ON THE EXISTENCE OF A REPRODUCING KERNEL ON HARMONIC SPACES AND ITS PROPERTIES

Shiro OGAWA and Tadashi MURAZAWA

(Received September 10, 1975)

Introduction. Let B be a finite plane domain with the smooth boundary and $\Lambda^{2}(B)$ the class of all solutions φ of the differential equation $\Delta \varphi-p \varphi=0$ such that

$$
D[\varphi]=\iint_{B}\left[\left(\frac{\partial \varphi}{\partial x}\right)^{2}+\left(\frac{\partial \varphi}{\partial y}\right)^{2}+p \varphi^{2}\right] d x d y<+\infty
$$

where $p=p(x, y)$ is a positive analytic function of real variables x and y in $B . \mathrm{S}$. Bergman [6] proved the existence of a function K which has the characteristic reproducing property of a kernel function, with respect to the Dirichlet integral

$$
D[\varphi, \psi]=\iint_{B}\left[\frac{\partial \varphi}{\partial x} \frac{\partial \psi}{\partial x}+\frac{\partial \varphi}{\partial y} \frac{\partial \psi}{\partial y}+p \varphi \psi\right] d x d y .
$$

From the point of view of the axiomatic harmonic function theory, B is a space with the pre-sheaf: $U \rightarrow \Lambda^{2}(U)$, where U is any open subset of B.

The aim of this paper is to show that there exists a reproducing kernel of a space formed by harmonic functions on harmonic spaces in the sense of H . Bauer, to study some properties of the kernel function and to obtain the Cauchytype representation of harmonic functions by an integral kernel obtained from the reproducing kernel. The results are immediately applicable to the classical harmonic functions on R^{n} and the family of all solutions of the heat equation on R^{n+1}, and moreover to that of all solutions of more general differential equations on Riemannian manifolds which satisfies Bauer's axioms.

In the paragraph 1 , we construct a Hilbert space $R^{2}(U)$, formed by harmonic functions, with a certain scalar product, and in the paragraph 2 , by applying the existence theorem of a kernel function, we discuss that there exists a reproducing kernel of $R^{2}(U)$. In the paragraph 3, we show the monotonicity of the kernel function with respect to the domain of its definition on harmonic spaces, which is an imprtant property of a class of kernel functions. In the last paragraph, using an integral kernel obtained by the reproducing kernel we study an integral representation of harmonic functions in Cauchytype.

1. The spaces $L^{2}(\sigma)$ and $\boldsymbol{R}^{2}(U)$

Lex X be a locally compact Hausdorff space with a countable base and suppose that X is a harmonic space relative to a sheaf \mathscr{H} of real valued continuous functions which satisfies the Bauer's four axioms and the following one more axiom: The constant 1 is superharmonic. μ_{x}^{U} is the harmonic measure with respect to a relatively compact open subset U in X and a point x of U, that is, the balayaged measure of Dirac mass at x to the complementary set of U. Let ν be a positive measure, defined on a dense subset U^{\prime} in U, whose support $S \nu$ is the closure of U. In fact, as X is a locally compact space with a countable base, surely there exists such a measure ν. Then by the superharmonicity of the constant 1 we can define a positive measure σ on ∂U, the boundary of U, by $\sigma(e)=\int_{U} \mu_{x}^{U}(e) d \nu(x)$, where e is any Borel set on ∂U. Denote by $L^{2}(\sigma)$ the family of all real valued σ-measurable functions f on ∂U such that $\int_{\partial U} f^{2} d \sigma$ is finite. We define the bilinear functional $(f, g)_{\sigma}$ and the non-negative functional $\|f\|_{\sigma}$ on $L^{2}(\sigma)$ as follows:

$$
\begin{array}{ll}
(f, g)_{\sigma}=\int_{\partial U} f g d \sigma & \text { for any } f, g \in L^{2}(\sigma), \\
\|f\|_{\sigma}=\left(\int_{\partial U} f^{2} d \sigma\right)^{1 / 2} & \text { for any } f \in L^{2}(\sigma) .
\end{array}
$$

Then $(f, g)_{\sigma}$ satisfies the condition of scalar product and, under the condition that f is equal to g (denoted by $f=g$) if and only if $\|f-g\|_{\sigma}=0,\|f\|_{\sigma}$ satisfies the condition of a norm. It is well known that $L^{2}(\sigma)$ has the structure of a Hilbert space relative to the scalar product $(f, g)_{\sigma}$ and the norm $\|f\|_{\sigma}$.

The following lemmas are very useful for coming arguments.
Lemma 1.1 (H. Bauer [4]). Suppose that f is a real valued function, defined on ∂U, which is μ_{x}^{U}-integrable for any point x in a dense subset of U. Then f is μ_{x}^{U}-integrable for all points x of U and the function

$$
x \rightarrow \int_{\partial U} f d \mu_{x}^{U}
$$

is harmonic on U.
Lemma 1.2. For $f, g \in L^{2}(\sigma), f$ is equal to g if and only if $f(\theta)=g(\theta) \mu_{x}^{U}$-a.e. for all points x of U.

