SPHERICAL MEANS ON RIEMANNIAN MANIFOLDS

Toru TSUJISHITA

(Received October 13, 1975)

1. Let X be a compact Riemannian manifold of dimension $n, T X$ its tangent bundle and $S X$ its unit sphere bundle. Denote by $p: S X \rightarrow X$ the canonical projection. Let $G_{t}: S X \rightarrow S X(t \in \mathbf{R})$ be the geodesic flow.

The spherical mean (of radius t) $L_{t}: C^{\infty}(X) \rightarrow C^{\infty}(X)$ is defined by the following commutative diagram:

Here p^{*} and G_{t}^{*} denote the maps induced, respectively, by p and G_{t}, and p_{1} is the fibre integral defined by

$$
p_{1} f(x)=\int_{p^{-1} x} f \omega_{F}, \quad f \in C^{\infty}(S X),
$$

ω_{F} being the volume element on the fibre of p defined naturally by the Riemannian metric on X.

In this paper we prove the following
Theorem I. For sufficiently small positive t, L_{t} is a Fourier integral operator of order $-\frac{1}{2}(n-1)$, which belongs to the class determined by the conormal bundle $\Lambda \subset T^{*}(X \times X) \backslash 0$ of $\Delta_{t}=\{(x, y) ; d(x, y)=t\} \subset X \times X, d$ being the metric induced by the Riemannian metric.

The author would like to express his gratitude to T. Sunada for suggesting the above result.
2. For convenience sake, we consider all the operators as acting on the spaces of half densities. Let $\Omega_{\mathfrak{k}}(X)$ denote the bundle of half densities on X and $C^{\infty} \Omega_{\mathfrak{k}}(X)$ the space of smooth cross-sections of $\Omega_{\mathfrak{k}}(X)$. The Riemannian metric of X induces canonical densities ω_{X} and $\omega_{S X}$, respectively, on X and $S X$, which allow us to identify $C^{\infty}(X)$ with $C^{\infty} \Omega_{\frac{1}{2}}(X), C^{\infty}(S X)$ with $C^{\infty} \Omega_{\frac{1}{2}}(S X)$, respectively,
by the isomorphisms $f \mapsto f \sqrt{\omega_{X}}$ and $f \mapsto f \sqrt{\omega_{S X}}, \sqrt{\omega_{X}}$ and $\sqrt{\omega_{S X}}$ being the half densities that are the square roots of ω_{X} and $\omega_{S X}$, respectively. Under these identifications, the operators of $\S 1$ are transformed into the operators on the spaces of half densities:

3. Let $K \in \mathscr{D}^{\prime}(S X \times X, 1 \boxtimes \Omega(X))$ be the distribution kernel of $p^{*}: C^{\infty}(X)$ $\rightarrow C^{\infty}(S X)$. Here $\Omega(X)$ denotes the bundle of densities on X. We define $\tilde{K} \in \mathscr{D}^{\prime}\left(S X \times X, \Omega_{\frac{1}{2}}(S X \times X)\right)$ by

$$
\tilde{K}(x, y)=\frac{K(x, y) \sqrt{\omega_{S X}(x)}}{\sqrt{\omega_{X}(y)}}
$$

Then, obviously, we have
Lemma 1. The operators \tilde{p}^{*} and $\tilde{p}_{!}$have \tilde{K} and \widetilde{K}^{\prime} as the distribution kernels, respectively. Here $\tilde{K}^{\prime} \in \mathscr{D}^{\prime}\left(X \times S X, \Omega_{\frac{1}{2}}(X \times S X)\right)$ is the distribution corresponding to \widetilde{K} under the transposition map $X \times S X \widetilde{\leftrightarrows} S X \times X$.

Moreover, we have
 mal bundle of the graph of p, that is, $\Lambda=\left\{\left(x, p^{*} \eta\right) \times(p x,-\eta) ; x \in S X, \eta \in T_{p x}^{*} X \backslash 0\right\}$.

