , put θ = φoμ and assume that p>p(l) and

7.5. For λ G l , we define a rational representation R(\) of G by i?(λ) | τ =

λ/, where λ7 runs all over the class of λ mod W.

Lemma 7.6. //λGX— S, then

<Λ??r, /8*[Λ(λ)J>^ι - 0 or 1 .

w r product equals 1, iff μ = w\ mod (qτwτ—l)X for some w^ W.

Proof. < i ? r f , /SΦ[i2(λ)J>Cσ.

If Σy=o(^τ^r);wΛ mod ((qτwτ)
d— \)X is ^

ĴSΓ. By 7.4.1, wo= =«;(/_1. Hence the above inner product equals



LIFTINGS OF CHARACTERS 25

If ΐvι\=ϊϋ2\ on Tσ9 (wι—w2)X^(qτwτ — l)X. By 7.4.2, tv1=ΐv2. Thus we obtain
the lemma.

Lemma 7.7. Assume that (m, p)—l and μ G l - S . L ί̂ pt=R$f}\ po=ρ
=i-lift ρt and define pJ^RS(G(Γj)(T by p=/-lift p^/or 0 < / < m — 1. Define a class

function Ap on AG by j'-res Ap=py (0<j<m—l). Then Ap<=Ξ$l(AG).

Proof. Let 6Jp;.eJR5r_L(Gσ.;)0. with £; = ± 1 . Then there exists an irreducible
character Ap' such thatj-res Aρ/=Sjpj. (See 6.11.) Let

a. -

Then

But by 7.6,

fly - <i-res βΦ[AR(μ)l j-res iί p'

= 0 o r 6 y .

Hence, unless afeli (0<j<m—l) are equal to each other

\mct\ = I Σ ^ I < « ^ / = 0.

Since α;.φ0, there exists an / such that c,Φθ. Then ζι=8= ±1. Since ajζlj=
ajε

J=εj£
i (0<j<m—l) are equal to each other, £ y =£ 0 £'. Hence Aρ<=3l(AG).

Lemma 7.8. Assume that (m, p)=l and μ, X^X—S. Then we have the

equality

= <ί-liftΛ55.ί', βφ[R(\)]>e = 0 or 1 .

Proof. Let p,—R?rj and define 4̂p as in 7.7. Let

and

a, = <βΦ[AR(X)l Ap\ic .
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Then

Σ"--oV = me,.

But β y=<^[Λ(λ) y], py>=0 or 1. Hence c1= =tfll,_1=0 and ao=-=am.1.

7.9. Proof of 7.2. Assume (m, p)=ί and μeX—S. Then, by 7.6 and
7.8, for an arbitrary

= </$.?', /?φ[i?(λ),]>Gσ.

= <t-lift R'rf, βΦ[R(X)]>ΰ

= 0 or 1 .

By this and 7.6, there exists aw^W such that

(7.9.1) ί-lift/&f = /?#;*" .

Hence, it suffices to prove that the element TO of W commutes with τwτ. (See
7.7)

If we take μ-\-(qrzvτ— l)λ instead of μ, i?*VΓ does not change. Hence
Rγ%N'n does not change also. Hence for an arbitrary λ e X , there exists an
element w(X)ξΞ W such that

+ (qτwτ—l)\) mod ((qτwτ)
m~Λ)X.

Then, dividing by (qτwτ)
m—l, we obtain

(qτwτ—l)~1wμ = w(X) (qτwτ—l)~1w(μJ

Γ(qτzuτ—l)\) mod X.

If we put τw/~w~1(τzυτ)w,

(7.9.2) ^T^-l)-V = (zi;-%(xH (ίF^-lJ-V+CίT^Γ-lW mod X.

Put X,= {\eJ?|«;"1«;(\)a;=48r} for z(=W, then

(7.9.3) U,eipXz = * .

If λi, λ 2 £ l z ) then, by 7.9.2,

(qτwf— iγ\qτwτ— 1) ( λ j - λ ^ O mod X.

Hence, if we put S'={\<ΞLX\{qτwτ~\)X<=(qτw'—l)X}, and if λ G l z , then

2. Hence

(7.9.4)

But
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(7.9.5) [X: S'] = [(qτwτ-l)X: (qτwτ-\)X Π {qτw'-\)X} .

Hence, if q>qu for some qu wτ=to' by 7.9.4 and 7.9.5. Hence w commutes with

τwτ. Thus we complete the proof of 7.2.

8. Main theorem (The case: m=a power ofp)

8.1. Let G be reductive and T(resp. U) be a maximal torus (resp. a ma-

ximal unipotent subgroup) of G defined over k. Let / be the semisimple rank

of G and p(l), q(ΐ) the same constants as in 5.3. If p>p{l), U is an exponential

unipotent group. Let Qτ t be the Green function of Gσ« corresponding to T

([1], [5]). Define a class function AQT on AU by /-res AQT=QT t.

Theorem 8.2. Ifp>p(l), AQτ£Ξ3l(AU).

Proof. Since U is an exponential unipotent group, all the irreducible

characters of AU are known from 4.3. By 3.3 and 4.3.2, it suffices to prove

(8.2.1) w"1ΣΓ.-o1<ρr., ,Φxfl X ° e Z

for 0<j<m and λeU£. Take an element /e@σ such that ZG(t)=T. Put
Xλ==.{y£ΞtG\B{.y y)ΞΞ\ on Hκ}. Note that \Xλ\ = \Xaλ\ i fβeΛϊ. To prove

8.2.1, it suffices to prove

(8.2.2) m^ΣΓΓo1!Xλ

σ. I I t/σ< I T " e Z .