Proof. By the definition, $f=g$ signifies $\|f-g\|_{\sigma}=0$. On the other hand, we obtain following equalities:

$$
\|f-g\|_{\sigma}^{2}=\int_{\partial U}(f-g)^{2} d \sigma
$$

$$
\begin{aligned}
& =\int_{U} \int_{\partial U}(f(\theta)-g(\theta))^{2} d \mu_{x}^{U}(\theta) d \nu(x) \\
& =0
\end{aligned}
$$

which implies that, for every point x of a dense subset $U^{\prime \prime}$ in U,

$$
\int_{\partial U}(f(\theta)-g(\theta))^{2} d \mu_{x}^{U}(\theta)=0 .
$$

By Lemma 1.1, it follows that

$$
\int_{\partial U}(f(\theta)-g(\theta))^{2} d \mu_{x}^{U}(\theta)=0 \quad \text { for all } x \in U
$$

which implies

$$
f(\theta)=g(\theta) \quad \mu_{x}^{U} \text {-a.e. } \quad \text { for all } x \in U .
$$

The inverse is evident. This completes the proof.
Here consider the following spaces of real valued functions for a natural number p :

$$
\begin{aligned}
L^{p}(\sigma) & =\left\{f: \int_{\partial U}|f|^{p} d \sigma<+\infty\right\} \\
L^{p}\left(\mu_{x}^{U}\right) & =\left\{g: \int_{\partial U}|g|^{p} d \mu_{x}^{U}<+\infty\right\} .
\end{aligned}
$$

Then we have
Lemma 1.3. For any natural number p, there is the following relation between $L^{p}(\sigma)$ and $L^{p}\left(\mu_{x}^{U}\right)$,

$$
L^{p}(\sigma) \subset \cap_{x \in J} L^{p}\left(\mu_{x}^{U}\right)
$$

Proof. For any function $f \in L^{p}(\sigma)$, we have

$$
\int_{\partial U}|f(\theta)|^{p} d \sigma(\theta)=\int_{U} \int_{\partial U}|f(\theta)|^{p} d \mu_{x}^{U}(\theta) d \nu(x)<+\infty,
$$

which implies that, in a dense subset $U^{\prime \prime \prime}$ of U,

$$
\int_{\partial U}|f(\theta)|^{p} d \mu_{x}^{U}(\theta)<+\infty .
$$

By Lemma 1.1, we obtain, for any point x of U,

$$
\int_{\partial U}|f(\theta)|^{p} d \mu_{x}^{U}(\theta)<+\infty .
$$

Therefore we have that $L^{p}(\sigma) \subset \bigcap_{x \in U} L^{p}\left(\mu_{x}^{U}\right)$.
Let us denote by $R^{2}(U)$ the family

$$
\left\{H_{f}(x): H_{f}(x)=\int_{\partial U} f d \mu_{x}^{U} \text { for all } f \in L^{p}(\sigma)\right\}
$$

Then there exists the following relation between $L^{2}(\sigma)$ and $R^{2}(U)$.
Lemma 1.4. $R^{2}(U)$ is a subspace of the space \mathcal{H}_{U} of all harmonic functions defined on U, and the correspondence

$$
f \in L^{2}(\sigma) \rightarrow H_{f} \in R^{2}(U)
$$

is isomorphic.
Proof. Since $L^{2}(\sigma) \subset L^{1}(\sigma)$, any function f of $L^{2}(\sigma)$ is σ-integrable, which implies, by virtue of Lemma 1.3, that f is μ_{x}^{U}-integrable for all x of U. By the resolutivity theorem [4], $H_{f}(x)=\int_{\partial U} f d \mu_{x}^{U}$ is harmonic on U for all f of $L^{2}(\sigma)$. It is evident that $R^{2}(U)$ is a vector space and it holds that, for any pair $f, g \in L^{2}(\sigma)$ and real numbers a and b,

$$
a f+b g \rightarrow H_{a f+b g}=a H_{f}+b H_{g}
$$

Moreover Lemma 1.2 follows that, for $f, g \in L^{2}(\sigma), f$ is equal to g if and only if $H_{f}(x)=\int_{\partial U} f d \mu_{x}^{U}$ is equal to $H_{g}(x)=\int_{\partial U} g d \mu_{x}^{U}$ for all x of U. This fact implies that the correspondence between $f \in L^{2}(\sigma)$ and $H_{f} \in R^{2}(U)$ is one-to-one and it is evident that this mapping is onto. This completes the proof.

On $R^{2}(U)$ we define the scalar product $\left(H_{f}, H_{g}\right)$ and the norm $\left\|H_{f}\right\|$ as follows;

$$
\begin{aligned}
\left(H_{f}, H_{g}\right) & =(f, g)_{\sigma} \\
\left\|H_{f}\right\| & \text { for } H_{f}, H_{g} \in R^{2}(U) \\
& \text { for } H_{f} \in R^{2}(U)
\end{aligned}
$$

Then by Lemma 1.4 and the fact that $L^{2}(\sigma)$ is a Hibert space with respect to the scalar product $(f, g)_{\sigma}$ and the norm $\|f\|_{\sigma}$, we have immediately the following theorem.

Theorem 1.5. $R^{2}(U)$ is a Hilbert space with respect to the scalar product $\left(H_{f}, H_{g}\right)$ and the norm $\left\|H_{f}\right\|$.
2. Representation of a function of $\boldsymbol{R}^{2}(U)$ by a reproducing kernel of $\boldsymbol{R}^{2}(\boldsymbol{U})$

In this paragraph showing that there exists a non-negative reproducing kernel of $R^{2}(U)$, we are going to consider the representation of every function of $R^{2}(U)$ by the reproducing kernel. In order to prove our theorem, the following theorem proved by H. Bauer [4] is very useful.

Theorem 2.1 (H. Bauer). Suppose that U is an open subset in X, μ a positive meausre in U and F any compact subset in $\stackrel{\circ}{A}_{S_{\mu}} \cap U$, where $\stackrel{\circ}{A}_{S_{\mu}}$ is the interior of the smallest absorption set containing $S \mu$, the support of μ. Then there exists a non-negative constant α depending upon F and μ such that, for all non-negative harmonic function u defined on U,

$$
\sup u(F) \leqq \alpha \int u d \mu
$$

We can obtain the following analoguous theorem concerning $R^{2}(U)$ to Theorem 2.1.