Remark 1. As to the notation $I^{m}(X, \Lambda)=I_{1}^{m}(X, \Lambda)$, see [3].
Remark 2. We denote a point e of a bundle $p: E \rightarrow B$ by (x, e), where $x=p e$.
This lemma follows from the following
Lemma 3. Let M and N be manifolds of dimension m and n, respectively. Let $g: M \rightarrow N$ be a smooth mapping. Fixing non-vanishing half densities on M and N, we get $\tilde{g}^{*}: C^{\infty} \Omega_{\frac{1}{2}}(N) \rightarrow C^{\infty} \Omega_{\frac{1}{2}}(M)$ induced by g. Then

$$
\tilde{g}^{*} \in I^{z^{(n-m)}}\left(M \times N, \Lambda_{g}\right),
$$

where $\Lambda_{g}=\left\{\left(x, g^{*} \eta\right) \times(g x,-\eta) ; x \in M, \eta \in T_{g x}^{*} N \backslash 0\right\}$.
(See, for example, [1].)
This lemma also implies the following
Lemma 4. $\tilde{G}_{t}^{*} \in I^{0}\left(S X \times S X, \Lambda_{t}\right)$, where $\Lambda_{t}=\left\{\left(x, G_{t}^{*} \xi\right) \times\left(G_{t} x,-\xi\right) ; x \in S X, \xi \in T_{G_{t}}^{*} S X \backslash 0\right\}$.
4. Now we quote a theorem concerning the composition of Fourier integral operators.

Let X and Y be manifolds. For any subset $\Lambda \subset T^{*} X \times T^{*} Y$, we define $\Lambda^{\prime}=\{(x, \xi) \times(y,-\eta) ;(x, \xi) \times(y, \eta) \in \Lambda\} \subset T^{*} X \times T^{*} Y$. When $\Lambda \subset\left(T^{*} X \backslash 0\right) \times$ ($T^{*} Y \backslash 0$) is a conic Lagrangean submanifold, Λ^{\prime} is nothing but a homogeneous canonical relation from $T^{*} Y$ to $T^{*} X$ in the sense of [3].

Theorem A ([3] Theorem 4.2.2). Let X, Y and Z be smooth manifolds. Let $C_{1} \subset T^{*} X \times T^{*} Y, C_{2} \subset T^{*} Y \times T^{*} Z$ be homogeneous canonical relations which satisfy the following conditions:
i) $C_{1} \times C_{2}$ and $T^{*} X \times \Delta\left(T^{*} Y\right) \times T^{*} Z$ intersect transversally, $\Delta\left(T^{*} Y\right)$ being the diagonal of $T^{*} Y \times T^{*} Y$;
ii) the restriction π of the projection $T^{*} X \times T^{*} Y \times T^{*} Y \times T^{*} Z \rightarrow T^{*} X \times T^{*} Z$ to $C_{1} \times C_{2} \cap T^{*} X \times \Delta\left(T^{*} Y\right) \times T^{*} Z$ is injective and proper.

Denote the image of π by $C_{1} \circ C_{2}$.
Then $C_{1} \circ C_{2}$ is a homogeneous canonical relation from $T^{*} Z$ to $T^{*} X$. Moreover, for any $A_{1} \in I_{\rho}^{m_{1}}\left(X \times Y, C_{1}{ }^{\prime}\right), A_{2} \in I_{\rho}^{m_{2}}\left(Y \times Z, C_{2}{ }^{\prime}\right)$, which are properly supported and $\rho>\frac{1}{2}$, we have

$$
A_{1} \circ A_{2} \in I_{\rho}^{m_{1}+m_{2}}\left(X \times Z ;\left(C_{1} \circ C_{2}\right)^{\prime}\right) .
$$

Lemma 5. $\quad \tilde{G}_{t}^{*}{ }^{\circ} \tilde{p}^{*} \in I^{-\frac{1}{(n-1)}}\left(S X \times X, C_{2}{ }^{\prime}\right)$, where $C_{2}=\left\{\left(x, G_{t}^{*} p^{*} \eta\right) \times\left(p G_{t} x, \eta\right) ; x \in S X, \eta \in T_{p G_{t} x}^{*} X \backslash 0\right\}$.

