THE AUTOMORPHISM GROUP AND THE SCHUR MULTIPLER OF THE SIMPLE GROUP OF ORDER 214.36.56.7.|l-19

Koichiro HARADA ${ }^{1)}$

(Received August 8, 1977)

As in [1], F denotes the simple group of order $2^{14} \cdot 3^{6} \cdot 5^{6} \cdot 7 \cdot 11 \cdot 19 . \quad F$ is popularly called F_{5} as it appears in the centralizer of an element of order 5 of the so called "Monster."

The simple group F has been constructed by S. Norton [2] and the automorphism group of it has also been determined by him. From his construction of F it can be seen that F has an outer automorphism of order 2.

In this note, we shall give an alternate proof of the fact that $|\operatorname{Aut}(F): F| \leq 2$. We also show that the Schur multiplier of F is trivial.

Theorem A. $|\operatorname{Aut}(F): F|=2 \quad$ and $\quad H^{2}\left(F, C^{*}\right)=0$.
By [1, Proposition 2.13], F contains a subgroup F_{0} isomorphic to the alternating group A_{12} of degree 12. It is easy to see the following:

Lemma 1. F_{0} is maximal in F. Every subgroup of F isomorphic to F_{0} is conjugate in F to F_{0}.

Proof of the first part of Theorem A. Suppose that $|\operatorname{Aut}(F): F|>2$. Then there exists an element $\alpha \in \operatorname{Aut}(F)$ of order p, p a prime, such that $C_{F}(\alpha)$ $\supseteq F_{0}$. Let x be an element of $F_{0} \cong A_{12}$ of type (12345). Then by [1, Lemma 2.17], $C_{F}(x) \cong Z_{5} \times U_{3}(5)$. Since no element of $\operatorname{Aut}\left(U_{3}(5)\right)^{*}$ centralizes a subgroup of $U_{3}(5)$ isomorphic to $A_{7},\left\langle C_{F}(x), \alpha\right\rangle \cong\langle\alpha\rangle \times Z_{5} \times U_{3}(5)$. Hence by the maximality of $F_{0},[F, \alpha]=1$. This contradiction shows that $|\operatorname{Aut}(F): F| \leq 2$.

Proof of the second part of Theorem A. Let $m(F)$ be the order of the Schur multiplier of F. We denote by $m_{p}(F)$ the p-part of $m(F)$. \widetilde{F} will denote a central extension of F. For a subgroup A of F, \vec{A} will denote the inverse image of A in \widetilde{F}.

Lemma 2. $\quad m_{2}(F)=1$.
Proof. Let \widetilde{F} be a group such that $\widetilde{F} / Z(\widetilde{F}) \cong F$ and $Z(\widetilde{F}) \cong Z_{2} . \quad F$ contains

[^0]an involution 2_{A} such that $2_{A} \in C_{F}\left(2_{A}\right)^{\prime}$ is the double cover of Higman-Sims group. As the Schur multiplier of Higman-Sims group is of order 2, 2_{A} lifts to an involution of \widetilde{F}. As 2_{A} is conjugate to (12) (34) of $F_{0} \cong A_{12}, \widetilde{F}_{0} \cong Z_{2} \times A_{12}$. This implies that the involution $2_{B} \sim(12)(34)(56)(78)$ also lifts to an involution in \widetilde{F}. If \tilde{i} is an involution of $Z(\widetilde{F})$, we have shown that \tilde{i} is not a square in \widetilde{F}. Let $M=C_{F}\left(2_{B}\right)$ and $R=O_{2}(M)$. Then $M!R \cong A_{5} \int Z_{2}, R$ is an extra special group of order 2^{9} and all elements of R of order 4 are conjugate in M [1, Lemma 2.9]. Hence $\Phi(\widetilde{R})$ does not contain \tilde{i}. Hence $\widetilde{R}=\langle\tilde{i}\rangle \times \widetilde{R}_{1}$ where $\widetilde{R}_{1} \cong R$. Let 3_{B} be an element of order 3 in M which acts fixed-point-free on $R / Z(R)$ [1, Lemma 2.8, $\left.3_{B}=\sigma_{1}\right]$. Then $C_{M}\left(3_{B}\right) \cong Z_{3} \times S L(2,5)$ [1, Lemma 2.15]. We may take $\widetilde{R}_{1}=$ $\left[\tilde{R}, \tilde{3}_{B}\right]$. If 3_{B}^{\prime} is an element of order 3 in $C_{M}\left(3_{B}\right)^{\prime}$, then $3_{B} \sim 3_{B}^{\prime}$ in M. Hence $\tilde{R}_{1}=\left[\widetilde{R}, \tilde{3}_{B}^{\prime}\right]$ and so $\tilde{R}_{1} \triangleleft \tilde{M}$. As $C_{F}\left(3_{B}\right)$ is an extension of an extra special group of order 3^{5} by $S L(2,5)$ [1, Lemma 2.16], we conclude that $\left.C_{\tilde{F}} \tilde{3}_{B}\right) / O\left(C_{\widetilde{F}}\left(\tilde{3}_{B}\right)\right) Z\left(\widetilde{R}_{1}\right)$ $\cong Z_{2} \times A_{5}$. A similar isomorphism holds for $C_{\tilde{F}}\left(\tilde{3}_{B}^{\prime}\right)$. Hence $\tilde{M^{\prime}}\langle\tilde{i}\rangle \mid \tilde{R}_{1} \cong Z_{2} \times$ $A_{5} \times A_{5} . \quad$ As $\left|M: M^{\prime}\right|=2, \tilde{i} \notin \tilde{M}^{\prime}$. Hence $m_{2}(F)=1$.