Theorem 2.2. Let U be a relatively compact open subset in X, ν and σ the positive measures mentioned in the paragraph 1 and F any compact subset in U. Then there exists a non-negative constant γ depending on F and σ such that

$$
\sup |u(F)| \leqq \gamma\|u\| \quad \text { for all } u \in R^{2}(U)
$$

Proof. By the hypothesis of $\nu, \stackrel{\circ}{A}_{S \nu}$ is equal to U and thus $\stackrel{\circ}{A}_{S_{\nu}} \cap U=U$. By Theorem 2.1 it holds that, for any compact subset F in U, there exists a non-negative constant α depending on F and ν such that, for all non-negative harmonic function h in $R^{2}(U)$,

$$
\begin{equation*}
\sup h(F) \leqq \alpha \int h d \nu \tag{2.1}
\end{equation*}
$$

On the other hand, by virtue of Lemma 1.4, there exists for each function u of $R^{2}(U)$ a unique function f in $L^{2}(\sigma)$ such that $u=H_{f}$. Thus we have, for any point x of F,

$$
\begin{equation*}
|u(x)|=\left|H_{f}(x)\right|=\left|\int f d \mu_{x}^{U}\right| \leqq \int|f| d \mu_{x}^{U}=H_{|f|}(x) . \tag{2.2}
\end{equation*}
$$

Noting that $f \in L^{2}(\sigma)$ implies $|f| \in L^{2}(\sigma)$ and applying (2.1) to $h=H_{|f|}$, it holds that

$$
\begin{equation*}
H_{|f|}(x) \leqq \sup H_{|f|}(F) \leqq \alpha \int H_{|f|} d \nu \tag{2.3}
\end{equation*}
$$

Taking account of the fact that

$$
\int H_{1 f \mid} d \nu=\int|f| d \sigma \leqq\left(\int d \sigma\right)^{1 / 2}\|f\|_{\sigma}
$$

and

$$
\|f\|_{\sigma}=\left\|H_{f}\right\|=\|u\|
$$

we have, by (2.2) and (2.3), the following results,

$$
\begin{equation*}
|u(x)| \leqq \gamma\|u\| \tag{2.4}
\end{equation*}
$$

$$
\begin{equation*}
\sup |u(F)| \leqq \gamma\|u\| \tag{2.5}
\end{equation*}
$$

where we denote by γ the constant $\alpha\left(\int d \sigma\right)^{1 / 2}$. We complete the proof.
Here let us recall into our mind something about the reproducing kernel of a Hilbert space.

Let M be an abstract set and let a system \mathscr{F} of complex valued functions defined on M constitute a Hilbert space by the scalar product

$$
(f, g)=(f(x), g(x))_{x}
$$

and the norm

$$
\|f\|=((f, f))^{1 / 2}
$$

A complex valued function $K_{0}(x, y)$ defined on $M \times M$ is called a reproducing kernel of \mathscr{F} if it satisfies the condition: for any fixed point y of $M, K_{0}(x, y) \in \mathscr{F}$ as a function of x,

$$
f(y)=\left(f(x), K_{0}(x, y)\right)_{x}
$$

and

$$
\overline{f(y)}=\left(K_{0}(x, y), f(x)\right)_{x}
$$

As for the existence of reproducing kernels, we have
Theorem 2.3 (N. Aronszajn [1], S. Bergman [6]). 平 has a reproducing kernel if and only if there exists, for any x of M, a non-negative constant C_{x}, deending on x, such that

$$
|f(x)| \leqq C_{x}\|f\| \quad \text { for all } f \in \mathscr{F}
$$

Let us go back to our argument and show that there exists a reproducing kernel of $R^{2}(U)$. Then we have the following theorems.

Theorem 2.4. There exist a reproducing kernel $K(x, y)$ of $R^{2}(U)$ with the relation
(a) $\quad u(y)=(u(x), K(x, y)) \quad$ for all $u \in R^{2}(U)$,
and a complete orthonormal countable base $\left\{u_{n}\right\}$ of $R^{2}(U)$ such that
(b)

$$
K(x, y)=\sum u_{n}(x) u_{n}(y)
$$

which implies the symmetricity of $K(x, y), K(x, y)=K(y, x)$.
Proof. From Theorem 1.5, 2.2 and 2.3 immediately follow the existence of a reproducing kernel $K(x, y)$ of $R^{2}(U)$ with the relation (a). Since the basic space X is separable, there exists, in $R^{2}(U)$, a complete orthonormal countable
base $\left\{u_{n}\right\}$ with the property (b), applying theorem 1 in O. Lehto [10] or Satz, III $_{7}$ in H. Meschkowski [11].

Theorem 2.5. The reproducing kernel $K(x, y)$ of $R^{2}(U)$ is non-negative.
Proof. For any function u of $R^{2}(U)$, there exists a unique function f of $L^{2}(\sigma)$ such that

$$
u(x)=\int_{\partial U} f(\theta) d \mu_{x}^{U}(\theta)
$$

and we define \tilde{u} by

$$
\tilde{u}(x)=\int_{\partial U}|f(\theta)| d \mu_{x}^{U}(\theta) .
$$

Then the function \tilde{u} belongs to $R^{2}(U)$ and we have the relations

$$
u(x) \leqq \tilde{u}(x) \quad \text { for all } x \in U
$$

and

$$
\|u\|=\|\tilde{u}\|=\|f\|_{\sigma}
$$

Let us put

$$
u^{+}(x)=\frac{1}{2}(\tilde{u}+u)
$$

and

$$
u^{-}(x)=\frac{1}{2}(\tilde{u}-u)
$$

Then $u^{+}(x)$ and $u^{-}(x)$ are obviously non-negative functions of $R^{2}(U)$ with the properties

$$
\begin{aligned}
& u=u^{+}-u^{-} \\
& \left(u^{+}, u^{-}\right)=0
\end{aligned}
$$

and therefore it holds that, for any u of $R^{2}(U)$,

$$
\begin{align*}
\left(u^{-}, u\right) & =\left(u^{-}, u^{+}\right)-\left(u^{-}, u^{-}\right) \tag{2.6}\\
& =-\left(u^{-}, u^{-}\right) \\
& =-\left\|u^{-}\right\|^{2} \leqq 0 .
\end{align*}
$$