Proof. Λ_{t}^{\prime} and Λ_{p}^{\prime} are obviously homogeneous canonical relations, respectively, from $T^{*} S X$ to $T^{*} S X$ and from $T^{*} X$ to $T^{*} S X$. The following sublemma shows that the conditions of Theorem A are satisfied in this case.

Sublemma. Let X, Y and Z be manifolds, $g: X \rightarrow Y$ a diffeomorphism and $C \subset Y \times Z$ a submanifold. Denote by $C_{g} \subset X \times Y$ the graph of g. Then
i) $C_{g} \times C$ and $X \times \Delta(Y) \times Z$ intersect transversally;
ii) $p: C_{g} \times C \cap X \times \Delta(Y) \times Z \rightarrow C_{g} \circ C$ is a homeomorphism, p being the restriction of the projection $X \times Y \times Y \times Z \rightarrow X \times Z$.

Proof. First, we show the assertion i). Fix $\left(x_{0}, y_{0}, y_{0}, z_{0}\right) \in C_{g} \times C \cap X \times$ $\Delta(Y) \times Z$ and let $x=\left(x^{i}\right), y=\left(y^{j}\right)$ and $z=\left(z^{k}\right)$ be local charts around x_{0}, y_{0} and z_{0}, respectively. Since C_{g} has the parametrization $y \mapsto\left(g^{-1} y, y\right), y \circ \pi$ gives a local chart of C_{g} around (x_{0}, y_{0}), where $\pi: X \times Y \rightarrow Y$ is the natural projection. Define $y_{1}=y \circ \pi_{2}$ and $y_{2}=y \circ \pi_{3}$, where π_{j} denotes the projection of $X \times Y \times Y \times Z$ on the j-th factor. In order to prove the assertion i), it suffices to show that the local equations $y_{1}^{j}-y_{2}^{j}=0$ of $X \times \Delta(Y) \times Z$ in $X \times Y \times Y \times Z$ restricted to $C_{g} \times C$ are independent near $\left(x_{0}, y_{0}, y_{0}, z_{0}\right)$. But this follows trivially from the fact that the differentials $d y^{j}$ are independent on C_{g}.

The assertion ii) follows from the fact that p has the inverse: $(x, z) \mapsto$ $(x, g x, g x, z)$.
Q.E.D.

This completes the proof of Lemma 5.
5. Let t_{0} be a positive real number which satisfies the following conditions:
a) for each $x \in X$, the exponential mapping $T_{x} X \rightarrow X$ maps $\left\{\xi \in T_{x} X\right.$; $\left.\|\xi\|<3 t_{0}\right\}$ diffeomorphically into X, whose image is denoted by $B\left(x ; 3 t_{0}\right)$;
b) for all $y, z \in B\left(x ; 3 t_{0}\right)$, there is a unique geodesic curve in $B\left(x ; 3 t_{0}\right)$ joining y and z.

Since X is compact, such t_{0} exists. (cf [2].)
Theorem I'. For $0<t \leq t_{0}$, we have $\widetilde{L}_{t} \in I^{-\frac{1}{2}(n-1)}\left(X \times X, C^{\prime}\right)$. Here C^{\prime} is the conormal bundle of Δ_{t} minus the zero section.