The proof of 8.2.2 can be reduced to the following lemma as in [5].

L e m m a 8.3. Let Z be an algebraic variety defined over a finite field k and

Z~ be the variety ovt k corresponding to Z. Suppose that Z~ can be represented as

a finite disjoint union Z] and each Zΐ is open in (J j>tZj. Moreover suppose that

there exist a variety Y7 and morphism ft: Z7~*Y7 for each ί such that each fibre

is empty or isomorphic to a fixed affine space A". Let K~km and ζ be an m-th root

of unity. Then

(Note that J£σ. =i£σc*,« >=Λ(w t).)

Proof. Denote the eigenvalues of Frobenius σ on He

c

ven(Z, Qj) (resp. i/?d d

(Z, Q/)) by |&Γα ; (resp. \k\nβ}). Then α ; 's and /3/s are algebraic integers.

(See [5].) Put

By Lefschetz fixed point theorem, it suffices to prove that X is a character of

Zl(m). This follows from the following lemma.
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L e m m a 8.3.1. Let a, /?,••• be algebraic integers and tn(a), m(β), ••• be
rational integers. Put

X(ί) = ψ((m, i)).

If ψ ( ι ) e Z for ί = l , 2, •••, then % is a character of

Proof. Since ψ(ί)Ί^{i) for τeGal(©/Q), we get m(a)=m(ar). Hence

we may suppose that a, β> ••• are conjugate over Q and m(a)=m(β)= ••• = ! .

In general fi(x, y, •••)>(*> JS - G O ) , means the ί-th fundamental symmetric

polynomial of {xτ, vτ, ••• | τ e G a l (Q/Q)}, and

where Λ', J^, ••• run all over the conjugacy classes of x9y, ••• over Q respectively.

If there exist non-negative integers ci9 d{ such that

then

Hence there exist roots of unity ζl9 ζ2, ••• such that ft(a)—ft(ζu ζ2, •••) for /<m.

Then

ψ(«) = st(a) - ^ , ?2, •••)

' for /

Hence it suffices to prove that

gives a character of Z\(m) if f is an r-th root of unity. If r\m, then % is the

pullback of the regular character of Z\(f) by the projection ZI(m)->Zl(r). If

rXniy then X=0.

Theorem 8.4. Ifp>p(l), q>q(l) and m is a power of ps then AR% and AK\

are virtual characters of AG.

Proof. By 1.8, it suffices to prove that AKΘ

T<=!R(AG). We may suppose

that the center of G is connected. By the Brauer's characterization of characters,

it suffices to prove that AKΘ

τ\GsχGtt is a character. Here Gs (resp. Gu) is a sub-

group of AG which consists of //-elements (resp. ^-elements). If s^Gs and

σ'uE:Gu, then by some
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Niis-^u) = (a-ιsrίda) a~ι(σiu)mίda

with d=(m, i). If ί 6 Z , then two elements a~\σιu)mlda and Nι(σiu) are con-

jugate in Ga-t. Since m is a power of ^, αrV/rfar belongs to Z if and only if

s e Z . Hence J i ^ | Gs x Gu is supported by (G, Π Z) X GM. Hence

If * e G s n Z a n d Λ G G 8 , then

(8.4.1) G ( D Z C ( Λ )

Since crtu s—s criu=criU'S<τ\

(8.4.2)

Moreover

Hence

Hence it suffices to prove

(8.4.3) \Gs\-l.\

By the same argument as in [5], it suffices to prove that 8.4.3 is UΓ-valued. If

GM, we have

= I Gs I -' I Gs n Zσ/1 .^i.f..(JV^σ'tt)) by 5.3.2

= \GsZ..\-1.\Zσt\K1

TJ(Nt{σiu)).

By this and 8.4.1, 8.4.3 is Z-valued. Thus we complete the proof.

Corollary 8.4.4. Under the some condition as in 8.4, the map 1—lift coincides

with *-lift.

9. A counter example

Let G=Sp4, {xtjY={Xijq), ni—2 and p> q be sufficiently large. Le< us prove

that the liftings of the irreducible characters θ9, θ10) θlly θ12 of Gσ=SpA(q) do not

exist. Here we follow the notations of [9]. (We denote by 0'(z=9, •••) the

irreducible character of G-=Sp4(q2) 'corresponding' to 0 , e ( G σ ) Λ (i=9, •••).) Let

Pi be one of the irreducible characters θt ( ί = 9 , •••). Assume that the lifting of
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Px exists and denote this by p0. Then there exists an irreducible character p of

AG such that /-res p=ρt (i=0, 1). Since

%3(0, 0) =

%4(0, 0) = θ0 -2Θ1O-Θn-Θ12+Θ13

X5(0,Q) = θ0 -011 + 012-013,

and <^i?^!, p>,iG=2"1«i?r:o0, PO>G+<#Γ,I> Pi>Gσ) is an integer, we have lift θ9

=θ'9 or θ[0, lift 01 O=09 or 0(o, lift 6>11=<9ί1 or #ί2 and lift Θ12=θ'u or θ[2. Since

p is Z-valued, by [7, proposition 3] we get

ρ(σu) = p(((τu)2) mod 2 .

Let c (resp. d) be a representative of the conjugacy class A31 (resp. A32) of Gσ.

Then by the aboλ̂ e congruence relation, we get

Pi(c) = Po(c) mod 2

Pi(^) = Po(d) mod 2 .

Since c is conjugate to d in G, we get

Pi(c) = Pi(ί) mod 2 .

This contradicts the known values of θt. The fact that the liftings of θ9 and θ10

do not exist was first pointed by G. Lusztig.
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