As, for every $y \in U, K_{y}(x)=K(x, y)$ is a function of $R^{2}(U), K_{y}(x)$ satisfies the above relation (2.6), that is,

$$
0 \leqq K_{y}^{-}(y)=\left(K_{y}^{-}, K_{y}\right)=-\left\|K_{y}^{-}\right\|^{2},
$$

which implies that $K_{y}^{-}=0$ and so $K_{y}=K_{y}^{+} \geqq 0$. This completes the proof.

3. Monotonicity of the reproducing kernel with respect to the domain of its definition on harmonic spaces

S. Bergman [6] proved the following relation related to the monotonicity of a kernel function with respect to the domain of its definition on the complex plane: Let B_{1} and B_{2} be respectively finite domains with the smooth boundaries in the complex plane. If the domain B_{2} is included in B_{1}, then

$$
K_{B_{1}}(z, z) \leqq K_{B_{2}}(z, z)
$$

at any point (z, z) in $B_{2} \times B_{2}$, where $K_{B_{1}}\left(z, z^{\prime}\right)$ and $K_{B_{2}}\left(z, z^{\prime}\right)$ denote respectively reproducing kernels of $\mathcal{L}^{2}\left(B_{1}\right)$ and $\mathcal{L}^{2}\left(B_{2}\right)$, where $\mathcal{L}^{2}(B)$ denotes the class of all functions $f(z)$ which are regular and single valued in B and

$$
\int_{B}|f(z)|^{2} d x d y<\infty
$$

In the previous paragraph, we have proved the existence of a non-negative reproducing kernel $K(x, y)$ of $R^{2}(U)$ in a harmonic space. The purpose of this paragraph is to prove the above Bergman's Theorem for our reproducing kernel of $R^{2}(U)$. To do so, it is necessary to prepare some lemmas.

Lemma 3.1. Let U be a relatively compact open subset of X. Denote by $(u, v)_{U}$ and $\|u\|_{U}=\sqrt{(u, u)_{U}}$ respectively the inner product and the norm of $R^{2}(U)$ defined in the paragraph 1. Suppose that x is a point in U. Then there exists a function u_{0} of $R^{2}(U)$ such that

$$
\begin{aligned}
\left\|u_{0}\right\|_{U} & =\min \left\{\|u\|_{U}: u \in R^{2}(U), u(x)=1\right\} \\
& =1 / \sqrt{K_{U}(x, x)}
\end{aligned}
$$

where $K_{U}(x, y)$ is the reproducing kernel of $R^{2}(U)$.
Proof. In order to prove this lemma, it is sufficient to apply to $R^{2}(U)$ the procedure of the minimizing problem to $\mathcal{L}^{2}(B)$ which S . Bergman [6] discussed. In fact, by Theorem 2.4, there exists a complete orthonormal countable base $\left\{u_{n}\right\}$ with $\sum_{n=1}\left|u_{n}(y)\right|^{2}<\infty$ in U. Hence, for any u of $R^{2}(U)$, we have the representation

$$
u(y)=\sum_{n=1}^{\infty} a_{n} u_{n}(y) \quad \text { in } U
$$

where $a_{n}=\left(u, u_{n}\right)_{U}$. Then, by following the same method as that of p. 21 in [6], we can prove that there exists the minimum function $u_{0}(y)$, belonging to $R^{2}(U)$ with $u_{0}(x)=1$, such that the norm $\|u\|_{U}$ is minimum, that is,

$$
\left\|u_{0}\right\|_{U}=\min \left\{\|u\|_{U}: u \in R^{2}(U), u(x)=1\right\}
$$

and that

$$
u_{0}(y)=\frac{\sum_{n=1}^{\infty} u_{n}(y) u_{n}(x)}{\sum_{n=1}^{\infty}\left|u_{n}(x)\right|^{2}} \quad \text { in } U
$$

On the other hand, as

$$
K_{U}(y, x)=\sum_{n=1}^{\infty} u_{n}(y) u_{n}(x)
$$

u_{0} can be denoted by

$$
u_{0}(y)=\frac{K_{U}(y, x)}{K_{U}(x, x)} \quad \text { in } U
$$

and it holds that

$$
\begin{aligned}
\left\|u_{0}\right\|_{U}^{2} & =\left(\frac{K_{U}(y, x)}{K_{U}(x, x)}, \frac{K_{U}(y, x)}{K_{U}(x, x)}\right)_{U} \\
& =\frac{1}{K_{U}(x, x)}
\end{aligned}
$$

Therefore we obtain the minimum value $\left\|u_{0}\right\|_{U}=1 / \sqrt{K_{U}(x, x)}$.
From now on in this paragraph we suppose that U_{1} and U_{2} are relatively compact open subsets in X such that U_{1} includes U_{2} and σ_{1} and σ_{2} are the positive maesures defined by

$$
\sigma_{i}(e)=\int_{U_{i}} \mu_{x}^{U_{i}}(e) d \nu_{i}(x) \quad(i=1,2)
$$

where $\nu_{i}(i=1,2)$ is a positive measure defined on a dense subset U_{i}^{\prime} of U_{i}, whose support is the closure of U_{i}, and ν_{2} is the restriction of ν_{1} on U_{2}.