Note that Δ_{t} is a submanifold of $X \times X$, since $t \leq t_{0}$.
Proof. We shall apply Theorem A in the situation where $X=X, Y=S X$, $Z=X, C_{1}=\left\{(p x, \eta) \times\left(x, p^{*} \eta\right) ; x \in S X, \eta \in T_{p x}^{*} X \backslash 0\right\}, C_{2}=\left\{\left(x, G_{t}^{*} p^{*} \eta\right) \times\left(p G_{t} x, \eta\right) ;\right.$ $\left.x \in S X, \eta \in T_{p G_{t} x}^{*} X \backslash 0\right\}, A_{1}=\widetilde{g}_{!} \in I^{-\frac{\xi}{(n-1)}}\left(X \times S X, C_{1}{ }^{\prime}\right), A_{2}=\widetilde{G}_{t}^{*} \circ \widetilde{p}^{*} \in I^{-\frac{1}{2}(n-1)}(S X$ $\left.\times X, C_{2}{ }^{\prime}\right)$.

1) First we determine the set $C=C_{1} \circ C_{2}$. Let $(x, \xi) \times(y, \eta) \in C$. By definition, there is a point $(z, \zeta) \in T^{*} S X$ such that $p z=x, p G_{t} z=y, p^{*} \xi=\zeta=G_{t}^{*} p^{*} \eta$. From $p^{*} \xi=G_{i}^{*} p^{*} \eta$, it follows that $\left\langle G_{i}^{*} p^{*} \eta, \delta x\right\rangle=\left\langle p^{*} \xi, \delta x\right\rangle=\left\langle\xi, p_{*} \delta x\right\rangle=0$ for any $\delta x \in T_{z}\left(p^{-1} x\right)$. Hence $\left\langle\eta,\left(p G_{t}\right)_{*} \delta x\right\rangle=0$ for all $\delta x \in T_{z}\left(p^{-1} x\right)$. Since $t \leq t_{0}$, $\left(p G_{t}\right)_{*} \mid T_{z}\left(p^{-1} x\right)$ is injective, whence $\left(p G_{t}\right)_{*}\left(T_{z}\left(p^{-1} x\right)\right)$ is a hyperplane of $T_{y} X$. Denote by $\hat{\eta}$, the element of $T_{y} X$ corresponding to η under the isomorphism $T_{y} X \cong T_{y}^{*} X$ defined by the Riemannian metric. Then $\hat{\eta}$ is orthogonal to the hyperplane $\left(p G_{t}\right)_{*}\left(T_{z}\left(p^{-1} x\right)\right)$, in other words, $\hat{\eta}$ is a normal vector at y of the geodesic sphere $p G_{t}\left(p^{-1} x\right)$ of radius t with center $x . \quad G_{t} z \in S_{y} X \subset T_{y} X$ being also a normal vector of this geodesic sphere, we have $\hat{\eta}=c G_{t} z$ for some $c \in \mathbf{R}$ $-\{0\}$. Starting from $G_{-t}^{*} p^{*} \xi=p^{*} \eta$, we can argue in the same way to show that $\hat{\xi}=c^{\prime} z$ for some $c^{\prime} \in \mathbf{R}-\{0\}$. Now we shall show $c=c^{\prime}$. Let V be the vector field on $S X$ which generates the flow G_{t}. Recall that $p_{*} V(z)=z(z \in S X)$. Then

$$
\begin{aligned}
c & =\left(G_{t} z, c G_{t} z\right) \\
& =\left\langle G_{t} z, \eta\right\rangle \\
& =\left\langle V\left(G_{t} z\right), p^{*} \eta\right\rangle \\
& =\left\langle G_{t} V(z), p^{*} \eta\right\rangle \\
& =\left\langle V(z), G_{t}^{*} p^{*} \eta\right\rangle \\
& =\left\langle V(z), p^{*} \xi\right\rangle \\
& =\langle z, \xi\rangle
\end{aligned}
$$

$$
=\left(z, c^{\prime} z\right)=c^{\prime}
$$

Hence if c is positive, then $\hat{\eta}=c G_{t} \approx=\widetilde{G}_{t}(c z)=\widetilde{G}_{t}(\hat{\xi})$. Here $\widetilde{G}_{t}: T X \backslash 0 \rightarrow T X \backslash 0$ is the map defined by

