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1. Introduction

We investigate convergence of sequences of Markov chains induced by
direct product branching processes, which are defined by Karlin and McGregor
[7] with the intention of unified treatment of Markov chains in population
genetics. The induced Markov chains that we deal with in this paper have d
types (d>2) with equal fertility (that is, selection does not occur), and mutation
and migration are allowed for. Let Rd~l be the (d— l)-dimensional Euclidean
space and let K be the set of x=(x19 •••, #r f_1)eΛr f~1 such that ^>0, •••,

d-l

tf^^O, 1 — Σ ^/^O Under some conditions, we prove convergence of the

Markov chains (suitably normalized and interpolated) to the diffusion process on
K with diffusion coefficient a(x)=(apq(x))pi^1^..>d_l and drift coefficient b(x)=
(bp(x))psslι .... rf_! of the form

(1.1) app(x) = σ2xp(\-xp},

(1.2) apq(x)=-σzxpxq

(1.3) bp(x] =

Here σ2, apq, μp, μp are constants satisfying σ2>0, apg>0 (p=£q), app<0,
d d

Σ α**=0> μ*>0> μ/=( Σ μύ—μp In some sense, apq(p^pq) is the intensity
9=1 7=1

of mutation from type p to type q and μp is the intensity of immigration of type
p. Our conditions consist of two sorts. The first is some regularity of the
branching process with immigration, which induces the Markov chain, imposed
on the distributions of the number of offspring and of the number of immigrants.
The second is uniqueness, in the sense of martingale problem, of the diffusion
process on 1ST associated with a(x) and b(x). We conjecture that the uniqueness
always holds, but we do not yet have the proof. We give a proof of the
uniqueness in some special cases including the following:

* Present address: College of Liberal Arts, Kanazawa University, Kanazawa.
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( i ) general one-dimensional case (d— 1 — 1);
(ii) no mutation and no migration (b(x)=ΰ)\
(iii) migration allowed, but no mutation (apq=ϋ)\

(iv) apq (p=^=q) depends on q alone.

Consequently, the convergence is established in the above cases. Our method
applies also to some Markov chain models involving selection, which will be
treated in another paper.

Our results have connection with diffusion approximation to genetics model
Markov chains, which is not given a rigorous justification but is a powerful tool
in population genetics (see Kimura [8], Crow and Kimura [2]).

In the one-dimensional case, Feller [3] considers convergence of Wright's
model. Karlin and McGregor [7] make the assertion, without proof, of the
convergence of the induced Markov chains under the condition d— 1 — 1, α12>0,

#21^0' μi—^2—O They prove in [6] convergence to the same diffusion for a
certain birth-and-death process model. Kushner [9] gives an invariance principle
related to Section 3 of this paper and mentions an application to a genetics model,
but he deals with convergence in the space D. As for the convergence of the
corresponding eigenvalues, we give a detailed analysis in [11].

In Section 2 we will formulate our assumptions and results. The proof
will be given in the subsequent three sections. Namely, we establish in Sec-

tion 3 a general invariance principle in a form convenient for us, prove in
Section 4 that the moments of the transition probabilities of the induced Markov
chains have the desired properties and, in Section 5, check the uniqueness of
the solution of the martingale problem in some cases. The most painstaking
part is the derivation of the asymptotic form of the moments of the transition
probabilities in Section 4. Our main tool is the powerful saddle point method,
which is used in [11] in finding asymptotic behavior of the eigenvalues.

I would like to express my hearty thanks to Nobuyuki Ikeda and Shinzo
Watanabe for their valuable advice. The uniqueness proof of Theorem 2.4 in
the case of d—1=2 is due to S. Watanabe.

2. Assumptions and results

Let Z+ be the set of rf-dimensional lattice points with nonnegative coor-
dinates. For each positive integer N, let {Z™\n)=,(Z{N\n\ •••, Z^(n));
n=0, 1, 2, •••} be a d type branching process with stationary immigration.
That is, {Z(ΛΠ(w)} is a Markov chain taking values in Z\ and there exist generat-
ing functions fNyp(sly •••, sd), p=l, •••, d, andgN(sl9 •••, sd) of distributions in Za+
such that, for any j=(jly •• ,jd) and k=(k^ •••, kd) in Z*,

P(Z<N\n+l) = k\Z™\ri) = j) = coefficient of ίfi.-^ in
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We make the following assumptions.

Assumptions 2.1. (i) fNtp is of the form

Λr.A, ->^) = ΣWΣαSW for N>1, \<p<dyΛ = 0 9 = 1

where cn and affi satisfy the following conditions.

(ii) {cn} is a probability distribution in Z ^.independent of N andp with c0>0
and with maximum span 1 (that is, there is no pair of 7 > 1 and δ such that

CO CO

Σ3 £*m=l) Let a= Σ nc* (mean), /(«;)= Σ £«^Λ (generating function), M(w)=
n » = 0 M = O

oo

Σ^X'"' (moment generating function), F(w)—M(w)e~w, b=sup {w\ M(w)<o°}.
«=o

owe o/ the following holds:

(a)

(b) Λ=

(c) α<

(iii) {α }̂ ώ of the form a^=apq/N (pΦq) and a^=ί+(app/N) for all
sufficiently large N, where {ap^} is independent of N and satisfies apq>0

As is remarked in [11], b is positive in the case (c). If <z<l, b>0 and
limM(αΛ=oo, then (c) holds. It is easy to prove that (ii) implies the existence
»t*
of a unique β^(— oo, δ) such that JF

/()S)=0. yS is negative, zero, positive in the
cases (a), (b), (c), respectively. Let K(w)=\og M(w) for w<b. Then J£'(/8)=l

and JK://(yS)>0. See [11], Lemma 2.1. Let σ

z=K"(β). If we define an
associated distribution {cn} of {<:„} by cn=cne

nβ/M(β), then {£„} has mean 1
and variance σ2.

Assumption 2.2. gN is independent of N, that is,

> — > *rf) = g(Sι,—> s*) = Σ δ^ί1— *£

distribution {bk} in Za+. Moreover, g satisfies g(eβ+*> •••, eβ+f)<co /<τr
£>0.