Let us denote by H_{f}^{U} the general solution of the Dirichlet problem with respect to an open subset U of X and a resolutive function f on ∂U. Then we have the following:

Lemma 3.2. If g and h are the following boundary functions on ∂U_{2} concerning every function f of $L^{2}\left(\sigma_{1}\right)$:

$$
\begin{aligned}
& g(\theta)= \begin{cases}\left(H_{f_{1}}^{U_{1}}(\theta)\right)^{2} & \text { on } \partial U_{2} \cap U_{1} \\
(f(\theta))^{2} & \text { on } \partial U_{2} \cap \partial U_{1}\end{cases} \\
& h(\theta)= \begin{cases}H_{f^{2}}^{U_{1}}(\theta) & \text { on } \partial U_{2} \cap U_{1} \\
(f(\theta))^{2} & \text { on } \partial U_{2} \cap \partial U_{1},\end{cases}
\end{aligned}
$$

then we obtain that

$$
H_{g^{2}}^{U_{2}}(y) \leqq H_{h}^{U_{2}}(y)=H_{f^{2}}^{U_{1}}(y) \quad \text { in } U_{2}
$$

Proof. Since f belongs to $L^{2}\left(\sigma_{1}\right)$ and necessarily to $L^{1}\left(\sigma_{1}\right)$, by applying

Lemma 1.3, the following function

$$
u(\theta)=\int_{\partial U_{1}} f(\eta) d \mu_{\theta}^{U}(\eta)
$$

is well defined in U_{1} and we can write by

$$
u(\theta)=H_{f}^{U_{1}}(\theta) \quad \text { in } U_{1}
$$

Then we have, by Schwarz's inequality and the superharmonicity of constants, that

$$
\begin{equation*}
\left(H_{\left.f^{U_{1}}(\theta)\right)^{2} \leqq \int_{\partial U_{1}}(f(\eta))^{2} d \mu_{\theta}^{U^{1}}(\eta) \quad \text { in } U_{1}, ~ ; ~}^{\text {, }}\right. \tag{3.1}
\end{equation*}
$$

where, by virtue of Lemma 1.3, the function of the right hand is well defined and harmonic in U_{1} and the following representation is possible:

$$
\begin{equation*}
H_{f 2}^{U_{1}}(\theta)=\int_{\partial U_{1}}(f(\eta))^{2} d \mu_{\theta}^{U_{1}(\eta)} \quad \text { in } U_{1} \tag{3.2}
\end{equation*}
$$

It is well known that, using Corollary 4.2.5 of Bauer's book [4],

$$
\begin{equation*}
H_{f^{2}}^{U_{1}}(y)=\int_{\partial U_{2}} h(\theta) d \mu_{y}^{U_{2}}(\theta)=H_{h}^{U_{2}}(y) \quad \text { in } U_{2} \tag{3.3}
\end{equation*}
$$

which implies that h is μ_{y}^{U}-integrable for all y of U_{2}. On the other hand, by (3.1) and (3.2), it holds that, in U_{2}

$$
\begin{equation*}
\int_{\partial U_{2}} g(\theta) d \mu_{y}^{U_{2}}(\theta) \leqq \int_{\partial U_{2}} h(\theta) d \mu_{y}^{U_{2}}(\theta)=H_{h}^{U_{2}}(y) . \tag{3.4}
\end{equation*}
$$

This means the fact that g is also μ_{y}^{U}-integrable for all y of U_{2} and so we can denote as follows:

$$
\begin{equation*}
H_{g}^{U_{2}}(y)=\int_{\partial U_{2}} g(\theta) d \mu_{y}^{U_{2}}(\theta) \quad \text { in } U_{2} \tag{3.5}
\end{equation*}
$$

It follows from (3.3), (3.4) and (3.5) that

$$
H_{g}^{U_{2}}(y) \leqq H_{h}^{U_{2}}(y)=H_{f 2}^{U_{1}}(y) \quad \text { in } U_{2},
$$

which completes the proof.
Lemma 3.3. For any u of $R^{2}\left(U_{1}\right)$, the restriction of u on U_{2}, denoted by $u \mid U_{2}$, belongs to $R^{2}\left(U_{2}\right)$.

Proof. In the first place, consider the case that $U_{1} \supset \bar{U}_{2} \supset U_{2}$. Since the restriction of u on $\partial U_{2}, u \mid \partial U_{2}$, is continuous on ∂U_{2} and hence belongs to $L^{2}\left(\sigma_{2}\right)$, we have the following representation:

$$
u(y)=\int_{\partial U_{2}} u \mid \partial U_{2}(\theta) d \mu_{y}^{U}(\theta) \quad \text { in } U_{2}
$$

Thus we obtain that the restriction of u on $U_{2}, u \mid U_{2}$, belongs to $R^{2}\left(U_{2}\right)$. In the case that $U_{1} \supset U_{2}$ and $\partial U_{1} \cap \partial U_{2}$ is not null, we consider the boundary function f on ∂U_{2},

$$
\tilde{f}(\theta)= \begin{cases}H_{f}^{U_{1}}(\theta) & \text { on } \partial U_{2} \cap U_{1} \\ f(\theta) & \text { on } \partial U_{2} \cap \partial U_{1}\end{cases}
$$

where f is the function of $L^{2}\left(\sigma_{1}\right)$ in Lemma 1.4 such that

$$
u(y)=\int_{\partial U_{1}} f(\theta) d \mu_{y}^{U_{1}}(\theta) .
$$

Then it is well known that \tilde{f} is a resolutive function on ∂U_{2} and

$$
u(y)=\int_{\partial U_{2}} \tilde{f}(\theta) d \mu_{y}^{U_{2}}(\theta) \quad \text { in } U_{2} .
$$