$$
\widetilde{G}_{t}(\xi)=\|\xi\| G_{t}\left(\frac{\xi}{\|\xi\|}\right) .
$$

If c is negative, then $\hat{\eta}=(-c)\left(-G_{t} z\right)=(-c) G_{-t}(-z)=\widetilde{G}_{-t}(c z)=\widetilde{G}_{-t}(\hat{\xi})$. Thus $C=\Gamma_{t} \cup \Gamma_{-t}$, where Γ_{t} is the graph of the diffeomorphism of $T^{*} X \backslash 0$ which is induced from \widetilde{G}_{t} by the usual isomorphism: $T^{*} X \widetilde{\leftrightarrows} T X$. Note that $\Gamma_{t} \cap \Gamma_{-t}=\phi$, since $t \leq t_{0}$.
2) Next we show that the condition i) of Theorem A is satisfied in the present case. Fix $P_{0}=\left(x_{0}, \xi_{0}\right) \times\left(z_{0}, \zeta_{0}\right) \times\left(z_{0}, \zeta_{0}\right) \times\left(y_{0}, \eta_{0}\right) \in C_{1} \times C_{2} \cap T^{*} X \times$ $\Delta\left(T^{*} S X\right) \times T^{*} X$. Let $x=\left(x^{i}\right), y=\left(y^{i}\right)$ be local charts of X around x_{0} and y_{0}, respectively, and $(x, \xi),(y, \eta)$ the local charts of $T^{*} X$ induced by them. Furthermore let $z=\left(z^{k}\right)$ be a local chart of $S X$ around z_{0} and (z, ζ) the local chart of $T^{*} S X$ induced by z. We denote the functions $x \circ \pi_{1}, \xi \circ \pi_{1}, z \circ \pi_{2}, \zeta \circ \pi_{2}, z \circ \pi_{3}$, $\zeta \circ \pi_{3}, y \circ \pi_{4}, \eta \circ \pi_{4}$, respectively, by $x, \xi, z_{1}, \zeta_{1}, z_{2}, \zeta_{2}, y, \eta, \pi_{j}$ being the natural projection of $W=T^{*} X \times T^{*} S X \times T^{*} S X \times T^{*} X$ onto the j-th factor. Since $C_{1} \times C_{2}$ has a local parametrization: $\left(z_{1}, \xi, z_{2}, \eta\right) \mapsto\left(p z_{1}, \xi\right) \times\left(z_{1}, p^{*} \xi\right) \times\left(z_{2}, G_{t}^{*} p^{*} \eta\right)$ $\times\left(p G_{t} z_{2}, \eta\right)$, we can take ($\left.z_{1}, \xi, z_{2}, \eta\right)$ as a local chart of $C_{1} \times C_{2}$ around P_{0}.

Now the local equations of $T^{*} X \times \Delta\left(T^{*} S X\right) \times T^{*} X$ in W is given by

$$
\begin{cases}z_{1}^{\kappa}-z_{2}^{\kappa}=0 & 1 \leq \kappa \leq 2 n-1 \\ \zeta_{1}^{\kappa}-\zeta_{2}^{\kappa}=0 & 1 \leq \kappa \leq 2 n-1 .\end{cases}
$$

In order to verify the condition i), it suffices to show that these $2(2 n-1)$ equations remain independent after restricted to $C_{1} \times C_{2}$. Obviously $d z_{1}^{\kappa}-d z_{2}^{\kappa}(1 \leq \kappa \leq$ $2 n-1)$ are linearly independent on $C_{1} \times C_{2}$ at P_{0}. Thus it suffices to see that $d\left(\zeta_{1}^{\kappa}-\zeta_{2}^{\kappa}\right)=d\left(\left(p^{*} \xi\right)^{\kappa}-\left(G_{l}^{*} p^{*} \eta\right)^{\kappa}\right)(1 \leq \kappa \leq 2 n-1)$ are linearly independent modulo $d z_{1}^{\kappa}, d z_{2}^{\kappa}(1 \leq \kappa \leq 2 n-1)$. We can write locally $\left(p^{*} \xi\right)^{\kappa}=\sum_{j} a_{j}^{\kappa}\left(z_{1}\right) \xi^{j},\left(G_{i}^{*} p^{*} \eta\right)^{\kappa}=$ $\sum_{j} b_{j}^{\kappa}\left(z_{2}\right) \eta^{j}$. Then