Note that the last condition on £ is automatically satisfied in the case (a).
Assumption 2.1 implies that reproduction of offspring by one individual of
type p is made in two steps — first it produces independently a random number of
children of the same type p according to the distribution {cn} , and then, each
child has a chance of mutation to type q (pφq) with probability apg/N.
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Assumption 2.2 implies that the immigration probability is independent of N.

Hence dependence of the law of {ZCJSO(fl)} on N lies only in {affi}.
Let {bk} be an associated distribution of {bk} defined by

• , eβ) for k = (k19 •••, t

Let (μly •••, μ,rf) be the mean of {£*}, μ^= Σ £/$*> anc* let /^/=( Σ μ<j)—μp>

These are important characterstics in our discussion.
Let us define the induced Markov chain. Let J(N) be the set of points

j=(jl9 — ,;rf)eZΪ such that *Σjp=N. For;, £<E f(N) let

(2.1)

Clearly,

(2.2) P#> = — L- (coefficients of ̂ .-^ in fa, -, sd) Π/(Σ

where

(2.3)

= coefficient of w^ in g(w, , w)f(w)N

Assumption 2.1 guarantees ^(Λ/^X) for farge N. See (4.25) in a later section.

Hence we can define P$° for all 7, k^J(N) if N is large. Let {JΓ^w)—

(-Ϊ^CΛ), •• ,^ΛΓ)(n)); n— 0, 1, •••} be a Markov chain defined on a probability

space (Ω(jvo, <2CΛO), taking values in J(N) with one-step transition probability
Pffi. The initial distribution is given arbitrarily. X<N\ri) is the induced Markov

chain of Karlin and McGregor. The fact that this includes various genetics

models as special cases is shown in Karlin [5].

Since the sum of components is ΛΓ, we can consider the induced Markov

chain as a Markov chain on a (d— l)-dimensional state space. We normalize

and interpolate this chain as follows:

(2.4) . >

(2.5)

Then {YCN)(t); 0<£<oo} is a continuous process taking values in K (K is
defined in Section 1). Let Ω be the space of continuous paths ω: [0, oo)-»lΓ,

endowed with the topology of uniform convergence on compact subsets of [0, oo).
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There is a complete separable metric compatible with this topology. Let

x(t, ω)=ω(t). Let JK be the topological σ-algebra of Ω and <3Mt be the σ-algebra

generatd by x(s)y s<ΐ. Let PCΛΠ be the probability measure on (Ω, <3$) that

>9 Y<N\t);Q<t<°o) induces. That is, P^^B^Q^φ'^B)),

, where φ is the measurable mapping from Ωc*° into Ω defined by φ(ω^N:>)=

ω, ω(t)= Y^N\t, ωCΛn). Obviously, PCJSΓ) is determined by the initial distribution

of (X^N\n)) and its transition probability (Pj^0)- What we would like to prove
is the convergence of the sequence of the probability measures (P(ΛΠ).

Define a(x)=(apg(x))ptg=slt...ιd_1 and ^x)=(bp(x))p=lt...td^ by (1.1)— (1.3)
and consider the following martingale problem: given x^K, to find a probability

measure Px on (Ω, JU) such that PΛ(χ(Q)=x)= 1 and, for each θ<=Rd~\ (Mθ(t),
ι3Mt, Px\ 0<i£<oo) is a martingale, where Mθ(t) is defined by

(2.6) M,(f) - exp {<0, *(*)-*(())>- Γ<<9,
Jo

~<θ, a(X(u))θydu} .

Here <,> denotes the inner product. We call this problem the martingale

problem on K for a, b starting from x, or, for short, the martingale problem

(jfiΓ, a, b, x). Such a problem was originated by Stroock and Varadhan [12],

but the above problem is different from theirs on the point of the restriction of

the state space.

We will prove the following results.

Theorem 2.1. For any set of σ2 , apq) μp, the martingale problem (K, a, b, x)

has a solution for each x€ΞK.

Theorem 2.2. Suppose that the solution Px of the martingale problem

(K, a, by x) is unique. Let Y<iN)(0)=x^N\ which is non-random. If x<N:>-*x,

then the sequence of the measures {PCjΛ0} weakly converges to Pxί that is, for each

bounded ', continuous, real function ξ(ω) on Ω, we have

(2.7) \ ξ(ω)Pan(dω)-*\ ξ(ω)Pj(dω), N-»°° .
Ω

It is well known that the weak convergence of PCj2V) to Px implies (2.7) for
any bounded, measurable, real function ξ(ω) on Ω whose discontinuity is a set of

Px measure 0. Sojourn times and hitting times are included in applications in

many cases. See Billingsley [1].

The above two theorems reduce the point to the uniqueness of the solution

of the martingale problem (K9 a, by x). We conjecture that the uniqueness
holds, and the following theorems give the proof in some cases.
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Theorem 2.3. Let d—\—\. Then, for each x^K, the solution of the
martingale problem (K, a, b, x) is unique, and hence the conclusion of Theorem 2.2
holds.

Theorem 2.4. Suppose that if p>q and p'>q then apg=ap'g. Then, for
each x^Ky the solution of the martingale problem (K, ay b, x) is unique, and the
conclusion of Theorem 2.2 holds.

Note that Theorem 2.4 covers the cases (ii), (iii), (iv) in Section 1.
If the martingale problem (K, a, b, x) has a unique solution Px for every

x&K, then (x(i), cί%, P*; x^K) is a strong Markov process, to which the
process {Y^N\t) 0<£<°o} converges as N->°°. In case of d—1 = 1, it is a
diffusion process on the interval [0, 1] with backward Kolmogorov equation

(2.8) |i = ̂ x(l-x)^+{-x(a12+μ2)+(l-x)(a2l+μι)}^ .
Ot Δ OX OX

If d—1=2, then it is a diffusion process on the triangular region K with back-
ward Kolmogorov equation

/ 2 m 9u_σ2( (, χ}d
2u__2 Vu „ }Q*u(2.9) _ - — ̂ (1-*̂  2** —+*,(!-*,)—

+ {~x1(a12+al3+μ2+μz)+x2a21+(ί—x1—x2)a3l+(l—xl)μί}

Θu
+ {—x2(a2l+a23+μ1+μ3)+x1a12+(l—x1—x2)a32+(l—x2)μ2}^ .