We are going to prove that $\tilde{f}(\theta)$ is a function of $L^{2}\left(\sigma_{2}\right)$. In fact, it is evident that

$$
(\tilde{f}(\theta))^{2}=g(\theta) \quad \text { on } \partial U_{2},
$$

where $g(\theta)$ is the function in Lemma 3.2 and then by Lemma 3.2 it holds that

$$
H_{f^{2}}^{U_{2}}(y) \leqq H_{f^{2}}^{U_{1}}(y) \quad \text { in } U_{2}
$$

and integrating by the measure ν_{2} the above inequality, we have

$$
\int_{\partial U_{2}}(\tilde{f}(\theta))^{2} d \sigma_{2}(\theta) \leqq \int_{U_{2}} H_{f^{2}}^{U_{1}}(y) d \nu_{2}(y) \leqq \int_{\partial U_{1}}(f(\theta))^{2} d \sigma_{1}(\theta),
$$

which implies \tilde{f} is a function of $L^{2}\left(\sigma_{2}\right)$.
We obtain immediately the following corollary of this lemma.
Corollary. For a fixed point x in U_{2}, it holds that

$$
\frac{K_{U_{1}}(y, x) \mid U_{2}}{K_{U_{1}}(x, x)} \in\left\{u \in R^{2}\left(U_{2}\right): u(x)=1\right\}
$$

and

$$
\left\|u_{0}\right\|_{U_{2}}^{2} \leqq\left(\frac{K_{U_{1}}(y, x) \mid U_{2}}{K_{U_{1}}(x, x)}, \frac{K_{U_{1}}(y, x) \mid U_{2}}{K_{U_{1}}(x, x)}\right)_{U_{2}},
$$

where u_{0} is the minimum function in Lemma 3.1 to $R^{2}\left(U_{2}\right)$.
We now prove the following lemma which plays the essentially important role in studing our purpose of this paragraph.

Lemma 3.4. It holds that, for every u of $R^{2}\left(U_{1}\right)$,

$$
\left\|u \mid U_{2}\right\|_{U_{2}} \leqq\|u\|_{U_{1}} .
$$

Proof. For every u of $R^{2}\left(U_{1}\right)$, there exists a unique function f of $L^{2}\left(\sigma_{1}\right)$ such that

$$
u(x)=\int_{\partial U_{1}} f(\eta) d \mu_{x}^{U}(\eta) \quad \text { in } U_{1}
$$

Denoting by $\tilde{f}(\theta)$ the same function used in the proof of Lemma 3.3, it holds that, by Lemma 3.3, \tilde{f} belongs to $L^{2}\left(\sigma_{2}\right)$ and $u \mid U_{2}$ does to $R^{2}\left(U_{2}\right)$ and

$$
u(y)=\int_{\partial U_{2}} \tilde{f}(\theta) d \mu_{y}^{U_{2}}(\theta) \quad \text { in } U_{2}
$$

Then by applying Lemma 3.2, we have the following:

$$
\begin{aligned}
\left\|u \mid U_{2}\right\|_{U_{2}}^{2} & =\int_{\partial U_{2}}(\tilde{f}(\theta))^{2} d \sigma_{2}(\theta) \\
& =\int_{U_{2}} \int_{\partial U_{2}} g(\theta) d \mu_{y}^{U_{2}}(\theta) d \nu_{2}(y) \\
& =\int_{U_{2}} H_{g_{2}}^{U_{2}}(y) d \nu_{2}(y) \\
& \leqq \int_{U_{2}} H_{f 2}^{U_{1}}(y) d \nu_{2}(y) \\
& \leqq \int_{U_{1}} H_{f 2}^{U_{1}}(y) d \nu_{1}(y) \\
& =\int_{\partial U_{1}}(f(\eta))^{2} d \sigma_{1}(\eta) \\
& =\|u\|_{U_{1}}^{2}
\end{aligned}
$$

where $g(\theta)$ means the same function as that of Lemma 3.2. This completes the proof.

We have immediately the following corollary of this Lemma 3.4.

Corollary. We obtain that

$$
\frac{\left\|K_{U_{1}}(y, x) \mid U_{2}\right\|_{U_{2}}^{2}}{\left(K_{U_{1}}(x, x)\right)^{2}} \leqq \frac{\left\|K_{U_{1}}(y, x)\right\|_{U_{1}}^{2}}{\left(K_{U_{1}}(x, x)\right)^{2}}
$$

where x is a fixed point in U_{2}.
Now we are going to prove our main theorem in this paragraph.
Theorem 3.5. Let U_{1} and U_{2} be relatively compact open subsets such that U_{1} includes U_{2}. Then the following relation between the reproducing kernels $K_{U_{1}}(y, x)$ and $K_{U_{2}}(y, x)$ is held in $U_{2} \times U_{2}$:

$$
K_{U_{1}}(x, x) \leqq K_{U_{2}}(x, x)
$$

Proof. By Corollary of Lemma 3.3, for a fixed point x of U_{2}, we obtain
that

$$
\frac{K_{U_{1}}(y, x) \mid U_{2}}{K_{U_{1}}(x, x)} \in\left\{u \in R^{2}\left(U_{2}\right): u(x)=1\right\} .
$$

We have, by the minimum property and Corollary of Lemma 3.4, that

$$
\begin{aligned}
\left\|u_{0}\right\|_{U_{2}}^{2} & \leqq \frac{\left\|K_{U_{1}}(y, x) \mid U_{2}\right\|_{U_{2}}^{2}}{\left(K_{U_{1}}(x, x)\right)^{2}} \\
& \leqq \frac{\left\|K_{U_{1}}(y, x)\right\|_{U_{1}}^{2}}{\left(K_{U_{1}}(x, x)\right)^{2}} \\
& =\frac{1}{K_{U_{1}}(x, x)} .
\end{aligned}
$$

On the other hand, by Lemma 3.1, we obtain the minimum value

$$
\left\|u_{0}\right\|_{U_{2}}^{2}=\frac{1}{K_{U_{2}}(x, x)} .
$$

Hence it holds that, in $U_{2} \times U_{2}$,

$$
K_{U_{1}}(x, x) \leqq K_{U_{2}}(x, x) .
$$

This completes the proof of this theorem.