$$
\begin{aligned}
& d\left(\left(p^{* \xi}\right)^{\kappa}-\left(G_{t}^{*} p^{*} \eta\right)^{k}\right) \\
= & d\left(\sum_{j}\left(a_{j}^{k}\left(z_{1}\right) \xi^{j}-b_{j}^{k}\left(z_{2}\right) \eta^{j}\right)\right) \\
\equiv & \left.\sum_{j}\left(a_{j}^{k}\left(z_{1}\right) d \xi^{j}-b_{j}^{k}\left(z_{2}\right) d \eta^{j}\right) \quad \text { (modulo } d z_{1}, d z_{2}\right) .
\end{aligned}
$$

Hence $d\left(\left(p^{*} \xi\right)^{\kappa}-\left(G_{\imath}^{*} p^{*} \eta\right)^{\kappa}\right)(1 \leq \kappa \leq 2 n-1)$ are linearly independent modulo $d z_{1}$, $d z_{2}$ on $C_{1} \times C_{2}$ at P_{0} if and only if the rank of the matrix $\left(a_{j}^{\kappa}\left(z_{0}\right), b_{j}^{\kappa}\left(z_{0}\right)\right)$ is $2 n-1$, which is equivalent to say that the dimension of the subspace $U=\left\{p^{*} \xi+G_{t}^{*} p^{*} \eta\right.$; $\left.\xi \in T_{x_{0}}^{*} X, \eta \in T_{y_{0}}^{*} X\right\} \subset T_{z_{0}}^{*} S X$ is $2 n-1$. On the other hand, in 1), we have shown that the pair $(\xi, \eta) \in T_{x_{0}}^{*} X \times T_{y_{0}}^{*} X$ such that $p^{*} \xi=G_{t}^{*} p^{*} \eta$ in $T_{z_{0}}^{*} S X$ is de-
termined by z_{0} up to scalar multiplications. This, together with the injectivity of $G_{t}^{*} p^{*}: T_{\nu_{0}}^{*} X \rightarrow T_{i_{0}}^{*} S X$, implies that the dimension of U equals $2 n-1$. Thus the condition i) is verified in the present case.
3) Now we check the condition ii) of Theorem A. For any $(x, \xi) \times(y, \eta)$ $\in C$, we have either $\hat{\xi}=\widetilde{G}_{t}(\hat{\eta})$ or $\hat{\xi}=\widetilde{G}_{-t}(\hat{\eta})$. Let $(z, \zeta) \in T^{*} S X$ be such that $(x, \xi) \times(z, \zeta) \in C_{1}$ and $(z, \zeta) \times(y, \eta) \in C_{2}$. Then $\zeta=p^{*} \xi$, and from 1) it follows immediately that $z=\hat{\xi} /\|\hat{\xi}\|$ if $\hat{\xi}=\widetilde{G}_{t}(\hat{\eta})$ and $z=-\hat{\xi}\| \| \hat{\xi} \|$ if $\hat{\xi}=\widetilde{G}_{-t}(\hat{\eta})$. Thus, in view of $\Gamma_{t} \cap \Gamma_{-t}=\phi, C_{1} \times C_{2} \cap T^{*} X \times \Delta\left(T^{*} S X\right) \times T^{*} X \rightarrow C_{1} \circ C_{2}$ is a diffeomorphism.
4) Finally we show that $\Gamma_{t} \cup \Gamma_{-t}$ is the conormal bundle minus the zero section of $\Delta_{t} \subset X \times X$. It is obvious that the projection $T^{*}(X \times X) \rightarrow X \times X$ maps $\Gamma_{t} \cup \Gamma_{-t}$ onto Δ_{t}. The fibre of $\Gamma_{t} \cup \Gamma_{-t} \rightarrow \Delta_{t}$ is easily seen to be $\mathbf{R}-\{0\}$. Since $\Gamma_{t} \cup \Gamma_{-t}$ is a Lagrangean submanifold of $T^{*}(X \times X)$, it follows that $\Gamma_{t} \cup \Gamma_{-t}$ is contained as an open set in the conormal bundle of Δ_{t}, whence $\Gamma_{t} \cup \Gamma_{-t}$ must be the conormal bundle of Δ_{t} minus the zero section.