Properties of the boundaries for these diffusion processes will be discussed at the
end of Section 5.

3. An invariance principle

In this section K denotes an arbitrary compact set in Rl and Ω denotes
the space of continuous paths ω: [0, oo)-+K. The topology of Ω, and the σ-
algebras ̂ , <SA,t are defined as in Secion 2. Let a(x)=(apg(x))ptgs=ίt...tg be a
continuous, symmetric, nonnegative-definite /X /-matrix defined on K and b(x)=
(bp(x))p==lf ...t i be a continuous /-vector defined on K. By the martingale problem
(K, a, b, x) we mean the problem to find a probability measure Px on (Ω, c3fί)
such that Px(χ(ϋ)=χ)=l and, for each 0eΛ', (Mθ(t), <3ttt Px\ 0<Z<oo) is a
martingale, where Mθ(t) is defined by (2.6). Suppose that, on a probability
space (ΩCΛΠ, Q^N:>), time homogeneous Markov chains {Fc-ΛΓ)(w); n—Q, 1, •••}
taking values in K are given. Let ΠW)(#> Φ) be the one-step transition prob-
ability of (Ϋ<N\n)}. Let (̂0)=^ (non-random). Let J5T(̂ ) be a Borel
subset of JΓ such that Q<N\Ϋ<N\n)^K(N))=l, and suppose that Π^G*, <fy) is
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defined for x<=K(N) and dy<zK(N). Define Y™\t) by

) for t = n/N,

for n/N<t<(n+l)/N.

Let Pc/yΠ be the probability measure induced on (Ω, JM) by the process { FCjY)(ί)
0<*<oo}.

We will prove the following theorems. By convergence of measures

we mean weak convergence.

Theorem 3.1. Suppose that the following conditions are satisfied:

(i) lim sup N Π<ΛΠ (#, {y;| y-x\>ε}) = 0 for every £>0 .
JV->~ *eJΓCaθ

(ii) lim sup | Λ f ( (>,-*,) ΠW) (*,<fy)-*Λ*) I ==°

(iii) Jim ̂  |#ΛwCy,-*,)(yf -*,) IT™ (*, 4V)-^*)I = 0

/or p,q= !,•••,/.

(iv) Ii

Ae sequence {P(jvΓ)} is relatively compact and the limit of any convergent sub-
sequence is a solution of the martingale problem (JRΓ, a, b, x0).

REMARK. An obvious sufficient condition for (i) is

( i V lim sup N{ I y—x\ 2+δ ΠCΛD (x, dy) = 0 for some δ>0 .
*••>- *ejrδn JjTCΛΓ)

Theorem 3.2. T/" (i) — (iv) hold and if, moreover, uniqueness of the solution

PXQ °f the martingale problem (Ky a, by x0) holds, then Pc//) converges to PXQ.

These theorems are close to results of Stroock and Varadhan [12]. The

difference lies in the following three points. First, the state space is a set K,

not Rl. Secondly, a(x) may be degenerate. Thirdly, ΠCwΛn(#> dy) need not
be defined on the whole of K. The compactness of the state space makes the

proof of the invariance principle easier. But the restriction to K of the state

space gives to Theorem 3.1 applicability to the proof of the existence of the

solution of the martingale problem (jRΓ, a, b, x). Note that, while the martingale
problem (Λ7, a, by x) is proved to have a solution for general bounded con-

tinuous a, b, the solution of the problem (K, a, b, x) exists only in some special

degenerate cases.
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Theorem 3.2 is an obvious consequence of Theorem 3.1. Theorem 3.1 can
be proved by an appropriate modification of [12]. We give the proof here
for completeness.

Lemma 3.1. {PCΛ0} is relatively compact if (i) and the following two con-
ditions are satisfied:

(ii)' sup sup \N\ (yp-xp)U^(x,dy)\<oo for p=l, ,l,
JT x&KίN') JjFCΛD

(iii)' SUP^ SU£ ̂  I N ^(yp-Xp)(yq-Xg) Πc">(«, <fy)\<oo

for p,q= I , — , / .

Proof. For each finite T, the restriction of PCJVΠ to JAT can be viewed as
a probability measure on C([0, Γ], K), the space of continuous paths
[0, T]^K. For T fixed, this restriction of {P0 }̂ is relatively compact by [12],
Lemma 10.2. Let {P*-***} be a subsequence of {PCΛΠ}. Using the diagonal
procedure, one can choose a subsequence {P("V} of {PCV}} such that if, for

some J1, ξτ(ω) ίs a bounded, continuous, real function on Ω determined by the

value x(t, ω), t<T, then \ ξτ(ω)P^m^(dω) is convergent. Let p(ω, ω')=
JΩ

CO

2 2~n(l Λ max | ω(t)— ω'(t) \ ). Then p is a metric compatible with the topology

of Ω. For each ω^Ω, let ωr(ί)— ω(ί Λ Γ). Then we see that su
ωeQ

as !"-> oo . Hence I ξ(ω)P('mjf\dω) is convergent for every bounded, p-uniformly
JΩ

continuous, real function ξ(ω). This suffices for the convergence of P(w-ff°.

Proof of Theorem 3.1. Relative compactness of {PCisr>} follows from
Lemma 3.1. Let P be the limit of a subsequence of {PCΛΓ:>}. What we have to
prove is that P is a solution of the martingale problem (K, a, b, x0). For sim-
plicity of notations, we assume that Pαvπ converges to P. Since
{ω; I tf(0)— x0 \<6} is a closed set, we have

and P(*(0)=*0)= 1 follows. Fix θ <= Rl and write M(t) for Mβ(t). Let

φw>(») = log {( e<» *~*> W»\x, dy)} ,
JΛΓCΛΓ)

(w) = exp {< ,̂ Y(N\n)- FC

= exp
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where [Nu] is the greatest integer not exceeding Nu, and let Jf/ί^ be the <r-algebra
generated by {Y<N\m); m<n}. It follows from the Markov property of
{Φ™(n)} that (M<N\ri),-MN\ Q^;n=0, 1, •••) is a martingale. Hence
(M™(nlN), <Mn/N, PCΛΓ); n=Q, 1, — ) is a martingale, because

= exp

We will prove that

(3.1) lιmEp^(ξ.M^Nt^+1Jj = Ep(ξ M(t))

for every bounded, continuous, J^-measurable function^ (ω). Here Ep and Ep<:

denote expectation with respect to P and PCJNΠ, respectively. Suppose, for a
moment, that (3.1) is proved. If s<t and ξ is bounded, continuous, <_5KS-
measurable, then

by the martingale property, and, letting N-^oo9 we get

This is just the martingale property of (M(t), <3ttt, P) and the proof would be
complete.