Lemma 3. $\quad m_{3}(F)=1$.
Proof. Let \widetilde{F} be a group such that $\widetilde{F} / Z(\widetilde{F}) \cong F$ and $|Z(\widetilde{F})|=3$. Let A be a subgroup of $F_{0} \cong A_{12}$ which corresponds to 〈(123), (456), (789), (10, 11, 12) >. Using $C_{F}((123)) \cong Z_{3} \times A_{9} \subseteq A_{12}$ and the fusion (123)~(123) (456)~(123) (456) (789) $(10,11,12)$, we can compute that $N_{F}(A) / A$ is a group of order $2^{7} \cdot 3^{2}$. In particular, $N_{F}(A)$ contains a Sylow 3-subgroup of F. As $\widetilde{F}_{0} \cong Z_{3} \times A_{12}, A$ is elementary of order 3^{5}. Let \tilde{z} be an involution of \widetilde{F}_{0} which maps onto (12) (45) (78) $(10,11)$. Then z inverts A. Further $z \sim 2_{B}$ in F. We have that $C_{\tilde{A}}(z)=$ $Z(\widetilde{F})$ and $\left.\widetilde{N_{F}(A)}=[\tilde{A}, \tilde{z}] \widetilde{\left(C_{F}(z) \cap N_{F}(A)\right.}\right)$. By the structure of $C_{F}(z) \cong C_{F}\left(2_{B}\right)$ we obtain that Sylow 3-subgroups of $\widetilde{C_{F}(z) \cap N_{F}(A)}$ are elementary of order 3^{3}. Hence $Z(\widetilde{F}) \nsubseteq \widetilde{F}^{\prime}$. Thus $m_{3}(F)=1$.

Lemma 4. $\quad m_{5}(F)=1$.
Proof. Let \widetilde{F} be a group with $\widetilde{F} / Z(\widetilde{F}) \cong F$ and $|Z(\widetilde{F})|=5$. A Sylow 5subgroup S of F is described as follows:

$$
\begin{gathered}
S=\langle z, \alpha, \beta, \gamma, \partial, \chi\rangle \\
z^{5}=\alpha^{5}=\beta^{5}=\gamma^{5}=\partial^{5}=\chi^{5}=1, \\
{[\alpha, \beta]=[\alpha, \gamma]=[\alpha, \partial]=[\gamma, \beta]=z,} \\
{[\alpha, \chi]=\beta, \quad[\beta, \chi]=\gamma, \quad[\gamma, \chi]=\partial,}
\end{gathered}
$$

with all the other commutators of pairs of generators being trivial. We have that $\langle z, \alpha, \beta, \gamma, \partial\rangle$ is an extra special group of order 5^{5}. We can also check that all
elements of $V=\langle z, \partial\rangle^{\ddagger}$ are conjugate in F and $N_{F}(V) / C_{F}(V) \cong S L(2,5) * Z_{4}, C_{F}(V)$ $=\langle z, \beta, \gamma, \partial, \chi\rangle$. We have that $V=Z\left(C_{F}(V)\right)$ and $C_{F}(V) / V$ is a nonabelian group of order 5^{3}. The $S L(2,5)$ acts faithfully on $C_{F}(V) / V$. If \tilde{V} is nonabelian, then $\widetilde{C_{F}(V)}=\tilde{V} * C_{\tilde{F}}(\tilde{V})$. Clearly then $Z\left(C_{F}(V)\right) \supset V$. Hence \tilde{V} is elementary and $\tilde{V}=Z\left(\widetilde{C_{F}(V)}\right)$. Let \boldsymbol{z} be an involution of $\widetilde{N_{F}(V)^{\prime}}$. Then $C_{\tilde{V}}(\boldsymbol{z})=Z(\widetilde{F})$ and $[z, \tilde{V}] \triangleleft \widetilde{N_{F}(V)}$. As $\widetilde{C_{F}(V)} /[z, \tilde{V}]$ is of class $2, Z(\widetilde{F}) \nsubseteq \widetilde{C_{F}(V)^{\prime}}$. Hence $Z(\widetilde{F}) \nsubseteq$ $\widetilde{N_{F}(V)^{\prime} .}$ This implies that $m_{5}(F)=1$.

As $m_{7}(F)=m_{11}(F)=m_{19}(F)=1$, this completes the proof of the theorem.

The Ohio State University

References

[1] K. Harada: On the simple group F of order $2^{14} \cdot 3^{6} \cdot 5^{6} \cdot 7 \cdot 11 \cdot 19$, Proceedings of the conference on finite group, Academic Press Inc., 1976, 119-276.
[2] S.P. Norton: Construction and properties of a new simple group, Doctoral Dissertation, University of Cambridge, 1975.

[^0]: 1) This research was supported in part by NSF Grant MCS 76-07253.