4. Integral representation of harmonic functions in Cauchy-type

In this paragraph it is very useful to recall into our mind Lemma 1.4: The correspondence

$$
f \in L^{2}(\sigma) \rightarrow H_{f} \in R^{2}(U)
$$

is isomorphic. For every y of U, the reproducing kernel $K(x, y)$ of $R^{2}(U)$ belonging to $R^{2}(U)$ as a function of x, there exists uniquely the function $k(\theta, y)$ of $L^{2}(\sigma)$ such that

$$
K(x, y)=\int_{\partial U} k(\theta, y) d \mu_{x}^{U}(\theta) .
$$

Then we have the following Cauchy-type integral representation, for every function u of $R^{2}(U)$, with respect to the integral kernel $k(\theta, y)$.

Theorem 4.1. Let U be a relatively compact open subset of X and σ the positive measure mentioned in the paragraph 1. Then for any function u of $R^{2}(U)$, there exists a unique function f of $L^{2}(\sigma)$ and u can be represented in the following manner - so called, in the Cauchy-type integral representation:

$$
u(y)=\int_{\partial U} k(\theta, y) f(\theta) d \sigma(\theta)
$$

Conversely, for any function f of $L^{2}(\sigma)$, the function of y

$$
\int_{\partial U} k(\theta, y) f(\theta) d \sigma(\theta)
$$

belongs to $R^{2}(U)$.
Proof. For any function u of $R^{2}(U)$, by Lemma 1.4, there exists uniquely the function of $L^{2}(\sigma)$ such that

$$
u(x)=\int_{\partial U} f(\theta) d \mu_{x}^{U}(\theta) \quad \text { in } U
$$

Taking account of the relation between the inner product of $L^{2}(\theta)$ and that of $R^{2}(U)$ and the isomorphism between $L^{2}(\theta)$ and $R^{2}(U)$, we have immediately that

$$
\begin{aligned}
u(y) & =(K(x, y), u(x)) \\
& =(k(\theta, y), f(\theta))_{\sigma} \\
& =\int_{\partial U} k(\theta, y) f(\theta) d \sigma(\theta) .
\end{aligned}
$$

Conversely, for any function f of $L^{2}(\sigma)$, consider the function of y

$$
\int_{\partial U} k(\theta, y) f(\theta) d \sigma(\theta)
$$

and denote this by $u(y)$. It is sure that this function $u(y)$ is well defined, since $k(\theta, y)$ and $f(\theta)$ belong to $L^{2}(\sigma)$. On the other hand, we consider the following function $u_{0}(y)$ of $R^{2}(U)$ associated with this given function f of $L^{2}(\sigma)$,

$$
u_{0}(y)=\int_{\partial U} f(\theta) d \mu_{y}^{U}(\theta)
$$

We are going to prove that $u(y)$ is equal to $u_{0}(y)$. By Lemma 1.4 and the reproducing property of $K(x, y)$ in the space $R^{2}(U)$, we have the followings:

$$
\begin{aligned}
u(y) & =\int_{\partial U} k(\theta, y) f(\theta) d \sigma(\theta) \\
& =(k(\theta, y), f(\theta))_{\sigma} \\
& =\left(K(x, y), u_{0}(x)\right) \\
& =u_{0}(y)
\end{aligned}
$$

We now define the spaces

$$
\begin{aligned}
& L(U)=\bigcap_{x \in U} L^{1}\left(\mu_{x}^{U}\right) \\
& R(U)=\left\{H_{f}: H_{f}(x)=\int_{\partial U} f(\theta) d \mu_{x}^{U}(\theta) \text { for all } f \in L(U) \text { and for all } x \in U\right\}
\end{aligned}
$$

By the Brelot's resolutivity theorem, $L(U)$ is constructed by all resolutive func-
tions relative to Dirichlet problem for U and $R(U)$ is the set of all general solutions to all resolutive functions. Lemma 1.3 follows that $L(U) \supset L^{2}(\sigma)$ and so $R(U) \supset R^{2}(U)$. We are going to discuss the Cauchy-type integral representation of every function u of $R(U)$ concerning a non-negative integral kernel $\tilde{k}(\theta, y)$. To do so we must prepare some lemmas.

Lemma 4.2. For any Borel subset e of ∂U and any point x of U, we have that

$$
\mu_{x}^{U}(e)=\int_{e} k(\theta, x) d \sigma(\theta),
$$

where $k(\theta, x)$ is the same function that appeared in Theorem 4.1.
Proof. In the procedure of the proof of Theorem 4.1, we have that

$$
\int_{\partial U} f(\theta) d \mu_{x}^{U}(\theta)=\int_{\partial U} f(\theta) k(\theta, x) d \sigma(\theta) \quad \text { for any } f \in L^{2}(\sigma) .
$$

And hence it is evident that the above relation holds for all continuous functions f on ∂U. This fact implies immediately the result of this lemma.