In order to prove (3.1), we will first show

(3.2) lim sup \N(( e<"y~x> ΠC"X*, dy)-\)-<β, 4(*)> .
JΓ->oo x^KίNΪ JKίNϊ

— ±<θ,a

We have

y-*> Πw> (*, dy)-l = <θ, y-x> τiίN\x,d

<θ, y-xy2 S(y-x) Π w> (*, dy)+B - Π W)(*. Vs(x))
-r]<z

where Vζ(x)={y; \y—x\ >8}, S(y—x)^>Q as | y— x\ ->0, and B is a bounded
function of N, x, 6. Let /ε(^V)= sup Λ^ Πcjvo (x, VJ(x)). Then f,(N)-^0 as

•* GLK.(.Jfr~)

N->oo for each fixed £>0 by the assumption (i). Using the assumptions (ii)
and (iii) we see that the absolute value in (3.2) is bounded by
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\B(y-x)\+CfJN)

for every £> 0 with g(N)-*Q and a constant C. Choosing £^ which decreases to

zero sufficiently slowly, we get/ε^(-/V)-*0, and hence (3.2). Noting that

we get

(3.3) lim sup \Nφ™\x)-<θ,b(x)y-- ±-<0, β(*)0>| = 0
JEΓ-^OO *ejκαn 2

from (3.2).

Let ΓW)={ω; *(n/JV, «)eE.K(JV) for w=0, 1, •••}. If Λe^τ and if Λ is
compact when it is viewed as a subset of C([0, T\, K), then, for any ί < T

(3.4) lim sup IΛf^fJMH, ω)_Λf(ί, ω)| =0.
jr^-eerC^nA V -/V /

In fact, let us write ([Nt]+l)IN=tN and notice that

and

(u))ydu-- <θ, a(X(u))θydu

Uniformly in ωeΛΠ rc^}, the first integral in the right-hand side tends to zero
by (3.3), and so does the second integral by the uniform continuity of ay b, and
also the third integral tends to zero by the boundedness of α, b. Note that

I x([Nu]/N, ω)—x(uy ω) I -»0 uniformly in u< T and
Now let us prove (3.1). Let

Δ = sup sup |g(ω)(M^(ί^±l, ω)-M(f, ω)) | ,
N βeΓCΛ 5 \ \ N ' /

which is finite by (3.3). Given £>0, choose A.&JMT compact as a subset of
C([0, Γ], ^Γ) in such a way that inf PC^}(Λ)> 1—(£/Δ). This can be done since

JΓ

{PW)} is tight by Lemma 3.1. Then,
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if N is large. Here we have used PCΛΓ)-»P in the third term and (3.4) in the
second term. The proof is complete.

4. Asymptotic estimate of the moments of the induced Markov
chains and proof of Theorems 2.1 and 2.2

All notations in this section are the same as in Section 2. In particular,
{^Y"(Λπ(w)} ιs t^ induced Markov chain on J(N). In order to prove Theorems

2.1 and 2.2, we apply Theorems 3.1 and 3.2 with l=d—l and

Let J\N) be the set of points j=(jlt •••, j^.^eZ*"1 such that ^jp^N and let

. For €Ξ J\N), let

(4.1) *«" = N Σ -
tejcw)

(4.3) e

Here we have identified ̂ (. Ί, •• ,jrf_1)e J°(Λ^) with (j\, ~,jd-1y 1—

Λ) and ΛΛ(*) are difined by (1.1)— (1.3).

Lemma 4.1. Suppose that for p, q= 1 , , d— 1

(4.4) lim sup |Wi)_4/l)|=0,
JT^°° yejOczΓ) \Λ^/ W/

(4.5) lim sup
jr->«« jejξjsr )

(4.6) lim sup 4^} = 0 .
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Then Theorems 2.1 and 2.2 follow.

Proof. Clearly (4.4) and (4.5) imply Conditions (ii) and (iii) of Theorem

3.1. Since

( Σ (kp~jP)J<(d-l) Σ (kp-jpγ

(4.6) implies (i)' for δ=2. Hence, if ¥^(0)=^-^^ then {Pc">} is relatively
compact and the limit of any convergent subsequence of {PCΛΓ)} is a solution of
the martingale problem (K, a, b, x0). Now, using any branching process with
immigration satisfying Assumptions 2.1 and 2.2 (given any set of cr2, apg, μp, we

can find such a process), we see that the martingale problem (J5Γ, α, b, x) has at
least one solution. That Theorem 2.2 follows is a consequence of Theorem 3.2.

Our task in this section is to prove the estimate (4.4) — (4.6). We will

prove the following stronger asymptotic formulas :

(4.7) 4<*>(1) = 4,(l)+θ(i) uniformly mj

(4.8) β#>(i) = βΛ(l)+θ(l) uniformly

(4.9) e™(4j) = °(4) uniformly

What we mean by (4.7) is

We use the phrase "uniformly inj^J\N)" in this meaning. In order to prove

(4.7)—(4.9) we have to make many estimations of coefficients of power series.

Our tool for this is Lemma 4.3 below which is proved by the saddle point

method. Naturally the proof of (4.9) is the most complicated. This condition

guarantees that the limit process is a diffusion process (that is, sample func-

tions are continuous).
Given N>1 and/eJ(JV), let

(4.10) Gfo,-,*,)

(4.11) Φ(w,ί!,-,*,)= ̂

(4.12) Ψ(w,f!, -,^) = Φ(αv

(4.13)
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Since we have

Pff = A^N)-1 (coefficient of wNs^-sd

kd in Θ(w, s19 —, sd))

by (2.2), we see that

(4.14) G(s19 •••, sd) = A^N)'1 (coefficient of WN in Θ(w, ,̂ —, sd)).