This completes the proof of Theorem I^{\prime}.
6. Using Theorem I^{\prime}, we get some information about the regularity of \tilde{L}_{t}. We quote the following

Theorem B ([3] Theorem 4.3.2). Let X and Y be smooth manifolds and $C \subset T^{*} X \times T^{*} Y$ a homogeneous canonical relation satisfying the following conditions:
i) the projections $C \rightarrow X, C \rightarrow Y$ have surjective differentials;
ii) the differentials of the projections $C \rightarrow T^{*} X$ and $C \rightarrow T^{*} Y$ have rank at least $k+\operatorname{dim} X$ and $k+\operatorname{dim} Y$, respectively.

Let $m \leq \frac{1}{4}(2 k-\operatorname{dim} X-\operatorname{dim} Y)$. Then every $A \in I^{m}\left(X \times Y, C^{\prime}\right)$ is a continuous operator: $L_{c}^{2}\left(Y, \Omega_{\frac{1}{2}}\right) \rightarrow L_{\text {loc }}^{2}\left(X, \Omega_{\frac{1}{2}}\right)$.

From this, it follows immediately the following
Corollary. Under the assumptions of Theorem B, A is continuous: $H_{c}^{s}\left(Y, \Omega_{\frac{1}{2}}\right)$ $\rightarrow H_{\text {loc }}^{s+r}\left(X, \Omega_{\frac{1}{2}}\right)$, where $r=-m+\frac{1}{4}(2 k-\operatorname{dim} X-\operatorname{dim} Y)$.

In the case of the operator \tilde{L}_{t}, the condition i) is trivially satisfied and the condition ii) is valid with $k=n$, since Γ_{t} and Γ_{-t} are the graphs of diffeomorphisms: $T^{*} X \backslash 0 \rightarrow T^{*} X \backslash 0$. Furthermore, $r=\frac{1}{2}(n-1)-\frac{1}{4}(2 n-n-n)=\frac{1}{2}(n-1)$. Hence we have

Theorem II. The spherical mean $\widetilde{L}_{t}\left(0<t \leq t_{0}\right)$ is a continuous operator: $H^{s}\left(X, \Omega_{\frac{1}{2}}\right) \rightarrow H^{s+\frac{1}{2}(n-1)}\left(X, \Omega_{\frac{1}{2}}\right)$ for each $s \in \mathbf{R}$.

Corollary. If $n \geq 2$, then the operator $\widetilde{L}_{t}: L^{2}\left(X, \Omega_{\frac{1}{2}}\right) \rightarrow L^{2}\left(X, \Omega_{\frac{1}{2}}\right)$ is compact for $0<t \leq t_{0}$.

Corollary. If $n \geq 2$, then the eigenfunctions of non-zero eigenvalues of the operator $\tilde{L}_{t}: L^{2}\left(X, \Omega_{\frac{1}{2}}\right) \rightarrow L^{2}\left(X, \Omega_{\frac{1}{2}}\right)$ are smooth functions, for $0<t \leq t_{0}$.

Osaka University

References

[1] J.J. Duistermaat: Fourier integral operators. Lecture Notes, Courant Inst. Math. Sci., New York Univ., 1973.
[2] S. Helgason: Differential geometry and symmetric spaces. Academic Press, New York and London, 1962.
[3] L. Hörmander: Fourier integral operators I, Acta Math. 127 (1971), 79-183.