Furthermore we can improve slightly Lemma 4.2 as follows:
Lemma 4.3. For any Borel subset e of ∂U and any point x of U, there exists a non-negative function $\tilde{k}(\theta, x)$ such that

$$
\mu_{x}^{U}(e)=\int_{e} \tilde{k}(\theta, x) d \sigma(\theta)
$$

and

$$
k(\theta, x)=\tilde{k}(\theta, x) \quad \text { in } L^{2}(\sigma)
$$

Proof. If we note that the measures μ_{x}^{U} and σ are positive measures, from Lemma 4.2 immediately it follows that for any x of U

$$
k(\theta, x) \geqq 0 \quad \sigma \text {-a.e. on } \partial U .
$$

We define the non-negative function $\tilde{k}(\theta, x)$ by

$$
\tilde{k}(\theta, x)= \begin{cases}k(\theta, x) & \text { on } \partial U-E_{x} \\ 0 & \text { on } E_{x}\end{cases}
$$

where we put for each x of U

$$
E_{x}=\{\theta \in \partial U: k(\theta, x)<0\}
$$

Then we have immediately

$$
\tilde{k}(\theta, x) \in L^{2}(\sigma) \quad \text { for all } x \in U
$$

$$
\mu_{x}^{U}(e)=\int_{e} \tilde{k}(\theta, x) d \sigma(\theta)
$$

and

$$
\begin{aligned}
K(x, y) & =\int_{\partial U} k(\theta, y) d \mu_{x}^{U}(\theta) \\
& =\int_{\partial U} k(\theta, y) \tilde{k}(\theta, x) d \sigma(\theta) \\
& =\int_{\partial U} \tilde{k}(\theta, x) k(\theta, y) d \sigma(\theta) \\
& =\int_{\partial U} \tilde{k}(\theta, x) d \mu_{y}^{U} \\
& =K(y, x)
\end{aligned}
$$

which implies that, by Lemma 1.4,

$$
k(\theta, x)=\tilde{k}(\theta, x) \quad \text { in } L^{2}(\sigma)
$$

This lemma means that the measure μ_{x}^{U} has the density function $\tilde{k}(\theta, x)$ with respect to the measure σ.

Thus we obtain the following extension of Theorem 4.1.
Theorem 4.4. Let U be a relatively compact open subset of X and σ the positive meaure mentioned in the paragraph 1. Then any function u of $R(U)$ is represented in the Cauchy-type integral representation with respect to the integral kernel $\tilde{k}(\theta, x)$, a function f of $L(U)$ and the measure σ, that is,

$$
u(y)=\int_{\partial U} \tilde{k}(\theta, y) f(\theta) d \sigma(\theta)
$$

Conversely, for each function f of $L(U)$, the function of y in U,

$$
\int_{\partial U} \tilde{k}(\theta, y) f(\theta) d \sigma(\theta)
$$

belongs to $R(U)$.
Proof. For any function u of $R(U)$, there exists, by the definition, a function f of $L(U)$ such that

$$
u(y)=\int_{\partial U} f(\theta) d \mu_{y}^{U}(\theta)
$$

By virtue of Lemma 4.3, we have the following expression,

$$
u(y)=\int_{\partial U} \tilde{k}(\theta, y) f(\theta) d \sigma(\theta)
$$

Conversely, for any function f of $L(U)$, by the resolutivity theorem, we can define the following function u of $R(U)$

$$
u(y)=\int_{\partial U} f(\theta) d \mu_{y}^{U}(\theta)
$$

Using again Lemma 4.3, this function $u(y)$ is equal to the function of y in U,

$$
\int_{\partial U} \tilde{k}(\theta, y) f(\theta) d \sigma(\theta) .
$$

This completes the proof of this theorem.
In the last place, let us note that we obtain as a special case of Theorem 4.4 the following result in the investigation by H.S. Bear and A.M. Gleason [5].

Theorem 4.5. Let U be a relatively compact open subset in X, Γ the topological boundary of U and $H(U)$ the set of all harmonic functions on U such that there exist their continuous extensions over the closure of U, denoted by \bar{U}. Then, for any u of $H(U)$ there exist a Borel probability measure λ on Γ and a nonnegative measurable function $q(\theta, y)$ on $\Gamma \times U$ such that in U

$$
u(y)=\int_{\Gamma} q(\theta, y) f(\theta) d \lambda(\theta)
$$

where f denotes the restriction of the continuous extension of u over \bar{U} on the boundary.

Kobe University
Kyoto Prefectural University

References

[1] N. Aronszajn: Theory of reproducing kernel, Trans. Amer. Math. Soc. 68 (1950), 337-404.
[2] N. Aronszajn and K.H. Smith: Functional spaces and functional completion, Ann. Inst. Fourier 6 (1955-56), 125-185.
[3] -_ and Characterization of positive reproducing kernels. Applications to Green's functions, Amer. J. Math. 129 (1957), 611-622.
[4] H. Bauer: Harmonische Räume und ihre Potentialtheorie, Springer Verlag, Berlin, 1966.
[5] H.S. Bear and A.M. Gleason: A global integral representation for abstract harmonic function, J. Math. and Mech. 16 (1967), 639-654.
[6] S. Bergman: The kernel function and conformal mapping, Amer. Math. Soc., 1950.
[7] N. Bourbaki: Integration, Hermann, Paris, 1965.
[8] M. Brelot: Lectures on potential theory, Tata Inst. of Fund. Research, Bombay, 1960.
[9] P.R. Halmos: Measure theory, Van Nostrand, New York, 1950.
[10] O. Lehto: On Hilbert spaces with a kernel function, Ann. Acad. Fenn. Ser A 1, 74 (1950).
[11] H. Meschkowski: Hilbertsche Räume mit Kernfunktion, Springer Verlag, Berlin, 1962.
[12] K. Yoshida: Functional analysis, Springer Verlag, Berlin, 1967.