Let us denote

which operates on functions of (slt •••, sd) or of (w, slt •••, sd).
Let

CP,..>m = D .̂G<1, -, 1), CV*. =

Lemma 4.2.

), C*pp =

Proof is easy and omitted.
Functions M(w) and K(w) are defined in Section 2. M(w) extends to an

analytic function M(z) of complex z with Res<6. J£(zo) extends to K(z)
analytic in a neighborhood of β. Define κn by

(4.15) #(*) = Σ *Λ*-£Γ
« = 0

Note that κa=K(β), κ1=l, κ2=σ2/2. Let

(4.16) L(ί1,.»>ί(ί)=ί<A ",Λ).

By Assumption 2.2, L(s^ ~ ,sd) can be extended to L(z^ •• ,^) for complex
%ι> " >z<i with Rear/</3+5(/=l, - ,d). Similarly Dp^pJL(sly ~ ,sd) can be
extended to D^Xi, — , ̂

Lemma 4.3.

^ ι ί*β+«* ~
(4.17) ^(ΛΓ)--L M(zfrM(z)e'N'd«9 N>r ,

Ae integral is along the line segment from β—iπ to β-\-iπ, r is a fixed
integer y and M(z) is a bounded continuous function on the segment. Suppose M(z)
is analytic in a neighborhood of z=β and let
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there. Theny

A(N) = AN(p0+N-1ά+0(N-2)) as

where

Proof is omitted, since this is part of Lemma 3.1 of Sato [11].
Let
A^(N)= coefficient of ZUN in a power series h^(w)g(w, •••, w),

where we define hv(w) as follows :

hjw) =

hjm) =

Note that A^N) is the same that is defined in (2.3). Further, let

= coefficient of WN in hv(w)Dfi...Pmg(iv, •••, w)wm .

All functions which appear above are power series of w with non-negative
coefficients and the convergence radii are bigger than eβ. Hence they are

convergent at e" with Res=β.

Lemma 4.4. For each v, m, pί3 •• ,pm, we have

(4.18) AJN) = J-
2

(4.19) A^...Pm(N) = -
Lτtl Jp-t-it
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and Lemma 4.3 applies.

Proof. We need only use Fubini's theorem to get the integral representa-
tion (4.18), (4.19). It is easy to see that they are of the form (4.17) satisfying
the conditions in Lemma 4.3.

Given N>1 and yeJ(ΛΓ), we write x=N~1j. Hence xp=N~1jp for
d d

\<p<d and Σ xp—\. Sometimes we write yp~ Σ xtaιp. We use the nota-

tion (m)n—m(m—V) (m—n-\-l).

Lemma 4.5.

(4.20) Cp =jp+ Σ xιaip+μp-xp Σ μg+0(N-1) uniformly inj(=J(N) ,

and

(4.21) by\x) = Σ xιaίp+μp-xpfl μl+0(N~1) uniformly inj<=J(N) ,

that is, (4.7) holds.

Proof. It follows from (4.14) that

Cp = DPG(1, •••, 1) = A^N)'1 (coefficient of WN in

Dpβ(w,l, •-,!)).
From (4.11)— (4.13) we have

DpΘ(w, sί9 — , sd) = £> (̂̂ , ίlf

, Σ αiffί*, -, Σ αa?

{jtf(mtfr^^^ .

Noting that

ψ(w, 1, -, 1) = Φ(w, 1, -, 1) =f(w)» ,

we have

Dpθ(w, 1, — , 1) = (jp+yp)h2(w)g(w, •-, w)+hl(w)DJ,g(w, — , w)v> .

Hence

(4.22) C.
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Let us estimate A,(N)9 A2(N), Alp(N). By Lemma 4.4,

-., ze-» dz .

Define pn by the expansion

CO

(4.23) L(z, •••,#) = Σ Pn(z—β)n in a neighborhood of /3.
»=o

We have p0=g(eβ, ••-, ββ)>0 and

(4.24) p.-PoΣ^
/ = !

Thus

(4.25)

(4.26)

by Lemma 4.3. Similarly,

ι rβ+»
, - , *)

πrz -<

since f(f)f=M'(x). We have

, -, *) = K'

by (4.15) and (4.23), and hence

(4.27) A2(N) = ΔN(Pΰ+N->a2+0(N->)), a, = βl-Pl

by Lemma 4.3 and (4.26). Further,

ι rβ+ί Λ
A1P(N) = -L M

since D^j, -,sd)=Dpg(<f*, -,**)**. Noting that DpHβ, -, β)=p0μ,p,
we get

(4.28) A,(ΛO = Δ^ίpo

Using (4.25), (4.27), (4.28) in (4.22), we obtain

Cp = (jp+yp)(l+N-1pό\a2-a1)+0(N-2))+μί,+0(N-1) uniformly,
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d

from which (4.20) follows since pQ1(a2—a1)=— Σ μ/ Note that jp is at most

N and yp is bounded. Since Vf\x)=Cp—jp, we get (4.21) from (4.20),.

Lemma 4.6.
d d d

(A OO\ /"* * * Λ7"~l * " / 2 i O SΓ~1 \ I * ~̂1 i * ^~ΐ(4.29) Cpq = ]pJg—N jp]q(σ +2 Σ μι)+JP Σ XιθCιq+Jq Σ
1 = 1 / = ! 1=1

for

/ λ o Γv\ /^r 2 i * / 2 1 i O i o

(4.31) 4f }(Λ?) — — σ2xpxg+O(N~1) for

(4 ^2^ ^7(JVΓYιΛ —(jr.j&j Upp \λj —

All O signs here are uniform in j

Proof. We can prove

(4.33) Cpq = {(/.

where p=q is not excluded. In fact,

Cpq = A^N)'1 (coefficient of WN in Dpgθ(w, 1, ••-, 1)) ,

and Dpq®(wy 1, •••, 1) is obtained as follows:

DpgΨ(w, s19 -, sd) = Σ D,mΦ(w, Σ αi?^, -, Σ αiί^
/,»» » M

βft.Φ(w, Slt ; Sd) ^/(wS^ ij^WS^r1/^^}-

{jmf(™mym~1f(™m)w}-f(u>s*Y>> if Km,

DltΦ(w, *„ - s,) =f(ws1)h...{(

and hence

DlmΦ(w, 1 , , 1 ) = jιjjι,(w) if / Φ m

DzlΦ(w9 1, ..-, 1) = (//)A(«0+./'A(«0 -

Thus,

Since
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DpgΘ(w, 1> -> 1) = Dpqψ(w, 1, •••, I)g(fΰ9 -, to)

+DpΨ(w, 1, ..-, \)Dqg(w, - υήio+DjPfa 1, -, l)Dpg(w, .-.,

and the terms except the first in the right-hand side are treated in the proof of
Lemma 4.5, (4.33) follows.

Having

(4.34)

in mind, let us estimate the right-hand side of (4.33). We have

A3(N) = — (β^M(z}N-2Mf(z)2L(z, .-, z)e~N2dz
2πtJP-i*

and, in a neighborhood of /?,

, -.., *) = K'(»γL(g, ••; *)

Hence

(4.35) A9(N) = ΔN(

by Lemma 4.3 and (4.26). Next,

ι rβ+i*
A.(N) - -1-. M(zf-\M"(z)-M'(x))L(xt -, z}e-

N*

byf"(e*)e2* = M"(x)-M'(»), and

M(z)-\M"(x)-M'(x))I4z, -,*)

= (K'(z)*+K"(z)-K'(x))L(z, .», *) = σ2

Po

at ^ =/S. Hence

(4.36) At(N) = Δ^ίσ'po+CKΛΓ-1)) .

Also A2P(N) and Alpq(N) have analogous expression by Lemma 4.4.
Thus

(4.37) A2P(N) = --
Z7ΓZ J

= Δ^ί

since Λf^-W^D^L^, ••-, z)=K'(z)DpL(z, •••, z)=p^p at s=/3, and
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(4.38) Aί

It follows from (4.25), (4.33)— (4.38) that

for

Hence we get (4.29), (4.30) by (4.24). Since

4?* = tf-'c-:-< for

(4.31) and (4.32) follow from (4.20), (4.29), (4.30).

Lemma 4.7.

(4.39) Cppp = fP+3j2

P(<r2-l+μp+ Σ xιaιp-xp(σ2+ f j μg))+0(N)

uniformly in J(N).

Proof. Clearly

(4.40) Cppp = Uί+3U2+3U,+ U.

where U19 U2, U3 and U4 are A^N)"1 times coefficients of WN in Dppp Ψ(wy 1,

•••, &>)ft>2, and Ψ(«;, 1, •••, l)Dpppg(w, •• ,w)wz, respectively. We have

DpppV(ιo, sί9 ..-, jrf) =/Σβ^/MΦ(w, Σ αίf>jr, ..-, 2 αif}ίr)

/ VCΛ )/V(JV)Λ.(JΓ)
f^zj? t4:»j2> ccwί) >

DtmnΦ(w9 1, — , 1) =jίjmjnh5(w) if /, iff, n are all different,

A/nΦK 1, — , 1) = (j*j\—jιj*)hs(w)+jιjnh*(w) if ^^
and

because

Hence,

Ϊ7X = AW1 (coefficient of w^ in Σ^/m-ΦK 1, -, 1)
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where

mJna\Pa%?a%> = (jp+yPY =J*p+*JΪyp+O(N),

/,»

/

As in the proof of Lemmas 4.5 and 4.6, U2, U3 and U4 are expressed as follows:

_Alppt(N)
~~

Hence

(4.41) CM, _

by (4.40) and Lemma 4.4. We have

(4.42) A5(N) = ~(^i1tM(z)N^

by Lemma 4.3 and (4,26), since

M~3M'*L = ̂ '3L = p

+ 3<r2p1+p2)(*-/3)2+.

in a neighborhood of β. Similarly

1 Γβ+ί*
(4.43) A6(N) = — Afi^-

since M-'M'(M"-M')L=K'(K'2+K"-K')L=σ2p0 at a=/8, and

(4.44)

as in (4.37). It follows from (4.25), (4.41)— (4.44) that

CPPP = (

which is (4.39).
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Lemma 4.8.

(4.45) Cpppp = j}+2fp(3σ2-

uniformly tnj^ f(N).

Proof. This time we have

Cpppp - J^+4Γ2+6

where V19 •••, V5 are A^N)'1 times coefficients of WN in Dppppψ(w, 1, •••, 1)
g(w, -, w), Dpppψ(w, 1, •••, l)Dpg(w, ...,w)w,DppΨ(w, 1, ••-, l)Dppg(w, -,w)w\
Dpψ(w, 1, ••-, l)Dpppg(w, •• ,w)w\ ψ(w, 1, •••, l)Dppppg(w, ••-, ^)w4, respec-
tively. The most involved part is

(4.46) Dppppψ(w, 1, .-, 1) - Σ DlmnrΦ(w, 1, -, l)a\^a^a^a^
l>m*nιr

and we have

DlmnrΦ(w, 1, •••, 1) =jιjmjnjrh8(w) if /, m, ny r, are all different,

DΠHrΦ(lV, 1, •", 1) = UΪJ*Jr—jljnjr)hs(w)+jlj*jrh*(w)

if

DΐlnnΦ(w, 1, ••', 1) = (fijl—jljn—jljl+jljn)hB(w)

+ (jlj»+jljn-2jljn)hg(w)+jίjjl10(w) if

Z)///rΦ(w, 1, -, 1) = (fijr-Wjr + ZjijJkW + Stfj^

The last one cames from the expression

Let Σα)> Σc?U), Σc?-«.»-r), Σc?U-»), Σ(5) denote the summations over
{(/, 7W, 7z, r) /, m, n3 r are different from each other} , {(I, my n, r)

l—m—n=r}, respectively. Decompose the right-hand side of (4.46) so that
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and use the above formulas. Then, by Lemma 4.4, we get

after some reflection. By argument quite similar to the proof of Lemmas
4.5, 4.6, 4.7, we get

, = 0(N), V, = 0(\).

Hence,

(4.47)

We have

(4.48) AS(N) = —
2τrί J

snce

in a neighborhood of β,

β. = «1-σp0-

(4.49) —
2τrίJβ-»'*

Λf (a , , *) e~NZ dz

since M-3M'2(M"-M')L=K'2(K'2+K"-K')L=σ2p0 at ^S, and

1 fβ+ί *
(4.50) ^5ί(JV) = -M M -̂M

as in (4.37). By (4.25), (4.47)— (4.50) we have
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and the proof of (4.45) is complete.

Lemma 4.9.

(4.51) e^(x) = O(N~l) uniformly injt=J(N).

Proof. We have

= N^{Cpppp+(-4jp+6)Cppp+(6βp-l2jp+7)Cpp

by Lemma 4.2. Use Lemmas 4.5—4.8 and substitute (4.20), (4.30), (4.39), (4.45)
for Cpy Cpp, Cpppy Cpppp. Then, all terms cancel except terms of magnitude
O(N~l), and (4.51) follows.

Now Lemmas 4.5, 4.6 and 4.9 say that (4.7), (4.8) and (4.9) hold. Hence
the proof of Theorems 2.1 and 2.2 is complete.

5. Uniqueness of the solution of the martingale problem and proof
of Theorems 2.3 and 2.4

All notations in this section are the same as in Section 2. By Theorems
2.1 and 2.2, convergence of the interpolated normalization of the induced Mar-

kov chains is proved if the solution of the martingale problem (K, a, b, x) is
unique. This uniqueness problem is a problem on some stochastic differential
equations, as the following lemma says.

Lemma 5.1. Let c(x)=(cPg(x)) be a bounded, Borel measurable (d— l)x
(d— \)-matrix on K satisfying

(5.1) c(x)c(Xγ = a(X),

where c(x)' is the transpose of c(x). Consider a stochastic differential equation

r dX^t) = ^c^X(t))dBJίt)+bl(X(t))dtt p = l, -, d-l

U(θ) = *

where X(t)^=(Xl(t)ί •••, Xd_1(t)) is a process taking values in K and B(t)=(B1(t)y

" ,Bd_1(t)) is a (d—V)-dίmensional Brownίan motion. Then, uniqueness of the

solution of the martingale problem (K, a, δ, x) is equivalent to uniqueness, in the
sense of probability measure induced in (Ω, ι5H), of the solution of (5.2).

Proof. This is proved essentially by Stroock and Varadhan [13]. Priouret
[10] contains a detailed account.
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We choose c(x)=(cpq(x))pιg=sl...t d_l as a lower triangular matrix. Let K° and

dK be the interior and the boundary of K and let, for

c χ = ® for

(5.3)

Lemma 5.2. C(Λ ) defined above on K° extends continuously to K. Denote

the extension by the same c(x). Then

p/\9

(5.4) «*(*) = ΣM*M*),

that is, (5.1) holds.

Proof. Let x^dK. We define cpq(x) by the formulas in (5.3) when nega-

tive powers of 0 do not appear, and define cp<l(x)=Q when negative powers of 0

appear. Then all cpq are continuous on K, since we have

1 l_^)V2) Q>c32(x)> -σ(l-Xl-χ2γ/* ,
( ' }

for x^K°. In order to show (5.4), we may assume x^K°. Let

1— Λ? 1 =y 1 > 1—^—^2=^2, 1— Λ?!— Λ2— Λ? 3 =jy a ,

Then,

1/2 / 1 X1/2 / r v V/2

1/2 / Ί \1/2

\V2 / 1 1 χ V 2 / V..\J\1/2

CΆ2 — σ Λ?ft[
JΊ
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and (5.4) is obtained by direct calculation.
Henceforth c(x) denotes the one defined by (5.3) and Lemma 5.2.

Lemma 5.3. Let d— 1 = 1. Then the solution of the stochastic differential
equation (5.2) is pathwise unique. That is, if X(t) and X(t) are solutions of (5.2)
with a common one-dimensional Brownίan motion B(t)y then X(t)=X(t) almost

surely.

Proof. In this case (5.2) is a single stochastic differential equation

dX(t) = ^(XWdBφ+bάXWdt, X(0) = x .

cn is extended on R1 to a Holder continuous function with exponent 1/2 and
b± is extended to a Lipschitz continuous function on Λ1. Hence the theorem

of Yamada and S. Watanabe [15] applies.

Lemma 5.4. If x, y^K and xl=ylfor 1=1, ••-,/>— 1, then

(5.6) \cpq(x)-cpq(y)\ <2σ\xp~yp\ * .

Proof. Let £= \<p. If 1— 6<^<1, then 0>:cpί(x)> — σ£1/2 and 0>
cpl(y)>-σ8^2 by (5.5). If l-f>^>0, then

= *l*,-^

Hence

I c»(x)-Cfί(y) I <σ(£-"2 I xp-yp \

in any case. Since £ is arbitrary we may choose £= | xp — yp\
 1/2 and get (5.6) for

q=Kp. The proof for 1<<?<^> is similar. In case p=q, we let 1— x1 -----

xf-1=l— yi ----- yp-ι=ξ and have

I cpp(x)-cpp(y) I <σΓ1/2( I *J/I(f-*ί)
1/ϊ-J'i/a(?-*ί)

1/2 1

+ \yy\ξ-χp)l!2-yy\ξ-yp}
112 1 )

<σξ
1/2((ξ-χP)

1/2 1 *p-yt I l/2+yl>* I *t-yp 1 1/2)<2<r I χt-yt I
since

Lemma 5.5. Let d— 1 > 1 αrcd suppose that b(x) satisfies the condition in

Theorem 2.4. Then the solution of the stochastic differential equation (5.2) is
pathwίse unique.

Proof. By the assumption bp(x) is a linear function only of x19 ~ ,xp.

As is seen from (5.3), cpg(x) is also a function of xl9 ~,xp. Suppose that

X(t)=(X,(f),-,Xd_,(t)) and -X (ί)=(-XιW»-»-ίf-ιW) are solutions of (5.2)
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taking values in. K with a common Brownian motion B(t)=(Bί(t)9 •••, -βrf_ι(£))
First, we get X1.(t)=X1(t) a.s. as in Lemma 5.3, since the equation for X^t) does
not involve X2(t), •••, Xd_1(t). Let us prove Xp(t)=%p(t) a.s. for ίall^ by in-
duction. Suppose Xι(t)=Xι(t) a.s. for /—I, •••,/>— 1. The following proof is
essentially the same as part of Yamada and S. Watanabe [15], Choose nonnegative
C2 functions φn(ξ ) on Rl such that 9 (̂£) increases to | ξ\ as w->oo, <pM(£)r=rO in

a neighborhood of 0, φn'(ξ) is bounded, and Q<sφn"(ξ)<2n~l \ ξ \ ~ 1 . Since

= Σ
7 = 1 J

we get

Ψn(X &)-$:&)) = stochastic i

by the Ito formula. We have {ct^X(s))-cp^X(s))}*^4a1'\XiKs)-Xiίs)\ by
Lemma 5.4 and hence

E[φn(Xp(t)-Xp(t)}}<±-Γ-?-4/xr2*+C£[Γ|X^ή-X^s)\ds],
2 Jo n Jo

C — const.

Going to the limit as n-> °o we get

E\Xp(t)-Xf(t)\<C\Έ\Xp(s)-Xp(s)I ds .
Jo

By iteration it follows that E \ Xp(t)—Xp(f) \ =0. Hence Xp(t)=%p(i)9 a.s.
Proof of Theorems 2.3 and 2.4. Yamada and S. Watanabe [15] prove that

pathwise uniqueness of the solution of a stochastic differential equation im-
plies uniqueness in the sense of probability measure induced in (Ω, <3M). Hence
Theorems 2.3 and 2.4 follow from Lemmas 5.3 and 5.5, respectively.

Properties of the limiting diffusions

Let d—1 = 1. We have proved that the martingale problem (K, a, b, x) has
a unique solution (Theorem 2.3). It is a one-dimensional diffusion process
on [0, 1] with backward Kolmogorov equation (2.8). Let '\ι=cx2l+μί and
X2—αι2_[_μ,2. In Feller's boundary classification into four types (regular, pure

exit, pure entrance, natural), the boundary 0 is pure exit, regular, pure entrance
according as λ^O, 0 <λx <σ2/2, λx> σ2/2, respectively. Similarly, the boundary
1 is pure exit, regular, pure entrance according as X2=0, 0<λ2<σ2/2, λ2>σ2/2,
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respectively. The proof is a standard argument. In case the boundary is pure

exist, it is a trap. This is a consequence of the general theory, but this is clear

also from the uniqueness of the solution since in case λ^O the process standing

still at 0 is a solution. If λi>0, it is shown by the method of S. Watanabe [14],

J oo
^toM*))*^0 for everY *^[0, 1], where %{o> is the indicator

0
function of the set {0} . Therefore, in case the boundary is regular, the limiting

diffusion has reflecting boundary condition there, while, in case of pure entrance
boundary, the limiting diffusion starting from there immediately enters the

interior and never returns.

Let a— 1=2 and suppose that the uniqueness holds for the martingale

problem (K, a, by x) for every x. Thus (x(t), 3ttt, Px;x^K) is a diffusion process
on the triangular region K={(xly x,); ^>0, #2>0, 1— xt— x2>0} and its back-

ward equation is (2.9). Let us examine its boundary properties. Since all the

three sides of K are similar, we examine T= {(xlf 0); 0<Λ?1<1}. Following
Hasminsky [4] and S. Watanabe [14], we define regular and repulsive boundary

points and unattainable and pure entrance boundary segments as follows. Let

x^T and let U be a neighborhood in K of x having positive distance with

QK— Γ. For 7] >0, let £7,== UΓ\ {(x19 x2)\ x2>η}> Γ,(ω)= first leaving time of

If?,, and Γ(ω)= lim Γ,(ω). Let Γ£(ω) be the set of all limit points of x(t, ω)
•η |0

when t f T(ω). x is called regular if, for every U and for every neighborhood V
in K of #, we have

lim PχrJ(ω)
κ°,y+x

x is called repulsive, if, for some U and for some ^>0, we have

liminf P,(Γ£(ω)c (9 !/)„)< 1 .

Here (QU\=dU Γ\ {y=(yί9 yz}\ 3^2<^}, 3Z7 being the boundary in R2 of U.
Let 2 be an open interval in Γ. Σ is called unattainable if for every #e]>]
there exists a neighborhood U in K of x such that

Py(Γ%(ω) Π Γ is empty) = 1 for every y e U Π K° .

2 is called a pure entrance boundary segment if Σ is unattainable and if every
^^Σ has a neighborhood t/ such that P:v(Tl

Z7<cx5)=l for every y^U. Here

Tυ is the first leaving time of U.

Define Σi and Σa as follows:

2<σ

2/2} ,

]x and Σ2

 are open intervals or empty.
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Theorem 5.1. (i) Every point in Σi w regular. If a12—ccz2=^μ2—0, then
Σi—Γ β/^ β/^r hitting Γ, the process moves in {(xlt 0); 0<^<1} following
the backward equation

O U Cf /Ί \ C / ί £ , f / i \ ι / 1 \ / i \1 OU

he behavior at (0, 0) and (1,0) described in the case d—l = l. If at least one
of α12, α32 <zmi ^2 zV positive, then

(5.7)

βftί/, /or any open subίnterval 2 °/ Σu ̂  process starting from K° hits Σ ̂  β

yί/ί^ time with positive probability.

(ii) Σ2 is a pure entrance boundary segment and every point in Σ2 ^ repulsive.

Proof. Regularity of the points in Σι> repulsiveness of the points in Σ2
and unattainability of Σ£ are applications of Hasminsky's tests [4]. The prop-
erty described in (i) in case α12—α32=/χ2=0 is a consequence of the assumed
uniqueness of the solution of the martingale problem. The proof [of the other
properties is similar to the discussion by S. Watanabe [14] of two-dimensional
diffusion processes with branching property. In proving (5.7) we use the
expression

1 dX2(t) = &(X(t))dB$(t)+bt(X(t))dt

where B*(t) = (Bf (£), Bf(t)) is a two-dimensional Brownian motion and
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Added in proof. S. N. Ethier (A class of degenerate diffusion processes

occurring in population genetics, Comm. Pure Appl. Math. 29 (1976), 483-493)

gives a proof to our conjecture on the uniqueness of the solution of the martin-

gale problem (K, α, b, x) in general dimensions. Thus the assumption in our

Theorem 2.2 is always satisfied.






